1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/PredIteratorCache.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Target/TargetData.h"
31 STATISTIC(NumCacheNonLocal
, "Number of fully cached non-local responses");
32 STATISTIC(NumCacheDirtyNonLocal
, "Number of dirty cached non-local responses");
33 STATISTIC(NumUncacheNonLocal
, "Number of uncached non-local responses");
35 STATISTIC(NumCacheNonLocalPtr
,
36 "Number of fully cached non-local ptr responses");
37 STATISTIC(NumCacheDirtyNonLocalPtr
,
38 "Number of cached, but dirty, non-local ptr responses");
39 STATISTIC(NumUncacheNonLocalPtr
,
40 "Number of uncached non-local ptr responses");
41 STATISTIC(NumCacheCompleteNonLocalPtr
,
42 "Number of block queries that were completely cached");
44 char MemoryDependenceAnalysis::ID
= 0;
46 // Register this pass...
47 static RegisterPass
<MemoryDependenceAnalysis
> X("memdep",
48 "Memory Dependence Analysis", false, true);
50 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
51 : FunctionPass(&ID
), PredCache(0) {
53 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
56 /// Clean up memory in between runs
57 void MemoryDependenceAnalysis::releaseMemory() {
60 NonLocalPointerDeps
.clear();
61 ReverseLocalDeps
.clear();
62 ReverseNonLocalDeps
.clear();
63 ReverseNonLocalPtrDeps
.clear();
69 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
71 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
73 AU
.addRequiredTransitive
<AliasAnalysis
>();
74 AU
.addRequiredTransitive
<TargetData
>();
77 bool MemoryDependenceAnalysis::runOnFunction(Function
&) {
78 AA
= &getAnalysis
<AliasAnalysis
>();
79 TD
= &getAnalysis
<TargetData
>();
81 PredCache
.reset(new PredIteratorCache());
85 /// RemoveFromReverseMap - This is a helper function that removes Val from
86 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
87 template <typename KeyTy
>
88 static void RemoveFromReverseMap(DenseMap
<Instruction
*,
89 SmallPtrSet
<KeyTy
, 4> > &ReverseMap
,
90 Instruction
*Inst
, KeyTy Val
) {
91 typename DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4> >::iterator
92 InstIt
= ReverseMap
.find(Inst
);
93 assert(InstIt
!= ReverseMap
.end() && "Reverse map out of sync?");
94 bool Found
= InstIt
->second
.erase(Val
);
95 assert(Found
&& "Invalid reverse map!"); Found
=Found
;
96 if (InstIt
->second
.empty())
97 ReverseMap
.erase(InstIt
);
101 /// getCallSiteDependencyFrom - Private helper for finding the local
102 /// dependencies of a call site.
103 MemDepResult
MemoryDependenceAnalysis::
104 getCallSiteDependencyFrom(CallSite CS
, bool isReadOnlyCall
,
105 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
106 // Walk backwards through the block, looking for dependencies
107 while (ScanIt
!= BB
->begin()) {
108 Instruction
*Inst
= --ScanIt
;
110 // If this inst is a memory op, get the pointer it accessed
112 uint64_t PointerSize
= 0;
113 if (StoreInst
*S
= dyn_cast
<StoreInst
>(Inst
)) {
114 Pointer
= S
->getPointerOperand();
115 PointerSize
= TD
->getTypeStoreSize(S
->getOperand(0)->getType());
116 } else if (VAArgInst
*V
= dyn_cast
<VAArgInst
>(Inst
)) {
117 Pointer
= V
->getOperand(0);
118 PointerSize
= TD
->getTypeStoreSize(V
->getType());
119 } else if (FreeInst
*F
= dyn_cast
<FreeInst
>(Inst
)) {
120 Pointer
= F
->getPointerOperand();
122 // FreeInsts erase the entire structure
124 } else if (isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) {
125 // Debug intrinsics don't cause dependences.
126 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
127 CallSite InstCS
= CallSite::get(Inst
);
128 // If these two calls do not interfere, look past it.
129 switch (AA
->getModRefInfo(CS
, InstCS
)) {
130 case AliasAnalysis::NoModRef
:
131 // If the two calls don't interact (e.g. InstCS is readnone) keep
134 case AliasAnalysis::Ref
:
135 // If the two calls read the same memory locations and CS is a readonly
136 // function, then we have two cases: 1) the calls may not interfere with
137 // each other at all. 2) the calls may produce the same value. In case
138 // #1 we want to ignore the values, in case #2, we want to return Inst
139 // as a Def dependence. This allows us to CSE in cases like:
142 // Y = strlen(P); // Y = X
143 if (isReadOnlyCall
) {
144 if (CS
.getCalledFunction() != 0 &&
145 CS
.getCalledFunction() == InstCS
.getCalledFunction())
146 return MemDepResult::getDef(Inst
);
147 // Ignore unrelated read/read call dependences.
152 return MemDepResult::getClobber(Inst
);
155 // Non-memory instruction.
159 if (AA
->getModRefInfo(CS
, Pointer
, PointerSize
) != AliasAnalysis::NoModRef
)
160 return MemDepResult::getClobber(Inst
);
163 // No dependence found. If this is the entry block of the function, it is a
164 // clobber, otherwise it is non-local.
165 if (BB
!= &BB
->getParent()->getEntryBlock())
166 return MemDepResult::getNonLocal();
167 return MemDepResult::getClobber(ScanIt
);
170 /// getPointerDependencyFrom - Return the instruction on which a memory
171 /// location depends. If isLoad is true, this routine ignore may-aliases with
172 /// read-only operations.
