Hanle i8 returns
[llvm/msp430.git] / docs / SourceLevelDebugging.html
blob1b3aaf7e699ef2b6f3752a9c6d200ea4b1d8100d
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>Source Level Debugging with LLVM</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
10 <div class="doc_title">Source Level Debugging with LLVM</div>
12 <table class="layout" style="width:100%">
13 <tr class="layout">
14 <td class="left">
15 <ul>
16 <li><a href="#introduction">Introduction</a>
17 <ol>
18 <li><a href="#phil">Philosophy behind LLVM debugging information</a></li>
19 <li><a href="#consumers">Debug information consumers</a></li>
20 <li><a href="#debugopt">Debugging optimized code</a></li>
21 </ol></li>
22 <li><a href="#format">Debugging information format</a>
23 <ol>
24 <li><a href="#debug_info_descriptors">Debug information descriptors</a>
25 <ul>
26 <li><a href="#format_anchors">Anchor descriptors</a></li>
27 <li><a href="#format_compile_units">Compile unit descriptors</a></li>
28 <li><a href="#format_global_variables">Global variable descriptors</a></li>
29 <li><a href="#format_subprograms">Subprogram descriptors</a></li>
30 <li><a href="#format_blocks">Block descriptors</a></li>
31 <li><a href="#format_basic_type">Basic type descriptors</a></li>
32 <li><a href="#format_derived_type">Derived type descriptors</a></li>
33 <li><a href="#format_composite_type">Composite type descriptors</a></li>
34 <li><a href="#format_subrange">Subrange descriptors</a></li>
35 <li><a href="#format_enumeration">Enumerator descriptors</a></li>
36 <li><a href="#format_variables">Local variables</a></li>
37 </ul></li>
38 <li><a href="#format_common_intrinsics">Debugger intrinsic functions</a>
39 <ul>
40 <li><a href="#format_common_stoppoint">llvm.dbg.stoppoint</a></li>
41 <li><a href="#format_common_func_start">llvm.dbg.func.start</a></li>
42 <li><a href="#format_common_region_start">llvm.dbg.region.start</a></li>
43 <li><a href="#format_common_region_end">llvm.dbg.region.end</a></li>
44 <li><a href="#format_common_declare">llvm.dbg.declare</a></li>
45 </ul></li>
46 <li><a href="#format_common_stoppoints">Representing stopping points in the
47 source program</a></li>
48 </ol></li>
49 <li><a href="#ccxx_frontend">C/C++ front-end specific debug information</a>
50 <ol>
51 <li><a href="#ccxx_compile_units">C/C++ source file information</a></li>
52 <li><a href="#ccxx_global_variable">C/C++ global variable information</a></li>
53 <li><a href="#ccxx_subprogram">C/C++ function information</a></li>
54 <li><a href="#ccxx_basic_types">C/C++ basic types</a></li>
55 <li><a href="#ccxx_derived_types">C/C++ derived types</a></li>
56 <li><a href="#ccxx_composite_types">C/C++ struct/union types</a></li>
57 <li><a href="#ccxx_enumeration_types">C/C++ enumeration types</a></li>
58 </ol></li>
59 </ul>
60 </td>
61 <td class="right">
62 <img src="img/venusflytrap.jpg" alt="A leafy and green bug eater" width="247"
63 height="369">
64 </td>
65 </tr></table>
67 <div class="doc_author">
68 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
69 and <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
70 </div>
73 <!-- *********************************************************************** -->
74 <div class="doc_section"><a name="introduction">Introduction</a></div>
75 <!-- *********************************************************************** -->
77 <div class="doc_text">
79 <p>This document is the central repository for all information pertaining to
80 debug information in LLVM. It describes the <a href="#format">actual format
81 that the LLVM debug information</a> takes, which is useful for those interested
82 in creating front-ends or dealing directly with the information. Further, this
83 document provides specifc examples of what debug information for C/C++.</p>
85 </div>
87 <!-- ======================================================================= -->
88 <div class="doc_subsection">
89 <a name="phil">Philosophy behind LLVM debugging information</a>
90 </div>
92 <div class="doc_text">
94 <p>The idea of the LLVM debugging information is to capture how the important
95 pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
96 Several design aspects have shaped the solution that appears here. The
97 important ones are:</p>
99 <ul>
100 <li>Debugging information should have very little impact on the rest of the
101 compiler. No transformations, analyses, or code generators should need to be
102 modified because of debugging information.</li>
104 <li>LLVM optimizations should interact in <a href="#debugopt">well-defined and
105 easily described ways</a> with the debugging information.</li>
107 <li>Because LLVM is designed to support arbitrary programming languages,
108 LLVM-to-LLVM tools should not need to know anything about the semantics of the
109 source-level-language.</li>
111 <li>Source-level languages are often <b>widely</b> different from one another.
112 LLVM should not put any restrictions of the flavor of the source-language, and
113 the debugging information should work with any language.</li>
115 <li>With code generator support, it should be possible to use an LLVM compiler
116 to compile a program to native machine code and standard debugging formats.
117 This allows compatibility with traditional machine-code level debuggers, like
118 GDB or DBX.</li>
120 </ul>
122 <p>The approach used by the LLVM implementation is to use a small set of <a
123 href="#format_common_intrinsics">intrinsic functions</a> to define a mapping
124 between LLVM program objects and the source-level objects. The description of
125 the source-level program is maintained in LLVM global variables in an <a
126 href="#ccxx_frontend">implementation-defined format</a> (the C/C++ front-end
127 currently uses working draft 7 of the <a
128 href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3 standard</a>).</p>
130 <p>When a program is being debugged, a debugger interacts with the user and
131 turns the stored debug information into source-language specific information.
132 As such, a debugger must be aware of the source-language, and is thus tied to
133 a specific language or family of languages.</p>
135 </div>
137 <!-- ======================================================================= -->
138 <div class="doc_subsection">
139 <a name="consumers">Debug information consumers</a>
140 </div>
142 <div class="doc_text">
143 <p>The role of debug information is to provide meta information normally
144 stripped away during the compilation process. This meta information provides an
145 LLVM user a relationship between generated code and the original program source
146 code.</p>
148 <p>Currently, debug information is consumed by the DwarfWriter to produce dwarf
149 information used by the gdb debugger. Other targets could use the same
150 information to produce stabs or other debug forms.</p>
152 <p>It would also be reasonable to use debug information to feed profiling tools
153 for analysis of generated code, or, tools for reconstructing the original source
154 from generated code.</p>
156 <p>TODO - expound a bit more.</p>
158 </div>
160 <!-- ======================================================================= -->
161 <div class="doc_subsection">
162 <a name="debugopt">Debugging optimized code</a>
163 </div>
165 <div class="doc_text">
167 <p>An extremely high priority of LLVM debugging information is to make it
168 interact well with optimizations and analysis. In particular, the LLVM debug
169 information provides the following guarantees:</p>
171 <ul>
173 <li>LLVM debug information <b>always provides information to accurately read the
174 source-level state of the program</b>, regardless of which LLVM optimizations
175 have been run, and without any modification to the optimizations themselves.
176 However, some optimizations may impact the ability to modify the current state
177 of the program with a debugger, such as setting program variables, or calling
178 functions that have been deleted.</li>
180 <li>LLVM optimizations gracefully interact with debugging information. If they
181 are not aware of debug information, they are automatically disabled as necessary
182 in the cases that would invalidate the debug info. This retains the LLVM
183 features, making it easy to write new transformations.</li>
185 <li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
186 debugging information, allowing them to update the debugging information as they
187 perform aggressive optimizations. This means that, with effort, the LLVM
188 optimizers could optimize debug code just as well as non-debug code.</li>
190 <li>LLVM debug information does not prevent many important optimizations from
191 happening (for example inlining, basic block reordering/merging/cleanup, tail
192 duplication, etc), further reducing the amount of the compiler that eventually
193 is "aware" of debugging information.</li>
195 <li>LLVM debug information is automatically optimized along with the rest of the
196 program, using existing facilities. For example, duplicate information is
197 automatically merged by the linker, and unused information is automatically
198 removed.</li>
200 </ul>
202 <p>Basically, the debug information allows you to compile a program with
203 "<tt>-O0 -g</tt>" and get full debug information, allowing you to arbitrarily
204 modify the program as it executes from a debugger. Compiling a program with
205 "<tt>-O3 -g</tt>" gives you full debug information that is always available and
206 accurate for reading (e.g., you get accurate stack traces despite tail call
207 elimination and inlining), but you might lose the ability to modify the program
208 and call functions where were optimized out of the program, or inlined away
209 completely.</p>
211 <p><a href="TestingGuide.html#quicktestsuite">LLVM test suite</a> provides a
212 framework to test optimizer's handling of debugging information. It can be run
213 like this:</p>
215 <div class="doc_code">
216 <pre>
217 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
218 % make TEST=dbgopt
219 </pre>
220 </div>
223 This will test impact of debugging information on optimization passes. If
224 debugging information influences optimization passes then it will be reported
225 as a failure. See <a href="TestingGuide.html">TestingGuide</a>
226 for more information on LLVM test infrastructure and how to run various tests.
