1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 class X86FastISel
: public FastISel
{
38 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const X86Subtarget
*Subtarget
;
42 /// StackPtr - Register used as the stack pointer.
46 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
47 /// floating point ops.
48 /// When SSE is available, use it for f32 operations.
49 /// When SSE2 is available, use it for f64 operations.
54 explicit X86FastISel(MachineFunction
&mf
,
55 MachineModuleInfo
*mmi
,
57 DenseMap
<const Value
*, unsigned> &vm
,
58 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
59 DenseMap
<const AllocaInst
*, int> &am
61 , SmallSet
<Instruction
*, 8> &cil
64 : FastISel(mf
, mmi
, dw
, vm
, bm
, am
69 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
70 StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
71 X86ScalarSSEf64
= Subtarget
->hasSSE2();
72 X86ScalarSSEf32
= Subtarget
->hasSSE1();
75 virtual bool TargetSelectInstruction(Instruction
*I
);
77 #include "X86GenFastISel.inc"
80 bool X86FastEmitCompare(Value
*LHS
, Value
*RHS
, MVT VT
);
82 bool X86FastEmitLoad(MVT VT
, const X86AddressMode
&AM
, unsigned &RR
);
84 bool X86FastEmitStore(MVT VT
, Value
*Val
,
85 const X86AddressMode
&AM
);
86 bool X86FastEmitStore(MVT VT
, unsigned Val
,
87 const X86AddressMode
&AM
);
89 bool X86FastEmitExtend(ISD::NodeType Opc
, MVT DstVT
, unsigned Src
, MVT SrcVT
,
92 bool X86SelectAddress(Value
*V
, X86AddressMode
&AM
, bool isCall
);
94 bool X86SelectLoad(Instruction
*I
);
96 bool X86SelectStore(Instruction
*I
);
98 bool X86SelectCmp(Instruction
*I
);
100 bool X86SelectZExt(Instruction
*I
);
102 bool X86SelectBranch(Instruction
*I
);
104 bool X86SelectShift(Instruction
*I
);
106 bool X86SelectSelect(Instruction
*I
);
108 bool X86SelectTrunc(Instruction
*I
);
110 bool X86SelectFPExt(Instruction
*I
);
111 bool X86SelectFPTrunc(Instruction
*I
);
113 bool X86SelectExtractValue(Instruction
*I
);
115 bool X86VisitIntrinsicCall(IntrinsicInst
&I
);
116 bool X86SelectCall(Instruction
*I
);
118 CCAssignFn
*CCAssignFnForCall(unsigned CC
, bool isTailCall
= false);
120 const X86InstrInfo
*getInstrInfo() const {
121 return getTargetMachine()->getInstrInfo();
123 const X86TargetMachine
*getTargetMachine() const {
124 return static_cast<const X86TargetMachine
*>(&TM
);
127 unsigned TargetMaterializeConstant(Constant
*C
);
129 unsigned TargetMaterializeAlloca(AllocaInst
*C
);
131 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
132 /// computed in an SSE register, not on the X87 floating point stack.
133 bool isScalarFPTypeInSSEReg(MVT VT
) const {
134 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
135 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
138 bool isTypeLegal(const Type
*Ty
, MVT
&VT
, bool AllowI1
= false);
141 } // end anonymous namespace.
143 bool X86FastISel::isTypeLegal(const Type
*Ty
, MVT
&VT
, bool AllowI1
) {
144 VT
= TLI
.getValueType(Ty
, /*HandleUnknown=*/true);
145 if (VT
== MVT::Other
|| !VT
.isSimple())
146 // Unhandled type. Halt "fast" selection and bail.
149 // For now, require SSE/SSE2 for performing floating-point operations,
150 // since x87 requires additional work.
151 if (VT
== MVT::f64
&& !X86ScalarSSEf64
)
153 if (VT
== MVT::f32
&& !X86ScalarSSEf32
)
155 // Similarly, no f80 support yet.
158 // We only handle legal types. For example, on x86-32 the instruction
159 // selector contains all of the 64-bit instructions from x86-64,
160 // under the assumption that i64 won't be used if the target doesn't
162 return (AllowI1
&& VT
== MVT::i1
) || TLI
.isTypeLegal(VT
);
165 #include "X86GenCallingConv.inc"
167 /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
169 CCAssignFn
*X86FastISel::CCAssignFnForCall(unsigned CC
, bool isTaillCall
) {
170 if (Subtarget
->is64Bit()) {
171 if (Subtarget
->isTargetWin64())
172 return CC_X86_Win64_C
;
173 else if (CC
== CallingConv::Fast
&& isTaillCall
)
174 return CC_X86_64_TailCall
;
179 if (CC
== CallingConv::X86_FastCall
)
180 return CC_X86_32_FastCall
;
181 else if (CC
== CallingConv::Fast
)
182 return CC_X86_32_FastCC
;
187 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
188 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
189 /// Return true and the result register by reference if it is possible.
190 bool X86FastISel::X86FastEmitLoad(MVT VT
, const X86AddressMode
&AM
,
191 unsigned &ResultReg
) {
192 // Get opcode and regclass of the output for the given load instruction.
194 const TargetRegisterClass
*RC
= NULL
;
195 switch (VT
.getSimpleVT()) {
196 default: return false;
199 RC
= X86::GR8RegisterClass
;
203 RC
= X86::GR16RegisterClass
;
207 RC
= X86::GR32RegisterClass
;
210 // Must be in x86-64 mode.
212 RC
= X86::GR64RegisterClass
;
215 if (Subtarget
->hasSSE1()) {
217 RC
= X86::FR32RegisterClass
;
220 RC
= X86::RFP32RegisterClass
;
224 if (Subtarget
->hasSSE2()) {
226 RC
= X86::FR64RegisterClass
;
229 RC
= X86::RFP64RegisterClass
;
233 // No f80 support yet.
237 ResultReg
= createResultReg(RC
);
238 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
242 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
243 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
244 /// and a displacement offset, or a GlobalAddress,
245 /// i.e. V. Return true if it is possible.
247 X86FastISel::X86FastEmitStore(MVT VT
, unsigned Val
,
248 const X86AddressMode
&AM
) {
249 // Get opcode and regclass of the output for the given store instruction.
251 switch (VT
.getSimpleVT()) {
252 case MVT::f80
: // No f80 support yet.
253 default: return false;
254 case MVT::i8
: Opc
= X86::MOV8mr
; break;
255 case MVT::i16
: Opc
= X86::MOV16mr
; break;
256 case MVT::i32
: Opc
= X86::MOV32mr
; break;
257 case MVT::i64
: Opc
= X86::MOV64mr
; break; // Must be in x86-64 mode.
259 Opc
= Subtarget
->hasSSE1() ? X86::MOVSSmr
: X86::ST_Fp32m
;
262 Opc
= Subtarget
->hasSSE2() ? X86::MOVSDmr
: X86::ST_Fp64m
;
266 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
)), AM
).addReg(Val
);
270 bool X86FastISel::X86FastEmitStore(MVT VT
, Value
*Val
,
271 const X86AddressMode
&AM
) {
272 // Handle 'null' like i32/i64 0.
