Make DebugLoc independent of DwarfWriter.
[llvm/msp430.git] / lib / Target / X86 / X86FastISel.cpp
blob2a44803f5a17faaf02ce05074b36d8f208766ef9
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 using namespace llvm;
35 namespace {
37 class X86FastISel : public FastISel {
38 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const X86Subtarget *Subtarget;
42 /// StackPtr - Register used as the stack pointer.
43 ///
44 unsigned StackPtr;
46 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
47 /// floating point ops.
48 /// When SSE is available, use it for f32 operations.
49 /// When SSE2 is available, use it for f64 operations.
50 bool X86ScalarSSEf64;
51 bool X86ScalarSSEf32;
53 public:
54 explicit X86FastISel(MachineFunction &mf,
55 MachineModuleInfo *mmi,
56 DwarfWriter *dw,
57 DenseMap<const Value *, unsigned> &vm,
58 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
59 DenseMap<const AllocaInst *, int> &am
60 #ifndef NDEBUG
61 , SmallSet<Instruction*, 8> &cil
62 #endif
64 : FastISel(mf, mmi, dw, vm, bm, am
65 #ifndef NDEBUG
66 , cil
67 #endif
68 ) {
69 Subtarget = &TM.getSubtarget<X86Subtarget>();
70 StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
71 X86ScalarSSEf64 = Subtarget->hasSSE2();
72 X86ScalarSSEf32 = Subtarget->hasSSE1();
75 virtual bool TargetSelectInstruction(Instruction *I);
77 #include "X86GenFastISel.inc"
79 private:
80 bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
82 bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
84 bool X86FastEmitStore(MVT VT, Value *Val,
85 const X86AddressMode &AM);
86 bool X86FastEmitStore(MVT VT, unsigned Val,
87 const X86AddressMode &AM);
89 bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
90 unsigned &ResultReg);
92 bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
94 bool X86SelectLoad(Instruction *I);
96 bool X86SelectStore(Instruction *I);
98 bool X86SelectCmp(Instruction *I);
100 bool X86SelectZExt(Instruction *I);
102 bool X86SelectBranch(Instruction *I);
104 bool X86SelectShift(Instruction *I);
106 bool X86SelectSelect(Instruction *I);
108 bool X86SelectTrunc(Instruction *I);
110 bool X86SelectFPExt(Instruction *I);
111 bool X86SelectFPTrunc(Instruction *I);
113 bool X86SelectExtractValue(Instruction *I);
115 bool X86VisitIntrinsicCall(IntrinsicInst &I);
116 bool X86SelectCall(Instruction *I);
118 CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
120 const X86InstrInfo *getInstrInfo() const {
121 return getTargetMachine()->getInstrInfo();
123 const X86TargetMachine *getTargetMachine() const {
124 return static_cast<const X86TargetMachine *>(&TM);
127 unsigned TargetMaterializeConstant(Constant *C);
129 unsigned TargetMaterializeAlloca(AllocaInst *C);
131 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
132 /// computed in an SSE register, not on the X87 floating point stack.
133 bool isScalarFPTypeInSSEReg(MVT VT) const {
134 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
135 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
138 bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
141 } // end anonymous namespace.
143 bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
144 VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
145 if (VT == MVT::Other || !VT.isSimple())
146 // Unhandled type. Halt "fast" selection and bail.
147 return false;
149 // For now, require SSE/SSE2 for performing floating-point operations,
150 // since x87 requires additional work.
151 if (VT == MVT::f64 && !X86ScalarSSEf64)
152 return false;
153 if (VT == MVT::f32 && !X86ScalarSSEf32)
154 return false;
155 // Similarly, no f80 support yet.
156 if (VT == MVT::f80)
157 return false;
158 // We only handle legal types. For example, on x86-32 the instruction
159 // selector contains all of the 64-bit instructions from x86-64,
160 // under the assumption that i64 won't be used if the target doesn't
161 // support it.
162 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
165 #include "X86GenCallingConv.inc"
167 /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
168 /// convention.
169 CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
170 if (Subtarget->is64Bit()) {
171 if (Subtarget->isTargetWin64())
172 return CC_X86_Win64_C;
173 else if (CC == CallingConv::Fast && isTaillCall)
174 return CC_X86_64_TailCall;
175 else
176 return CC_X86_64_C;
179 if (CC == CallingConv::X86_FastCall)
180 return CC_X86_32_FastCall;
181 else if (CC == CallingConv::Fast)
182 return CC_X86_32_FastCC;
183 else
184 return CC_X86_32_C;
187 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
188 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
189 /// Return true and the result register by reference if it is possible.
190 bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
191 unsigned &ResultReg) {
192 // Get opcode and regclass of the output for the given load instruction.
193 unsigned Opc = 0;
194 const TargetRegisterClass *RC = NULL;
195 switch (VT.getSimpleVT()) {
196 default: return false;
197 case MVT::i8:
198 Opc = X86::MOV8rm;
199 RC = X86::GR8RegisterClass;
200 break;
201 case MVT::i16:
202 Opc = X86::MOV16rm;
203 RC = X86::GR16RegisterClass;
204 break;
205 case MVT::i32:
206 Opc = X86::MOV32rm;
207 RC = X86::GR32RegisterClass;
208 break;
209 case MVT::i64:
210 // Must be in x86-64 mode.
211 Opc = X86::MOV64rm;
212 RC = X86::GR64RegisterClass;
213 break;
214 case MVT::f32:
215 if (Subtarget->hasSSE1()) {
216 Opc = X86::MOVSSrm;
217 RC = X86::FR32RegisterClass;
218 } else {
219 Opc = X86::LD_Fp32m;
220 RC = X86::RFP32RegisterClass;
222 break;
223 case MVT::f64:
224 if (Subtarget->hasSSE2()) {
225 Opc = X86::MOVSDrm;
226 RC = X86::FR64RegisterClass;
227 } else {
228 Opc = X86::LD_Fp64m;
229 RC = X86::RFP64RegisterClass;
231 break;
232 case MVT::f80:
233 // No f80 support yet.