173 MemDepResult
MemoryDependenceAnalysis::
174 getPointerDependencyFrom(Value
*MemPtr
, uint64_t MemSize
, bool isLoad
,
175 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
177 // Walk backwards through the basic block, looking for dependencies.
178 while (ScanIt
!= BB
->begin()) {
179 Instruction
*Inst
= --ScanIt
;
181 // Debug intrinsics don't cause dependences.
182 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
184 // Values depend on loads if the pointers are must aliased. This means that
185 // a load depends on another must aliased load from the same value.
186 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
187 Value
*Pointer
= LI
->getPointerOperand();
188 uint64_t PointerSize
= TD
->getTypeStoreSize(LI
->getType());
190 // If we found a pointer, check if it could be the same as our pointer.
191 AliasAnalysis::AliasResult R
=
192 AA
->alias(Pointer
, PointerSize
, MemPtr
, MemSize
);
193 if (R
== AliasAnalysis::NoAlias
)
196 // May-alias loads don't depend on each other without a dependence.
197 if (isLoad
&& R
== AliasAnalysis::MayAlias
)
199 // Stores depend on may and must aliased loads, loads depend on must-alias
201 return MemDepResult::getDef(Inst
);
204 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
205 Value
*Pointer
= SI
->getPointerOperand();
206 uint64_t PointerSize
= TD
->getTypeStoreSize(SI
->getOperand(0)->getType());
208 // If we found a pointer, check if it could be the same as our pointer.
209 AliasAnalysis::AliasResult R
=
210 AA
->alias(Pointer
, PointerSize
, MemPtr
, MemSize
);
212 if (R
== AliasAnalysis::NoAlias
)
214 if (R
== AliasAnalysis::MayAlias
)
215 return MemDepResult::getClobber(Inst
);
216 return MemDepResult::getDef(Inst
);
219 // If this is an allocation, and if we know that the accessed pointer is to
220 // the allocation, return Def. This means that there is no dependence and
221 // the access can be optimized based on that. For example, a load could
223 if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(Inst
)) {
224 Value
*AccessPtr
= MemPtr
->getUnderlyingObject();
226 if (AccessPtr
== AI
||
227 AA
->alias(AI
, 1, AccessPtr
, 1) == AliasAnalysis::MustAlias
)
228 return MemDepResult::getDef(AI
);
232 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
233 switch (AA
->getModRefInfo(Inst
, MemPtr
, MemSize
)) {
234 case AliasAnalysis::NoModRef
:
235 // If the call has no effect on the queried pointer, just ignore it.
237 case AliasAnalysis::Ref
:
238 // If the call is known to never store to the pointer, and if this is a
239 // load query, we can safely ignore it (scan past it).
244 // Otherwise, there is a potential dependence. Return a clobber.
245 return MemDepResult::getClobber(Inst
);
249 // No dependence found. If this is the entry block of the function, it is a
250 // clobber, otherwise it is non-local.
251 if (BB
!= &BB
->getParent()->getEntryBlock())
252 return MemDepResult::getNonLocal();
253 return MemDepResult::getClobber(ScanIt
);
256 /// getDependency - Return the instruction on which a memory operation
258 MemDepResult
MemoryDependenceAnalysis::getDependency(Instruction
*QueryInst
) {
259 Instruction
*ScanPos
= QueryInst
;
261 // Check for a cached result
262 MemDepResult
&LocalCache
= LocalDeps
[QueryInst
];
264 // If the cached entry is non-dirty, just return it. Note that this depends
265 // on MemDepResult's default constructing to 'dirty'.
266 if (!LocalCache
.isDirty())
269 // Otherwise, if we have a dirty entry, we know we can start the scan at that
270 // instruction, which may save us some work.
271 if (Instruction
*Inst
= LocalCache
.getInst()) {
274 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, QueryInst
);
277 BasicBlock
*QueryParent
= QueryInst
->getParent();
280 uint64_t MemSize
= 0;
283 if (BasicBlock::iterator(QueryInst
) == QueryParent
->begin()) {
284 // No dependence found. If this is the entry block of the function, it is a
285 // clobber, otherwise it is non-local.
286 if (QueryParent
!= &QueryParent
->getParent()->getEntryBlock())
287 LocalCache
= MemDepResult::getNonLocal();
289 LocalCache
= MemDepResult::getClobber(QueryInst
);
290 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(QueryInst
)) {
291 // If this is a volatile store, don't mess around with it. Just return the
292 // previous instruction as a clobber.
293 if (SI
->isVolatile())
294 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
296 MemPtr
= SI
->getPointerOperand();
297 MemSize
= TD
->getTypeStoreSize(SI
->getOperand(0)->getType());
299 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(QueryInst
)) {
300 // If this is a volatile load, don't mess around with it. Just return the
301 // previous instruction as a clobber.
302 if (LI
->isVolatile())
303 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
305 MemPtr
= LI
->getPointerOperand();
306 MemSize
= TD
->getTypeStoreSize(LI
->getType());
308 } else if (isa
<CallInst
>(QueryInst
) || isa
<InvokeInst
>(QueryInst
)) {
309 CallSite QueryCS
= CallSite::get(QueryInst
);
310 bool isReadOnly
= AA
->onlyReadsMemory(QueryCS
);
311 LocalCache
= getCallSiteDependencyFrom(QueryCS
, isReadOnly
, ScanPos
,
313 } else if (FreeInst
*FI
= dyn_cast
<FreeInst
>(QueryInst
)) {
314 MemPtr
= FI
->getPointerOperand();
315 // FreeInsts erase the entire structure, not just a field.
318 // Non-memory instruction.