273 if (isa
<ConstantPointerNull
>(Val
))
274 Val
= Constant::getNullValue(TD
.getIntPtrType());
276 // If this is a store of a simple constant, fold the constant into the store.
277 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Val
)) {
279 switch (VT
.getSimpleVT()) {
281 case MVT::i8
: Opc
= X86::MOV8mi
; break;
282 case MVT::i16
: Opc
= X86::MOV16mi
; break;
283 case MVT::i32
: Opc
= X86::MOV32mi
; break;
285 // Must be a 32-bit sign extended value.
286 if ((int)CI
->getSExtValue() == CI
->getSExtValue())
287 Opc
= X86::MOV64mi32
;
292 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
)), AM
)
293 .addImm(CI
->getSExtValue());
298 unsigned ValReg
= getRegForValue(Val
);
302 return X86FastEmitStore(VT
, ValReg
, AM
);
305 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
306 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
307 /// ISD::SIGN_EXTEND).
308 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc
, MVT DstVT
,
309 unsigned Src
, MVT SrcVT
,
310 unsigned &ResultReg
) {
311 unsigned RR
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(), Opc
, Src
);
320 /// X86SelectAddress - Attempt to fill in an address from the given value.
322 bool X86FastISel::X86SelectAddress(Value
*V
, X86AddressMode
&AM
, bool isCall
) {
324 unsigned Opcode
= Instruction::UserOp1
;
325 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
326 Opcode
= I
->getOpcode();
328 } else if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
)) {
329 Opcode
= C
->getOpcode();
335 case Instruction::BitCast
:
336 // Look past bitcasts.
337 return X86SelectAddress(U
->getOperand(0), AM
, isCall
);
339 case Instruction::IntToPtr
:
340 // Look past no-op inttoptrs.
341 if (TLI
.getValueType(U
->getOperand(0)->getType()) == TLI
.getPointerTy())
342 return X86SelectAddress(U
->getOperand(0), AM
, isCall
);
345 case Instruction::PtrToInt
:
346 // Look past no-op ptrtoints.
347 if (TLI
.getValueType(U
->getType()) == TLI
.getPointerTy())
348 return X86SelectAddress(U
->getOperand(0), AM
, isCall
);
351 case Instruction::Alloca
: {
353 // Do static allocas.
354 const AllocaInst
*A
= cast
<AllocaInst
>(V
);
355 DenseMap
<const AllocaInst
*, int>::iterator SI
= StaticAllocaMap
.find(A
);
356 if (SI
!= StaticAllocaMap
.end()) {
357 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
358 AM
.Base
.FrameIndex
= SI
->second
;
364 case Instruction::Add
: {
366 // Adds of constants are common and easy enough.
367 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
368 uint64_t Disp
= (int32_t)AM
.Disp
+ (uint64_t)CI
->getSExtValue();
369 // They have to fit in the 32-bit signed displacement field though.
371 AM
.Disp
= (uint32_t)Disp
;
372 return X86SelectAddress(U
->getOperand(0), AM
, isCall
);
378 case Instruction::GetElementPtr
: {
380 // Pattern-match simple GEPs.
381 uint64_t Disp
= (int32_t)AM
.Disp
;
382 unsigned IndexReg
= AM
.IndexReg
;
383 unsigned Scale
= AM
.Scale
;
384 gep_type_iterator GTI
= gep_type_begin(U
);
385 // Iterate through the indices, folding what we can. Constants can be
386 // folded, and one dynamic index can be handled, if the scale is supported.
387 for (User::op_iterator i
= U
->op_begin() + 1, e
= U
->op_end();
388 i
!= e
; ++i
, ++GTI
) {
390 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
391 const StructLayout
*SL
= TD
.getStructLayout(STy
);
392 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
393 Disp
+= SL
->getElementOffset(Idx
);
395 uint64_t S
= TD
.getTypePaddedSize(GTI
.getIndexedType());
396 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
397 // Constant-offset addressing.
398 Disp
+= CI
->getSExtValue() * S
;
399 } else if (IndexReg
== 0 &&
401 !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
402 (S
== 1 || S
== 2 || S
== 4 || S
== 8)) {
403 // Scaled-index addressing.
405 IndexReg
= getRegForGEPIndex(Op
);
410 goto unsupported_gep
;
413 // Check for displacement overflow.
416 // Ok, the GEP indices were covered by constant-offset and scaled-index
417 // addressing. Update the address state and move on to examining the base.
418 AM
.IndexReg
= IndexReg
;
420 AM
.Disp
= (uint32_t)Disp
;
421 return X86SelectAddress(U
->getOperand(0), AM
, isCall
);
423 // Ok, the GEP indices weren't all covered.
428 // Handle constant address.
429 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
430 // Can't handle alternate code models yet.
431 if (TM
.getCodeModel() != CodeModel::Default
&&
432 TM
.getCodeModel() != CodeModel::Small
)
435 // RIP-relative addresses can't have additional register operands.
436 if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
437 (AM
.Base
.Reg
!= 0 || AM
.IndexReg
!= 0))
440 // Can't handle TLS yet.
441 if (GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
442 if (GVar
->isThreadLocal())
445 // Set up the basic address.
448 TM
.getRelocationModel() == Reloc::PIC_
&&
449 !Subtarget
->is64Bit())
450 AM
.Base
.Reg
= getInstrInfo()->getGlobalBaseReg(&MF
);
452 // Emit an extra load if the ABI requires it.
453 if (Subtarget
->GVRequiresExtraLoad(GV
, TM
, isCall
)) {
454 // Check to see if we've already materialized this
455 // value in a register in this block.
456 if (unsigned Reg
= LocalValueMap
[V
]) {
461 // Issue load from stub if necessary.
463 const TargetRegisterClass
*RC
= NULL
;
464 if (TLI
.getPointerTy() == MVT::i32
) {
466 RC
= X86::GR32RegisterClass
;
469 RC
= X86::GR64RegisterClass
;
472 X86AddressMode StubAM
;
473 StubAM
.Base
.Reg
= AM
.Base
.Reg
;
475 unsigned ResultReg
= createResultReg(RC
);
476 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), StubAM
);
478 // Now construct the final address. Note that the Disp, Scale,
479 // and Index values may already be set here.
480 AM
.Base
.Reg
= ResultReg
;
483 // Prevent loading GV stub multiple times in same MBB.
484 LocalValueMap
[V
] = AM
.Base
.Reg
;
489 // If all else fails, try to materialize the value in a register.
490 if (!AM
.GV
|| !getTargetMachine()->symbolicAddressesAreRIPRel()) {
491 if (AM
.Base
.Reg
== 0) {
492 AM
.Base
.Reg
= getRegForValue(V
);
493 return AM
.Base
.Reg
!= 0;
495 if (AM
.IndexReg
== 0) {
496 assert(AM
.Scale
== 1 && "Scale with no index!");
497 AM
.IndexReg
= getRegForValue(V
);
498 return AM
.IndexReg
!= 0;
505 /// X86SelectStore - Select and emit code to implement store instructions.
506 bool X86FastISel::X86SelectStore(Instruction
* I
) {
508 if (!isTypeLegal(I
->getOperand(0)->getType(), VT
))
512 if (!X86SelectAddress(I
->getOperand(1), AM
, false))
515 return X86FastEmitStore(VT
, I
->getOperand(0), AM
);
518 /// X86SelectLoad - Select and emit code to implement load instructions.