234 return false;
237 ResultReg = createResultReg(RC);
238 addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
239 return true;
242 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
243 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
244 /// and a displacement offset, or a GlobalAddress,
245 /// i.e. V. Return true if it is possible.
246 bool
247 X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
248 const X86AddressMode &AM) {
249 // Get opcode and regclass of the output for the given store instruction.
250 unsigned Opc = 0;
251 switch (VT.getSimpleVT()) {
252 case MVT::f80: // No f80 support yet.
253 default: return false;
254 case MVT::i8: Opc = X86::MOV8mr; break;
255 case MVT::i16: Opc = X86::MOV16mr; break;
256 case MVT::i32: Opc = X86::MOV32mr; break;
257 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
258 case MVT::f32:
259 Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
260 break;
261 case MVT::f64:
262 Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
263 break;
266 addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
267 return true;
270 bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
271 const X86AddressMode &AM) {
272 // Handle 'null' like i32/i64 0.
273 if (isa<ConstantPointerNull>(Val))
274 Val = Constant::getNullValue(TD.getIntPtrType());
276 // If this is a store of a simple constant, fold the constant into the store.
277 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
278 unsigned Opc = 0;
279 switch (VT.getSimpleVT()) {
280 default: break;
281 case MVT::i8: Opc = X86::MOV8mi; break;
282 case MVT::i16: Opc = X86::MOV16mi; break;
283 case MVT::i32: Opc = X86::MOV32mi; break;
284 case MVT::i64:
285 // Must be a 32-bit sign extended value.
286 if ((int)CI->getSExtValue() == CI->getSExtValue())
287 Opc = X86::MOV64mi32;
288 break;
291 if (Opc) {
292 addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
293 .addImm(CI->getSExtValue());
294 return true;
298 unsigned ValReg = getRegForValue(Val);
299 if (ValReg == 0)
300 return false;
302 return X86FastEmitStore(VT, ValReg, AM);
305 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
306 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
307 /// ISD::SIGN_EXTEND).
308 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
309 unsigned Src, MVT SrcVT,
310 unsigned &ResultReg) {
311 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
313 if (RR != 0) {
314 ResultReg = RR;
315 return true;
316 } else
317 return false;
320 /// X86SelectAddress - Attempt to fill in an address from the given value.
322 bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
323 User *U;
324 unsigned Opcode = Instruction::UserOp1;
325 if (Instruction *I = dyn_cast<Instruction>(V)) {
326 Opcode = I->getOpcode();
327 U = I;
328 } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
329 Opcode = C->getOpcode();
330 U = C;
333 switch (Opcode) {
334 default: break;
335 case Instruction::BitCast:
336 // Look past bitcasts.
337 return X86SelectAddress(U->getOperand(0), AM, isCall);
339 case Instruction::IntToPtr:
340 // Look past no-op inttoptrs.
341 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
342 return X86SelectAddress(U->getOperand(0), AM, isCall);
343 break;
345 case Instruction::PtrToInt:
346 // Look past no-op ptrtoints.
347 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
348 return X86SelectAddress(U->getOperand(0), AM, isCall);
349 break;
351 case Instruction::Alloca: {
352 if (isCall) break;
353 // Do static allocas.
354 const AllocaInst *A = cast<AllocaInst>(V);
355 DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
356 if (SI != StaticAllocaMap.end()) {
357 AM.BaseType = X86AddressMode::FrameIndexBase;
358 AM.Base.FrameIndex = SI->second;
359 return true;
361 break;
364 case Instruction::Add: {
365 if (isCall) break;
366 // Adds of constants are common and easy enough.
367 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
368 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
369 // They have to fit in the 32-bit signed displacement field though.
370 if (isInt32(Disp)) {
371 AM.Disp = (uint32_t)Disp;
372 return X86SelectAddress(U->getOperand(0), AM, isCall);
375 break;
378 case Instruction::GetElementPtr: {
379 if (isCall) break;
380 // Pattern-match simple GEPs.
381 uint64_t Disp = (int32_t)AM.Disp;
382 unsigned IndexReg = AM.IndexReg;
383 unsigned Scale = AM.Scale;
384 gep_type_iterator GTI = gep_type_begin(U);
385 // Iterate through the indices, folding what we can. Constants can be
386 // folded, and one dynamic index can be handled, if the scale is supported.
387 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
388 i != e; ++i, ++GTI) {
389 Value *Op = *i;
390 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
391 const StructLayout *SL = TD.getStructLayout(STy);
392 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
393 Disp += SL->getElementOffset(Idx);
394 } else {
395 uint64_t S = TD.getTypePaddedSize(GTI.getIndexedType());
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
397 // Constant-offset addressing.
398 Disp += CI->getSExtValue() * S;
399 } else if (IndexReg == 0 &&
400 (!AM.GV ||
401 !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
402 (S == 1 || S == 2 || S == 4 || S == 8)) {
403 // Scaled-index addressing.
404 Scale = S;
405 IndexReg = getRegForGEPIndex(Op);
406 if (IndexReg == 0)
407 return false;
408 } else
409 // Unsupported.
410 goto unsupported_gep;
413 // Check for displacement overflow.
414 if (!isInt32(Disp))
415 break;
416 // Ok, the GEP indices were covered by constant-offset and scaled-index
417 // addressing. Update the address state and move on to examining the base.
