1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains routines that help analyze properties that chains of
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/Support/GetElementPtrTypeIterator.h"
22 #include "llvm/Support/MathExtras.h"
26 /// getOpcode - If this is an Instruction or a ConstantExpr, return the
27 /// opcode value. Otherwise return UserOp1.
28 static unsigned getOpcode(const Value
*V
) {
29 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
30 return I
->getOpcode();
31 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
32 return CE
->getOpcode();
33 // Use UserOp1 to mean there's no opcode.
34 return Instruction::UserOp1
;
38 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
39 /// known to be either zero or one and return them in the KnownZero/KnownOne
40 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
42 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
43 /// we cannot optimize based on the assumption that it is zero without changing
44 /// it to be an explicit zero. If we don't change it to zero, other code could
45 /// optimized based on the contradictory assumption that it is non-zero.
46 /// Because instcombine aggressively folds operations with undef args anyway,
47 /// this won't lose us code quality.
48 void llvm::ComputeMaskedBits(Value
*V
, const APInt
&Mask
,
49 APInt
&KnownZero
, APInt
&KnownOne
,
50 TargetData
*TD
, unsigned Depth
) {
51 assert(V
&& "No Value?");
52 assert(Depth
<= 6 && "Limit Search Depth");
53 unsigned BitWidth
= Mask
.getBitWidth();
54 assert((V
->getType()->isInteger() || isa
<PointerType
>(V
->getType())) &&
55 "Not integer or pointer type!");
56 assert((!TD
|| TD
->getTypeSizeInBits(V
->getType()) == BitWidth
) &&
57 (!isa
<IntegerType
>(V
->getType()) ||
58 V
->getType()->getPrimitiveSizeInBits() == BitWidth
) &&
59 KnownZero
.getBitWidth() == BitWidth
&&
60 KnownOne
.getBitWidth() == BitWidth
&&
61 "V, Mask, KnownOne and KnownZero should have same BitWidth");
63 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
64 // We know all of the bits for a constant!
65 KnownOne
= CI
->getValue() & Mask
;
66 KnownZero
= ~KnownOne
& Mask
;
70 if (isa
<ConstantPointerNull
>(V
)) {
75 // The address of an aligned GlobalValue has trailing zeros.
76 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
77 unsigned Align
= GV
->getAlignment();
78 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized())
79 Align
= TD
->getPrefTypeAlignment(GV
->getType()->getElementType());
81 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
82 CountTrailingZeros_32(Align
));
89 KnownZero
.clear(); KnownOne
.clear(); // Start out not knowing anything.
91 if (Depth
== 6 || Mask
== 0)
92 return; // Limit search depth.
94 User
*I
= dyn_cast
<User
>(V
);
97 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
98 switch (getOpcode(I
)) {
100 case Instruction::And
: {
101 // If either the LHS or the RHS are Zero, the result is zero.
102 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
103 APInt
Mask2(Mask
& ~KnownZero
);
104 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
106 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
107 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
109 // Output known-1 bits are only known if set in both the LHS & RHS.
110 KnownOne
&= KnownOne2
;
111 // Output known-0 are known to be clear if zero in either the LHS | RHS.
112 KnownZero
|= KnownZero2
;
115 case Instruction::Or
: {
116 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
117 APInt
Mask2(Mask
& ~KnownOne
);
118 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
120 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
121 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
123 // Output known-0 bits are only known if clear in both the LHS & RHS.
124 KnownZero
&= KnownZero2
;
125 // Output known-1 are known to be set if set in either the LHS | RHS.
126 KnownOne
|= KnownOne2
;
129 case Instruction::Xor
: {
130 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
131 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, TD
,
133 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
134 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
136 // Output known-0 bits are known if clear or set in both the LHS & RHS.
137 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
138 // Output known-1 are known to be set if set in only one of the LHS, RHS.
139 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
140 KnownZero
= KnownZeroOut
;
143 case Instruction::Mul
: {
144 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
145 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero
, KnownOne
, TD
,Depth
+1);
146 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
148 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
149 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
151 // If low bits are zero in either operand, output low known-0 bits.
152 // Also compute a conserative estimate for high known-0 bits.
153 // More trickiness is possible, but this is sufficient for the
154 // interesting case of alignment computation.