319 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
322 // If we need to do a pointer scan, make it happen.
324 LocalCache
= getPointerDependencyFrom(MemPtr
, MemSize
,
325 isa
<LoadInst
>(QueryInst
),
326 ScanPos
, QueryParent
);
328 // Remember the result!
329 if (Instruction
*I
= LocalCache
.getInst())
330 ReverseLocalDeps
[I
].insert(QueryInst
);
336 /// AssertSorted - This method is used when -debug is specified to verify that
337 /// cache arrays are properly kept sorted.
338 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
340 if (Count
== -1) Count
= Cache
.size();
341 if (Count
== 0) return;
343 for (unsigned i
= 1; i
!= unsigned(Count
); ++i
)
344 assert(Cache
[i
-1] <= Cache
[i
] && "Cache isn't sorted!");
348 /// getNonLocalCallDependency - Perform a full dependency query for the
349 /// specified call, returning the set of blocks that the value is
350 /// potentially live across. The returned set of results will include a
351 /// "NonLocal" result for all blocks where the value is live across.
353 /// This method assumes the instruction returns a "NonLocal" dependency
354 /// within its own block.
356 /// This returns a reference to an internal data structure that may be
357 /// invalidated on the next non-local query or when an instruction is
358 /// removed. Clients must copy this data if they want it around longer than
360 const MemoryDependenceAnalysis::NonLocalDepInfo
&
361 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS
) {
362 assert(getDependency(QueryCS
.getInstruction()).isNonLocal() &&
363 "getNonLocalCallDependency should only be used on calls with non-local deps!");
364 PerInstNLInfo
&CacheP
= NonLocalDeps
[QueryCS
.getInstruction()];
365 NonLocalDepInfo
&Cache
= CacheP
.first
;
367 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
368 /// the cached case, this can happen due to instructions being deleted etc. In
369 /// the uncached case, this starts out as the set of predecessors we care
371 SmallVector
<BasicBlock
*, 32> DirtyBlocks
;
373 if (!Cache
.empty()) {
374 // Okay, we have a cache entry. If we know it is not dirty, just return it
375 // with no computation.
376 if (!CacheP
.second
) {
381 // If we already have a partially computed set of results, scan them to
382 // determine what is dirty, seeding our initial DirtyBlocks worklist.
383 for (NonLocalDepInfo::iterator I
= Cache
.begin(), E
= Cache
.end();
385 if (I
->second
.isDirty())
386 DirtyBlocks
.push_back(I
->first
);
388 // Sort the cache so that we can do fast binary search lookups below.
389 std::sort(Cache
.begin(), Cache
.end());
391 ++NumCacheDirtyNonLocal
;
392 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
393 // << Cache.size() << " cached: " << *QueryInst;
395 // Seed DirtyBlocks with each of the preds of QueryInst's block.
396 BasicBlock
*QueryBB
= QueryCS
.getInstruction()->getParent();
397 for (BasicBlock
**PI
= PredCache
->GetPreds(QueryBB
); *PI
; ++PI
)
398 DirtyBlocks
.push_back(*PI
);
399 NumUncacheNonLocal
++;
402 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
403 bool isReadonlyCall
= AA
->onlyReadsMemory(QueryCS
);
405 SmallPtrSet
<BasicBlock
*, 64> Visited
;
407 unsigned NumSortedEntries
= Cache
.size();
408 DEBUG(AssertSorted(Cache
));
410 // Iterate while we still have blocks to update.
411 while (!DirtyBlocks
.empty()) {
412 BasicBlock
*DirtyBB
= DirtyBlocks
.back();
413 DirtyBlocks
.pop_back();
415 // Already processed this block?
416 if (!Visited
.insert(DirtyBB
))
419 // Do a binary search to see if we already have an entry for this block in
420 // the cache set. If so, find it.
421 DEBUG(AssertSorted(Cache
, NumSortedEntries
));
422 NonLocalDepInfo::iterator Entry
=
423 std::upper_bound(Cache
.begin(), Cache
.begin()+NumSortedEntries
,
424 std::make_pair(DirtyBB
, MemDepResult()));
425 if (Entry
!= Cache
.begin() && prior(Entry
)->first
== DirtyBB
)
428 MemDepResult
*ExistingResult
= 0;
429 if (Entry
!= Cache
.begin()+NumSortedEntries
&&
430 Entry
->first
== DirtyBB
) {
431 // If we already have an entry, and if it isn't already dirty, the block
433 if (!Entry
->second
.isDirty())
436 // Otherwise, remember this slot so we can update the value.
437 ExistingResult
= &Entry
->second
;
440 // If the dirty entry has a pointer, start scanning from it so we don't have
441 // to rescan the entire block.
442 BasicBlock::iterator ScanPos
= DirtyBB
->end();
443 if (ExistingResult
) {
444 if (Instruction
*Inst
= ExistingResult
->getInst()) {
446 // We're removing QueryInst's use of Inst.
447 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
,
448 QueryCS
.getInstruction());
452 // Find out if this block has a local dependency for QueryInst.
455 if (ScanPos
!= DirtyBB
->begin()) {
456 Dep
= getCallSiteDependencyFrom(QueryCS
, isReadonlyCall
,ScanPos
, DirtyBB
);
457 } else if (DirtyBB
!= &DirtyBB
->getParent()->getEntryBlock()) {
458 // No dependence found. If this is the entry block of the function, it is
459 // a clobber, otherwise it is non-local.