418 AM.IndexReg = IndexReg;
419 AM.Scale = Scale;
420 AM.Disp = (uint32_t)Disp;
421 return X86SelectAddress(U->getOperand(0), AM, isCall);
422 unsupported_gep:
423 // Ok, the GEP indices weren't all covered.
424 break;
428 // Handle constant address.
429 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
430 // Can't handle alternate code models yet.
431 if (TM.getCodeModel() != CodeModel::Default &&
432 TM.getCodeModel() != CodeModel::Small)
433 return false;
435 // RIP-relative addresses can't have additional register operands.
436 if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
437 (AM.Base.Reg != 0 || AM.IndexReg != 0))
438 return false;
440 // Can't handle TLS yet.
441 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
442 if (GVar->isThreadLocal())
443 return false;
445 // Set up the basic address.
446 AM.GV = GV;
447 if (!isCall &&
448 TM.getRelocationModel() == Reloc::PIC_ &&
449 !Subtarget->is64Bit())
450 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
452 // Emit an extra load if the ABI requires it.
453 if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
454 // Check to see if we've already materialized this
455 // value in a register in this block.
456 if (unsigned Reg = LocalValueMap[V]) {
457 AM.Base.Reg = Reg;
458 AM.GV = 0;
459 return true;
461 // Issue load from stub if necessary.
462 unsigned Opc = 0;
463 const TargetRegisterClass *RC = NULL;
464 if (TLI.getPointerTy() == MVT::i32) {
465 Opc = X86::MOV32rm;
466 RC = X86::GR32RegisterClass;
467 } else {
468 Opc = X86::MOV64rm;
469 RC = X86::GR64RegisterClass;
472 X86AddressMode StubAM;
473 StubAM.Base.Reg = AM.Base.Reg;
474 StubAM.GV = AM.GV;
475 unsigned ResultReg = createResultReg(RC);
476 addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), StubAM);
478 // Now construct the final address. Note that the Disp, Scale,
479 // and Index values may already be set here.
480 AM.Base.Reg = ResultReg;
481 AM.GV = 0;
483 // Prevent loading GV stub multiple times in same MBB.
484 LocalValueMap[V] = AM.Base.Reg;
486 return true;
489 // If all else fails, try to materialize the value in a register.
490 if (!AM.GV || !getTargetMachine()->symbolicAddressesAreRIPRel()) {
491 if (AM.Base.Reg == 0) {
492 AM.Base.Reg = getRegForValue(V);
493 return AM.Base.Reg != 0;
495 if (AM.IndexReg == 0) {
496 assert(AM.Scale == 1 && "Scale with no index!");
497 AM.IndexReg = getRegForValue(V);
498 return AM.IndexReg != 0;
502 return false;
505 /// X86SelectStore - Select and emit code to implement store instructions.
506 bool X86FastISel::X86SelectStore(Instruction* I) {
507 MVT VT;
508 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
509 return false;
511 X86AddressMode AM;
512 if (!X86SelectAddress(I->getOperand(1), AM, false))
513 return false;
515 return X86FastEmitStore(VT, I->getOperand(0), AM);
518 /// X86SelectLoad - Select and emit code to implement load instructions.
520 bool X86FastISel::X86SelectLoad(Instruction *I) {
521 MVT VT;
522 if (!isTypeLegal(I->getType(), VT))
523 return false;
525 X86AddressMode AM;
526 if (!X86SelectAddress(I->getOperand(0), AM, false))
527 return false;
529 unsigned ResultReg = 0;
530 if (X86FastEmitLoad(VT, AM, ResultReg)) {
531 UpdateValueMap(I, ResultReg);
532 return true;
534 return false;
537 static unsigned X86ChooseCmpOpcode(MVT VT) {
538 switch (VT.getSimpleVT()) {
539 default: return 0;
540 case MVT::i8: return X86::CMP8rr;
541 case MVT::i16: return X86::CMP16rr;
542 case MVT::i32: return X86::CMP32rr;
543 case MVT::i64: return X86::CMP64rr;
544 case MVT::f32: return X86::UCOMISSrr;
545 case MVT::f64: return X86::UCOMISDrr;
549 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
550 /// of the comparison, return an opcode that works for the compare (e.g.
551 /// CMP32ri) otherwise return 0.
552 static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
553 switch (VT.getSimpleVT()) {
554 // Otherwise, we can't fold the immediate into this comparison.
555 default: return 0;
556 case MVT::i8: return X86::CMP8ri;
557 case MVT::i16: return X86::CMP16ri;
558 case MVT::i32: return X86::CMP32ri;
559 case MVT::i64:
560 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
561 // field.
562 if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
563 return X86::CMP64ri32;
564 return 0;
568 bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
569 unsigned Op0Reg = getRegForValue(Op0);
570 if (Op0Reg == 0) return false;
572 // Handle 'null' like i32/i64 0.
573 if (isa<ConstantPointerNull>(Op1))
574 Op1 = Constant::getNullValue(TD.getIntPtrType());
576 // We have two options: compare with register or immediate. If the RHS of
577 // the compare is an immediate that we can fold into this compare, use
578 // CMPri, otherwise use CMPrr.
