Hanle i8 returns
[llvm/msp430.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blob74c962147ceed0f75bbc68d322ba07328783a592
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/PredIteratorCache.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Target/TargetData.h"
29 using namespace llvm;
31 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
32 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
33 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
35 STATISTIC(NumCacheNonLocalPtr,
36 "Number of fully cached non-local ptr responses");
37 STATISTIC(NumCacheDirtyNonLocalPtr,
38 "Number of cached, but dirty, non-local ptr responses");
39 STATISTIC(NumUncacheNonLocalPtr,
40 "Number of uncached non-local ptr responses");
41 STATISTIC(NumCacheCompleteNonLocalPtr,
42 "Number of block queries that were completely cached");
44 char MemoryDependenceAnalysis::ID = 0;
46 // Register this pass...
47 static RegisterPass<MemoryDependenceAnalysis> X("memdep",
48 "Memory Dependence Analysis", false, true);
50 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
51 : FunctionPass(&ID), PredCache(0) {
53 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
56 /// Clean up memory in between runs
57 void MemoryDependenceAnalysis::releaseMemory() {
58 LocalDeps.clear();
59 NonLocalDeps.clear();
60 NonLocalPointerDeps.clear();
61 ReverseLocalDeps.clear();
62 ReverseNonLocalDeps.clear();
63 ReverseNonLocalPtrDeps.clear();
64 PredCache->clear();
69 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
70 ///
71 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.setPreservesAll();
73 AU.addRequiredTransitive<AliasAnalysis>();
74 AU.addRequiredTransitive<TargetData>();
77 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
78 AA = &getAnalysis<AliasAnalysis>();
79 TD = &getAnalysis<TargetData>();
80 if (PredCache == 0)
81 PredCache.reset(new PredIteratorCache());
82 return false;
85 /// RemoveFromReverseMap - This is a helper function that removes Val from
86 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
87 template <typename KeyTy>
88 static void RemoveFromReverseMap(DenseMap<Instruction*,
89 SmallPtrSet<KeyTy, 4> > &ReverseMap,
90 Instruction *Inst, KeyTy Val) {
91 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
92 InstIt = ReverseMap.find(Inst);
93 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
94 bool Found = InstIt->second.erase(Val);
95 assert(Found && "Invalid reverse map!"); Found=Found;
96 if (InstIt->second.empty())
97 ReverseMap.erase(InstIt);
101 /// getCallSiteDependencyFrom - Private helper for finding the local
102 /// dependencies of a call site.
103 MemDepResult MemoryDependenceAnalysis::
104 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
105 BasicBlock::iterator ScanIt, BasicBlock *BB) {
106 // Walk backwards through the block, looking for dependencies
107 while (ScanIt != BB->begin()) {
108 Instruction *Inst = --ScanIt;
110 // If this inst is a memory op, get the pointer it accessed
111 Value *Pointer = 0;
112 uint64_t PointerSize = 0;
113 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
114 Pointer = S->getPointerOperand();
115 PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
116 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
117 Pointer = V->getOperand(0);
118 PointerSize = TD->getTypeStoreSize(V->getType());
119 } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
120 Pointer = F->getPointerOperand();
122 // FreeInsts erase the entire structure
123 PointerSize = ~0ULL;
124 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
125 // Debug intrinsics don't cause dependences.
126 if (isa<DbgInfoIntrinsic>(Inst)) continue;
127 CallSite InstCS = CallSite::get(Inst);
128 // If these two calls do not interfere, look past it.
129 switch (AA->getModRefInfo(CS, InstCS)) {
130 case AliasAnalysis::NoModRef:
131 // If the two calls don't interact (e.g. InstCS is readnone) keep
132 // scanning.
133 continue;
134 case AliasAnalysis::Ref:
135 // If the two calls read the same memory locations and CS is a readonly
136 // function, then we have two cases: 1) the calls may not interfere with
137 // each other at all. 2) the calls may produce the same value. In case
138 // #1 we want to ignore the values, in case #2, we want to return Inst
139 // as a Def dependence. This allows us to CSE in cases like:
140 // X = strlen(P);
141 // memchr(...);
142 // Y = strlen(P); // Y = X
143 if (isReadOnlyCall) {
144 if (CS.getCalledFunction() != 0 &&
145 CS.getCalledFunction() == InstCS.getCalledFunction())
146 return MemDepResult::getDef(Inst);
147 // Ignore unrelated read/read call dependences.
148 continue;
150 // FALL THROUGH
151 default:
152 return MemDepResult::getClobber(Inst);
154 } else {
155 // Non-memory instruction.