460 Dep
= MemDepResult::getNonLocal();
462 Dep
= MemDepResult::getClobber(ScanPos
);
465 // If we had a dirty entry for the block, update it. Otherwise, just add
468 *ExistingResult
= Dep
;
470 Cache
.push_back(std::make_pair(DirtyBB
, Dep
));
472 // If the block has a dependency (i.e. it isn't completely transparent to
473 // the value), remember the association!
474 if (!Dep
.isNonLocal()) {
475 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
476 // update this when we remove instructions.
477 if (Instruction
*Inst
= Dep
.getInst())
478 ReverseNonLocalDeps
[Inst
].insert(QueryCS
.getInstruction());
481 // If the block *is* completely transparent to the load, we need to check
482 // the predecessors of this block. Add them to our worklist.
483 for (BasicBlock
**PI
= PredCache
->GetPreds(DirtyBB
); *PI
; ++PI
)
484 DirtyBlocks
.push_back(*PI
);
491 /// getNonLocalPointerDependency - Perform a full dependency query for an
492 /// access to the specified (non-volatile) memory location, returning the
493 /// set of instructions that either define or clobber the value.
495 /// This method assumes the pointer has a "NonLocal" dependency within its
498 void MemoryDependenceAnalysis::
499 getNonLocalPointerDependency(Value
*Pointer
, bool isLoad
, BasicBlock
*FromBB
,
500 SmallVectorImpl
<NonLocalDepEntry
> &Result
) {
501 assert(isa
<PointerType
>(Pointer
->getType()) &&
502 "Can't get pointer deps of a non-pointer!");
505 // We know that the pointer value is live into FromBB find the def/clobbers
506 // from presecessors.
507 const Type
*EltTy
= cast
<PointerType
>(Pointer
->getType())->getElementType();
508 uint64_t PointeeSize
= TD
->getTypeStoreSize(EltTy
);
510 // This is the set of blocks we've inspected, and the pointer we consider in
511 // each block. Because of critical edges, we currently bail out if querying
512 // a block with multiple different pointers. This can happen during PHI
514 DenseMap
<BasicBlock
*, Value
*> Visited
;
515 if (!getNonLocalPointerDepFromBB(Pointer
, PointeeSize
, isLoad
, FromBB
,
516 Result
, Visited
, true))
519 Result
.push_back(std::make_pair(FromBB
,
520 MemDepResult::getClobber(FromBB
->begin())));
523 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
524 /// Pointer/PointeeSize using either cached information in Cache or by doing a
525 /// lookup (which may use dirty cache info if available). If we do a lookup,
526 /// add the result to the cache.
527 MemDepResult
MemoryDependenceAnalysis::
528 GetNonLocalInfoForBlock(Value
*Pointer
, uint64_t PointeeSize
,
529 bool isLoad
, BasicBlock
*BB
,
530 NonLocalDepInfo
*Cache
, unsigned NumSortedEntries
) {
532 // Do a binary search to see if we already have an entry for this block in
533 // the cache set. If so, find it.
534 NonLocalDepInfo::iterator Entry
=
535 std::upper_bound(Cache
->begin(), Cache
->begin()+NumSortedEntries
,
536 std::make_pair(BB
, MemDepResult()));
537 if (Entry
!= Cache
->begin() && prior(Entry
)->first
== BB
)
540 MemDepResult
*ExistingResult
= 0;
541 if (Entry
!= Cache
->begin()+NumSortedEntries
&& Entry
->first
== BB
)
542 ExistingResult
= &Entry
->second
;
544 // If we have a cached entry, and it is non-dirty, use it as the value for
546 if (ExistingResult
&& !ExistingResult
->isDirty()) {
547 ++NumCacheNonLocalPtr
;
548 return *ExistingResult
;
551 // Otherwise, we have to scan for the value. If we have a dirty cache
552 // entry, start scanning from its position, otherwise we scan from the end
554 BasicBlock::iterator ScanPos
= BB
->end();
555 if (ExistingResult
&& ExistingResult
->getInst()) {
556 assert(ExistingResult
->getInst()->getParent() == BB
&&
557 "Instruction invalidated?");
558 ++NumCacheDirtyNonLocalPtr
;
559 ScanPos
= ExistingResult
->getInst();
561 // Eliminating the dirty entry from 'Cache', so update the reverse info.
562 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
563 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, ScanPos
, CacheKey
);
565 ++NumUncacheNonLocalPtr
;
568 // Scan the block for the dependency.
569 MemDepResult Dep
= getPointerDependencyFrom(Pointer
, PointeeSize
, isLoad
,
572 // If we had a dirty entry for the block, update it. Otherwise, just add
575 *ExistingResult
= Dep
;
577 Cache
->push_back(std::make_pair(BB
, Dep
));
579 // If the block has a dependency (i.e. it isn't completely transparent to
580 // the value), remember the reverse association because we just added it
582 if (Dep
.isNonLocal())
585 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
586 // update MemDep when we remove instructions.
587 Instruction
*Inst
= Dep
.getInst();
588 assert(Inst
&& "Didn't depend on anything?");
589 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
590 ReverseNonLocalPtrDeps
[Inst
].insert(CacheKey
);
595 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
596 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
597 /// results to the results vector and keep track of which blocks are visited in
600 /// This has special behavior for the first block queries (when SkipFirstBlock
601 /// is true). In this special case, it ignores the contents of the specified
602 /// block and starts returning dependence info for its predecessors.
604 /// This function returns false on success, or true to indicate that it could
605 /// not compute dependence information for some reason. This should be treated
606 /// as a clobber dependence on the first instruction in the predecessor block.