579 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
580 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
581 BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
582 .addImm(Op1C->getSExtValue());
583 return true;
587 unsigned CompareOpc = X86ChooseCmpOpcode(VT);
588 if (CompareOpc == 0) return false;
590 unsigned Op1Reg = getRegForValue(Op1);
591 if (Op1Reg == 0) return false;
592 BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
594 return true;
597 bool X86FastISel::X86SelectCmp(Instruction *I) {
598 CmpInst *CI = cast<CmpInst>(I);
600 MVT VT;
601 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
602 return false;
604 unsigned ResultReg = createResultReg(&X86::GR8RegClass);
605 unsigned SetCCOpc;
606 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
607 switch (CI->getPredicate()) {
608 case CmpInst::FCMP_OEQ: {
609 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
610 return false;
612 unsigned EReg = createResultReg(&X86::GR8RegClass);
613 unsigned NPReg = createResultReg(&X86::GR8RegClass);
614 BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
615 BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
616 BuildMI(MBB, DL,
617 TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
618 UpdateValueMap(I, ResultReg);
619 return true;
621 case CmpInst::FCMP_UNE: {
622 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
623 return false;
625 unsigned NEReg = createResultReg(&X86::GR8RegClass);
626 unsigned PReg = createResultReg(&X86::GR8RegClass);
627 BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
628 BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
629 BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
630 UpdateValueMap(I, ResultReg);
631 return true;
633 case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
634 case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
635 case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break;
636 case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break;
637 case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
638 case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
639 case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break;
640 case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
641 case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break;
642 case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
643 case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
644 case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
646 case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
647 case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
648 case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
649 case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
650 case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
651 case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
652 case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break;
653 case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
654 case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break;
655 case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
656 default:
657 return false;
660 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
661 if (SwapArgs)
662 std::swap(Op0, Op1);
664 // Emit a compare of Op0/Op1.
665 if (!X86FastEmitCompare(Op0, Op1, VT))
666 return false;
668 BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
669 UpdateValueMap(I, ResultReg);
670 return true;
673 bool X86FastISel::X86SelectZExt(Instruction *I) {
674 // Handle zero-extension from i1 to i8, which is common.
675 if (I->getType() == Type::Int8Ty &&
676 I->getOperand(0)->getType() == Type::Int1Ty) {
677 unsigned ResultReg = getRegForValue(I->getOperand(0));
678 if (ResultReg == 0) return false;
679 // Set the high bits to zero.
680 ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
681 if (ResultReg == 0) return false;
682 UpdateValueMap(I, ResultReg);
683 return true;
686 return false;
690 bool X86FastISel::X86SelectBranch(Instruction *I) {
691 // Unconditional branches are selected by tablegen-generated code.
692 // Handle a conditional branch.
693 BranchInst *BI = cast<BranchInst>(I);
694 MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
695 MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
697 // Fold the common case of a conditional branch with a comparison.
698 if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
699 if (CI->hasOneUse()) {
700 MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
702 // Try to take advantage of fallthrough opportunities.
703 CmpInst::Predicate Predicate = CI->getPredicate();
704 if (MBB->isLayoutSuccessor(TrueMBB)) {
705 std::swap(TrueMBB, FalseMBB);
706 Predicate = CmpInst::getInversePredicate(Predicate);
709 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
710 unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
712 switch (Predicate) {
713 case CmpInst::FCMP_OEQ:
714 std::swap(TrueMBB, FalseMBB);
715 Predicate = CmpInst::FCMP_UNE;
716 // FALL THROUGH
717 case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
718 case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA; break;
719 case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
720 case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA; break;
721 case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE; break;
722 case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
723 case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
724 case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP; break;
725 case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE; break;
726 case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB; break;
727 case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE; break;
728 case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB; break;
729 case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
731 case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE; break;
732 case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE; break;
733 case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA; break;
734 case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
735 case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB; break;
736 case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
737 case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG; break;
738 case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
739 case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL; break;
740 case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
741 default:
742 return false;
745 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
746 if (SwapArgs)
747 std::swap(Op0, Op1);
749 // Emit a compare of the LHS and RHS, setting the flags.
750 if (!X86FastEmitCompare(Op0, Op1, VT))
751 return false;
753 BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
755 if (Predicate == CmpInst::FCMP_UNE) {
756 // X86 requires a second branch to handle UNE (and OEQ,
757 // which is mapped to UNE above).
758 BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
761 FastEmitBranch(FalseMBB);
762 MBB->addSuccessor(TrueMBB);
763 return true;
765 } else if (ExtractValueInst *EI =
766 dyn_cast<ExtractValueInst>(BI->getCondition())) {
767 // Check to see if the branch instruction is from an "arithmetic with
768 // overflow" intrinsic. The main way these intrinsics are used is:
770 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
771 // %sum = extractvalue { i32, i1 } %t, 0
772 // %obit = extractvalue { i32, i1 } %t, 1
773 // br i1 %obit, label %overflow, label %normal
775 // The %sum and %obit are converted in an ADD and a SETO/SETB before
776 // reaching the branch. Therefore, we search backwards through the MBB
777 // looking for the SETO/SETB instruction. If an instruction modifies the
778 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
779 // convert the branch into a JO/JB instruction.
780 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
781 if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
782 CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
783 const MachineInstr *SetMI = 0;
784 unsigned Reg = lookUpRegForValue(EI);
786 for (MachineBasicBlock::const_reverse_iterator
787 RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
788 const MachineInstr &MI = *RI;
790 if (MI.modifiesRegister(Reg)) {
791 unsigned Src, Dst, SrcSR, DstSR;
793 if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
794 Reg = Src;
795 continue;
798 SetMI = &MI;
799 break;
802 const TargetInstrDesc &TID = MI.getDesc();
803 if (TID.hasUnmodeledSideEffects() ||
804 TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
805 break;
808 if (SetMI) {
809 unsigned OpCode = SetMI->getOpcode();
811 if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
812 BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
813 .addMBB(TrueMBB);
814 FastEmitBranch(FalseMBB);
815 MBB->addSuccessor(TrueMBB);
816 return true;
823 // Otherwise do a clumsy setcc and re-test it.