156 continue;
159 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
160 return MemDepResult::getClobber(Inst);
163 // No dependence found. If this is the entry block of the function, it is a
164 // clobber, otherwise it is non-local.
165 if (BB != &BB->getParent()->getEntryBlock())
166 return MemDepResult::getNonLocal();
167 return MemDepResult::getClobber(ScanIt);
170 /// getPointerDependencyFrom - Return the instruction on which a memory
171 /// location depends. If isLoad is true, this routine ignore may-aliases with
172 /// read-only operations.
173 MemDepResult MemoryDependenceAnalysis::
174 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
175 BasicBlock::iterator ScanIt, BasicBlock *BB) {
177 // Walk backwards through the basic block, looking for dependencies.
178 while (ScanIt != BB->begin()) {
179 Instruction *Inst = --ScanIt;
181 // Debug intrinsics don't cause dependences.
182 if (isa<DbgInfoIntrinsic>(Inst)) continue;
184 // Values depend on loads if the pointers are must aliased. This means that
185 // a load depends on another must aliased load from the same value.
186 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
187 Value *Pointer = LI->getPointerOperand();
188 uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
190 // If we found a pointer, check if it could be the same as our pointer.
191 AliasAnalysis::AliasResult R =
192 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
193 if (R == AliasAnalysis::NoAlias)
194 continue;
196 // May-alias loads don't depend on each other without a dependence.
197 if (isLoad && R == AliasAnalysis::MayAlias)
198 continue;
199 // Stores depend on may and must aliased loads, loads depend on must-alias
200 // loads.
201 return MemDepResult::getDef(Inst);
204 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
205 Value *Pointer = SI->getPointerOperand();
206 uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
208 // If we found a pointer, check if it could be the same as our pointer.
209 AliasAnalysis::AliasResult R =
210 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
212 if (R == AliasAnalysis::NoAlias)
213 continue;
214 if (R == AliasAnalysis::MayAlias)
215 return MemDepResult::getClobber(Inst);
216 return MemDepResult::getDef(Inst);
219 // If this is an allocation, and if we know that the accessed pointer is to
220 // the allocation, return Def. This means that there is no dependence and
221 // the access can be optimized based on that. For example, a load could
222 // turn into undef.
223 if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
224 Value *AccessPtr = MemPtr->getUnderlyingObject();
226 if (AccessPtr == AI ||
227 AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
228 return MemDepResult::getDef(AI);
229 continue;
232 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
233 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
234 case AliasAnalysis::NoModRef:
235 // If the call has no effect on the queried pointer, just ignore it.
236 continue;
237 case AliasAnalysis::Ref:
238 // If the call is known to never store to the pointer, and if this is a
239 // load query, we can safely ignore it (scan past it).
240 if (isLoad)
241 continue;
242 // FALL THROUGH.
243 default:
244 // Otherwise, there is a potential dependence. Return a clobber.
245 return MemDepResult::getClobber(Inst);
249 // No dependence found. If this is the entry block of the function, it is a
250 // clobber, otherwise it is non-local.
251 if (BB != &BB->getParent()->getEntryBlock())
252 return MemDepResult::getNonLocal();
253 return MemDepResult::getClobber(ScanIt);
256 /// getDependency - Return the instruction on which a memory operation
257 /// depends.
258 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
259 Instruction *ScanPos = QueryInst;
261 // Check for a cached result
262 MemDepResult &LocalCache = LocalDeps[QueryInst];
264 // If the cached entry is non-dirty, just return it. Note that this depends
265 // on MemDepResult's default constructing to 'dirty'.
266 if (!LocalCache.isDirty())
267 return LocalCache;
269 // Otherwise, if we have a dirty entry, we know we can start the scan at that
270 // instruction, which may save us some work.
271 if (Instruction *Inst = LocalCache.getInst()) {
272 ScanPos = Inst;
274 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
277 BasicBlock *QueryParent = QueryInst->getParent();
279 Value *MemPtr = 0;
280 uint64_t MemSize = 0;
282 // Do the scan.
283 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
284 // No dependence found. If this is the entry block of the function, it is a
285 // clobber, otherwise it is non-local.
286 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
287 LocalCache = MemDepResult::getNonLocal();
288 else
289 LocalCache = MemDepResult::getClobber(QueryInst);
290 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
291 // If this is a volatile store, don't mess around with it. Just return the
292 // previous instruction as a clobber.
293 if (SI->isVolatile())
294 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
295 else {
296 MemPtr = SI->getPointerOperand();
297 MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
299 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
300 // If this is a volatile load, don't mess around with it. Just return the
301 // previous instruction as a clobber.