156 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
157 KnownZero2
.countTrailingOnes();
158 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
159 KnownZero2
.countLeadingOnes(),
160 BitWidth
) - BitWidth
;
162 TrailZ
= std::min(TrailZ
, BitWidth
);
163 LeadZ
= std::min(LeadZ
, BitWidth
);
164 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
165 APInt::getHighBitsSet(BitWidth
, LeadZ
);
169 case Instruction::UDiv
: {
170 // For the purposes of computing leading zeros we can conservatively
171 // treat a udiv as a logical right shift by the power of 2 known to
172 // be less than the denominator.
173 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
174 ComputeMaskedBits(I
->getOperand(0),
175 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
176 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
180 ComputeMaskedBits(I
->getOperand(1),
181 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
182 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
183 if (RHSUnknownLeadingOnes
!= BitWidth
)
184 LeadZ
= std::min(BitWidth
,
185 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
187 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
190 case Instruction::Select
:
191 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
192 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, TD
,
194 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
195 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
197 // Only known if known in both the LHS and RHS.
198 KnownOne
&= KnownOne2
;
199 KnownZero
&= KnownZero2
;
201 case Instruction::FPTrunc
:
202 case Instruction::FPExt
:
203 case Instruction::FPToUI
:
204 case Instruction::FPToSI
:
205 case Instruction::SIToFP
:
206 case Instruction::UIToFP
:
207 return; // Can't work with floating point.
208 case Instruction::PtrToInt
:
209 case Instruction::IntToPtr
:
210 // We can't handle these if we don't know the pointer size.
212 // FALL THROUGH and handle them the same as zext/trunc.
213 case Instruction::ZExt
:
214 case Instruction::Trunc
: {
215 // Note that we handle pointer operands here because of inttoptr/ptrtoint
216 // which fall through here.
217 const Type
*SrcTy
= I
->getOperand(0)->getType();
218 unsigned SrcBitWidth
= TD
?
219 TD
->getTypeSizeInBits(SrcTy
) :
220 SrcTy
->getPrimitiveSizeInBits();
222 MaskIn
.zextOrTrunc(SrcBitWidth
);
223 KnownZero
.zextOrTrunc(SrcBitWidth
);
224 KnownOne
.zextOrTrunc(SrcBitWidth
);
225 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
227 KnownZero
.zextOrTrunc(BitWidth
);
228 KnownOne
.zextOrTrunc(BitWidth
);
229 // Any top bits are known to be zero.
230 if (BitWidth
> SrcBitWidth
)
231 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
234 case Instruction::BitCast
: {
235 const Type
*SrcTy
= I
->getOperand(0)->getType();
236 if (SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) {
237 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
243 case Instruction::SExt
: {
244 // Compute the bits in the result that are not present in the input.
245 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
246 unsigned SrcBitWidth
= SrcTy
->getBitWidth();
249 MaskIn
.trunc(SrcBitWidth
);
250 KnownZero
.trunc(SrcBitWidth
);
251 KnownOne
.trunc(SrcBitWidth
);
252 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
254 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
255 KnownZero
.zext(BitWidth
);
256 KnownOne
.zext(BitWidth
);
258 // If the sign bit of the input is known set or clear, then we know the
259 // top bits of the result.
260 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
261 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
262 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
263 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
266 case Instruction::Shl
:
267 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
268 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
269 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
270 APInt
Mask2(Mask
.lshr(ShiftAmt
));
271 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
273 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
274 KnownZero
<<= ShiftAmt
;
275 KnownOne
<<= ShiftAmt
;
276 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
280 case Instruction::LShr
:
281 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
282 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
283 // Compute the new bits that are at the top now.
284 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
286 // Unsigned shift right.
287 APInt
Mask2(Mask
.shl(ShiftAmt
));
288 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
, TD
,
290 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
291 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
292 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
293 // high bits known zero.
294 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
298 case Instruction::AShr
:
299 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
300 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
301 // Compute the new bits that are at the top now.
302 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
304 // Signed shift right.
305 APInt
Mask2(Mask
.shl(ShiftAmt
));
306 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
308 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
309 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
310 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
312 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
313 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
314 KnownZero
|= HighBits
;
315 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
316 KnownOne
|= HighBits
;
320 case Instruction::Sub
: {
321 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
322 // We know that the top bits of C-X are clear if X contains less bits
323 // than C (i.e. no wrap-around can happen). For example, 20-X is
324 // positive if we can prove that X is >= 0 and < 16.