227 </p>
229 </div>
231 <!-- *********************************************************************** -->
232 <div class="doc_section">
233 <a name="format">Debugging information format</a>
234 </div>
235 <!-- *********************************************************************** -->
237 <div class="doc_text">
239 <p>LLVM debugging information has been carefully designed to make it possible
240 for the optimizer to optimize the program and debugging information without
241 necessarily having to know anything about debugging information. In particular,
242 the global constant merging pass automatically eliminates duplicated debugging
243 information (often caused by header files), the global dead code elimination
244 pass automatically deletes debugging information for a function if it decides to
245 delete the function, and the linker eliminates debug information when it merges
246 <tt>linkonce</tt> functions.</p>
248 <p>To do this, most of the debugging information (descriptors for types,
249 variables, functions, source files, etc) is inserted by the language front-end
250 in the form of LLVM global variables. These LLVM global variables are no
251 different from any other global variables, except that they have a web of LLVM
252 intrinsic functions that point to them. If the last references to a particular
253 piece of debugging information are deleted (for example, by the
254 <tt>-globaldce</tt> pass), the extraneous debug information will automatically
255 become dead and be removed by the optimizer.</p>
257 <p>Debug information is designed to be agnostic about the target debugger and
258 debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
259 machine debug information pass to decode the information that represents
260 variables, types, functions, namespaces, etc: this allows for arbitrary
261 source-language semantics and type-systems to be used, as long as there is a
262 module written for the target debugger to interpret the information. In
263 addition, debug global variables are declared in the <tt>"llvm.metadata"</tt>
264 section. All values declared in this section are stripped away after target
265 debug information is constructed and before the program object is emitted.</p>
267 <p>To provide basic functionality, the LLVM debugger does have to make some
268 assumptions about the source-level language being debugged, though it keeps
269 these to a minimum. The only common features that the LLVM debugger assumes
270 exist are <a href="#format_compile_units">source files</a>, and <a
271 href="#format_global_variables">program objects</a>. These abstract objects are
272 used by a debugger to form stack traces, show information about local
273 variables, etc.</p>
275 <p>This section of the documentation first describes the representation aspects
276 common to any source-language. The <a href="#ccxx_frontend">next section</a>
277 describes the data layout conventions used by the C and C++ front-ends.</p>
279 </div>
281 <!-- ======================================================================= -->
282 <div class="doc_subsection">
283 <a name="debug_info_descriptors">Debug information descriptors</a>
284 </div>
286 <div class="doc_text">
287 <p>In consideration of the complexity and volume of debug information, LLVM
288 provides a specification for well formed debug global variables. The constant
289 value of each of these globals is one of a limited set of structures, known as
290 debug descriptors.</p>
292 <p>Consumers of LLVM debug information expect the descriptors for program
293 objects to start in a canonical format, but the descriptors can include
294 additional information appended at the end that is source-language specific. All
295 LLVM debugging information is versioned, allowing backwards compatibility in the
296 case that the core structures need to change in some way. Also, all debugging
297 information objects start with a tag to indicate what type of object it is. The
298 source-language is allowed to define its own objects, by using unreserved tag
299 numbers. We recommend using with tags in the range 0x1000 thru 0x2000 (there is
300 a defined enum DW_TAG_user_base = 0x1000.)</p>
302 <p>The fields of debug descriptors used internally by LLVM (MachineModuleInfo)
303 are restricted to only the simple data types <tt>int</tt>, <tt>uint</tt>,
304 <tt>bool</tt>, <tt>float</tt>, <tt>double</tt>, <tt>i8*</tt> and <tt> { }*
305 </tt>. References to arbitrary values are handled using a <tt> { }* </tt> and a
306 cast to <tt> { }* </tt> expression; typically references to other field
307 descriptors, arrays of descriptors or global variables.</p>
309 <pre>
310 %llvm.dbg.object.type = type {
311 uint, ;; A tag
314 </pre>
316 <p><a name="LLVMDebugVersion">The first field of a descriptor is always an
317 <tt>uint</tt> containing a tag value identifying the content of the descriptor.
318 The remaining fields are specific to the descriptor. The values of tags are
319 loosely bound to the tag values of Dwarf information entries. However, that
320 does not restrict the use of the information supplied to Dwarf targets. To
321 facilitate versioning of debug information, the tag is augmented with the
322 current debug version (LLVMDebugVersion = 4 << 16 or 0x40000 or 262144.)</a></p>
324 <p>The details of the various descriptors follow.</p>
326 </div>
328 <!-- ======================================================================= -->
329 <div class="doc_subsubsection">
330 <a name="format_anchors">Anchor descriptors</a>
331 </div>
333 <div class="doc_text">
335 <pre>
336 %<a href="#format_anchors">llvm.dbg.anchor.type</a> = type {
337 uint, ;; Tag = 0 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a>
338 uint ;; Tag of descriptors grouped by the anchor
340 </pre>
342 <p>One important aspect of the LLVM debug representation is that it allows the
343 LLVM debugger to efficiently index all of the global objects without having the
344 scan the program. To do this, all of the global objects use "anchor"
345 descriptors with designated names. All of the global objects of a particular
346 type (e.g., compile units) contain a pointer to the anchor. This pointer allows
347 a debugger to use def-use chains to find all global objects of that type.</p>
349 <p>The following names are recognized as anchors by LLVM:</p>
351 <pre>
352 %<a href="#format_compile_units">llvm.dbg.compile_units</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 17 } ;; DW_TAG_compile_unit
353 %<a href="#format_global_variables">llvm.dbg.global_variables</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 52 } ;; DW_TAG_variable
354 %<a href="#format_subprograms">llvm.dbg.subprograms</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 46 } ;; DW_TAG_subprogram
355 </pre>
357 <p>Using anchors in this way (where the compile unit descriptor points to the
358 anchors, as opposed to having a list of compile unit descriptors) allows for the
359 standard dead global elimination and merging passes to automatically remove
360 unused debugging information. If the globals were kept track of through lists,
361 there would always be an object pointing to the descriptors, thus would never be
362 deleted.</p>
364 </div>
366 <!-- ======================================================================= -->
367 <div class="doc_subsubsection">
368 <a name="format_compile_units">Compile unit descriptors</a>
369 </div>
371 <div class="doc_text">
373 <pre>
374 %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> = type {
375 uint, ;; Tag = 17 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_compile_unit)
376 { }*, ;; Compile unit anchor = cast = (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_units</a> to { }*)
377 uint, ;; Dwarf language identifier (ex. DW_LANG_C89)
378 i8*, ;; Source file name
379 i8*, ;; Source file directory (includes trailing slash)
380 i8* ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
381 bool ;; True if this is a main compile unit.
383 </pre>
385 <p>These descriptors contain a source language ID for the file (we use the Dwarf
386 3.0 ID numbers, such as <tt>DW_LANG_C89</tt>, <tt>DW_LANG_C_plus_plus</tt>,
387 <tt>DW_LANG_Cobol74</tt>, etc), three strings describing the filename, working
388 directory of the compiler, and an identifier string for the compiler that
389 produced it.</p>
391 <p> Compile unit descriptors provide the root context for objects declared in a
392 specific source file. Global variables and top level functions would be defined
393 using this context. Compile unit descriptors also provide context for source
394 line correspondence.</p>
396 <p> Each input file is encoded as a separate compile unit in LLVM debugging
397 information output. However, many target specific tool chains prefer to encode
398 only one compile unit in an object file. In this situation, the LLVM code
399 generator will include debugging information entities in the compile unit
400 that is marked as main compile unit. The code generator accepts maximum one main
401 compile unit per module. If a module does not contain any main compile unit
402 then the code generator will emit multiple compile units in the output object
403 file.