520 bool X86FastISel::X86SelectLoad(Instruction
*I
) {
522 if (!isTypeLegal(I
->getType(), VT
))
526 if (!X86SelectAddress(I
->getOperand(0), AM
, false))
529 unsigned ResultReg
= 0;
530 if (X86FastEmitLoad(VT
, AM
, ResultReg
)) {
531 UpdateValueMap(I
, ResultReg
);
537 static unsigned X86ChooseCmpOpcode(MVT VT
) {
538 switch (VT
.getSimpleVT()) {
540 case MVT::i8
: return X86::CMP8rr
;
541 case MVT::i16
: return X86::CMP16rr
;
542 case MVT::i32
: return X86::CMP32rr
;
543 case MVT::i64
: return X86::CMP64rr
;
544 case MVT::f32
: return X86::UCOMISSrr
;
545 case MVT::f64
: return X86::UCOMISDrr
;
549 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
550 /// of the comparison, return an opcode that works for the compare (e.g.
551 /// CMP32ri) otherwise return 0.
552 static unsigned X86ChooseCmpImmediateOpcode(MVT VT
, ConstantInt
*RHSC
) {
553 switch (VT
.getSimpleVT()) {
554 // Otherwise, we can't fold the immediate into this comparison.
556 case MVT::i8
: return X86::CMP8ri
;
557 case MVT::i16
: return X86::CMP16ri
;
558 case MVT::i32
: return X86::CMP32ri
;
560 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
562 if ((int)RHSC
->getSExtValue() == RHSC
->getSExtValue())
563 return X86::CMP64ri32
;
568 bool X86FastISel::X86FastEmitCompare(Value
*Op0
, Value
*Op1
, MVT VT
) {
569 unsigned Op0Reg
= getRegForValue(Op0
);
570 if (Op0Reg
== 0) return false;
572 // Handle 'null' like i32/i64 0.
573 if (isa
<ConstantPointerNull
>(Op1
))
574 Op1
= Constant::getNullValue(TD
.getIntPtrType());
576 // We have two options: compare with register or immediate. If the RHS of
577 // the compare is an immediate that we can fold into this compare, use
578 // CMPri, otherwise use CMPrr.
579 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(Op1
)) {
580 if (unsigned CompareImmOpc
= X86ChooseCmpImmediateOpcode(VT
, Op1C
)) {
581 BuildMI(MBB
, DL
, TII
.get(CompareImmOpc
)).addReg(Op0Reg
)
582 .addImm(Op1C
->getSExtValue());
587 unsigned CompareOpc
= X86ChooseCmpOpcode(VT
);
588 if (CompareOpc
== 0) return false;
590 unsigned Op1Reg
= getRegForValue(Op1
);
591 if (Op1Reg
== 0) return false;
592 BuildMI(MBB
, DL
, TII
.get(CompareOpc
)).addReg(Op0Reg
).addReg(Op1Reg
);
597 bool X86FastISel::X86SelectCmp(Instruction
*I
) {
598 CmpInst
*CI
= cast
<CmpInst
>(I
);
601 if (!isTypeLegal(I
->getOperand(0)->getType(), VT
))
604 unsigned ResultReg
= createResultReg(&X86::GR8RegClass
);
606 bool SwapArgs
; // false -> compare Op0, Op1. true -> compare Op1, Op0.
607 switch (CI
->getPredicate()) {
608 case CmpInst::FCMP_OEQ
: {
609 if (!X86FastEmitCompare(CI
->getOperand(0), CI
->getOperand(1), VT
))
612 unsigned EReg
= createResultReg(&X86::GR8RegClass
);
613 unsigned NPReg
= createResultReg(&X86::GR8RegClass
);
614 BuildMI(MBB
, DL
, TII
.get(X86::SETEr
), EReg
);
615 BuildMI(MBB
, DL
, TII
.get(X86::SETNPr
), NPReg
);
617 TII
.get(X86::AND8rr
), ResultReg
).addReg(NPReg
).addReg(EReg
);
618 UpdateValueMap(I
, ResultReg
);
621 case CmpInst::FCMP_UNE
: {
622 if (!X86FastEmitCompare(CI
->getOperand(0), CI
->getOperand(1), VT
))
625 unsigned NEReg
= createResultReg(&X86::GR8RegClass
);
626 unsigned PReg
= createResultReg(&X86::GR8RegClass
);
627 BuildMI(MBB
, DL
, TII
.get(X86::SETNEr
), NEReg
);
628 BuildMI(MBB
, DL
, TII
.get(X86::SETPr
), PReg
);
629 BuildMI(MBB
, DL
, TII
.get(X86::OR8rr
), ResultReg
).addReg(PReg
).addReg(NEReg
);
630 UpdateValueMap(I
, ResultReg
);
633 case CmpInst::FCMP_OGT
: SwapArgs
= false; SetCCOpc
= X86::SETAr
; break;
634 case CmpInst::FCMP_OGE
: SwapArgs
= false; SetCCOpc
= X86::SETAEr
; break;
635 case CmpInst::FCMP_OLT
: SwapArgs
= true; SetCCOpc
= X86::SETAr
; break;
636 case CmpInst::FCMP_OLE
: SwapArgs
= true; SetCCOpc
= X86::SETAEr
; break;
637 case CmpInst::FCMP_ONE
: SwapArgs
= false; SetCCOpc
= X86::SETNEr
; break;
638 case CmpInst::FCMP_ORD
: SwapArgs
= false; SetCCOpc
= X86::SETNPr
; break;
639 case CmpInst::FCMP_UNO
: SwapArgs
= false; SetCCOpc
= X86::SETPr
; break;
640 case CmpInst::FCMP_UEQ
: SwapArgs
= false; SetCCOpc
= X86::SETEr
; break;
641 case CmpInst::FCMP_UGT
: SwapArgs
= true; SetCCOpc
= X86::SETBr
; break;
642 case CmpInst::FCMP_UGE
: SwapArgs
= true; SetCCOpc
= X86::SETBEr
; break;
643 case CmpInst::FCMP_ULT
: SwapArgs
= false; SetCCOpc
= X86::SETBr
; break;
644 case CmpInst::FCMP_ULE
: SwapArgs
= false; SetCCOpc
= X86::SETBEr
; break;
646 case CmpInst::ICMP_EQ
: SwapArgs
= false; SetCCOpc
= X86::SETEr
; break;
647 case CmpInst::ICMP_NE
: SwapArgs
= false; SetCCOpc
= X86::SETNEr
; break;
648 case CmpInst::ICMP_UGT
: SwapArgs
= false; SetCCOpc
= X86::SETAr
; break;
649 case CmpInst::ICMP_UGE
: SwapArgs
= false; SetCCOpc
= X86::SETAEr
; break;
650 case CmpInst::ICMP_ULT
: SwapArgs
= false; SetCCOpc
= X86::SETBr
; break;
651 case CmpInst::ICMP_ULE
: SwapArgs
= false; SetCCOpc
= X86::SETBEr
; break;
652 case CmpInst::ICMP_SGT
: SwapArgs
= false; SetCCOpc
= X86::SETGr
; break;
653 case CmpInst::ICMP_SGE
: SwapArgs
= false; SetCCOpc
= X86::SETGEr
; break;
654 case CmpInst::ICMP_SLT
: SwapArgs
= false; SetCCOpc
= X86::SETLr
; break;
655 case CmpInst::ICMP_SLE
: SwapArgs
= false; SetCCOpc
= X86::SETLEr
; break;
660 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
664 // Emit a compare of Op0/Op1.