302 if (LI->isVolatile())
303 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
304 else {
305 MemPtr = LI->getPointerOperand();
306 MemSize = TD->getTypeStoreSize(LI->getType());
308 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
309 CallSite QueryCS = CallSite::get(QueryInst);
310 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
311 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
312 QueryParent);
313 } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
314 MemPtr = FI->getPointerOperand();
315 // FreeInsts erase the entire structure, not just a field.
316 MemSize = ~0UL;
317 } else {
318 // Non-memory instruction.
319 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
322 // If we need to do a pointer scan, make it happen.
323 if (MemPtr)
324 LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
325 isa<LoadInst>(QueryInst),
326 ScanPos, QueryParent);
328 // Remember the result!
329 if (Instruction *I = LocalCache.getInst())
330 ReverseLocalDeps[I].insert(QueryInst);
332 return LocalCache;
335 #ifndef NDEBUG
336 /// AssertSorted - This method is used when -debug is specified to verify that
337 /// cache arrays are properly kept sorted.
338 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
339 int Count = -1) {
340 if (Count == -1) Count = Cache.size();
341 if (Count == 0) return;
343 for (unsigned i = 1; i != unsigned(Count); ++i)
344 assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
346 #endif
348 /// getNonLocalCallDependency - Perform a full dependency query for the
349 /// specified call, returning the set of blocks that the value is
350 /// potentially live across. The returned set of results will include a
351 /// "NonLocal" result for all blocks where the value is live across.
353 /// This method assumes the instruction returns a "NonLocal" dependency
354 /// within its own block.
356 /// This returns a reference to an internal data structure that may be
357 /// invalidated on the next non-local query or when an instruction is
358 /// removed. Clients must copy this data if they want it around longer than
359 /// that.
360 const MemoryDependenceAnalysis::NonLocalDepInfo &
361 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
362 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
363 "getNonLocalCallDependency should only be used on calls with non-local deps!");
364 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
365 NonLocalDepInfo &Cache = CacheP.first;
367 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
368 /// the cached case, this can happen due to instructions being deleted etc. In
369 /// the uncached case, this starts out as the set of predecessors we care
370 /// about.
371 SmallVector<BasicBlock*, 32> DirtyBlocks;
373 if (!Cache.empty()) {
374 // Okay, we have a cache entry. If we know it is not dirty, just return it
375 // with no computation.
376 if (!CacheP.second) {
377 NumCacheNonLocal++;
378 return Cache;
381 // If we already have a partially computed set of results, scan them to
382 // determine what is dirty, seeding our initial DirtyBlocks worklist.
383 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
384 I != E; ++I)
385 if (I->second.isDirty())
386 DirtyBlocks.push_back(I->first);
388 // Sort the cache so that we can do fast binary search lookups below.
389 std::sort(Cache.begin(), Cache.end());
391 ++NumCacheDirtyNonLocal;
392 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
393 // << Cache.size() << " cached: " << *QueryInst;
394 } else {
395 // Seed DirtyBlocks with each of the preds of QueryInst's block.
396 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
397 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
398 DirtyBlocks.push_back(*PI);
399 NumUncacheNonLocal++;
402 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
403 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
405 SmallPtrSet<BasicBlock*, 64> Visited;
407 unsigned NumSortedEntries = Cache.size();
408 DEBUG(AssertSorted(Cache));
410 // Iterate while we still have blocks to update.
411 while (!DirtyBlocks.empty()) {
412 BasicBlock *DirtyBB = DirtyBlocks.back();
413 DirtyBlocks.pop_back();
415 // Already processed this block?
416 if (!Visited.insert(DirtyBB))
417 continue;
419 // Do a binary search to see if we already have an entry for this block in
420 // the cache set. If so, find it.
421 DEBUG(AssertSorted(Cache, NumSortedEntries));
422 NonLocalDepInfo::iterator Entry =
423 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
424 std::make_pair(DirtyBB, MemDepResult()));
425 if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
426 --Entry;
428 MemDepResult *ExistingResult = 0;
429 if (Entry != Cache.begin()+NumSortedEntries &&
430 Entry->first == DirtyBB) {
431 // If we already have an entry, and if it isn't already dirty, the block
432 // is done.
433 if (!Entry->second.isDirty())
434 continue;
436 // Otherwise, remember this slot so we can update the value.
437 ExistingResult = &Entry->second;
440 // If the dirty entry has a pointer, start scanning from it so we don't have
441 // to rescan the entire block.