824 unsigned OpReg = getRegForValue(BI->getCondition());
825 if (OpReg == 0) return false;
827 BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
828 BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
829 FastEmitBranch(FalseMBB);
830 MBB->addSuccessor(TrueMBB);
831 return true;
834 bool X86FastISel::X86SelectShift(Instruction *I) {
835 unsigned CReg = 0, OpReg = 0, OpImm = 0;
836 const TargetRegisterClass *RC = NULL;
837 if (I->getType() == Type::Int8Ty) {
838 CReg = X86::CL;
839 RC = &X86::GR8RegClass;
840 switch (I->getOpcode()) {
841 case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
842 case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
843 case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
844 default: return false;
846 } else if (I->getType() == Type::Int16Ty) {
847 CReg = X86::CX;
848 RC = &X86::GR16RegClass;
849 switch (I->getOpcode()) {
850 case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
851 case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
852 case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
853 default: return false;
855 } else if (I->getType() == Type::Int32Ty) {
856 CReg = X86::ECX;
857 RC = &X86::GR32RegClass;
858 switch (I->getOpcode()) {
859 case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
860 case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
861 case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
862 default: return false;
864 } else if (I->getType() == Type::Int64Ty) {
865 CReg = X86::RCX;
866 RC = &X86::GR64RegClass;
867 switch (I->getOpcode()) {
868 case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
869 case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
870 case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
871 default: return false;
873 } else {
874 return false;
877 MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
878 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
879 return false;
881 unsigned Op0Reg = getRegForValue(I->getOperand(0));
882 if (Op0Reg == 0) return false;
884 // Fold immediate in shl(x,3).
885 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
886 unsigned ResultReg = createResultReg(RC);
887 BuildMI(MBB, DL, TII.get(OpImm),
888 ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
889 UpdateValueMap(I, ResultReg);
890 return true;
893 unsigned Op1Reg = getRegForValue(I->getOperand(1));
894 if (Op1Reg == 0) return false;
895 TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
897 // The shift instruction uses X86::CL. If we defined a super-register
898 // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
899 // we're doing here.
900 if (CReg != X86::CL)
901 BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
902 .addReg(CReg).addImm(X86::SUBREG_8BIT);
904 unsigned ResultReg = createResultReg(RC);
905 BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
906 UpdateValueMap(I, ResultReg);
907 return true;
910 bool X86FastISel::X86SelectSelect(Instruction *I) {
911 MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
912 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
913 return false;
915 unsigned Opc = 0;
916 const TargetRegisterClass *RC = NULL;
917 if (VT.getSimpleVT() == MVT::i16) {
918 Opc = X86::CMOVE16rr;
919 RC = &X86::GR16RegClass;
920 } else if (VT.getSimpleVT() == MVT::i32) {
921 Opc = X86::CMOVE32rr;
922 RC = &X86::GR32RegClass;
923 } else if (VT.getSimpleVT() == MVT::i64) {
924 Opc = X86::CMOVE64rr;
925 RC = &X86::GR64RegClass;
926 } else {
927 return false;
930 unsigned Op0Reg = getRegForValue(I->getOperand(0));
931 if (Op0Reg == 0) return false;
932 unsigned Op1Reg = getRegForValue(I->getOperand(1));
933 if (Op1Reg == 0) return false;
934 unsigned Op2Reg = getRegForValue(I->getOperand(2));
935 if (Op2Reg == 0) return false;
937 BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
938 unsigned ResultReg = createResultReg(RC);
939 BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
940 UpdateValueMap(I, ResultReg);
941 return true;
944 bool X86FastISel::X86SelectFPExt(Instruction *I) {
945 // fpext from float to double.
946 if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
947 Value *V = I->getOperand(0);
948 if (V->getType() == Type::FloatTy) {
949 unsigned OpReg = getRegForValue(V);
950 if (OpReg == 0) return false;
951 unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
952 BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
953 UpdateValueMap(I, ResultReg);
954 return true;
958 return false;
961 bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
962 if (Subtarget->hasSSE2()) {
963 if (I->getType() == Type::FloatTy) {
964 Value *V = I->getOperand(0);
965 if (V->getType() == Type::DoubleTy) {
966 unsigned OpReg = getRegForValue(V);
967 if (OpReg == 0) return false;
968 unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
969 BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
970 UpdateValueMap(I, ResultReg);
971 return true;
976 return false;
979 bool X86FastISel::X86SelectTrunc(Instruction *I) {
980 if (Subtarget->is64Bit())
981 // All other cases should be handled by the tblgen generated code.
982 return false;
983 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
984 MVT DstVT = TLI.getValueType(I->getType());
986 // This code only handles truncation to byte right now.
987 if (DstVT != MVT::i8 && DstVT != MVT::i1)
988 // All other cases should be handled by the tblgen generated code.
989 return false;
990 if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
991 // All other cases should be handled by the tblgen generated code.
992 return false;
994 unsigned InputReg = getRegForValue(I->getOperand(0));
995 if (!InputReg)
996 // Unhandled operand. Halt "fast" selection and bail.
997 return false;
999 // First issue a copy to GR16_ABCD or GR32_ABCD.
1000 unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1001 const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1002 ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1003 unsigned CopyReg = createResultReg(CopyRC);
1004 BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1006 // Then issue an extract_subreg.
1007 unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1008 CopyReg, X86::SUBREG_8BIT);
1009 if (!ResultReg)
1010 return false;
1012 UpdateValueMap(I, ResultReg);
1013 return true;
1016 bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1017 ExtractValueInst *EI = cast<ExtractValueInst>(I);
1018 Value *Agg = EI->getAggregateOperand();
1020 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1021 switch (CI->getIntrinsicID()) {
1022 default: break;
1023 case Intrinsic::sadd_with_overflow:
1024 case Intrinsic::uadd_with_overflow:
1025 // Cheat a little. We know that the registers for "add" and "seto" are
1026 // allocated sequentially. However, we only keep track of the register
1027 // for "add" in the value map. Use extractvalue's index to get the
1028 // correct register for "seto".