665 if (!X86FastEmitCompare(Op0
, Op1
, VT
))
668 BuildMI(MBB
, DL
, TII
.get(SetCCOpc
), ResultReg
);
669 UpdateValueMap(I
, ResultReg
);
673 bool X86FastISel::X86SelectZExt(Instruction
*I
) {
674 // Handle zero-extension from i1 to i8, which is common.
675 if (I
->getType() == Type::Int8Ty
&&
676 I
->getOperand(0)->getType() == Type::Int1Ty
) {
677 unsigned ResultReg
= getRegForValue(I
->getOperand(0));
678 if (ResultReg
== 0) return false;
679 // Set the high bits to zero.
680 ResultReg
= FastEmitZExtFromI1(MVT::i8
, ResultReg
);
681 if (ResultReg
== 0) return false;
682 UpdateValueMap(I
, ResultReg
);
690 bool X86FastISel::X86SelectBranch(Instruction
*I
) {
691 // Unconditional branches are selected by tablegen-generated code.
692 // Handle a conditional branch.
693 BranchInst
*BI
= cast
<BranchInst
>(I
);
694 MachineBasicBlock
*TrueMBB
= MBBMap
[BI
->getSuccessor(0)];
695 MachineBasicBlock
*FalseMBB
= MBBMap
[BI
->getSuccessor(1)];
697 // Fold the common case of a conditional branch with a comparison.
698 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
699 if (CI
->hasOneUse()) {
700 MVT VT
= TLI
.getValueType(CI
->getOperand(0)->getType());
702 // Try to take advantage of fallthrough opportunities.
703 CmpInst::Predicate Predicate
= CI
->getPredicate();
704 if (MBB
->isLayoutSuccessor(TrueMBB
)) {
705 std::swap(TrueMBB
, FalseMBB
);
706 Predicate
= CmpInst::getInversePredicate(Predicate
);
709 bool SwapArgs
; // false -> compare Op0, Op1. true -> compare Op1, Op0.
710 unsigned BranchOpc
; // Opcode to jump on, e.g. "X86::JA"
713 case CmpInst::FCMP_OEQ
:
714 std::swap(TrueMBB
, FalseMBB
);
715 Predicate
= CmpInst::FCMP_UNE
;
717 case CmpInst::FCMP_UNE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
718 case CmpInst::FCMP_OGT
: SwapArgs
= false; BranchOpc
= X86::JA
; break;
719 case CmpInst::FCMP_OGE
: SwapArgs
= false; BranchOpc
= X86::JAE
; break;
720 case CmpInst::FCMP_OLT
: SwapArgs
= true; BranchOpc
= X86::JA
; break;
721 case CmpInst::FCMP_OLE
: SwapArgs
= true; BranchOpc
= X86::JAE
; break;
722 case CmpInst::FCMP_ONE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
723 case CmpInst::FCMP_ORD
: SwapArgs
= false; BranchOpc
= X86::JNP
; break;
724 case CmpInst::FCMP_UNO
: SwapArgs
= false; BranchOpc
= X86::JP
; break;
725 case CmpInst::FCMP_UEQ
: SwapArgs
= false; BranchOpc
= X86::JE
; break;
726 case CmpInst::FCMP_UGT
: SwapArgs
= true; BranchOpc
= X86::JB
; break;
727 case CmpInst::FCMP_UGE
: SwapArgs
= true; BranchOpc
= X86::JBE
; break;
728 case CmpInst::FCMP_ULT
: SwapArgs
= false; BranchOpc
= X86::JB
; break;
729 case CmpInst::FCMP_ULE
: SwapArgs
= false; BranchOpc
= X86::JBE
; break;
731 case CmpInst::ICMP_EQ
: SwapArgs
= false; BranchOpc
= X86::JE
; break;
732 case CmpInst::ICMP_NE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
733 case CmpInst::ICMP_UGT
: SwapArgs
= false; BranchOpc
= X86::JA
; break;
734 case CmpInst::ICMP_UGE
: SwapArgs
= false; BranchOpc
= X86::JAE
; break;
735 case CmpInst::ICMP_ULT
: SwapArgs
= false; BranchOpc
= X86::JB
; break;
736 case CmpInst::ICMP_ULE
: SwapArgs
= false; BranchOpc
= X86::JBE
; break;
737 case CmpInst::ICMP_SGT
: SwapArgs
= false; BranchOpc
= X86::JG
; break;
738 case CmpInst::ICMP_SGE
: SwapArgs
= false; BranchOpc
= X86::JGE
; break;
739 case CmpInst::ICMP_SLT
: SwapArgs
= false; BranchOpc
= X86::JL
; break;
740 case CmpInst::ICMP_SLE
: SwapArgs
= false; BranchOpc
= X86::JLE
; break;
745 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
749 // Emit a compare of the LHS and RHS, setting the flags.
750 if (!X86FastEmitCompare(Op0
, Op1
, VT
))
753 BuildMI(MBB
, DL
, TII
.get(BranchOpc
)).addMBB(TrueMBB
);
755 if (Predicate
== CmpInst::FCMP_UNE
) {
756 // X86 requires a second branch to handle UNE (and OEQ,
757 // which is mapped to UNE above).
758 BuildMI(MBB
, DL
, TII
.get(X86::JP
)).addMBB(TrueMBB
);
761 FastEmitBranch(FalseMBB
);
762 MBB
->addSuccessor(TrueMBB
);
765 } else if (ExtractValueInst
*EI
=
766 dyn_cast
<ExtractValueInst
>(BI
->getCondition())) {
767 // Check to see if the branch instruction is from an "arithmetic with
768 // overflow" intrinsic. The main way these intrinsics are used is:
770 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
771 // %sum = extractvalue { i32, i1 } %t, 0
772 // %obit = extractvalue { i32, i1 } %t, 1
773 // br i1 %obit, label %overflow, label %normal
775 // The %sum and %obit are converted in an ADD and a SETO/SETB before
776 // reaching the branch. Therefore, we search backwards through the MBB
777 // looking for the SETO/SETB instruction. If an instruction modifies the
778 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
779 // convert the branch into a JO/JB instruction.