442 BasicBlock::iterator ScanPos = DirtyBB->end();
443 if (ExistingResult) {
444 if (Instruction *Inst = ExistingResult->getInst()) {
445 ScanPos = Inst;
446 // We're removing QueryInst's use of Inst.
447 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
448 QueryCS.getInstruction());
452 // Find out if this block has a local dependency for QueryInst.
453 MemDepResult Dep;
455 if (ScanPos != DirtyBB->begin()) {
456 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
457 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
458 // No dependence found. If this is the entry block of the function, it is
459 // a clobber, otherwise it is non-local.
460 Dep = MemDepResult::getNonLocal();
461 } else {
462 Dep = MemDepResult::getClobber(ScanPos);
465 // If we had a dirty entry for the block, update it. Otherwise, just add
466 // a new entry.
467 if (ExistingResult)
468 *ExistingResult = Dep;
469 else
470 Cache.push_back(std::make_pair(DirtyBB, Dep));
472 // If the block has a dependency (i.e. it isn't completely transparent to
473 // the value), remember the association!
474 if (!Dep.isNonLocal()) {
475 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
476 // update this when we remove instructions.
477 if (Instruction *Inst = Dep.getInst())
478 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
479 } else {
481 // If the block *is* completely transparent to the load, we need to check
482 // the predecessors of this block. Add them to our worklist.
483 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
484 DirtyBlocks.push_back(*PI);
488 return Cache;
491 /// getNonLocalPointerDependency - Perform a full dependency query for an
492 /// access to the specified (non-volatile) memory location, returning the
493 /// set of instructions that either define or clobber the value.
495 /// This method assumes the pointer has a "NonLocal" dependency within its
496 /// own block.
498 void MemoryDependenceAnalysis::
499 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
500 SmallVectorImpl<NonLocalDepEntry> &Result) {
501 assert(isa<PointerType>(Pointer->getType()) &&
502 "Can't get pointer deps of a non-pointer!");
503 Result.clear();
505 // We know that the pointer value is live into FromBB find the def/clobbers
506 // from presecessors.
507 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
508 uint64_t PointeeSize = TD->getTypeStoreSize(EltTy);
510 // This is the set of blocks we've inspected, and the pointer we consider in
511 // each block. Because of critical edges, we currently bail out if querying
512 // a block with multiple different pointers. This can happen during PHI
513 // translation.
514 DenseMap<BasicBlock*, Value*> Visited;
515 if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
516 Result, Visited, true))
517 return;
518 Result.clear();
519 Result.push_back(std::make_pair(FromBB,
520 MemDepResult::getClobber(FromBB->begin())));
523 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
524 /// Pointer/PointeeSize using either cached information in Cache or by doing a
525 /// lookup (which may use dirty cache info if available). If we do a lookup,
526 /// add the result to the cache.
527 MemDepResult MemoryDependenceAnalysis::
528 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
529 bool isLoad, BasicBlock *BB,
530 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
532 // Do a binary search to see if we already have an entry for this block in
533 // the cache set. If so, find it.
534 NonLocalDepInfo::iterator Entry =
535 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
536 std::make_pair(BB, MemDepResult()));
537 if (Entry != Cache->begin() && prior(Entry)->first == BB)
538 --Entry;
540 MemDepResult *ExistingResult = 0;
541 if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
542 ExistingResult = &Entry->second;
544 // If we have a cached entry, and it is non-dirty, use it as the value for
545 // this dependency.
546 if (ExistingResult && !ExistingResult->isDirty()) {
547 ++NumCacheNonLocalPtr;
548 return *ExistingResult;
551 // Otherwise, we have to scan for the value. If we have a dirty cache
552 // entry, start scanning from its position, otherwise we scan from the end
553 // of the block.
554 BasicBlock::iterator ScanPos = BB->end();
555 if (ExistingResult && ExistingResult->getInst()) {
556 assert(ExistingResult->getInst()->getParent() == BB &&
557 "Instruction invalidated?");
558 ++NumCacheDirtyNonLocalPtr;
559 ScanPos = ExistingResult->getInst();
561 // Eliminating the dirty entry from 'Cache', so update the reverse info.
562 ValueIsLoadPair CacheKey(Pointer, isLoad);
563 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
564 } else {
565 ++NumUncacheNonLocalPtr;
568 // Scan the block for the dependency.
569 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
570 ScanPos, BB);
572 // If we had a dirty entry for the block, update it. Otherwise, just add
573 // a new entry.