404 </div>
406 <!-- ======================================================================= -->
407 <div class="doc_subsubsection">
408 <a name="format_global_variables">Global variable descriptors</a>
409 </div>
411 <div class="doc_text">
413 <pre>
414 %<a href="#format_global_variables">llvm.dbg.global_variable.type</a> = type {
415 uint, ;; Tag = 52 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_variable)
416 { }*, ;; Global variable anchor = cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_global_variables">llvm.dbg.global_variables</a> to { }*),
417 { }*, ;; Reference to context descriptor
418 i8*, ;; Name
419 i8*, ;; Display name (fully qualified C++ name)
420 i8*, ;; MIPS linkage name (for C++)
421 { }*, ;; Reference to compile unit where defined
422 uint, ;; Line number where defined
423 { }*, ;; Reference to type descriptor
424 bool, ;; True if the global is local to compile unit (static)
425 bool, ;; True if the global is defined in the compile unit (not extern)
426 { }* ;; Reference to the global variable
428 </pre>
430 <p>These descriptors provide debug information about globals variables. The
431 provide details such as name, type and where the variable is defined.</p>
433 </div>
435 <!-- ======================================================================= -->
436 <div class="doc_subsubsection">
437 <a name="format_subprograms">Subprogram descriptors</a>
438 </div>
440 <div class="doc_text">
442 <pre>
443 %<a href="#format_subprograms">llvm.dbg.subprogram.type</a> = type {
444 uint, ;; Tag = 46 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_subprogram)
445 { }*, ;; Subprogram anchor = cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_subprograms">llvm.dbg.subprograms</a> to { }*),
446 { }*, ;; Reference to context descriptor
447 i8*, ;; Name
448 i8*, ;; Display name (fully qualified C++ name)
449 i8*, ;; MIPS linkage name (for C++)
450 { }*, ;; Reference to compile unit where defined
451 uint, ;; Line number where defined
452 { }*, ;; Reference to type descriptor
453 bool, ;; True if the global is local to compile unit (static)
454 bool ;; True if the global is defined in the compile unit (not extern)
456 </pre>
458 <p>These descriptors provide debug information about functions, methods and
459 subprograms. They provide details such as name, return types and the source
460 location where the subprogram is defined.</p>
462 </div>
463 <!-- ======================================================================= -->
464 <div class="doc_subsubsection">
465 <a name="format_blocks">Block descriptors</a>
466 </div>
468 <div class="doc_text">
470 <pre>
471 %<a href="#format_blocks">llvm.dbg.block</a> = type {
472 i32, ;; Tag = 13 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_lexical_block)
473 { }* ;; Reference to context descriptor
475 </pre>
477 <p>These descriptors provide debug information about nested blocks within a
478 subprogram. The array of member descriptors is used to define local variables
479 and deeper nested blocks.</p>
481 </div>
483 <!-- ======================================================================= -->
484 <div class="doc_subsubsection">
485 <a name="format_basic_type">Basic type descriptors</a>
486 </div>
488 <div class="doc_text">
490 <pre>
491 %<a href="#format_basic_type">llvm.dbg.basictype.type</a> = type {
492 uint, ;; Tag = 36 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_base_type)
493 { }*, ;; Reference to context (typically a compile unit)
494 i8*, ;; Name (may be "" for anonymous types)
495 { }*, ;; Reference to compile unit where defined (may be NULL)
496 uint, ;; Line number where defined (may be 0)
497 i64, ;; Size in bits
498 i64, ;; Alignment in bits
499 uint, ;; Offset in bits
500 uint ;; Dwarf type encoding
502 </pre>
504 <p>These descriptors define primitive types used in the code. Example int, bool
505 and float. The context provides the scope of the type, which is usually the top
506 level. Since basic types are not usually user defined the compile unit and line
507 number can be left as NULL and 0. The size, alignment and offset are expressed
508 in bits and can be 64 bit values. The alignment is used to round the offset
509 when embedded in a <a href="#format_composite_type">composite type</a>
510 (example to keep float doubles on 64 bit boundaries.) The offset is the bit
511 offset if embedded in a <a href="#format_composite_type">composite
512 type</a>.</p>
514 <p>The type encoding provides the details of the type. The values are typically
515 one of the following:</p>
517 <pre>
518 DW_ATE_address = 1
519 DW_ATE_boolean = 2
520 DW_ATE_float = 4
521 DW_ATE_signed = 5
522 DW_ATE_signed_char = 6
523 DW_ATE_unsigned = 7
524 DW_ATE_unsigned_char = 8
525 </pre>
527 </div>
529 <!-- ======================================================================= -->
530 <div class="doc_subsubsection">
531 <a name="format_derived_type">Derived type descriptors</a>
532 </div>
534 <div class="doc_text">
536 <pre>
537 %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> = type {
538 uint, ;; Tag (see below)
539 { }*, ;; Reference to context
540 i8*, ;; Name (may be "" for anonymous types)
541 { }*, ;; Reference to compile unit where defined (may be NULL)
542 uint, ;; Line number where defined (may be 0)
543 uint, ;; Size in bits
544 uint, ;; Alignment in bits
545 uint, ;; Offset in bits
546 { }* ;; Reference to type derived from
548 </pre>
550 <p>These descriptors are used to define types derived from other types. The
551 value of the tag varies depending on the meaning. The following are possible
552 tag values:</p>
554 <pre>
555 DW_TAG_formal_parameter = 5
556 DW_TAG_member = 13
557 DW_TAG_pointer_type = 15
558 DW_TAG_reference_type = 16
559 DW_TAG_typedef = 22
560 DW_TAG_const_type = 38
561 DW_TAG_volatile_type = 53
562 DW_TAG_restrict_type = 55
563 </pre>
565 <p> <tt>DW_TAG_member</tt> is used to define a member of a <a
566 href="#format_composite_type">composite type</a> or <a
567 href="#format_subprograms">subprogram</a>. The type of the member is the <a
568 href="#format_derived_type">derived type</a>. <tt>DW_TAG_formal_parameter</tt>
569 is used to define a member which is a formal argument of a subprogram.</p>
571 <p><tt>DW_TAG_typedef</tt> is used to
572 provide a name for the derived type.</p>
574 <p><tt>DW_TAG_pointer_type</tt>,
575 <tt>DW_TAG_reference_type</tt>, <tt>DW_TAG_const_type</tt>,
576 <tt>DW_TAG_volatile_type</tt> and <tt>DW_TAG_restrict_type</tt> are used to
577 qualify the <a href="#format_derived_type">derived type</a>. </p>
579 <p><a href="#format_derived_type">Derived type</a> location can be determined
580 from the compile unit and line number. The size, alignment and offset are
581 expressed in bits and can be 64 bit values. The alignment is used to round the
582 offset when embedded in a <a href="#format_composite_type">composite type</a>
583 (example to keep float doubles on 64 bit boundaries.) The offset is the bit
584 offset if embedded in a <a href="#format_composite_type">composite
585 type</a>.</p>
587 <p>Note that the <tt>void *</tt> type is expressed as a
588 <tt>llvm.dbg.derivedtype.type</tt> with tag of <tt>DW_TAG_pointer_type</tt> and
589 NULL derived type.</p>
591 </div>
593 <!-- ======================================================================= -->
594 <div class="doc_subsubsection">
595 <a name="format_composite_type">Composite type descriptors</a>
596 </div>
598 <div class="doc_text">
600 <pre>
601 %<a href="#format_composite_type">llvm.dbg.compositetype.type</a> = type {
602 uint, ;; Tag (see below)
603 { }*, ;; Reference to context
604 i8*, ;; Name (may be "" for anonymous types)
605 { }*, ;; Reference to compile unit where defined (may be NULL)
606 uint, ;; Line number where defined (may be 0)
607 uint, ;; Size in bits
608 uint, ;; Alignment in bits
609 uint, ;; Offset in bits
610 { }* ;; Reference to array of member descriptors
612 </pre>
614 <p>These descriptors are used to define types that are composed of 0 or more
615 elements. The value of the tag varies depending on the meaning. The following
616 are possible tag values:</p>
618 <pre>
619 DW_TAG_array_type = 1
620 DW_TAG_enumeration_type = 4
621 DW_TAG_structure_type = 19
622 DW_TAG_union_type = 23
623 DW_TAG_vector_type = 259
624 DW_TAG_subroutine_type = 46
625 DW_TAG_inheritance = 26
626 </pre>
628 <p>The vector flag indicates that an array type is a native packed vector.</p>
630 <p>The members of array types (tag = <tt>DW_TAG_array_type</tt>) or vector types
631 (tag = <tt>DW_TAG_vector_type</tt>) are <a href="#format_subrange">subrange
632 descriptors</a>, each representing the range of subscripts at that level of
633 indexing.</p>
635 <p>The members of enumeration types (tag = <tt>DW_TAG_enumeration_type</tt>) are
636 <a href="#format_enumeration">enumerator descriptors</a>, each representing the
637 definition of enumeration value
638 for the set.</p>
640 <p>The members of structure (tag = <tt>DW_TAG_structure_type</tt>) or union (tag
641 = <tt>DW_TAG_union_type</tt>) types are any one of the <a
642 href="#format_basic_type">basic</a>, <a href="#format_derived_type">derived</a>
643 or <a href="#format_composite_type">composite</a> type descriptors, each
644 representing a field member of the structure or union.</p>
646 <p>For C++ classes (tag = <tt>DW_TAG_structure_type</tt>), member descriptors
647 provide information about base classes, static members and member functions. If
648 a member is a <a href="#format_derived_type">derived type descriptor</a> and has
649 a tag of <tt>DW_TAG_inheritance</tt>, then the type represents a base class. If
650 the member of is a <a href="#format_global_variables">global variable
651 descriptor</a> then it represents a static member. And, if the member is a <a
652 href="#format_subprograms">subprogram descriptor</a> then it represents a member
653 function. For static members and member functions, <tt>getName()</tt> returns
654 the members link or the C++ mangled name. <tt>getDisplayName()</tt> the
655 simplied version of the name.</p>
657 <p>The first member of subroutine (tag = <tt>DW_TAG_subroutine_type</tt>)
658 type elements is the return type for the subroutine. The remaining
659 elements are the formal arguments to the subroutine.</p>
661 <p><a href="#format_composite_type">Composite type</a> location can be
662 determined from the compile unit and line number. The size, alignment and
663 offset are expressed in bits and can be 64 bit values. The alignment is used to
664 round the offset when embedded in a <a href="#format_composite_type">composite
665 type</a> (as an example, to keep float doubles on 64 bit boundaries.) The offset
666 is the bit offset if embedded in a <a href="#format_composite_type">composite
667 type</a>.</p>
669 </div>
671 <!-- ======================================================================= -->
672 <div class="doc_subsubsection">
673 <a name="format_subrange">Subrange descriptors</a>
674 </div>
676 <div class="doc_text">
678 <pre>
679 %<a href="#format_subrange">llvm.dbg.subrange.type</a> = type {
680 uint, ;; Tag = 33 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_subrange_type)
681 uint, ;; Low value
682 uint ;; High value
684 </pre>
686 <p>These descriptors are used to define ranges of array subscripts for an array
687 <a href="#format_composite_type">composite type</a>. The low value defines the
688 lower bounds typically zero for C/C++. The high value is the upper bounds.