1029 UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1030 return true;
1034 return false;
1037 bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1038 // FIXME: Handle more intrinsics.
1039 switch (I.getIntrinsicID()) {
1040 default: return false;
1041 case Intrinsic::sadd_with_overflow:
1042 case Intrinsic::uadd_with_overflow: {
1043 // Replace "add with overflow" intrinsics with an "add" instruction followed
1044 // by a seto/setc instruction. Later on, when the "extractvalue"
1045 // instructions are encountered, we use the fact that two registers were
1046 // created sequentially to get the correct registers for the "sum" and the
1047 // "overflow bit".
1048 const Function *Callee = I.getCalledFunction();
1049 const Type *RetTy =
1050 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1052 MVT VT;
1053 if (!isTypeLegal(RetTy, VT))
1054 return false;
1056 Value *Op1 = I.getOperand(1);
1057 Value *Op2 = I.getOperand(2);
1058 unsigned Reg1 = getRegForValue(Op1);
1059 unsigned Reg2 = getRegForValue(Op2);
1061 if (Reg1 == 0 || Reg2 == 0)
1062 // FIXME: Handle values *not* in registers.
1063 return false;
1065 unsigned OpC = 0;
1066 if (VT == MVT::i32)
1067 OpC = X86::ADD32rr;
1068 else if (VT == MVT::i64)
1069 OpC = X86::ADD64rr;
1070 else
1071 return false;
1073 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1074 BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1075 unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1077 // If the add with overflow is an intra-block value then we just want to
1078 // create temporaries for it like normal. If it is a cross-block value then
1079 // UpdateValueMap will return the cross-block register used. Since we
1080 // *really* want the value to be live in the register pair known by
1081 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1082 // the cross block case. In the non-cross-block case, we should just make
1083 // another register for the value.
1084 if (DestReg1 != ResultReg)
1085 ResultReg = DestReg1+1;
1086 else
1087 ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1089 unsigned Opc = X86::SETBr;
1090 if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1091 Opc = X86::SETOr;
1092 BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1093 return true;
1098 bool X86FastISel::X86SelectCall(Instruction *I) {
1099 CallInst *CI = cast<CallInst>(I);
1100 Value *Callee = I->getOperand(0);
1102 // Can't handle inline asm yet.
1103 if (isa<InlineAsm>(Callee))
1104 return false;
1106 // Handle intrinsic calls.
1107 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1108 return X86VisitIntrinsicCall(*II);
1110 // Handle only C and fastcc calling conventions for now.
1111 CallSite CS(CI);
1112 unsigned CC = CS.getCallingConv();
1113 if (CC != CallingConv::C &&
1114 CC != CallingConv::Fast &&
1115 CC != CallingConv::X86_FastCall)
1116 return false;
1118 // Let SDISel handle vararg functions.
1119 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1120 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1121 if (FTy->isVarArg())
1122 return false;
1124 // Handle *simple* calls for now.
1125 const Type *RetTy = CS.getType();
1126 MVT RetVT;
1127 if (RetTy == Type::VoidTy)
1128 RetVT = MVT::isVoid;
1129 else if (!isTypeLegal(RetTy, RetVT, true))
1130 return false;
1132 // Materialize callee address in a register. FIXME: GV address can be
1133 // handled with a CALLpcrel32 instead.
1134 X86AddressMode CalleeAM;
1135 if (!X86SelectAddress(Callee, CalleeAM, true))
1136 return false;
1137 unsigned CalleeOp = 0;
1138 GlobalValue *GV = 0;
1139 if (CalleeAM.Base.Reg != 0) {
1140 assert(CalleeAM.GV == 0);
1141 CalleeOp = CalleeAM.Base.Reg;
1142 } else if (CalleeAM.GV != 0) {
1143 assert(CalleeAM.GV != 0);
1144 GV = CalleeAM.GV;
1145 } else
1146 return false;
1148 // Allow calls which produce i1 results.
1149 bool AndToI1 = false;
1150 if (RetVT == MVT::i1) {
1151 RetVT = MVT::i8;
1152 AndToI1 = true;
1155 // Deal with call operands first.
1156 SmallVector<Value*, 8> ArgVals;
1157 SmallVector<unsigned, 8> Args;
1158 SmallVector<MVT, 8> ArgVTs;
1159 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1160 Args.reserve(CS.arg_size());
1161 ArgVals.reserve(CS.arg_size());
1162 ArgVTs.reserve(CS.arg_size());
1163 ArgFlags.reserve(CS.arg_size());
1164 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1165 i != e; ++i) {
1166 unsigned Arg = getRegForValue(*i);
1167 if (Arg == 0)
1168 return false;
1169 ISD::ArgFlagsTy Flags;
1170 unsigned AttrInd = i - CS.arg_begin() + 1;
1171 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1172 Flags.setSExt();
1173 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1174 Flags.setZExt();
1176 // FIXME: Only handle *easy* calls for now.
1177 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1178 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1179 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1180 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1181 return false;
1183 const Type *ArgTy = (*i)->getType();
1184 MVT ArgVT;
1185 if (!isTypeLegal(ArgTy, ArgVT))
1186 return false;
1187 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1188 Flags.setOrigAlign(OriginalAlignment);
1190 Args.push_back(Arg);
1191 ArgVals.push_back(*i);
1192 ArgVTs.push_back(ArgVT);
1193 ArgFlags.push_back(Flags);
1196 // Analyze operands of the call, assigning locations to each operand.