780 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(EI
->getAggregateOperand())){
781 if (CI
->getIntrinsicID() == Intrinsic::sadd_with_overflow
||
782 CI
->getIntrinsicID() == Intrinsic::uadd_with_overflow
) {
783 const MachineInstr
*SetMI
= 0;
784 unsigned Reg
= lookUpRegForValue(EI
);
786 for (MachineBasicBlock::const_reverse_iterator
787 RI
= MBB
->rbegin(), RE
= MBB
->rend(); RI
!= RE
; ++RI
) {
788 const MachineInstr
&MI
= *RI
;
790 if (MI
.modifiesRegister(Reg
)) {
791 unsigned Src
, Dst
, SrcSR
, DstSR
;
793 if (getInstrInfo()->isMoveInstr(MI
, Src
, Dst
, SrcSR
, DstSR
)) {
802 const TargetInstrDesc
&TID
= MI
.getDesc();
803 if (TID
.hasUnmodeledSideEffects() ||
804 TID
.hasImplicitDefOfPhysReg(X86::EFLAGS
))
809 unsigned OpCode
= SetMI
->getOpcode();
811 if (OpCode
== X86::SETOr
|| OpCode
== X86::SETBr
) {
812 BuildMI(MBB
, DL
, TII
.get(OpCode
== X86::SETOr
? X86::JO
: X86::JB
))
814 FastEmitBranch(FalseMBB
);
815 MBB
->addSuccessor(TrueMBB
);
823 // Otherwise do a clumsy setcc and re-test it.
824 unsigned OpReg
= getRegForValue(BI
->getCondition());
825 if (OpReg
== 0) return false;
827 BuildMI(MBB
, DL
, TII
.get(X86::TEST8rr
)).addReg(OpReg
).addReg(OpReg
);
828 BuildMI(MBB
, DL
, TII
.get(X86::JNE
)).addMBB(TrueMBB
);
829 FastEmitBranch(FalseMBB
);
830 MBB
->addSuccessor(TrueMBB
);
834 bool X86FastISel::X86SelectShift(Instruction
*I
) {
835 unsigned CReg
= 0, OpReg
= 0, OpImm
= 0;
836 const TargetRegisterClass
*RC
= NULL
;
837 if (I
->getType() == Type::Int8Ty
) {
839 RC
= &X86::GR8RegClass
;
840 switch (I
->getOpcode()) {
841 case Instruction::LShr
: OpReg
= X86::SHR8rCL
; OpImm
= X86::SHR8ri
; break;
842 case Instruction::AShr
: OpReg
= X86::SAR8rCL
; OpImm
= X86::SAR8ri
; break;
843 case Instruction::Shl
: OpReg
= X86::SHL8rCL
; OpImm
= X86::SHL8ri
; break;
844 default: return false;
846 } else if (I
->getType() == Type::Int16Ty
) {
848 RC
= &X86::GR16RegClass
;
849 switch (I
->getOpcode()) {
850 case Instruction::LShr
: OpReg
= X86::SHR16rCL
; OpImm
= X86::SHR16ri
; break;
851 case Instruction::AShr
: OpReg
= X86::SAR16rCL
; OpImm
= X86::SAR16ri
; break;
852 case Instruction::Shl
: OpReg
= X86::SHL16rCL
; OpImm
= X86::SHL16ri
; break;
853 default: return false;
855 } else if (I
->getType() == Type::Int32Ty
) {
857 RC
= &X86::GR32RegClass
;
858 switch (I
->getOpcode()) {
859 case Instruction::LShr
: OpReg
= X86::SHR32rCL
; OpImm
= X86::SHR32ri
; break;
860 case Instruction::AShr
: OpReg
= X86::SAR32rCL
; OpImm
= X86::SAR32ri
; break;
861 case Instruction::Shl
: OpReg
= X86::SHL32rCL
; OpImm
= X86::SHL32ri
; break;
862 default: return false;
864 } else if (I
->getType() == Type::Int64Ty
) {
866 RC
= &X86::GR64RegClass
;
867 switch (I
->getOpcode()) {
868 case Instruction::LShr
: OpReg
= X86::SHR64rCL
; OpImm
= X86::SHR64ri
; break;
869 case Instruction::AShr
: OpReg
= X86::SAR64rCL
; OpImm
= X86::SAR64ri
; break;
870 case Instruction::Shl
: OpReg
= X86::SHL64rCL
; OpImm
= X86::SHL64ri
; break;
871 default: return false;
877 MVT VT
= TLI
.getValueType(I
->getType(), /*HandleUnknown=*/true);
878 if (VT
== MVT::Other
|| !isTypeLegal(I
->getType(), VT
))
881 unsigned Op0Reg
= getRegForValue(I
->getOperand(0));
882 if (Op0Reg
== 0) return false;
884 // Fold immediate in shl(x,3).
885 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
886 unsigned ResultReg
= createResultReg(RC
);
887 BuildMI(MBB
, DL
, TII
.get(OpImm
),
888 ResultReg
).addReg(Op0Reg
).addImm(CI
->getZExtValue() & 0xff);
889 UpdateValueMap(I
, ResultReg
);
893 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
894 if (Op1Reg
== 0) return false;
895 TII
.copyRegToReg(*MBB
, MBB
->end(), CReg
, Op1Reg
, RC
, RC
);
897 // The shift instruction uses X86::CL. If we defined a super-register
898 // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
901 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::EXTRACT_SUBREG
), X86::CL
)
902 .addReg(CReg
).addImm(X86::SUBREG_8BIT
);
904 unsigned ResultReg
= createResultReg(RC
);
905 BuildMI(MBB
, DL
, TII
.get(OpReg
), ResultReg
).addReg(Op0Reg
);
906 UpdateValueMap(I
, ResultReg
);
910 bool X86FastISel::X86SelectSelect(Instruction
*I
) {
911 MVT VT
= TLI
.getValueType(I
->getType(), /*HandleUnknown=*/true);
912 if (VT
== MVT::Other
|| !isTypeLegal(I
->getType(), VT
))
916 const TargetRegisterClass
*RC
= NULL
;
917 if (VT
.getSimpleVT() == MVT::i16
) {
918 Opc
= X86::CMOVE16rr
;
919 RC
= &X86::GR16RegClass
;
920 } else if (VT
.getSimpleVT() == MVT::i32
) {
921 Opc
= X86::CMOVE32rr
;
922 RC
= &X86::GR32RegClass
;
923 } else if (VT
.getSimpleVT() == MVT::i64
) {
924 Opc
= X86::CMOVE64rr
;
925 RC
= &X86::GR64RegClass
;
930 unsigned Op0Reg
= getRegForValue(I
->getOperand(0));
931 if (Op0Reg
== 0) return false;
932 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
933 if (Op1Reg
== 0) return false;
934 unsigned Op2Reg
= getRegForValue(I
->getOperand(2));
935 if (Op2Reg
== 0) return false;
937 BuildMI(MBB
, DL
, TII
.get(X86::TEST8rr
)).addReg(Op0Reg
).addReg(Op0Reg
);
938 unsigned ResultReg
= createResultReg(RC
);
939 BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
).addReg(Op1Reg
).addReg(Op2Reg
);
940 UpdateValueMap(I
, ResultReg
);
944 bool X86FastISel::X86SelectFPExt(Instruction
*I
) {
945 // fpext from float to double.