689 Values are 64 bit. High - low + 1 is the size of the array. If
690 low == high the array will be unbounded.</p>
692 </div>
694 <!-- ======================================================================= -->
695 <div class="doc_subsubsection">
696 <a name="format_enumeration">Enumerator descriptors</a>
697 </div>
699 <div class="doc_text">
701 <pre>
702 %<a href="#format_enumeration">llvm.dbg.enumerator.type</a> = type {
703 uint, ;; Tag = 40 + <a href="#LLVMDebugVersion">LLVMDebugVersion</a> (DW_TAG_enumerator)
704 i8*, ;; Name
705 uint ;; Value
707 </pre>
709 <p>These descriptors are used to define members of an enumeration <a
710 href="#format_composite_type">composite type</a>, it associates the name to the
711 value.</p>
713 </div>
715 <!-- ======================================================================= -->
716 <div class="doc_subsubsection">
717 <a name="format_variables">Local variables</a>
718 </div>
720 <div class="doc_text">
721 <pre>
722 %<a href="#format_variables">llvm.dbg.variable.type</a> = type {
723 uint, ;; Tag (see below)
724 { }*, ;; Context
725 i8*, ;; Name
726 { }*, ;; Reference to compile unit where defined
727 uint, ;; Line number where defined
728 { }* ;; Type descriptor
730 </pre>
732 <p>These descriptors are used to define variables local to a sub program. The
733 value of the tag depends on the usage of the variable:</p>
735 <pre>
736 DW_TAG_auto_variable = 256
737 DW_TAG_arg_variable = 257
738 DW_TAG_return_variable = 258
739 </pre>
741 <p>An auto variable is any variable declared in the body of the function. An
742 argument variable is any variable that appears as a formal argument to the
743 function. A return variable is used to track the result of a function and has
744 no source correspondent.</p>
746 <p>The context is either the subprogram or block where the variable is defined.
747 Name the source variable name. Compile unit and line indicate where the
748 variable was defined. Type descriptor defines the declared type of the
749 variable.</p>
751 </div>
753 <!-- ======================================================================= -->
754 <div class="doc_subsection">
755 <a name="format_common_intrinsics">Debugger intrinsic functions</a>
756 </div>
758 <div class="doc_text">
760 <p>LLVM uses several intrinsic functions (name prefixed with "llvm.dbg") to
761 provide debug information at various points in generated code.</p>
763 </div>
765 <!-- ======================================================================= -->
766 <div class="doc_subsubsection">
767 <a name="format_common_stoppoint">llvm.dbg.stoppoint</a>
768 </div>
770 <div class="doc_text">
771 <pre>
772 void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint, uint, { }* )
773 </pre>
775 <p>This intrinsic is used to provide correspondence between the source file and
776 the generated code. The first argument is the line number (base 1), second
777 argument is the column number (0 if unknown) and the third argument the source
778 <tt>%<a href="#format_compile_units">llvm.dbg.compile_unit</a>*</tt> cast to a
779 <tt>{ }*</tt>. Code following a call to this intrinsic will have been defined
780 in close proximity of the line, column and file. This information holds until
781 the next call to <tt>%<a
782 href="#format_common_stoppoint">lvm.dbg.stoppoint</a></tt>.</p>
784 </div>
786 <!-- ======================================================================= -->
787 <div class="doc_subsubsection">
788 <a name="format_common_func_start">llvm.dbg.func.start</a>
789 </div>
791 <div class="doc_text">
792 <pre>
793 void %<a href="#format_common_func_start">llvm.dbg.func.start</a>( { }* )
794 </pre>
796 <p>This intrinsic is used to link the debug information in <tt>%<a
797 href="#format_subprograms">llvm.dbg.subprogram</a></tt> to the function. It
798 defines the beginning of the function's declarative region (scope). It also
799 implies a call to %<tt><a
800 href="#format_common_stoppoint">llvm.dbg.stoppoint</a></tt> which defines a
801 source line "stop point". The intrinsic should be called early in the function
802 after the all the alloca instructions. It should be paired off with a closing
803 <tt>%<a
804 href="#format_common_region_end">llvm.dbg.region.end</a></tt>. The function's
805 single argument is the <tt>%<a
806 href="#format_subprograms">llvm.dbg.subprogram.type</a></tt>.</p>
808 </div>
810 <!-- ======================================================================= -->
811 <div class="doc_subsubsection">
812 <a name="format_common_region_start">llvm.dbg.region.start</a>
813 </div>
815 <div class="doc_text">
816 <pre>
817 void %<a href="#format_common_region_start">llvm.dbg.region.start</a>( { }* )
818 </pre>
820 <p>This intrinsic is used to define the beginning of a declarative scope (ex.
821 block) for local language elements. It should be paired off with a closing
822 <tt>%<a href="#format_common_region_end">llvm.dbg.region.end</a></tt>. The
823 function's single argument is the <tt>%<a
824 href="#format_blocks">llvm.dbg.block</a></tt> which is starting.</p>
827 </div>
829 <!-- ======================================================================= -->
830 <div class="doc_subsubsection">
831 <a name="format_common_region_end">llvm.dbg.region.end</a>
832 </div>
834 <div class="doc_text">
835 <pre>
836 void %<a href="#format_common_region_end">llvm.dbg.region.end</a>( { }* )
837 </pre>
839 <p>This intrinsic is used to define the end of a declarative scope (ex. block)
840 for local language elements. It should be paired off with an opening <tt>%<a
841 href="#format_common_region_start">llvm.dbg.region.start</a></tt> or <tt>%<a
842 href="#format_common_func_start">llvm.dbg.func.start</a></tt>. The function's
843 single argument is either the <tt>%<a
844 href="#format_blocks">llvm.dbg.block</a></tt> or the <tt>%<a
845 href="#format_subprograms">llvm.dbg.subprogram.type</a></tt> which is
846 ending.</p>
848 </div>
850 <!-- ======================================================================= -->
851 <div class="doc_subsubsection">
852 <a name="format_common_declare">llvm.dbg.declare</a>
853 </div>
855 <div class="doc_text">
856 <pre>
857 void %<a href="#format_common_declare">llvm.dbg.declare</a>( { } *, { }* )
858 </pre>
860 <p>This intrinsic provides information about a local element (ex. variable.) The
861 first argument is the alloca for the variable, cast to a <tt>{ }*</tt>. The
862 second argument is the <tt>%<a
863 href="#format_variables">llvm.dbg.variable</a></tt> containing the description
864 of the variable, also cast to a <tt>{ }*</tt>.</p>
866 </div>
868 <!-- ======================================================================= -->
869 <div class="doc_subsection">
870 <a name="format_common_stoppoints">
871 Representing stopping points in the source program
872 </a>
873 </div>
875 <div class="doc_text">
877 <p>LLVM debugger "stop points" are a key part of the debugging representation
878 that allows the LLVM to maintain simple semantics for <a
879 href="#debugopt">debugging optimized code</a>. The basic idea is that the
880 front-end inserts calls to the <a
881 href="#format_common_stoppoint">%<tt>llvm.dbg.stoppoint</tt></a> intrinsic
882 function at every point in the program where a debugger should be able to
883 inspect the program (these correspond to places a debugger stops when you
884 "<tt>step</tt>" through it). The front-end can choose to place these as
885 fine-grained as it would like (for example, before every subexpression
886 evaluated), but it is recommended to only put them after every source statement
887 that includes executable code.</p>
889 <p>Using calls to this intrinsic function to demark legal points for the
890 debugger to inspect the program automatically disables any optimizations that
891 could potentially confuse debugging information. To non-debug-information-aware
892 transformations, these calls simply look like calls to an external function,
893 which they must assume to do anything (including reading or writing to any part
894 of reachable memory). On the other hand, it does not impact many optimizations,
895 such as code motion of non-trapping instructions, nor does it impact
896 optimization of subexpressions, code duplication transformations, or basic-block
897 reordering transformations.</p>
899 </div>
902 <!-- ======================================================================= -->
903 <div class="doc_subsection">
904 <a name="format_common_lifetime">Object lifetimes and scoping</a>
905 </div>
907 <div class="doc_text">
908 <p>In many languages, the local variables in functions can have their lifetime
909 or scope limited to a subset of a function. In the C family of languages, for
910 example, variables are only live (readable and writable) within the source block
911 that they are defined in. In functional languages, values are only readable
912 after they have been defined. Though this is a very obvious concept, it is also
913 non-trivial to model in LLVM, because it has no notion of scoping in this sense,
914 and does not want to be tied to a language's scoping rules.</p>
916 <p>In order to handle this, the LLVM debug format uses the notion of "regions"
917 of a function, delineated by calls to intrinsic functions. These intrinsic
918 functions define new regions of the program and indicate when the region
919 lifetime expires. Consider the following C fragment, for example:</p>
921 <pre>
922 1. void foo() {
923 2. int X = ...;
924 3. int Y = ...;
925 4. {
926 5. int Z = ...;
927 6. ...