1197 SmallVector<CCValAssign, 16> ArgLocs;
1198 CCState CCInfo(CC, false, TM, ArgLocs);
1199 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1201 // Get a count of how many bytes are to be pushed on the stack.
1202 unsigned NumBytes = CCInfo.getNextStackOffset();
1204 // Issue CALLSEQ_START
1205 unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1206 BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1208 // Process argument: walk the register/memloc assignments, inserting
1209 // copies / loads.
1210 SmallVector<unsigned, 4> RegArgs;
1211 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1212 CCValAssign &VA = ArgLocs[i];
1213 unsigned Arg = Args[VA.getValNo()];
1214 MVT ArgVT = ArgVTs[VA.getValNo()];
1216 // Promote the value if needed.
1217 switch (VA.getLocInfo()) {
1218 default: assert(0 && "Unknown loc info!");
1219 case CCValAssign::Full: break;
1220 case CCValAssign::SExt: {
1221 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1222 Arg, ArgVT, Arg);
1223 assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1224 Emitted = true;
1225 ArgVT = VA.getLocVT();
1226 break;
1228 case CCValAssign::ZExt: {
1229 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1230 Arg, ArgVT, Arg);
1231 assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1232 Emitted = true;
1233 ArgVT = VA.getLocVT();
1234 break;
1236 case CCValAssign::AExt: {
1237 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1238 Arg, ArgVT, Arg);
1239 if (!Emitted)
1240 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1241 Arg, ArgVT, Arg);
1242 if (!Emitted)
1243 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1244 Arg, ArgVT, Arg);
1246 assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1247 ArgVT = VA.getLocVT();
1248 break;
1252 if (VA.isRegLoc()) {
1253 TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1254 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1255 Arg, RC, RC);
1256 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1257 Emitted = true;
1258 RegArgs.push_back(VA.getLocReg());
1259 } else {
1260 unsigned LocMemOffset = VA.getLocMemOffset();
1261 X86AddressMode AM;
1262 AM.Base.Reg = StackPtr;
1263 AM.Disp = LocMemOffset;
1264 Value *ArgVal = ArgVals[VA.getValNo()];
1266 // If this is a really simple value, emit this with the Value* version of
1267 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1268 // can cause us to reevaluate the argument.
1269 if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1270 X86FastEmitStore(ArgVT, ArgVal, AM);
1271 else
1272 X86FastEmitStore(ArgVT, Arg, AM);
1276 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1277 // GOT pointer.
1278 if (!Subtarget->is64Bit() &&
1279 TM.getRelocationModel() == Reloc::PIC_ &&
1280 Subtarget->isPICStyleGOT()) {
1281 TargetRegisterClass *RC = X86::GR32RegisterClass;
1282 unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1283 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1284 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1285 Emitted = true;
1288 // Issue the call.
1289 unsigned CallOpc = CalleeOp
1290 ? (Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r)
1291 : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
1292 MachineInstrBuilder MIB = CalleeOp
1293 ? BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp)
1294 : BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV);
1296 // Add an implicit use GOT pointer in EBX.
1297 if (!Subtarget->is64Bit() &&
1298 TM.getRelocationModel() == Reloc::PIC_ &&
1299 Subtarget->isPICStyleGOT())
1300 MIB.addReg(X86::EBX);
1302 // Add implicit physical register uses to the call.
1303 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1304 MIB.addReg(RegArgs[i]);
1306 // Issue CALLSEQ_END
1307 unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1308 BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1310 // Now handle call return value (if any).
1311 if (RetVT.getSimpleVT() != MVT::isVoid) {
1312 SmallVector<CCValAssign, 16> RVLocs;
1313 CCState CCInfo(CC, false, TM, RVLocs);
1314 CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1316 // Copy all of the result registers out of their specified physreg.
1317 assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1318 MVT CopyVT = RVLocs[0].getValVT();
1319 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1320 TargetRegisterClass *SrcRC = DstRC;
1322 // If this is a call to a function that returns an fp value on the x87 fp
1323 // stack, but where we prefer to use the value in xmm registers, copy it
1324 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1325 if ((RVLocs[0].getLocReg() == X86::ST0 ||
1326 RVLocs[0].getLocReg() == X86::ST1) &&
1327 isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1328 CopyVT = MVT::f80;
1329 SrcRC = X86::RSTRegisterClass;
1330 DstRC = X86::RFP80RegisterClass;
1333 unsigned ResultReg = createResultReg(DstRC);
1334 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1335 RVLocs[0].getLocReg(), DstRC, SrcRC);
1336 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1337 Emitted = true;
1338 if (CopyVT != RVLocs[0].getValVT()) {
1339 // Round the F80 the right size, which also moves to the appropriate xmm
1340 // register. This is accomplished by storing the F80 value in memory and
1341 // then loading it back. Ewww...
1342 MVT ResVT = RVLocs[0].getValVT();
1343 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1344 unsigned MemSize = ResVT.getSizeInBits()/8;
1345 int FI = MFI.CreateStackObject(MemSize, MemSize);
1346 addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1347 DstRC = ResVT == MVT::f32
1348 ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1349 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1350 ResultReg = createResultReg(DstRC);
1351 addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1354 if (AndToI1) {
1355 // Mask out all but lowest bit for some call which produces an i1.