607 bool MemoryDependenceAnalysis::
608 getNonLocalPointerDepFromBB(Value
*Pointer
, uint64_t PointeeSize
,
609 bool isLoad
, BasicBlock
*StartBB
,
610 SmallVectorImpl
<NonLocalDepEntry
> &Result
,
611 DenseMap
<BasicBlock
*, Value
*> &Visited
,
612 bool SkipFirstBlock
) {
614 // Look up the cached info for Pointer.
615 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
617 std::pair
<BBSkipFirstBlockPair
, NonLocalDepInfo
> *CacheInfo
=
618 &NonLocalPointerDeps
[CacheKey
];
619 NonLocalDepInfo
*Cache
= &CacheInfo
->second
;
621 // If we have valid cached information for exactly the block we are
622 // investigating, just return it with no recomputation.
623 if (CacheInfo
->first
== BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
)) {
624 // We have a fully cached result for this query then we can just return the
625 // cached results and populate the visited set. However, we have to verify
626 // that we don't already have conflicting results for these blocks. Check
627 // to ensure that if a block in the results set is in the visited set that
628 // it was for the same pointer query.
629 if (!Visited
.empty()) {
630 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
632 DenseMap
<BasicBlock
*, Value
*>::iterator VI
= Visited
.find(I
->first
);
633 if (VI
== Visited
.end() || VI
->second
== Pointer
) continue;
635 // We have a pointer mismatch in a block. Just return clobber, saying
636 // that something was clobbered in this result. We could also do a
637 // non-fully cached query, but there is little point in doing this.
642 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
644 Visited
.insert(std::make_pair(I
->first
, Pointer
));
645 if (!I
->second
.isNonLocal())
646 Result
.push_back(*I
);
648 ++NumCacheCompleteNonLocalPtr
;
652 // Otherwise, either this is a new block, a block with an invalid cache
653 // pointer or one that we're about to invalidate by putting more info into it
654 // than its valid cache info. If empty, the result will be valid cache info,
655 // otherwise it isn't.
657 CacheInfo
->first
= BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
);
659 CacheInfo
->first
= BBSkipFirstBlockPair();
661 SmallVector
<BasicBlock
*, 32> Worklist
;
662 Worklist
.push_back(StartBB
);
664 // Keep track of the entries that we know are sorted. Previously cached
665 // entries will all be sorted. The entries we add we only sort on demand (we
666 // don't insert every element into its sorted position). We know that we
667 // won't get any reuse from currently inserted values, because we don't
668 // revisit blocks after we insert info for them.
669 unsigned NumSortedEntries
= Cache
->size();
670 DEBUG(AssertSorted(*Cache
));
672 while (!Worklist
.empty()) {
673 BasicBlock
*BB
= Worklist
.pop_back_val();
675 // Skip the first block if we have it.
676 if (!SkipFirstBlock
) {
677 // Analyze the dependency of *Pointer in FromBB. See if we already have
679 assert(Visited
.count(BB
) && "Should check 'visited' before adding to WL");
681 // Get the dependency info for Pointer in BB. If we have cached
682 // information, we will use it, otherwise we compute it.
683 DEBUG(AssertSorted(*Cache
, NumSortedEntries
));
684 MemDepResult Dep
= GetNonLocalInfoForBlock(Pointer
, PointeeSize
, isLoad
,
685 BB
, Cache
, NumSortedEntries
);
687 // If we got a Def or Clobber, add this to the list of results.
688 if (!Dep
.isNonLocal()) {
689 Result
.push_back(NonLocalDepEntry(BB
, Dep
));
694 // If 'Pointer' is an instruction defined in this block, then we need to do
695 // phi translation to change it into a value live in the predecessor block.
696 // If phi translation fails, then we can't continue dependence analysis.
697 Instruction
*PtrInst
= dyn_cast
<Instruction
>(Pointer
);
698 bool NeedsPHITranslation
= PtrInst
&& PtrInst
->getParent() == BB
;
700 // If no PHI translation is needed, just add all the predecessors of this
701 // block to scan them as well.
702 if (!NeedsPHITranslation
) {
703 SkipFirstBlock
= false;
704 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
705 // Verify that we haven't looked at this block yet.
706 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
707 InsertRes
= Visited
.insert(std::make_pair(*PI
, Pointer
));
708 if (InsertRes
.second
) {
709 // First time we've looked at *PI.
710 Worklist
.push_back(*PI
);
714 // If we have seen this block before, but it was with a different
715 // pointer then we have a phi translation failure and we have to treat
716 // this as a clobber.
717 if (InsertRes
.first
->second
!= Pointer
)
718 goto PredTranslationFailure
;
723 // If we do need to do phi translation, then there are a bunch of different
724 // cases, because we have to find a Value* live in the predecessor block. We
725 // know that PtrInst is defined in this block at least.
727 // If this is directly a PHI node, just use the incoming values for each
728 // pred as the phi translated version.
729 if (PHINode
*PtrPHI
= dyn_cast
<PHINode
>(PtrInst
)) {
730 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
731 BasicBlock
*Pred
= *PI
;
732 Value
*PredPtr
= PtrPHI
->getIncomingValueForBlock(Pred
);
734 // Check to see if we have already visited this pred block with another
735 // pointer. If so, we can't do this lookup. This failure can occur
736 // with PHI translation when a critical edge exists and the PHI node in
737 // the successor translates to a pointer value different than the
738 // pointer the block was first analyzed with.
739 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
740 InsertRes
= Visited
.insert(std::make_pair(Pred
, PredPtr
));
742 if (!InsertRes
.second
) {
743 // If the predecessor was visited with PredPtr, then we already did
744 // the analysis and can ignore it.