928 7. }
929 8. ...
930 9. }
931 </pre>
933 <p>Compiled to LLVM, this function would be represented like this:</p>
935 <pre>
936 void %foo() {
937 entry:
938 %X = alloca int
939 %Y = alloca int
940 %Z = alloca int
944 call void %<a href="#format_common_func_start">llvm.dbg.func.start</a>( %<a href="#format_subprograms">llvm.dbg.subprogram.type</a>* %llvm.dbg.subprogram )
946 call void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint 2, uint 2, %<a href="#format_compile_units">llvm.dbg.compile_unit</a>* %llvm.dbg.compile_unit )
948 call void %<a href="#format_common_declare">llvm.dbg.declare</a>({}* %X, ...)
949 call void %<a href="#format_common_declare">llvm.dbg.declare</a>({}* %Y, ...)
951 <i>;; Evaluate expression on line 2, assigning to X.</i>
953 call void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint 3, uint 2, %<a href="#format_compile_units">llvm.dbg.compile_unit</a>* %llvm.dbg.compile_unit )
955 <i>;; Evaluate expression on line 3, assigning to Y.</i>
957 call void %<a href="#format_common_stoppoint">llvm.region.start</a>()
958 call void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint 5, uint 4, %<a href="#format_compile_units">llvm.dbg.compile_unit</a>* %llvm.dbg.compile_unit )
959 call void %<a href="#format_common_declare">llvm.dbg.declare</a>({}* %X, ...)
961 <i>;; Evaluate expression on line 5, assigning to Z.</i>
963 call void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint 7, uint 2, %<a href="#format_compile_units">llvm.dbg.compile_unit</a>* %llvm.dbg.compile_unit )
964 call void %<a href="#format_common_region_end">llvm.region.end</a>()
966 call void %<a href="#format_common_stoppoint">llvm.dbg.stoppoint</a>( uint 9, uint 2, %<a href="#format_compile_units">llvm.dbg.compile_unit</a>* %llvm.dbg.compile_unit )
968 call void %<a href="#format_common_region_end">llvm.region.end</a>()
970 ret void
972 </pre>
974 <p>This example illustrates a few important details about the LLVM debugging
975 information. In particular, it shows how the various intrinsics are applied
976 together to allow a debugger to analyze the relationship between statements,
977 variable definitions, and the code used to implement the function.</p>
979 <p>The first intrinsic <tt>%<a
980 href="#format_common_func_start">llvm.dbg.func.start</a></tt> provides
981 a link with the <a href="#format_subprograms">subprogram descriptor</a>
982 containing the details of this function. This call also defines the beginning
983 of the function region, bounded by the <tt>%<a
984 href="#format_common_region_end">llvm.region.end</a></tt> at the end of
985 the function. This region is used to bracket the lifetime of variables declared
986 within. For a function, this outer region defines a new stack frame whose
987 lifetime ends when the region is ended.</p>
989 <p>It is possible to define inner regions for short term variables by using the
990 %<a href="#format_common_stoppoint"><tt>llvm.region.start</tt></a> and <a
991 href="#format_common_region_end"><tt>%llvm.region.end</tt></a> to bound a
992 region. The inner region in this example would be for the block containing the
993 declaration of Z.</p>
995 <p>Using regions to represent the boundaries of source-level functions allow
996 LLVM interprocedural optimizations to arbitrarily modify LLVM functions without
997 having to worry about breaking mapping information between the LLVM code and the
998 and source-level program. In particular, the inliner requires no modification
999 to support inlining with debugging information: there is no explicit correlation
1000 drawn between LLVM functions and their source-level counterparts (note however,
1001 that if the inliner inlines all instances of a non-strong-linkage function into
1002 its caller that it will not be possible for the user to manually invoke the
1003 inlined function from a debugger).</p>
1005 <p>Once the function has been defined, the <a
1006 href="#format_common_stoppoint"><tt>stopping point</tt></a> corresponding to
1007 line #2 (column #2) of the function is encountered. At this point in the
1008 function, <b>no</b> local variables are live. As lines 2 and 3 of the example
1009 are executed, their variable definitions are introduced into the program using
1010 %<a href="#format_common_declare"><tt>llvm.dbg.declare</tt></a>, without the
1011 need to specify a new region. These variables do not require new regions to be
1012 introduced because they go out of scope at the same point in the program: line
1013 9.</p>
1015 <p>In contrast, the <tt>Z</tt> variable goes out of scope at a different time,
1016 on line 7. For this reason, it is defined within the inner region, which kills
1017 the availability of <tt>Z</tt> before the code for line 8 is executed. In this
1018 way, regions can support arbitrary source-language scoping rules, as long as
1019 they can only be nested (ie, one scope cannot partially overlap with a part of
1020 another scope).</p>
1022 <p>It is worth noting that this scoping mechanism is used to control scoping of
1023 all declarations, not just variable declarations. For example, the scope of a
1024 C++ using declaration is controlled with this and could change how name lookup is
1025 performed.</p>
1027 </div>
1031 <!-- *********************************************************************** -->
1032 <div class="doc_section">
1033 <a name="ccxx_frontend">C/C++ front-end specific debug information</a>
1034 </div>
1035 <!-- *********************************************************************** -->
1037 <div class="doc_text">
1039 <p>The C and C++ front-ends represent information about the program in a format
1040 that is effectively identical to <a
1041 href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3.0</a> in terms of
1042 information content. This allows code generators to trivially support native
1043 debuggers by generating standard dwarf information, and contains enough
1044 information for non-dwarf targets to translate it as needed.</p>
1046 <p>This section describes the forms used to represent C and C++ programs. Other
1047 languages could pattern themselves after this (which itself is tuned to
1048 representing programs in the same way that Dwarf 3 does), or they could choose
1049 to provide completely different forms if they don't fit into the Dwarf model.
1050 As support for debugging information gets added to the various LLVM
1051 source-language front-ends, the information used should be documented here.</p>
1053 <p>The following sections provide examples of various C/C++ constructs and the
1054 debug information that would best describe those constructs.</p>
1056 </div>
1058 <!-- ======================================================================= -->
1059 <div class="doc_subsection">
1060 <a name="ccxx_compile_units">C/C++ source file information</a>
1061 </div>
1063 <div class="doc_text">
1065 <p>Given the source files "MySource.cpp" and "MyHeader.h" located in the
1066 directory "/Users/mine/sources", the following code:</p>
1068 <pre>
1069 #include "MyHeader.h"
1071 int main(int argc, char *argv[]) {
1072 return 0;
1074 </pre>
1076 <p>a C/C++ front-end would generate the following descriptors:</p>
1078 <pre>
1081 ;; Define types used. In this case we need one for compile unit anchors and one
1082 ;; for compile units.
1084 %<a href="#format_anchors">llvm.dbg.anchor.type</a> = type { uint, uint }
1085 %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> = type { uint, { }*, uint, uint, i8*, i8*, i8* }
1088 ;; Define the anchor for compile units. Note that the second field of the
1089 ;; anchor is 17, which is the same as the tag for compile units
1090 ;; (17 = DW_TAG_compile_unit.)