574 if (ExistingResult)
575 *ExistingResult = Dep;
576 else
577 Cache->push_back(std::make_pair(BB, Dep));
579 // If the block has a dependency (i.e. it isn't completely transparent to
580 // the value), remember the reverse association because we just added it
581 // to Cache!
582 if (Dep.isNonLocal())
583 return Dep;
585 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
586 // update MemDep when we remove instructions.
587 Instruction *Inst = Dep.getInst();
588 assert(Inst && "Didn't depend on anything?");
589 ValueIsLoadPair CacheKey(Pointer, isLoad);
590 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
591 return Dep;
595 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
596 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
597 /// results to the results vector and keep track of which blocks are visited in
598 /// 'Visited'.
600 /// This has special behavior for the first block queries (when SkipFirstBlock
601 /// is true). In this special case, it ignores the contents of the specified
602 /// block and starts returning dependence info for its predecessors.
604 /// This function returns false on success, or true to indicate that it could
605 /// not compute dependence information for some reason. This should be treated
606 /// as a clobber dependence on the first instruction in the predecessor block.
607 bool MemoryDependenceAnalysis::
608 getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
609 bool isLoad, BasicBlock *StartBB,
610 SmallVectorImpl<NonLocalDepEntry> &Result,
611 DenseMap<BasicBlock*, Value*> &Visited,
612 bool SkipFirstBlock) {
614 // Look up the cached info for Pointer.
615 ValueIsLoadPair CacheKey(Pointer, isLoad);
617 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
618 &NonLocalPointerDeps[CacheKey];
619 NonLocalDepInfo *Cache = &CacheInfo->second;
621 // If we have valid cached information for exactly the block we are
622 // investigating, just return it with no recomputation.
623 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
624 // We have a fully cached result for this query then we can just return the
625 // cached results and populate the visited set. However, we have to verify
626 // that we don't already have conflicting results for these blocks. Check
627 // to ensure that if a block in the results set is in the visited set that
628 // it was for the same pointer query.
629 if (!Visited.empty()) {
630 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
631 I != E; ++I) {
632 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
633 if (VI == Visited.end() || VI->second == Pointer) continue;
635 // We have a pointer mismatch in a block. Just return clobber, saying
636 // that something was clobbered in this result. We could also do a
637 // non-fully cached query, but there is little point in doing this.
638 return true;
642 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
643 I != E; ++I) {
644 Visited.insert(std::make_pair(I->first, Pointer));
645 if (!I->second.isNonLocal())
646 Result.push_back(*I);
648 ++NumCacheCompleteNonLocalPtr;
649 return false;
652 // Otherwise, either this is a new block, a block with an invalid cache
653 // pointer or one that we're about to invalidate by putting more info into it
654 // than its valid cache info. If empty, the result will be valid cache info,
655 // otherwise it isn't.
656 if (Cache->empty())
657 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
658 else
659 CacheInfo->first = BBSkipFirstBlockPair();
661 SmallVector<BasicBlock*, 32> Worklist;
662 Worklist.push_back(StartBB);
664 // Keep track of the entries that we know are sorted. Previously cached
665 // entries will all be sorted. The entries we add we only sort on demand (we
666 // don't insert every element into its sorted position). We know that we
667 // won't get any reuse from currently inserted values, because we don't
668 // revisit blocks after we insert info for them.
669 unsigned NumSortedEntries = Cache->size();
670 DEBUG(AssertSorted(*Cache));
672 while (!Worklist.empty()) {
673 BasicBlock *BB = Worklist.pop_back_val();
675 // Skip the first block if we have it.
676 if (!SkipFirstBlock) {
677 // Analyze the dependency of *Pointer in FromBB. See if we already have
678 // been here.
679 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
681 // Get the dependency info for Pointer in BB. If we have cached
682 // information, we will use it, otherwise we compute it.
683 DEBUG(AssertSorted(*Cache, NumSortedEntries));
684 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
685 BB, Cache, NumSortedEntries);
687 // If we got a Def or Clobber, add this to the list of results.
688 if (!Dep.isNonLocal()) {
689 Result.push_back(NonLocalDepEntry(BB, Dep));
690 continue;
694 // If 'Pointer' is an instruction defined in this block, then we need to do
695 // phi translation to change it into a value live in the predecessor block.
696 // If phi translation fails, then we can't continue dependence analysis.
697 Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
698 bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
700 // If no PHI translation is needed, just add all the predecessors of this
701 // block to scan them as well.
702 if (!NeedsPHITranslation) {
703 SkipFirstBlock = false;
704 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
705 // Verify that we haven't looked at this block yet.