745 if (InsertRes
.first
->second
== PredPtr
)
748 // Otherwise, the block was previously analyzed with a different
749 // pointer. We can't represent the result of this case, so we just
750 // treat this as a phi translation failure.
751 goto PredTranslationFailure
;
754 // We may have added values to the cache list before this PHI
755 // translation. If so, we haven't done anything to ensure that the
756 // cache remains sorted. Sort it now (if needed) so that recursive
757 // invocations of getNonLocalPointerDepFromBB that could reuse the cache
758 // value will only see properly sorted cache arrays.
759 if (Cache
&& NumSortedEntries
!= Cache
->size())
760 std::sort(Cache
->begin(), Cache
->end());
763 // FIXME: it is entirely possible that PHI translating will end up with
764 // the same value. Consider PHI translating something like:
765 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
766 // to recurse here, pedantically speaking.
768 // If we have a problem phi translating, fall through to the code below
769 // to handle the failure condition.
770 if (getNonLocalPointerDepFromBB(PredPtr
, PointeeSize
, isLoad
, Pred
,
772 goto PredTranslationFailure
;
775 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
776 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
777 Cache
= &CacheInfo
->second
;
778 NumSortedEntries
= Cache
->size();
780 // Since we did phi translation, the "Cache" set won't contain all of the
781 // results for the query. This is ok (we can still use it to accelerate
782 // specific block queries) but we can't do the fastpath "return all
783 // results from the set" Clear out the indicator for this.
784 CacheInfo
->first
= BBSkipFirstBlockPair();
785 SkipFirstBlock
= false;
789 // TODO: BITCAST, GEP.
791 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
792 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
793 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
794 PredTranslationFailure
:
797 // Refresh the CacheInfo/Cache pointer if it got invalidated.
798 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
799 Cache
= &CacheInfo
->second
;
800 NumSortedEntries
= Cache
->size();
801 } else if (NumSortedEntries
!= Cache
->size()) {
802 std::sort(Cache
->begin(), Cache
->end());
803 NumSortedEntries
= Cache
->size();
806 // Since we did phi translation, the "Cache" set won't contain all of the
807 // results for the query. This is ok (we can still use it to accelerate
808 // specific block queries) but we can't do the fastpath "return all
809 // results from the set" Clear out the indicator for this.
810 CacheInfo
->first
= BBSkipFirstBlockPair();
812 // If *nothing* works, mark the pointer as being clobbered by the first
813 // instruction in this block.
815 // If this is the magic first block, return this as a clobber of the whole
816 // incoming value. Since we can't phi translate to one of the predecessors,
817 // we have to bail out.
821 for (NonLocalDepInfo::reverse_iterator I
= Cache
->rbegin(); ; ++I
) {
822 assert(I
!= Cache
->rend() && "Didn't find current block??");
826 assert(I
->second
.isNonLocal() &&
827 "Should only be here with transparent block");
828 I
->second
= MemDepResult::getClobber(BB
->begin());
829 ReverseNonLocalPtrDeps
[BB
->begin()].insert(CacheKey
);
830 Result
.push_back(*I
);
835 // Okay, we're done now. If we added new values to the cache, re-sort it.
836 switch (Cache
->size()-NumSortedEntries
) {
838 // done, no new entries.
841 // Two new entries, insert the last one into place.
842 NonLocalDepEntry Val
= Cache
->back();
844 NonLocalDepInfo::iterator Entry
=
845 std::upper_bound(Cache
->begin(), Cache
->end()-1, Val
);
846 Cache
->insert(Entry
, Val
);
850 // One new entry, Just insert the new value at the appropriate position.
851 if (Cache
->size() != 1) {
852 NonLocalDepEntry Val
= Cache
->back();
854 NonLocalDepInfo::iterator Entry
=
855 std::upper_bound(Cache
->begin(), Cache
->end(), Val
);
856 Cache
->insert(Entry
, Val
);
860 // Added many values, do a full scale sort.
861 std::sort(Cache
->begin(), Cache
->end());
863 DEBUG(AssertSorted(*Cache
));
867 /// RemoveCachedNonLocalPointerDependencies - If P exists in
868 /// CachedNonLocalPointerInfo, remove it.
869 void MemoryDependenceAnalysis::
870 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P
) {
871 CachedNonLocalPointerInfo::iterator It
=
872 NonLocalPointerDeps
.find(P
);
873 if (It
== NonLocalPointerDeps
.end()) return;
875 // Remove all of the entries in the BB->val map. This involves removing
876 // instructions from the reverse map.
877 NonLocalDepInfo
&PInfo
= It
->second
.second
;
879 for (unsigned i
= 0, e
= PInfo
.size(); i
!= e
; ++i
) {
880 Instruction
*Target
= PInfo
[i
].second
.getInst();
881 if (Target
== 0) continue; // Ignore non-local dep results.
882 assert(Target
->getParent() == PInfo
[i
].first
);
884 // Eliminating the dirty entry from 'Cache', so update the reverse info.
885 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Target
, P
);
888 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
889 NonLocalPointerDeps
.erase(It
);
893 /// invalidateCachedPointerInfo - This method is used to invalidate cached
894 /// information about the specified pointer, because it may be too
895 /// conservative in memdep. This is an optional call that can be used when
896 /// the client detects an equivalence between the pointer and some other
897 /// value and replaces the other value with ptr. This can make Ptr available
898 /// in more places that cached info does not necessarily keep.
899 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value
*Ptr
) {
900 // If Ptr isn't really a pointer, just ignore it.
901 if (!isa
<PointerType
>(Ptr
->getType())) return;
902 // Flush store info for the pointer.