1092 %<a href="#format_compile_units">llvm.dbg.compile_units</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 17 }, section "llvm.metadata"
1095 ;; Define the compile unit for the source file "/Users/mine/sources/MySource.cpp".
1097 %<a href="#format_compile_units">llvm.dbg.compile_unit1</a> = internal constant %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> {
1098 uint add(uint 17, uint 262144),
1099 { }* cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_units</a> to { }*),
1100 uint 1,
1101 uint 1,
1102 i8* getelementptr ([13 x i8]* %str1, i32 0, i32 0),
1103 i8* getelementptr ([21 x i8]* %str2, i32 0, i32 0),
1104 i8* getelementptr ([33 x i8]* %str3, i32 0, i32 0) }, section "llvm.metadata"
1107 ;; Define the compile unit for the header file "/Users/mine/sources/MyHeader.h".
1109 %<a href="#format_compile_units">llvm.dbg.compile_unit2</a> = internal constant %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> {
1110 uint add(uint 17, uint 262144),
1111 { }* cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_units</a> to { }*),
1112 uint 1,
1113 uint 1,
1114 i8* getelementptr ([11 x i8]* %str4, int 0, int 0),
1115 i8* getelementptr ([21 x i8]* %str2, int 0, int 0),
1116 i8* getelementptr ([33 x i8]* %str3, int 0, int 0) }, section "llvm.metadata"
1119 ;; Define each of the strings used in the compile units.
1121 %str1 = internal constant [13 x i8] c"MySource.cpp\00", section "llvm.metadata";
1122 %str2 = internal constant [21 x i8] c"/Users/mine/sources/\00", section "llvm.metadata";
1123 %str3 = internal constant [33 x i8] c"4.0.1 LLVM (LLVM research group)\00", section "llvm.metadata";
1124 %str4 = internal constant [11 x i8] c"MyHeader.h\00", section "llvm.metadata";
1126 </pre>
1128 </div>
1130 <!-- ======================================================================= -->
1131 <div class="doc_subsection">
1132 <a name="ccxx_global_variable">C/C++ global variable information</a>
1133 </div>
1135 <div class="doc_text">
1137 <p>Given an integer global variable declared as follows:</p>
1139 <pre>
1140 int MyGlobal = 100;
1141 </pre>
1143 <p>a C/C++ front-end would generate the following descriptors:</p>
1145 <pre>
1147 ;; Define types used. One for global variable anchors, one for the global
1148 ;; variable descriptor, one for the global's basic type and one for the global's
1149 ;; compile unit.
1151 %<a href="#format_anchors">llvm.dbg.anchor.type</a> = type { uint, uint }
1152 %<a href="#format_global_variables">llvm.dbg.global_variable.type</a> = type { uint, { }*, { }*, i8*, { }*, uint, { }*, bool, bool, { }*, uint }
1153 %<a href="#format_basic_type">llvm.dbg.basictype.type</a> = type { uint, { }*, i8*, { }*, int, uint, uint, uint, uint }
1154 %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> = ...
1157 ;; Define the global itself.
1159 %MyGlobal = global int 100
1162 ;; Define the anchor for global variables. Note that the second field of the
1163 ;; anchor is 52, which is the same as the tag for global variables
1164 ;; (52 = DW_TAG_variable.)
1166 %<a href="#format_global_variables">llvm.dbg.global_variables</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 52 }, section "llvm.metadata"
1169 ;; Define the global variable descriptor. Note the reference to the global
1170 ;; variable anchor and the global variable itself.
1172 %<a href="#format_global_variables">llvm.dbg.global_variable</a> = internal constant %<a href="#format_global_variables">llvm.dbg.global_variable.type</a> {
1173 uint add(uint 52, uint 262144),
1174 { }* cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_global_variables">llvm.dbg.global_variables</a> to { }*),
1175 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1176 i8* getelementptr ([9 x i8]* %str1, int 0, int 0),
1177 i8* getelementptr ([1 x i8]* %str2, int 0, int 0),
1178 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1179 uint 1,
1180 { }* cast (%<a href="#format_basic_type">llvm.dbg.basictype.type</a>* %<a href="#format_basic_type">llvm.dbg.basictype</a> to { }*),
1181 bool false,
1182 bool true,
1183 { }* cast (int* %MyGlobal to { }*) }, section "llvm.metadata"
1186 ;; Define the basic type of 32 bit signed integer. Note that since int is an
1187 ;; intrinsic type the source file is NULL and line 0.
1189 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1190 uint add(uint 36, uint 262144),
1191 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1192 i8* getelementptr ([4 x i8]* %str3, int 0, int 0),
1193 { }* null,
1194 int 0,
1195 uint 32,
1196 uint 32,
1197 uint 0,
1198 uint 5 }, section "llvm.metadata"
1201 ;; Define the names of the global variable and basic type.
1203 %str1 = internal constant [9 x i8] c"MyGlobal\00", section "llvm.metadata"
1204 %str2 = internal constant [1 x i8] c"\00", section "llvm.metadata"
1205 %str3 = internal constant [4 x i8] c"int\00", section "llvm.metadata"
1206 </pre>
1208 </div>
1210 <!-- ======================================================================= -->
1211 <div class="doc_subsection">
1212 <a name="ccxx_subprogram">C/C++ function information</a>
1213 </div>
1215 <div class="doc_text">
1217 <p>Given a function declared as follows:</p>
1219 <pre>
1220 int main(int argc, char *argv[]) {
1221 return 0;
1223 </pre>
1225 <p>a C/C++ front-end would generate the following descriptors:</p>
1227 <pre>
1229 ;; Define types used. One for subprogram anchors, one for the subprogram
1230 ;; descriptor, one for the global's basic type and one for the subprogram's
1231 ;; compile unit.
1233 %<a href="#format_subprograms">llvm.dbg.subprogram.type</a> = type { uint, { }*, { }*, i8*, { }*, bool, bool }
1234 %<a href="#format_anchors">llvm.dbg.anchor.type</a> = type { uint, uint }
1235 %<a href="#format_compile_units">llvm.dbg.compile_unit.type</a> = ...
1238 ;; Define the anchor for subprograms. Note that the second field of the
1239 ;; anchor is 46, which is the same as the tag for subprograms
1240 ;; (46 = DW_TAG_subprogram.)
1242 %<a href="#format_subprograms">llvm.dbg.subprograms</a> = linkonce constant %<a href="#format_anchors">llvm.dbg.anchor.type</a> { uint 0, uint 46 }, section "llvm.metadata"
1245 ;; Define the descriptor for the subprogram. TODO - more details.
1247 %<a href="#format_subprograms">llvm.dbg.subprogram</a> = internal constant %<a href="#format_subprograms">llvm.dbg.subprogram.type</a> {
1248 uint add(uint 46, uint 262144),
1249 { }* cast (%<a href="#format_anchors">llvm.dbg.anchor.type</a>* %<a href="#format_subprograms">llvm.dbg.subprograms</a> to { }*),
1250 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1251 i8* getelementptr ([5 x i8]* %str1, int 0, int 0),
1252 i8* getelementptr ([1 x i8]* %str2, int 0, int 0),
1253 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1254 uint 1,
1255 { }* null,
1256 bool false,
1257 bool true }, section "llvm.metadata"
1260 ;; Define the name of the subprogram.
1262 %str1 = internal constant [5 x i8] c"main\00", section "llvm.metadata"
1263 %str2 = internal constant [1 x i8] c"\00", section "llvm.metadata"
1266 ;; Define the subprogram itself.