946 if (Subtarget
->hasSSE2() && I
->getType() == Type::DoubleTy
) {
947 Value
*V
= I
->getOperand(0);
948 if (V
->getType() == Type::FloatTy
) {
949 unsigned OpReg
= getRegForValue(V
);
950 if (OpReg
== 0) return false;
951 unsigned ResultReg
= createResultReg(X86::FR64RegisterClass
);
952 BuildMI(MBB
, DL
, TII
.get(X86::CVTSS2SDrr
), ResultReg
).addReg(OpReg
);
953 UpdateValueMap(I
, ResultReg
);
961 bool X86FastISel::X86SelectFPTrunc(Instruction
*I
) {
962 if (Subtarget
->hasSSE2()) {
963 if (I
->getType() == Type::FloatTy
) {
964 Value
*V
= I
->getOperand(0);
965 if (V
->getType() == Type::DoubleTy
) {
966 unsigned OpReg
= getRegForValue(V
);
967 if (OpReg
== 0) return false;
968 unsigned ResultReg
= createResultReg(X86::FR32RegisterClass
);
969 BuildMI(MBB
, DL
, TII
.get(X86::CVTSD2SSrr
), ResultReg
).addReg(OpReg
);
970 UpdateValueMap(I
, ResultReg
);
979 bool X86FastISel::X86SelectTrunc(Instruction
*I
) {
980 if (Subtarget
->is64Bit())
981 // All other cases should be handled by the tblgen generated code.
983 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
984 MVT DstVT
= TLI
.getValueType(I
->getType());
986 // This code only handles truncation to byte right now.
987 if (DstVT
!= MVT::i8
&& DstVT
!= MVT::i1
)
988 // All other cases should be handled by the tblgen generated code.
990 if (SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i32
)
991 // All other cases should be handled by the tblgen generated code.
994 unsigned InputReg
= getRegForValue(I
->getOperand(0));
996 // Unhandled operand. Halt "fast" selection and bail.
999 // First issue a copy to GR16_ABCD or GR32_ABCD.
1000 unsigned CopyOpc
= (SrcVT
== MVT::i16
) ? X86::MOV16rr
: X86::MOV32rr
;
1001 const TargetRegisterClass
*CopyRC
= (SrcVT
== MVT::i16
)
1002 ? X86::GR16_ABCDRegisterClass
: X86::GR32_ABCDRegisterClass
;
1003 unsigned CopyReg
= createResultReg(CopyRC
);
1004 BuildMI(MBB
, DL
, TII
.get(CopyOpc
), CopyReg
).addReg(InputReg
);
1006 // Then issue an extract_subreg.
1007 unsigned ResultReg
= FastEmitInst_extractsubreg(MVT::i8
,
1008 CopyReg
, X86::SUBREG_8BIT
);
1012 UpdateValueMap(I
, ResultReg
);
1016 bool X86FastISel::X86SelectExtractValue(Instruction
*I
) {
1017 ExtractValueInst
*EI
= cast
<ExtractValueInst
>(I
);
1018 Value
*Agg
= EI
->getAggregateOperand();
1020 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(Agg
)) {
1021 switch (CI
->getIntrinsicID()) {
1023 case Intrinsic::sadd_with_overflow
:
1024 case Intrinsic::uadd_with_overflow
:
1025 // Cheat a little. We know that the registers for "add" and "seto" are
1026 // allocated sequentially. However, we only keep track of the register
1027 // for "add" in the value map. Use extractvalue's index to get the
1028 // correct register for "seto".
1029 UpdateValueMap(I
, lookUpRegForValue(Agg
) + *EI
->idx_begin());
1037 bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst
&I
) {
1038 // FIXME: Handle more intrinsics.
1039 switch (I
.getIntrinsicID()) {
1040 default: return false;
1041 case Intrinsic::sadd_with_overflow
:
1042 case Intrinsic::uadd_with_overflow
: {
1043 // Replace "add with overflow" intrinsics with an "add" instruction followed
1044 // by a seto/setc instruction. Later on, when the "extractvalue"
1045 // instructions are encountered, we use the fact that two registers were
1046 // created sequentially to get the correct registers for the "sum" and the
1048 const Function
*Callee
= I
.getCalledFunction();
1050 cast
<StructType
>(Callee
->getReturnType())->getTypeAtIndex(unsigned(0));
1053 if (!isTypeLegal(RetTy
, VT
))
1056 Value
*Op1
= I
.getOperand(1);
1057 Value
*Op2
= I
.getOperand(2);
1058 unsigned Reg1
= getRegForValue(Op1
);
1059 unsigned Reg2
= getRegForValue(Op2
);
1061 if (Reg1
== 0 || Reg2
== 0)
1062 // FIXME: Handle values *not* in registers.
1068 else if (VT
== MVT::i64
)
1073 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(VT
));
1074 BuildMI(MBB
, DL
, TII
.get(OpC
), ResultReg
).addReg(Reg1
).addReg(Reg2
);
1075 unsigned DestReg1
= UpdateValueMap(&I
, ResultReg
);
1077 // If the add with overflow is an intra-block value then we just want to
1078 // create temporaries for it like normal. If it is a cross-block value then
1079 // UpdateValueMap will return the cross-block register used. Since we
1080 // *really* want the value to be live in the register pair known by
1081 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1082 // the cross block case. In the non-cross-block case, we should just make
1083 // another register for the value.
1084 if (DestReg1
!= ResultReg
)
1085 ResultReg
= DestReg1
+1;
1087 ResultReg
= createResultReg(TLI
.getRegClassFor(MVT::i8
));
1089 unsigned Opc
= X86::SETBr
;
1090 if (I
.getIntrinsicID() == Intrinsic::sadd_with_overflow
)
1092 BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
);
1098 bool X86FastISel::X86SelectCall(Instruction
*I
) {
1099 CallInst
*CI
= cast
<CallInst
>(I
);
1100 Value
*Callee
= I
->getOperand(0);
1102 // Can't handle inline asm yet.
1103 if (isa
<InlineAsm
>(Callee
))
1106 // Handle intrinsic calls.
1107 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
))
1108 return X86VisitIntrinsicCall(*II
);
1110 // Handle only C and fastcc calling conventions for now.
1112 unsigned CC
= CS
.getCallingConv();
1113 if (CC
!= CallingConv::C
&&
1114 CC
!= CallingConv::Fast
&&
1115 CC
!= CallingConv::X86_FastCall
)
1118 // Let SDISel handle vararg functions.
1119 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1120 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
1121 if (FTy
->isVarArg())
1124 // Handle *simple* calls for now.
1125 const Type
*RetTy
= CS
.getType();
1127 if (RetTy
== Type::VoidTy
)
1128 RetVT
= MVT::isVoid
;
1129 else if (!isTypeLegal(RetTy
, RetVT
, true))
1132 // Materialize callee address in a register. FIXME: GV address can be
1133 // handled with a CALLpcrel32 instead.
1134 X86AddressMode CalleeAM
;
1135 if (!X86SelectAddress(Callee
, CalleeAM
, true))
1137 unsigned CalleeOp
= 0;
1138 GlobalValue
*GV
= 0;
1139 if (CalleeAM
.Base
.Reg
!= 0) {
1140 assert(CalleeAM
.GV
== 0);
1141 CalleeOp
= CalleeAM
.Base
.Reg
;
1142 } else if (CalleeAM
.GV
!= 0) {
1143 assert(CalleeAM
.GV
!= 0);
1148 // Allow calls which produce i1 results.
1149 bool AndToI1
= false;
1150 if (RetVT
== MVT::i1
) {
1155 // Deal with call operands first.