903 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, false));
904 // Flush load info for the pointer.
905 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, true));
908 /// removeInstruction - Remove an instruction from the dependence analysis,
909 /// updating the dependence of instructions that previously depended on it.
910 /// This method attempts to keep the cache coherent using the reverse map.
911 void MemoryDependenceAnalysis::removeInstruction(Instruction
*RemInst
) {
912 // Walk through the Non-local dependencies, removing this one as the value
913 // for any cached queries.
914 NonLocalDepMapType::iterator NLDI
= NonLocalDeps
.find(RemInst
);
915 if (NLDI
!= NonLocalDeps
.end()) {
916 NonLocalDepInfo
&BlockMap
= NLDI
->second
.first
;
917 for (NonLocalDepInfo::iterator DI
= BlockMap
.begin(), DE
= BlockMap
.end();
919 if (Instruction
*Inst
= DI
->second
.getInst())
920 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
, RemInst
);
921 NonLocalDeps
.erase(NLDI
);
924 // If we have a cached local dependence query for this instruction, remove it.
926 LocalDepMapType::iterator LocalDepEntry
= LocalDeps
.find(RemInst
);
927 if (LocalDepEntry
!= LocalDeps
.end()) {
928 // Remove us from DepInst's reverse set now that the local dep info is gone.
929 if (Instruction
*Inst
= LocalDepEntry
->second
.getInst())
930 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, RemInst
);
932 // Remove this local dependency info.
933 LocalDeps
.erase(LocalDepEntry
);
936 // If we have any cached pointer dependencies on this instruction, remove
937 // them. If the instruction has non-pointer type, then it can't be a pointer
940 // Remove it from both the load info and the store info. The instruction
941 // can't be in either of these maps if it is non-pointer.
942 if (isa
<PointerType
>(RemInst
->getType())) {
943 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, false));
944 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, true));
947 // Loop over all of the things that depend on the instruction we're removing.
949 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> ReverseDepsToAdd
;
951 // If we find RemInst as a clobber or Def in any of the maps for other values,
952 // we need to replace its entry with a dirty version of the instruction after
953 // it. If RemInst is a terminator, we use a null dirty value.
955 // Using a dirty version of the instruction after RemInst saves having to scan
956 // the entire block to get to this point.
957 MemDepResult NewDirtyVal
;
958 if (!RemInst
->isTerminator())
959 NewDirtyVal
= MemDepResult::getDirty(++BasicBlock::iterator(RemInst
));
961 ReverseDepMapType::iterator ReverseDepIt
= ReverseLocalDeps
.find(RemInst
);
962 if (ReverseDepIt
!= ReverseLocalDeps
.end()) {
963 SmallPtrSet
<Instruction
*, 4> &ReverseDeps
= ReverseDepIt
->second
;
964 // RemInst can't be the terminator if it has local stuff depending on it.
965 assert(!ReverseDeps
.empty() && !isa
<TerminatorInst
>(RemInst
) &&
966 "Nothing can locally depend on a terminator");
968 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= ReverseDeps
.begin(),
969 E
= ReverseDeps
.end(); I
!= E
; ++I
) {
970 Instruction
*InstDependingOnRemInst
= *I
;
971 assert(InstDependingOnRemInst
!= RemInst
&&
972 "Already removed our local dep info");
974 LocalDeps
[InstDependingOnRemInst
] = NewDirtyVal
;
976 // Make sure to remember that new things depend on NewDepInst.
977 assert(NewDirtyVal
.getInst() && "There is no way something else can have "
978 "a local dep on this if it is a terminator!");
979 ReverseDepsToAdd
.push_back(std::make_pair(NewDirtyVal
.getInst(),
980 InstDependingOnRemInst
));
983 ReverseLocalDeps
.erase(ReverseDepIt
);
985 // Add new reverse deps after scanning the set, to avoid invalidating the
986 // 'ReverseDeps' reference.
987 while (!ReverseDepsToAdd
.empty()) {
988 ReverseLocalDeps
[ReverseDepsToAdd
.back().first
]
989 .insert(ReverseDepsToAdd
.back().second
);
990 ReverseDepsToAdd
.pop_back();
994 ReverseDepIt
= ReverseNonLocalDeps
.find(RemInst
);
995 if (ReverseDepIt
!= ReverseNonLocalDeps
.end()) {
996 SmallPtrSet
<Instruction
*, 4> &Set
= ReverseDepIt
->second
;
997 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= Set
.begin(), E
= Set
.end();
999 assert(*I
!= RemInst
&& "Already removed NonLocalDep info for RemInst");
1001 PerInstNLInfo
&INLD
= NonLocalDeps
[*I
];
1002 // The information is now dirty!
1005 for (NonLocalDepInfo::iterator DI
= INLD
.first
.begin(),
1006 DE
= INLD
.first
.end(); DI
!= DE
; ++DI
) {
1007 if (DI
->second
.getInst() != RemInst
) continue;
1009 // Convert to a dirty entry for the subsequent instruction.
1010 DI
->second
= NewDirtyVal
;
1012 if (Instruction
*NextI
= NewDirtyVal
.getInst())
1013 ReverseDepsToAdd
.push_back(std::make_pair(NextI
, *I
));
1017 ReverseNonLocalDeps
.erase(ReverseDepIt
);
1019 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1020 while (!ReverseDepsToAdd
.empty()) {
1021 ReverseNonLocalDeps
[ReverseDepsToAdd
.back().first
]
1022 .insert(ReverseDepsToAdd
.back().second
);
1023 ReverseDepsToAdd
.pop_back();
1027 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1028 // value in the NonLocalPointerDeps info.