1268 int %main(int %argc, i8** %argv) {
1271 </pre>
1273 </div>
1275 <!-- ======================================================================= -->
1276 <div class="doc_subsection">
1277 <a name="ccxx_basic_types">C/C++ basic types</a>
1278 </div>
1280 <div class="doc_text">
1282 <p>The following are the basic type descriptors for C/C++ core types:</p>
1284 </div>
1286 <!-- ======================================================================= -->
1287 <div class="doc_subsubsection">
1288 <a name="ccxx_basic_type_bool">bool</a>
1289 </div>
1291 <div class="doc_text">
1293 <pre>
1294 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1295 uint add(uint 36, uint 262144),
1296 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1297 i8* getelementptr ([5 x i8]* %str1, int 0, int 0),
1298 { }* null,
1299 int 0,
1300 uint 32,
1301 uint 32,
1302 uint 0,
1303 uint 2 }, section "llvm.metadata"
1304 %str1 = internal constant [5 x i8] c"bool\00", section "llvm.metadata"
1305 </pre>
1307 </div>
1309 <!-- ======================================================================= -->
1310 <div class="doc_subsubsection">
1311 <a name="ccxx_basic_char">char</a>
1312 </div>
1314 <div class="doc_text">
1316 <pre>
1317 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1318 uint add(uint 36, uint 262144),
1319 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1320 i8* getelementptr ([5 x i8]* %str1, int 0, int 0),
1321 { }* null,
1322 int 0,
1323 uint 8,
1324 uint 8,
1325 uint 0,
1326 uint 6 }, section "llvm.metadata"
1327 %str1 = internal constant [5 x i8] c"char\00", section "llvm.metadata"
1328 </pre>
1330 </div>
1332 <!-- ======================================================================= -->
1333 <div class="doc_subsubsection">
1334 <a name="ccxx_basic_unsigned_char">unsigned char</a>
1335 </div>
1337 <div class="doc_text">
1339 <pre>
1340 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1341 uint add(uint 36, uint 262144),
1342 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1343 i8* getelementptr ([14 x i8]* %str1, int 0, int 0),
1344 { }* null,
1345 int 0,
1346 uint 8,
1347 uint 8,
1348 uint 0,
1349 uint 8 }, section "llvm.metadata"
1350 %str1 = internal constant [14 x i8] c"unsigned char\00", section "llvm.metadata"
1351 </pre>
1353 </div>
1355 <!-- ======================================================================= -->
1356 <div class="doc_subsubsection">
1357 <a name="ccxx_basic_short">short</a>
1358 </div>
1360 <div class="doc_text">
1362 <pre>
1363 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1364 uint add(uint 36, uint 262144),
1365 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1366 i8* getelementptr ([10 x i8]* %str1, int 0, int 0),
1367 { }* null,
1368 int 0,
1369 uint 16,
1370 uint 16,
1371 uint 0,
1372 uint 5 }, section "llvm.metadata"
1373 %str1 = internal constant [10 x i8] c"short int\00", section "llvm.metadata"
1374 </pre>
1376 </div>
1378 <!-- ======================================================================= -->
1379 <div class="doc_subsubsection">
1380 <a name="ccxx_basic_unsigned_short">unsigned short</a>
1381 </div>
1383 <div class="doc_text">
1385 <pre>
1386 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1387 uint add(uint 36, uint 262144),
1388 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1389 i8* getelementptr ([19 x i8]* %str1, int 0, int 0),
1390 { }* null,
1391 int 0,
1392 uint 16,
1393 uint 16,
1394 uint 0,
1395 uint 7 }, section "llvm.metadata"
1396 %str1 = internal constant [19 x i8] c"short unsigned int\00", section "llvm.metadata"
1397 </pre>
1399 </div>
1401 <!-- ======================================================================= -->
1402 <div class="doc_subsubsection">
1403 <a name="ccxx_basic_int">int</a>
1404 </div>
1406 <div class="doc_text">
1408 <pre>
1409 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1410 uint add(uint 36, uint 262144),
1411 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1412 i8* getelementptr ([4 x i8]* %str1, int 0, int 0),
1413 { }* null,
1414 int 0,
1415 uint 32,
1416 uint 32,
1417 uint 0,
1418 uint 5 }, section "llvm.metadata"
1419 %str1 = internal constant [4 x i8] c"int\00", section "llvm.metadata"
1420 </pre>
1422 </div>
1424 <!-- ======================================================================= -->
1425 <div class="doc_subsubsection">
1426 <a name="ccxx_basic_unsigned_int">unsigned int</a>
1427 </div>
1429 <div class="doc_text">
1431 <pre>
1432 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1433 uint add(uint 36, uint 262144),
1434 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1435 i8* getelementptr ([13 x i8]* %str1, int 0, int 0),
1436 { }* null,
1437 int 0,
1438 uint 32,
1439 uint 32,
1440 uint 0,
1441 uint 7 }, section "llvm.metadata"
1442 %str1 = internal constant [13 x i8] c"unsigned int\00", section "llvm.metadata"
1443 </pre>
1445 </div>
1447 <!-- ======================================================================= -->
1448 <div class="doc_subsubsection">
1449 <a name="ccxx_basic_long_long">long long</a>
1450 </div>
1452 <div class="doc_text">
1454 <pre>
1455 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1456 uint add(uint 36, uint 262144),
1457 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1458 i8* getelementptr ([14 x i8]* %str1, int 0, int 0),
1459 { }* null,
1460 int 0,
1461 uint 64,
1462 uint 64,
1463 uint 0,
1464 uint 5 }, section "llvm.metadata"
1465 %str1 = internal constant [14 x i8] c"long long int\00", section "llvm.metadata"
1466 </pre>
1468 </div>
1470 <!-- ======================================================================= -->
1471 <div class="doc_subsubsection">
1472 <a name="ccxx_basic_unsigned_long_long">unsigned long long</a>
1473 </div>
1475 <div class="doc_text">
1477 <pre>
1478 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1479 uint add(uint 36, uint 262144),
1480 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1481 i8* getelementptr ([23 x i8]* %str1, int 0, int 0),
1482 { }* null,
1483 int 0,
1484 uint 64,
1485 uint 64,
1486 uint 0,
1487 uint 7 }, section "llvm.metadata"
1488 %str1 = internal constant [23 x 8] c"long long unsigned int\00", section "llvm.metadata"
1489 </pre>
1491 </div>
1493 <!-- ======================================================================= -->
1494 <div class="doc_subsubsection">
1495 <a name="ccxx_basic_float">float</a>
1496 </div>
1498 <div class="doc_text">
1500 <pre>
1501 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1502 uint add(uint 36, uint 262144),
1503 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1504 i8* getelementptr ([6 x i8]* %str1, int 0, int 0),
1505 { }* null,
1506 int 0,
1507 uint 32,
1508 uint 32,
1509 uint 0,
1510 uint 4 }, section "llvm.metadata"
1511 %str1 = internal constant [6 x i8] c"float\00", section "llvm.metadata"
1512 </pre>
1514 </div>
1516 <!-- ======================================================================= -->
1517 <div class="doc_subsubsection">
1518 <a name="ccxx_basic_double">double</a>
1519 </div>
1521 <div class="doc_text">
1523 <pre>
1524 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1525 uint add(uint 36, uint 262144),
1526 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1527 8* getelementptr ([7 x 8]* %str1, int 0, int 0),
1528 { }* null,
1529 int 0,
1530 uint 64,
1531 uint 64,
1532 uint 0,
1533 uint 4 }, section "llvm.metadata"
1534 %str1 = internal constant [7 x 8] c"double\00", section "llvm.metadata"
1535 </pre>
1537 </div>
1539 <!-- ======================================================================= -->
1540 <div class="doc_subsection">
1541 <a name="ccxx_derived_types">C/C++ derived types</a>
1542 </div>
1544 <div class="doc_text">
1546 <p>Given the following as an example of C/C++ derived type:</p>
1548 <pre>
1549 typedef const int *IntPtr;
1550 </pre>
1552 <p>a C/C++ front-end would generate the following descriptors:</p>
1554 <pre>
1556 ;; Define the typedef "IntPtr".
1558 %<a href="#format_derived_type">llvm.dbg.derivedtype1</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1559 uint add(uint 22, uint 262144),
1560 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1561 i8* getelementptr ([7 x 8]* %str1, int 0, int 0),
1562 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1563 int 1,
1564 uint 0,
1565 uint 0,
1566 uint 0,
1567 { }* cast (%<a href="#format_derived_type">llvm.dbg.derivedtype.type</a>* %<a href="#format_derived_type">llvm.dbg.derivedtype2</a> to { }*) }, section "llvm.metadata"
1568 %str1 = internal constant [7 x 8] c"IntPtr\00", section "llvm.metadata"
1571 ;; Define the pointer type.
1573 %<a href="#format_derived_type">llvm.dbg.derivedtype2</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1574 uint add(uint 15, uint 262144),
1575 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1576 i8* null,
1577 { }* null,
1578 int 0,
1579 uint 32,
1580 uint 32,
1581 uint 0,
1582 { }* cast (%<a href="#format_derived_type">llvm.dbg.derivedtype.type</a>* %<a href="#format_derived_type">llvm.dbg.derivedtype3</a> to { }*) }, section "llvm.metadata"
1585 ;; Define the const type.
1587 %<a href="#format_derived_type">llvm.dbg.derivedtype3</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1588 uint add(uint 38, uint 262144),
1589 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1590 i8* null,
1591 { }* null,
1592 int 0,
1593 uint 0,
1594 uint 0,
1595 uint 0,
1596 { }* cast (%<a href="#format_basic_type">llvm.dbg.basictype.type</a>* %<a href="#format_basic_type">llvm.dbg.basictype1</a> to { }*) }, section "llvm.metadata"
1599 ;; Define the int type.