706 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
707 InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
708 if (InsertRes.second) {
709 // First time we've looked at *PI.
710 Worklist.push_back(*PI);
711 continue;
714 // If we have seen this block before, but it was with a different
715 // pointer then we have a phi translation failure and we have to treat
716 // this as a clobber.
717 if (InsertRes.first->second != Pointer)
718 goto PredTranslationFailure;
720 continue;
723 // If we do need to do phi translation, then there are a bunch of different
724 // cases, because we have to find a Value* live in the predecessor block. We
725 // know that PtrInst is defined in this block at least.
727 // If this is directly a PHI node, just use the incoming values for each
728 // pred as the phi translated version.
729 if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
730 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
731 BasicBlock *Pred = *PI;
732 Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
734 // Check to see if we have already visited this pred block with another
735 // pointer. If so, we can't do this lookup. This failure can occur
736 // with PHI translation when a critical edge exists and the PHI node in
737 // the successor translates to a pointer value different than the
738 // pointer the block was first analyzed with.
739 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
740 InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
742 if (!InsertRes.second) {
743 // If the predecessor was visited with PredPtr, then we already did
744 // the analysis and can ignore it.
745 if (InsertRes.first->second == PredPtr)
746 continue;
748 // Otherwise, the block was previously analyzed with a different
749 // pointer. We can't represent the result of this case, so we just
750 // treat this as a phi translation failure.
751 goto PredTranslationFailure;
754 // We may have added values to the cache list before this PHI
755 // translation. If so, we haven't done anything to ensure that the
756 // cache remains sorted. Sort it now (if needed) so that recursive
757 // invocations of getNonLocalPointerDepFromBB that could reuse the cache
758 // value will only see properly sorted cache arrays.
759 if (Cache && NumSortedEntries != Cache->size())
760 std::sort(Cache->begin(), Cache->end());
761 Cache = 0;
763 // FIXME: it is entirely possible that PHI translating will end up with
764 // the same value. Consider PHI translating something like:
765 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
766 // to recurse here, pedantically speaking.
768 // If we have a problem phi translating, fall through to the code below
769 // to handle the failure condition.
770 if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
771 Result, Visited))
772 goto PredTranslationFailure;
775 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
776 CacheInfo = &NonLocalPointerDeps[CacheKey];
777 Cache = &CacheInfo->second;
778 NumSortedEntries = Cache->size();
780 // Since we did phi translation, the "Cache" set won't contain all of the
781 // results for the query. This is ok (we can still use it to accelerate
782 // specific block queries) but we can't do the fastpath "return all
783 // results from the set" Clear out the indicator for this.
784 CacheInfo->first = BBSkipFirstBlockPair();
785 SkipFirstBlock = false;
786 continue;
789 // TODO: BITCAST, GEP.
791 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
792 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
793 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
794 PredTranslationFailure:
796 if (Cache == 0) {
797 // Refresh the CacheInfo/Cache pointer if it got invalidated.
798 CacheInfo = &NonLocalPointerDeps[CacheKey];
799 Cache = &CacheInfo->second;
800 NumSortedEntries = Cache->size();
801 } else if (NumSortedEntries != Cache->size()) {
802 std::sort(Cache->begin(), Cache->end());
803 NumSortedEntries = Cache->size();
806 // Since we did phi translation, the "Cache" set won't contain all of the
807 // results for the query. This is ok (we can still use it to accelerate
808 // specific block queries) but we can't do the fastpath "return all
809 // results from the set" Clear out the indicator for this.
810 CacheInfo->first = BBSkipFirstBlockPair();
812 // If *nothing* works, mark the pointer as being clobbered by the first
813 // instruction in this block.
815 // If this is the magic first block, return this as a clobber of the whole
816 // incoming value. Since we can't phi translate to one of the predecessors,
817 // we have to bail out.
818 if (SkipFirstBlock)
819 return true;
821 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
822 assert(I != Cache->rend() && "Didn't find current block??");
823 if (I->first != BB)
824 continue;
826 assert(I->second.isNonLocal() &&
827 "Should only be here with transparent block");
828 I->second = MemDepResult::getClobber(BB->begin());
829 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
830 Result.push_back(*I);
831 break;
835 // Okay, we're done now. If we added new values to the cache, re-sort it.
836 switch (Cache->size()-NumSortedEntries) {
837 case 0:
838 // done, no new entries.
839 break;
840 case 2: {
841 // Two new entries, insert the last one into place.