1029 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt
=
1030 ReverseNonLocalPtrDeps
.find(RemInst
);
1031 if (ReversePtrDepIt
!= ReverseNonLocalPtrDeps
.end()) {
1032 SmallPtrSet
<ValueIsLoadPair
, 4> &Set
= ReversePtrDepIt
->second
;
1033 SmallVector
<std::pair
<Instruction
*, ValueIsLoadPair
>,8> ReversePtrDepsToAdd
;
1035 for (SmallPtrSet
<ValueIsLoadPair
, 4>::iterator I
= Set
.begin(),
1036 E
= Set
.end(); I
!= E
; ++I
) {
1037 ValueIsLoadPair P
= *I
;
1038 assert(P
.getPointer() != RemInst
&&
1039 "Already removed NonLocalPointerDeps info for RemInst");
1041 NonLocalDepInfo
&NLPDI
= NonLocalPointerDeps
[P
].second
;
1043 // The cache is not valid for any specific block anymore.
1044 NonLocalPointerDeps
[P
].first
= BBSkipFirstBlockPair();
1046 // Update any entries for RemInst to use the instruction after it.
1047 for (NonLocalDepInfo::iterator DI
= NLPDI
.begin(), DE
= NLPDI
.end();
1049 if (DI
->second
.getInst() != RemInst
) continue;
1051 // Convert to a dirty entry for the subsequent instruction.
1052 DI
->second
= NewDirtyVal
;
1054 if (Instruction
*NewDirtyInst
= NewDirtyVal
.getInst())
1055 ReversePtrDepsToAdd
.push_back(std::make_pair(NewDirtyInst
, P
));
1058 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1059 // subsequent value may invalidate the sortedness.
1060 std::sort(NLPDI
.begin(), NLPDI
.end());
1063 ReverseNonLocalPtrDeps
.erase(ReversePtrDepIt
);
1065 while (!ReversePtrDepsToAdd
.empty()) {
1066 ReverseNonLocalPtrDeps
[ReversePtrDepsToAdd
.back().first
]
1067 .insert(ReversePtrDepsToAdd
.back().second
);
1068 ReversePtrDepsToAdd
.pop_back();
1073 assert(!NonLocalDeps
.count(RemInst
) && "RemInst got reinserted?");
1074 AA
->deleteValue(RemInst
);
1075 DEBUG(verifyRemoved(RemInst
));
1077 /// verifyRemoved - Verify that the specified instruction does not occur
1078 /// in our internal data structures.
1079 void MemoryDependenceAnalysis::verifyRemoved(Instruction
*D
) const {
1080 for (LocalDepMapType::const_iterator I
= LocalDeps
.begin(),
1081 E
= LocalDeps
.end(); I
!= E
; ++I
) {
1082 assert(I
->first
!= D
&& "Inst occurs in data structures");
1083 assert(I
->second
.getInst() != D
&&
1084 "Inst occurs in data structures");
1087 for (CachedNonLocalPointerInfo::const_iterator I
=NonLocalPointerDeps
.begin(),
1088 E
= NonLocalPointerDeps
.end(); I
!= E
; ++I
) {
1089 assert(I
->first
.getPointer() != D
&& "Inst occurs in NLPD map key");
1090 const NonLocalDepInfo
&Val
= I
->second
.second
;
1091 for (NonLocalDepInfo::const_iterator II
= Val
.begin(), E
= Val
.end();
1093 assert(II
->second
.getInst() != D
&& "Inst occurs as NLPD value");
1096 for (NonLocalDepMapType::const_iterator I
= NonLocalDeps
.begin(),
1097 E
= NonLocalDeps
.end(); I
!= E
; ++I
) {
1098 assert(I
->first
!= D
&& "Inst occurs in data structures");
1099 const PerInstNLInfo
&INLD
= I
->second
;
1100 for (NonLocalDepInfo::const_iterator II
= INLD
.first
.begin(),
1101 EE
= INLD
.first
.end(); II
!= EE
; ++II
)
1102 assert(II
->second
.getInst() != D
&& "Inst occurs in data structures");
1105 for (ReverseDepMapType::const_iterator I
= ReverseLocalDeps
.begin(),
1106 E
= ReverseLocalDeps
.end(); I
!= E
; ++I
) {
1107 assert(I
->first
!= D
&& "Inst occurs in data structures");
1108 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1109 EE
= I
->second
.end(); II
!= EE
; ++II
)
1110 assert(*II
!= D
&& "Inst occurs in data structures");
1113 for (ReverseDepMapType::const_iterator I
= ReverseNonLocalDeps
.begin(),
1114 E
= ReverseNonLocalDeps
.end();
1116 assert(I
->first
!= D
&& "Inst occurs in data structures");
1117 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1118 EE
= I
->second
.end(); II
!= EE
; ++II
)
1119 assert(*II
!= D
&& "Inst occurs in data structures");
1122 for (ReverseNonLocalPtrDepTy::const_iterator
1123 I
= ReverseNonLocalPtrDeps
.begin(),
1124 E
= ReverseNonLocalPtrDeps
.end(); I
!= E
; ++I
) {
1125 assert(I
->first
!= D
&& "Inst occurs in rev NLPD map");
1127 for (SmallPtrSet
<ValueIsLoadPair
, 4>::const_iterator II
= I
->second
.begin(),
1128 E
= I
->second
.end(); II
!= E
; ++II
)
1129 assert(*II
!= ValueIsLoadPair(D
, false) &&
1130 *II
!= ValueIsLoadPair(D
, true) &&
1131 "Inst occurs in ReverseNonLocalPtrDeps map");