1601 %<a href="#format_basic_type">llvm.dbg.basictype1</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1602 uint add(uint 36, uint 262144),
1603 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1604 8* getelementptr ([4 x 8]* %str2, int 0, int 0),
1605 { }* null,
1606 int 0,
1607 uint 32,
1608 uint 32,
1609 uint 0,
1610 uint 5 }, section "llvm.metadata"
1611 %str2 = internal constant [4 x 8] c"int\00", section "llvm.metadata"
1612 </pre>
1614 </div>
1616 <!-- ======================================================================= -->
1617 <div class="doc_subsection">
1618 <a name="ccxx_composite_types">C/C++ struct/union types</a>
1619 </div>
1621 <div class="doc_text">
1623 <p>Given the following as an example of C/C++ struct type:</p>
1625 <pre>
1626 struct Color {
1627 unsigned Red;
1628 unsigned Green;
1629 unsigned Blue;
1631 </pre>
1633 <p>a C/C++ front-end would generate the following descriptors:</p>
1635 <pre>
1637 ;; Define basic type for unsigned int.
1639 %<a href="#format_basic_type">llvm.dbg.basictype</a> = internal constant %<a href="#format_basic_type">llvm.dbg.basictype.type</a> {
1640 uint add(uint 36, uint 262144),
1641 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1642 i8* getelementptr ([13 x i8]* %str1, int 0, int 0),
1643 { }* null,
1644 int 0,
1645 uint 32,
1646 uint 32,
1647 uint 0,
1648 uint 7 }, section "llvm.metadata"
1649 %str1 = internal constant [13 x i8] c"unsigned int\00", section "llvm.metadata"
1652 ;; Define composite type for struct Color.
1654 %<a href="#format_composite_type">llvm.dbg.compositetype</a> = internal constant %<a href="#format_composite_type">llvm.dbg.compositetype.type</a> {
1655 uint add(uint 19, uint 262144),
1656 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1657 i8* getelementptr ([6 x i8]* %str2, int 0, int 0),
1658 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1659 int 1,
1660 uint 96,
1661 uint 32,
1662 uint 0,
1663 { }* null,
1664 { }* cast ([3 x { }*]* %llvm.dbg.array to { }*) }, section "llvm.metadata"
1665 %str2 = internal constant [6 x i8] c"Color\00", section "llvm.metadata"
1668 ;; Define the Red field.
1670 %<a href="#format_derived_type">llvm.dbg.derivedtype1</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1671 uint add(uint 13, uint 262144),
1672 { }* null,
1673 i8* getelementptr ([4 x i8]* %str3, int 0, int 0),
1674 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1675 int 2,
1676 uint 32,
1677 uint 32,
1678 uint 0,
1679 { }* cast (%<a href="#format_basic_type">llvm.dbg.basictype.type</a>* %<a href="#format_basic_type">llvm.dbg.basictype</a> to { }*) }, section "llvm.metadata"
1680 %str3 = internal constant [4 x i8] c"Red\00", section "llvm.metadata"
1683 ;; Define the Green field.
1685 %<a href="#format_derived_type">llvm.dbg.derivedtype2</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1686 uint add(uint 13, uint 262144),
1687 { }* null,
1688 i8* getelementptr ([6 x i8]* %str4, int 0, int 0),
1689 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1690 int 3,
1691 uint 32,
1692 uint 32,
1693 uint 32,
1694 { }* cast (%<a href="#format_basic_type">llvm.dbg.basictype.type</a>* %<a href="#format_basic_type">llvm.dbg.basictype</a> to { }*) }, section "llvm.metadata"
1695 %str4 = internal constant [6 x i8] c"Green\00", section "llvm.metadata"
1698 ;; Define the Blue field.
1700 %<a href="#format_derived_type">llvm.dbg.derivedtype3</a> = internal constant %<a href="#format_derived_type">llvm.dbg.derivedtype.type</a> {
1701 uint add(uint 13, uint 262144),
1702 { }* null,
1703 i8* getelementptr ([5 x i8]* %str5, int 0, int 0),
1704 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1705 int 4,
1706 uint 32,
1707 uint 32,
1708 uint 64,
1709 { }* cast (%<a href="#format_basic_type">llvm.dbg.basictype.type</a>* %<a href="#format_basic_type">llvm.dbg.basictype</a> to { }*) }, section "llvm.metadata"
1710 %str5 = internal constant [5 x 8] c"Blue\00", section "llvm.metadata"
1713 ;; Define the array of fields used by the composite type Color.
1715 %llvm.dbg.array = internal constant [3 x { }*] [
1716 { }* cast (%<a href="#format_derived_type">llvm.dbg.derivedtype.type</a>* %<a href="#format_derived_type">llvm.dbg.derivedtype1</a> to { }*),
1717 { }* cast (%<a href="#format_derived_type">llvm.dbg.derivedtype.type</a>* %<a href="#format_derived_type">llvm.dbg.derivedtype2</a> to { }*),
1718 { }* cast (%<a href="#format_derived_type">llvm.dbg.derivedtype.type</a>* %<a href="#format_derived_type">llvm.dbg.derivedtype3</a> to { }*) ], section "llvm.metadata"
1719 </pre>
1721 </div>
1723 <!-- ======================================================================= -->
1724 <div class="doc_subsection">
1725 <a name="ccxx_enumeration_types">C/C++ enumeration types</a>
1726 </div>
1728 <div class="doc_text">
1730 <p>Given the following as an example of C/C++ enumeration type:</p>
1732 <pre>
1733 enum Trees {
1734 Spruce = 100,
1735 Oak = 200,
1736 Maple = 300
1738 </pre>
1740 <p>a C/C++ front-end would generate the following descriptors:</p>
1742 <pre>
1744 ;; Define composite type for enum Trees
1746 %<a href="#format_composite_type">llvm.dbg.compositetype</a> = internal constant %<a href="#format_composite_type">llvm.dbg.compositetype.type</a> {
1747 uint add(uint 4, uint 262144),
1748 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1749 i8* getelementptr ([6 x i8]* %str1, int 0, int 0),
1750 { }* cast (%<a href="#format_compile_units">llvm.dbg.compile_unit.type</a>* %<a href="#format_compile_units">llvm.dbg.compile_unit</a> to { }*),
1751 int 1,
1752 uint 32,
1753 uint 32,
1754 uint 0,
1755 { }* null,
1756 { }* cast ([3 x { }*]* %llvm.dbg.array to { }*) }, section "llvm.metadata"
1757 %str1 = internal constant [6 x i8] c"Trees\00", section "llvm.metadata"
1760 ;; Define Spruce enumerator.
1762 %<a href="#format_enumeration">llvm.dbg.enumerator1</a> = internal constant %<a href="#format_enumeration">llvm.dbg.enumerator.type</a> {
1763 uint add(uint 40, uint 262144),
1764 i8* getelementptr ([7 x i8]* %str2, int 0, int 0),
1765 int 100 }, section "llvm.metadata"
1766 %str2 = internal constant [7 x i8] c"Spruce\00", section "llvm.metadata"
1769 ;; Define Oak enumerator.
1771 %<a href="#format_enumeration">llvm.dbg.enumerator2</a> = internal constant %<a href="#format_enumeration">llvm.dbg.enumerator.type</a> {
1772 uint add(uint 40, uint 262144),
1773 i8* getelementptr ([4 x i8]* %str3, int 0, int 0),
1774 int 200 }, section "llvm.metadata"
1775 %str3 = internal constant [4 x i8] c"Oak\00", section "llvm.metadata"
1778 ;; Define Maple enumerator.
1780 %<a href="#format_enumeration">llvm.dbg.enumerator3</a> = internal constant %<a href="#format_enumeration">llvm.dbg.enumerator.type</a> {
1781 uint add(uint 40, uint 262144),
1782 i8* getelementptr ([6 x i8]* %str4, int 0, int 0),
1783 int 300 }, section "llvm.metadata"
1784 %str4 = internal constant [6 x i8] c"Maple\00", section "llvm.metadata"
1787 ;; Define the array of enumerators used by composite type Trees.
1789 %llvm.dbg.array = internal constant [3 x { }*] [
1790 { }* cast (%<a href="#format_enumeration">llvm.dbg.enumerator.type</a>* %<a href="#format_enumeration">llvm.dbg.enumerator1</a> to { }*),
1791 { }* cast (%<a href="#format_enumeration">llvm.dbg.enumerator.type</a>* %<a href="#format_enumeration">llvm.dbg.enumerator2</a> to { }*),
1792 { }* cast (%<a href="#format_enumeration">llvm.dbg.enumerator.type</a>* %<a href="#format_enumeration">llvm.dbg.enumerator3</a> to { }*) ], section "llvm.metadata"
1793 </pre>
1795 </div>
1797 <!-- *********************************************************************** -->
1799 <hr>
1800 <address>
1801 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1802 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1803 <a href="http://validator.w3.org/check/referer"><img
1804 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1806 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1807 <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
1808 Last modified: $Date$
1809 </address>
1811 </body>
1812 </html>