1156 SmallVector
<Value
*, 8> ArgVals
;
1157 SmallVector
<unsigned, 8> Args
;
1158 SmallVector
<MVT
, 8> ArgVTs
;
1159 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1160 Args
.reserve(CS
.arg_size());
1161 ArgVals
.reserve(CS
.arg_size());
1162 ArgVTs
.reserve(CS
.arg_size());
1163 ArgFlags
.reserve(CS
.arg_size());
1164 for (CallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
1166 unsigned Arg
= getRegForValue(*i
);
1169 ISD::ArgFlagsTy Flags
;
1170 unsigned AttrInd
= i
- CS
.arg_begin() + 1;
1171 if (CS
.paramHasAttr(AttrInd
, Attribute::SExt
))
1173 if (CS
.paramHasAttr(AttrInd
, Attribute::ZExt
))
1176 // FIXME: Only handle *easy* calls for now.
1177 if (CS
.paramHasAttr(AttrInd
, Attribute::InReg
) ||
1178 CS
.paramHasAttr(AttrInd
, Attribute::StructRet
) ||
1179 CS
.paramHasAttr(AttrInd
, Attribute::Nest
) ||
1180 CS
.paramHasAttr(AttrInd
, Attribute::ByVal
))
1183 const Type
*ArgTy
= (*i
)->getType();
1185 if (!isTypeLegal(ArgTy
, ArgVT
))
1187 unsigned OriginalAlignment
= TD
.getABITypeAlignment(ArgTy
);
1188 Flags
.setOrigAlign(OriginalAlignment
);
1190 Args
.push_back(Arg
);
1191 ArgVals
.push_back(*i
);
1192 ArgVTs
.push_back(ArgVT
);
1193 ArgFlags
.push_back(Flags
);
1196 // Analyze operands of the call, assigning locations to each operand.
1197 SmallVector
<CCValAssign
, 16> ArgLocs
;
1198 CCState
CCInfo(CC
, false, TM
, ArgLocs
);
1199 CCInfo
.AnalyzeCallOperands(ArgVTs
, ArgFlags
, CCAssignFnForCall(CC
));
1201 // Get a count of how many bytes are to be pushed on the stack.
1202 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1204 // Issue CALLSEQ_START
1205 unsigned AdjStackDown
= TM
.getRegisterInfo()->getCallFrameSetupOpcode();
1206 BuildMI(MBB
, DL
, TII
.get(AdjStackDown
)).addImm(NumBytes
);
1208 // Process argument: walk the register/memloc assignments, inserting
1210 SmallVector
<unsigned, 4> RegArgs
;
1211 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1212 CCValAssign
&VA
= ArgLocs
[i
];
1213 unsigned Arg
= Args
[VA
.getValNo()];
1214 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1216 // Promote the value if needed.
1217 switch (VA
.getLocInfo()) {
1218 default: assert(0 && "Unknown loc info!");
1219 case CCValAssign::Full
: break;
1220 case CCValAssign::SExt
: {
1221 bool Emitted
= X86FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1223 assert(Emitted
&& "Failed to emit a sext!"); Emitted
=Emitted
;
1225 ArgVT
= VA
.getLocVT();
1228 case CCValAssign::ZExt
: {
1229 bool Emitted
= X86FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1231 assert(Emitted
&& "Failed to emit a zext!"); Emitted
=Emitted
;
1233 ArgVT
= VA
.getLocVT();
1236 case CCValAssign::AExt
: {
1237 bool Emitted
= X86FastEmitExtend(ISD::ANY_EXTEND
, VA
.getLocVT(),
1240 Emitted
= X86FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1243 Emitted
= X86FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1246 assert(Emitted
&& "Failed to emit a aext!"); Emitted
=Emitted
;
1247 ArgVT
= VA
.getLocVT();
1252 if (VA
.isRegLoc()) {
1253 TargetRegisterClass
* RC
= TLI
.getRegClassFor(ArgVT
);
1254 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), VA
.getLocReg(),
1256 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1258 RegArgs
.push_back(VA
.getLocReg());
1260 unsigned LocMemOffset
= VA
.getLocMemOffset();
1262 AM
.Base
.Reg
= StackPtr
;
1263 AM
.Disp
= LocMemOffset
;
1264 Value
*ArgVal
= ArgVals
[VA
.getValNo()];
1266 // If this is a really simple value, emit this with the Value* version of
1267 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1268 // can cause us to reevaluate the argument.
1269 if (isa
<ConstantInt
>(ArgVal
) || isa
<ConstantPointerNull
>(ArgVal
))
1270 X86FastEmitStore(ArgVT
, ArgVal
, AM
);
1272 X86FastEmitStore(ArgVT
, Arg
, AM
);
1276 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1278 if (!Subtarget
->is64Bit() &&
1279 TM
.getRelocationModel() == Reloc::PIC_
&&
1280 Subtarget
->isPICStyleGOT()) {
1281 TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
1282 unsigned Base
= getInstrInfo()->getGlobalBaseReg(&MF
);
1283 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), X86::EBX
, Base
, RC
, RC
);
1284 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1289 unsigned CallOpc
= CalleeOp
1290 ? (Subtarget
->is64Bit() ? X86::CALL64r
: X86::CALL32r
)
1291 : (Subtarget
->is64Bit() ? X86::CALL64pcrel32
: X86::CALLpcrel32
);
1292 MachineInstrBuilder MIB
= CalleeOp
1293 ? BuildMI(MBB
, DL
, TII
.get(CallOpc
)).addReg(CalleeOp
)
1294 : BuildMI(MBB
, DL
, TII
.get(CallOpc
)).addGlobalAddress(GV
);
1296 // Add an implicit use GOT pointer in EBX.
1297 if (!Subtarget
->is64Bit() &&
1298 TM
.getRelocationModel() == Reloc::PIC_
&&
1299 Subtarget
->isPICStyleGOT())
1300 MIB
.addReg(X86::EBX
);
1302 // Add implicit physical register uses to the call.
1303 for (unsigned i
= 0, e
= RegArgs
.size(); i
!= e
; ++i
)
1304 MIB
.addReg(RegArgs
[i
]);
1306 // Issue CALLSEQ_END
1307 unsigned AdjStackUp
= TM
.getRegisterInfo()->getCallFrameDestroyOpcode();
1308 BuildMI(MBB
, DL
, TII
.get(AdjStackUp
)).addImm(NumBytes
).addImm(0);
1310 // Now handle call return value (if any).
1311 if (RetVT
.getSimpleVT() != MVT::isVoid
) {
1312 SmallVector
<CCValAssign
, 16> RVLocs
;
1313 CCState
CCInfo(CC
, false, TM
, RVLocs
);
1314 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_X86
);
1316 // Copy all of the result registers out of their specified physreg.
1317 assert(RVLocs
.size() == 1 && "Can't handle multi-value calls!");
1318 MVT CopyVT
= RVLocs
[0].getValVT();
1319 TargetRegisterClass
* DstRC
= TLI
.getRegClassFor(CopyVT
);
1320 TargetRegisterClass
*SrcRC
= DstRC
;
1322 // If this is a call to a function that returns an fp value on the x87 fp
1323 // stack, but where we prefer to use the value in xmm registers, copy it
1324 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1325 if ((RVLocs
[0].getLocReg() == X86::ST0
||
1326 RVLocs
[0].getLocReg() == X86::ST1
) &&
1327 isScalarFPTypeInSSEReg(RVLocs
[0].getValVT())) {
1329 SrcRC
= X86::RSTRegisterClass
;
1330 DstRC
= X86::RFP80RegisterClass
;
1333 unsigned ResultReg
= createResultReg(DstRC
);
1334 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1335 RVLocs
[0].getLocReg(), DstRC
, SrcRC
);
1336 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1338 if (CopyVT
!= RVLocs
[0].getValVT()) {
1339 // Round the F80 the right size, which also moves to the appropriate xmm
1340 // register. This is accomplished by storing the F80 value in memory and
1341 // then loading it back. Ewww...