842 NonLocalDepEntry Val = Cache->back();
843 Cache->pop_back();
844 NonLocalDepInfo::iterator Entry =
845 std::upper_bound(Cache->begin(), Cache->end()-1, Val);
846 Cache->insert(Entry, Val);
847 // FALL THROUGH.
849 case 1:
850 // One new entry, Just insert the new value at the appropriate position.
851 if (Cache->size() != 1) {
852 NonLocalDepEntry Val = Cache->back();
853 Cache->pop_back();
854 NonLocalDepInfo::iterator Entry =
855 std::upper_bound(Cache->begin(), Cache->end(), Val);
856 Cache->insert(Entry, Val);
858 break;
859 default:
860 // Added many values, do a full scale sort.
861 std::sort(Cache->begin(), Cache->end());
863 DEBUG(AssertSorted(*Cache));
864 return false;
867 /// RemoveCachedNonLocalPointerDependencies - If P exists in
868 /// CachedNonLocalPointerInfo, remove it.
869 void MemoryDependenceAnalysis::
870 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
871 CachedNonLocalPointerInfo::iterator It =
872 NonLocalPointerDeps.find(P);
873 if (It == NonLocalPointerDeps.end()) return;
875 // Remove all of the entries in the BB->val map. This involves removing
876 // instructions from the reverse map.
877 NonLocalDepInfo &PInfo = It->second.second;
879 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
880 Instruction *Target = PInfo[i].second.getInst();
881 if (Target == 0) continue; // Ignore non-local dep results.
882 assert(Target->getParent() == PInfo[i].first);
884 // Eliminating the dirty entry from 'Cache', so update the reverse info.
885 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
888 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
889 NonLocalPointerDeps.erase(It);
893 /// invalidateCachedPointerInfo - This method is used to invalidate cached
894 /// information about the specified pointer, because it may be too
895 /// conservative in memdep. This is an optional call that can be used when
896 /// the client detects an equivalence between the pointer and some other
897 /// value and replaces the other value with ptr. This can make Ptr available
898 /// in more places that cached info does not necessarily keep.
899 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
900 // If Ptr isn't really a pointer, just ignore it.
901 if (!isa<PointerType>(Ptr->getType())) return;
902 // Flush store info for the pointer.
903 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
904 // Flush load info for the pointer.
905 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
908 /// removeInstruction - Remove an instruction from the dependence analysis,
909 /// updating the dependence of instructions that previously depended on it.
910 /// This method attempts to keep the cache coherent using the reverse map.
911 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
912 // Walk through the Non-local dependencies, removing this one as the value
913 // for any cached queries.
914 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
915 if (NLDI != NonLocalDeps.end()) {
916 NonLocalDepInfo &BlockMap = NLDI->second.first;
917 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
918 DI != DE; ++DI)
919 if (Instruction *Inst = DI->second.getInst())
920 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
921 NonLocalDeps.erase(NLDI);
924 // If we have a cached local dependence query for this instruction, remove it.
926 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
927 if (LocalDepEntry != LocalDeps.end()) {
928 // Remove us from DepInst's reverse set now that the local dep info is gone.
929 if (Instruction *Inst = LocalDepEntry->second.getInst())
930 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
932 // Remove this local dependency info.
933 LocalDeps.erase(LocalDepEntry);
936 // If we have any cached pointer dependencies on this instruction, remove
937 // them. If the instruction has non-pointer type, then it can't be a pointer
938 // base.
940 // Remove it from both the load info and the store info. The instruction
941 // can't be in either of these maps if it is non-pointer.
942 if (isa<PointerType>(RemInst->getType())) {
943 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
944 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
947 // Loop over all of the things that depend on the instruction we're removing.
949 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
951 // If we find RemInst as a clobber or Def in any of the maps for other values,
952 // we need to replace its entry with a dirty version of the instruction after
953 // it. If RemInst is a terminator, we use a null dirty value.
955 // Using a dirty version of the instruction after RemInst saves having to scan
956 // the entire block to get to this point.
957 MemDepResult NewDirtyVal;
958 if (!RemInst->isTerminator())
959 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
961 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
962 if (ReverseDepIt != ReverseLocalDeps.end()) {
963 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
964 // RemInst can't be the terminator if it has local stuff depending on it.
965 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
966 "Nothing can locally depend on a terminator");
968 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
969 E = ReverseDeps.end(); I != E; ++I) {
970 Instruction *InstDependingOnRemInst = *I;
971 assert(InstDependingOnRemInst != RemInst &&
972 "Already removed our local dep info");
974 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
976 // Make sure to remember that new things depend on NewDepInst.