1356 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1357 BuildMI(MBB, DL,
1358 TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1359 ResultReg = AndResult;
1362 UpdateValueMap(I, ResultReg);
1365 return true;
1369 bool
1370 X86FastISel::TargetSelectInstruction(Instruction *I) {
1371 switch (I->getOpcode()) {
1372 default: break;
1373 case Instruction::Load:
1374 return X86SelectLoad(I);
1375 case Instruction::Store:
1376 return X86SelectStore(I);
1377 case Instruction::ICmp:
1378 case Instruction::FCmp:
1379 return X86SelectCmp(I);
1380 case Instruction::ZExt:
1381 return X86SelectZExt(I);
1382 case Instruction::Br:
1383 return X86SelectBranch(I);
1384 case Instruction::Call:
1385 return X86SelectCall(I);
1386 case Instruction::LShr:
1387 case Instruction::AShr:
1388 case Instruction::Shl:
1389 return X86SelectShift(I);
1390 case Instruction::Select:
1391 return X86SelectSelect(I);
1392 case Instruction::Trunc:
1393 return X86SelectTrunc(I);
1394 case Instruction::FPExt:
1395 return X86SelectFPExt(I);
1396 case Instruction::FPTrunc:
1397 return X86SelectFPTrunc(I);
1398 case Instruction::ExtractValue:
1399 return X86SelectExtractValue(I);
1400 case Instruction::IntToPtr: // Deliberate fall-through.
1401 case Instruction::PtrToInt: {
1402 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1403 MVT DstVT = TLI.getValueType(I->getType());
1404 if (DstVT.bitsGT(SrcVT))
1405 return X86SelectZExt(I);
1406 if (DstVT.bitsLT(SrcVT))
1407 return X86SelectTrunc(I);
1408 unsigned Reg = getRegForValue(I->getOperand(0));
1409 if (Reg == 0) return false;
1410 UpdateValueMap(I, Reg);
1411 return true;
1415 return false;
1418 unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1419 MVT VT;
1420 if (!isTypeLegal(C->getType(), VT))
1421 return false;
1423 // Get opcode and regclass of the output for the given load instruction.
1424 unsigned Opc = 0;
1425 const TargetRegisterClass *RC = NULL;
1426 switch (VT.getSimpleVT()) {
1427 default: return false;
1428 case MVT::i8:
1429 Opc = X86::MOV8rm;
1430 RC = X86::GR8RegisterClass;
1431 break;
1432 case MVT::i16:
1433 Opc = X86::MOV16rm;
1434 RC = X86::GR16RegisterClass;
1435 break;
1436 case MVT::i32:
1437 Opc = X86::MOV32rm;
1438 RC = X86::GR32RegisterClass;
1439 break;
1440 case MVT::i64:
1441 // Must be in x86-64 mode.
1442 Opc = X86::MOV64rm;
1443 RC = X86::GR64RegisterClass;
1444 break;
1445 case MVT::f32:
1446 if (Subtarget->hasSSE1()) {
1447 Opc = X86::MOVSSrm;
1448 RC = X86::FR32RegisterClass;
1449 } else {
1450 Opc = X86::LD_Fp32m;
1451 RC = X86::RFP32RegisterClass;
1453 break;
1454 case MVT::f64:
1455 if (Subtarget->hasSSE2()) {
1456 Opc = X86::MOVSDrm;
1457 RC = X86::FR64RegisterClass;
1458 } else {
1459 Opc = X86::LD_Fp64m;
1460 RC = X86::RFP64RegisterClass;
1462 break;
1463 case MVT::f80:
1464 // No f80 support yet.
1465 return false;
1468 // Materialize addresses with LEA instructions.
1469 if (isa<GlobalValue>(C)) {
1470 X86AddressMode AM;
1471 if (X86SelectAddress(C, AM, false)) {
1472 if (TLI.getPointerTy() == MVT::i32)
1473 Opc = X86::LEA32r;
1474 else
1475 Opc = X86::LEA64r;
1476 unsigned ResultReg = createResultReg(RC);
1477 addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1478 return ResultReg;
1480 return 0;
1483 // MachineConstantPool wants an explicit alignment.
1484 unsigned Align = TD.getPrefTypeAlignment(C->getType());
1485 if (Align == 0) {
1486 // Alignment of vector types. FIXME!
1487 Align = TD.getTypePaddedSize(C->getType());
1490 // x86-32 PIC requires a PIC base register for constant pools.
1491 unsigned PICBase = 0;
1492 if (TM.getRelocationModel() == Reloc::PIC_ &&
1493 !Subtarget->is64Bit())
1494 PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1496 // Create the load from the constant pool.
1497 unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1498 unsigned ResultReg = createResultReg(RC);
1499 addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), MCPOffset,
1500 PICBase);
1502 return ResultReg;
1505 unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1506 // Fail on dynamic allocas. At this point, getRegForValue has already
1507 // checked its CSE maps, so if we're here trying to handle a dynamic
1508 // alloca, we're not going to succeed. X86SelectAddress has a
1509 // check for dynamic allocas, because it's called directly from
1510 // various places, but TargetMaterializeAlloca also needs a check
1511 // in order to avoid recursion between getRegForValue,
1512 // X86SelectAddrss, and TargetMaterializeAlloca.
1513 if (!StaticAllocaMap.count(C))
1514 return 0;
1516 X86AddressMode AM;
1517 if (!X86SelectAddress(C, AM, false))
1518 return 0;
1519 unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1520 TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1521 unsigned ResultReg = createResultReg(RC);
1522 addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1523 return ResultReg;
1526 namespace llvm {
1527 llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1528 MachineModuleInfo *mmi,
1529 DwarfWriter *dw,
1530 DenseMap<const Value *, unsigned> &vm,
1531 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1532 DenseMap<const AllocaInst *, int> &am
1533 #ifndef NDEBUG
1534 , SmallSet<Instruction*, 8> &cil
1535 #endif
1537 return new X86FastISel(mf, mmi, dw, vm, bm, am
1538 #ifndef NDEBUG
1539 , cil
1540 #endif