1342 MVT ResVT
= RVLocs
[0].getValVT();
1343 unsigned Opc
= ResVT
== MVT::f32
? X86::ST_Fp80m32
: X86::ST_Fp80m64
;
1344 unsigned MemSize
= ResVT
.getSizeInBits()/8;
1345 int FI
= MFI
.CreateStackObject(MemSize
, MemSize
);
1346 addFrameReference(BuildMI(MBB
, DL
, TII
.get(Opc
)), FI
).addReg(ResultReg
);
1347 DstRC
= ResVT
== MVT::f32
1348 ? X86::FR32RegisterClass
: X86::FR64RegisterClass
;
1349 Opc
= ResVT
== MVT::f32
? X86::MOVSSrm
: X86::MOVSDrm
;
1350 ResultReg
= createResultReg(DstRC
);
1351 addFrameReference(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), FI
);
1355 // Mask out all but lowest bit for some call which produces an i1.
1356 unsigned AndResult
= createResultReg(X86::GR8RegisterClass
);
1358 TII
.get(X86::AND8ri
), AndResult
).addReg(ResultReg
).addImm(1);
1359 ResultReg
= AndResult
;
1362 UpdateValueMap(I
, ResultReg
);
1370 X86FastISel::TargetSelectInstruction(Instruction
*I
) {
1371 switch (I
->getOpcode()) {
1373 case Instruction::Load
:
1374 return X86SelectLoad(I
);
1375 case Instruction::Store
:
1376 return X86SelectStore(I
);
1377 case Instruction::ICmp
:
1378 case Instruction::FCmp
:
1379 return X86SelectCmp(I
);
1380 case Instruction::ZExt
:
1381 return X86SelectZExt(I
);
1382 case Instruction::Br
:
1383 return X86SelectBranch(I
);
1384 case Instruction::Call
:
1385 return X86SelectCall(I
);
1386 case Instruction::LShr
:
1387 case Instruction::AShr
:
1388 case Instruction::Shl
:
1389 return X86SelectShift(I
);
1390 case Instruction::Select
:
1391 return X86SelectSelect(I
);
1392 case Instruction::Trunc
:
1393 return X86SelectTrunc(I
);
1394 case Instruction::FPExt
:
1395 return X86SelectFPExt(I
);
1396 case Instruction::FPTrunc
:
1397 return X86SelectFPTrunc(I
);
1398 case Instruction::ExtractValue
:
1399 return X86SelectExtractValue(I
);
1400 case Instruction::IntToPtr
: // Deliberate fall-through.
1401 case Instruction::PtrToInt
: {
1402 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
1403 MVT DstVT
= TLI
.getValueType(I
->getType());
1404 if (DstVT
.bitsGT(SrcVT
))
1405 return X86SelectZExt(I
);
1406 if (DstVT
.bitsLT(SrcVT
))
1407 return X86SelectTrunc(I
);
1408 unsigned Reg
= getRegForValue(I
->getOperand(0));
1409 if (Reg
== 0) return false;
1410 UpdateValueMap(I
, Reg
);
1418 unsigned X86FastISel::TargetMaterializeConstant(Constant
*C
) {
1420 if (!isTypeLegal(C
->getType(), VT
))
1423 // Get opcode and regclass of the output for the given load instruction.
1425 const TargetRegisterClass
*RC
= NULL
;
1426 switch (VT
.getSimpleVT()) {
1427 default: return false;
1430 RC
= X86::GR8RegisterClass
;
1434 RC
= X86::GR16RegisterClass
;
1438 RC
= X86::GR32RegisterClass
;
1441 // Must be in x86-64 mode.
1443 RC
= X86::GR64RegisterClass
;
1446 if (Subtarget
->hasSSE1()) {
1448 RC
= X86::FR32RegisterClass
;
1450 Opc
= X86::LD_Fp32m
;
1451 RC
= X86::RFP32RegisterClass
;
1455 if (Subtarget
->hasSSE2()) {
1457 RC
= X86::FR64RegisterClass
;
1459 Opc
= X86::LD_Fp64m
;
1460 RC
= X86::RFP64RegisterClass
;
1464 // No f80 support yet.
1468 // Materialize addresses with LEA instructions.
1469 if (isa
<GlobalValue
>(C
)) {
1471 if (X86SelectAddress(C
, AM
, false)) {
1472 if (TLI
.getPointerTy() == MVT::i32
)
1476 unsigned ResultReg
= createResultReg(RC
);
1477 addLeaAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
1483 // MachineConstantPool wants an explicit alignment.
1484 unsigned Align
= TD
.getPrefTypeAlignment(C
->getType());
1486 // Alignment of vector types. FIXME!
1487 Align
= TD
.getTypePaddedSize(C
->getType());
1490 // x86-32 PIC requires a PIC base register for constant pools.
1491 unsigned PICBase
= 0;
1492 if (TM
.getRelocationModel() == Reloc::PIC_
&&
1493 !Subtarget
->is64Bit())
1494 PICBase
= getInstrInfo()->getGlobalBaseReg(&MF
);
1496 // Create the load from the constant pool.
1497 unsigned MCPOffset
= MCP
.getConstantPoolIndex(C
, Align
);
1498 unsigned ResultReg
= createResultReg(RC
);
1499 addConstantPoolReference(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), MCPOffset
,
1505 unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst
*C
) {
1506 // Fail on dynamic allocas. At this point, getRegForValue has already
1507 // checked its CSE maps, so if we're here trying to handle a dynamic
1508 // alloca, we're not going to succeed. X86SelectAddress has a
1509 // check for dynamic allocas, because it's called directly from
1510 // various places, but TargetMaterializeAlloca also needs a check
1511 // in order to avoid recursion between getRegForValue,
1512 // X86SelectAddrss, and TargetMaterializeAlloca.
1513 if (!StaticAllocaMap
.count(C
))
1517 if (!X86SelectAddress(C
, AM
, false))
1519 unsigned Opc
= Subtarget
->is64Bit() ? X86::LEA64r
: X86::LEA32r
;
1520 TargetRegisterClass
* RC
= TLI
.getRegClassFor(TLI
.getPointerTy());
1521 unsigned ResultReg
= createResultReg(RC
);
1522 addLeaAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
1527 llvm::FastISel
*X86::createFastISel(MachineFunction
&mf
,
1528 MachineModuleInfo
*mmi
,
1530 DenseMap
<const Value
*, unsigned> &vm
,
1531 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
1532 DenseMap
<const AllocaInst
*, int> &am
1534 , SmallSet
<Instruction
*, 8> &cil
1537 return new X86FastISel(mf
, mmi
, dw
, vm
, bm
, am