977 assert(NewDirtyVal.getInst() && "There is no way something else can have "
978 "a local dep on this if it is a terminator!");
979 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
980 InstDependingOnRemInst));
983 ReverseLocalDeps.erase(ReverseDepIt);
985 // Add new reverse deps after scanning the set, to avoid invalidating the
986 // 'ReverseDeps' reference.
987 while (!ReverseDepsToAdd.empty()) {
988 ReverseLocalDeps[ReverseDepsToAdd.back().first]
989 .insert(ReverseDepsToAdd.back().second);
990 ReverseDepsToAdd.pop_back();
994 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
995 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
996 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
997 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
998 I != E; ++I) {
999 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1001 PerInstNLInfo &INLD = NonLocalDeps[*I];
1002 // The information is now dirty!
1003 INLD.second = true;
1005 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1006 DE = INLD.first.end(); DI != DE; ++DI) {
1007 if (DI->second.getInst() != RemInst) continue;
1009 // Convert to a dirty entry for the subsequent instruction.
1010 DI->second = NewDirtyVal;
1012 if (Instruction *NextI = NewDirtyVal.getInst())
1013 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1017 ReverseNonLocalDeps.erase(ReverseDepIt);
1019 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1020 while (!ReverseDepsToAdd.empty()) {
1021 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1022 .insert(ReverseDepsToAdd.back().second);
1023 ReverseDepsToAdd.pop_back();
1027 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1028 // value in the NonLocalPointerDeps info.
1029 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1030 ReverseNonLocalPtrDeps.find(RemInst);
1031 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1032 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1033 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1035 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1036 E = Set.end(); I != E; ++I) {
1037 ValueIsLoadPair P = *I;
1038 assert(P.getPointer() != RemInst &&
1039 "Already removed NonLocalPointerDeps info for RemInst");
1041 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1043 // The cache is not valid for any specific block anymore.
1044 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1046 // Update any entries for RemInst to use the instruction after it.
1047 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1048 DI != DE; ++DI) {
1049 if (DI->second.getInst() != RemInst) continue;
1051 // Convert to a dirty entry for the subsequent instruction.
1052 DI->second = NewDirtyVal;
1054 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1055 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1058 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1059 // subsequent value may invalidate the sortedness.
1060 std::sort(NLPDI.begin(), NLPDI.end());
1063 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1065 while (!ReversePtrDepsToAdd.empty()) {
1066 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1067 .insert(ReversePtrDepsToAdd.back().second);
1068 ReversePtrDepsToAdd.pop_back();
1073 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1074 AA->deleteValue(RemInst);
1075 DEBUG(verifyRemoved(RemInst));
1077 /// verifyRemoved - Verify that the specified instruction does not occur
1078 /// in our internal data structures.
1079 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1080 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1081 E = LocalDeps.end(); I != E; ++I) {
1082 assert(I->first != D && "Inst occurs in data structures");
1083 assert(I->second.getInst() != D &&
1084 "Inst occurs in data structures");
1087 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1088 E = NonLocalPointerDeps.end(); I != E; ++I) {
1089 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1090 const NonLocalDepInfo &Val = I->second.second;
1091 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1092 II != E; ++II)
1093 assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1096 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1097 E = NonLocalDeps.end(); I != E; ++I) {
1098 assert(I->first != D && "Inst occurs in data structures");
1099 const PerInstNLInfo &INLD = I->second;
1100 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1101 EE = INLD.first.end(); II != EE; ++II)
1102 assert(II->second.getInst() != D && "Inst occurs in data structures");
1105 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1106 E = ReverseLocalDeps.end(); I != E; ++I) {
1107 assert(I->first != D && "Inst occurs in data structures");
1108 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1109 EE = I->second.end(); II != EE; ++II)
1110 assert(*II != D && "Inst occurs in data structures");
1113 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1114 E = ReverseNonLocalDeps.end();
1115 I != E; ++I) {
1116 assert(I->first != D && "Inst occurs in data structures");
1117 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1118 EE = I->second.end(); II != EE; ++II)
1119 assert(*II != D && "Inst occurs in data structures");
1122 for (ReverseNonLocalPtrDepTy::const_iterator
1123 I = ReverseNonLocalPtrDeps.begin(),
1124 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1125 assert(I->first != D && "Inst occurs in rev NLPD map");
1127 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1128 E = I->second.end(); II != E; ++II)
1129 assert(*II != ValueIsLoadPair(D, false) &&
1130 *II != ValueIsLoadPair(D, true) &&
1131 "Inst occurs in ReverseNonLocalPtrDeps map");