325 if (!CLHS
->getValue().isNegative()) {
326 unsigned NLZ
= (CLHS
->getValue()+1).countLeadingZeros();
327 // NLZ can't be BitWidth with no sign bit
328 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
329 ComputeMaskedBits(I
->getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
332 // If all of the MaskV bits are known to be zero, then we know the
333 // output top bits are zero, because we now know that the output is
335 if ((KnownZero2
& MaskV
) == MaskV
) {
336 unsigned NLZ2
= CLHS
->getValue().countLeadingZeros();
337 // Top bits known zero.
338 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
344 case Instruction::Add
: {
345 // Output known-0 bits are known if clear or set in both the low clear bits
346 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
348 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
349 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
351 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
352 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
354 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero2
, KnownOne2
, TD
,
356 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
357 KnownZeroOut
= std::min(KnownZeroOut
,
358 KnownZero2
.countTrailingOnes());
360 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
363 case Instruction::SRem
:
364 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
365 APInt RA
= Rem
->getValue();
366 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
367 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
368 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
369 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
372 // If the sign bit of the first operand is zero, the sign bit of
373 // the result is zero. If the first operand has no one bits below
374 // the second operand's single 1 bit, its sign will be zero.
375 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
376 KnownZero2
|= ~LowBits
;
378 KnownZero
|= KnownZero2
& Mask
;
380 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
384 case Instruction::URem
: {
385 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
386 APInt RA
= Rem
->getValue();
387 if (RA
.isPowerOf2()) {
388 APInt LowBits
= (RA
- 1);
389 APInt Mask2
= LowBits
& Mask
;
390 KnownZero
|= ~LowBits
& Mask
;
391 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
393 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
398 // Since the result is less than or equal to either operand, any leading
399 // zero bits in either operand must also exist in the result.
400 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
401 ComputeMaskedBits(I
->getOperand(0), AllOnes
, KnownZero
, KnownOne
,
403 ComputeMaskedBits(I
->getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
406 unsigned Leaders
= std::max(KnownZero
.countLeadingOnes(),
407 KnownZero2
.countLeadingOnes());
409 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
413 case Instruction::Alloca
:
414 case Instruction::Malloc
: {
415 AllocationInst
*AI
= cast
<AllocationInst
>(V
);
416 unsigned Align
= AI
->getAlignment();
417 if (Align
== 0 && TD
) {
418 if (isa
<AllocaInst
>(AI
))
419 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
420 else if (isa
<MallocInst
>(AI
)) {
421 // Malloc returns maximally aligned memory.
422 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
425 (unsigned)TD
->getABITypeAlignment(Type::DoubleTy
));
428 (unsigned)TD
->getABITypeAlignment(Type::Int64Ty
));
433 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
434 CountTrailingZeros_32(Align
));
437 case Instruction::GetElementPtr
: {
438 // Analyze all of the subscripts of this getelementptr instruction
439 // to determine if we can prove known low zero bits.
440 APInt LocalMask
= APInt::getAllOnesValue(BitWidth
);
441 APInt
LocalKnownZero(BitWidth
, 0), LocalKnownOne(BitWidth
, 0);
442 ComputeMaskedBits(I
->getOperand(0), LocalMask
,
443 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
444 unsigned TrailZ
= LocalKnownZero
.countTrailingOnes();
446 gep_type_iterator GTI
= gep_type_begin(I
);
447 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
448 Value
*Index
= I
->getOperand(i
);
449 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
450 // Handle struct member offset arithmetic.
452 const StructLayout
*SL
= TD
->getStructLayout(STy
);
453 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
454 uint64_t Offset
= SL
->getElementOffset(Idx
);
455 TrailZ
= std::min(TrailZ
,
456 CountTrailingZeros_64(Offset
));
458 // Handle array index arithmetic.
459 const Type
*IndexedTy
= GTI
.getIndexedType();
460 if (!IndexedTy
->isSized()) return;
461 unsigned GEPOpiBits
= Index
->getType()->getPrimitiveSizeInBits();
462 uint64_t TypeSize
= TD
? TD
->getTypePaddedSize(IndexedTy
) : 1;
463 LocalMask
= APInt::getAllOnesValue(GEPOpiBits
);
464 LocalKnownZero
= LocalKnownOne
= APInt(GEPOpiBits
, 0);
465 ComputeMaskedBits(Index
, LocalMask
,
466 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
467 TrailZ
= std::min(TrailZ
,
468 unsigned(CountTrailingZeros_64(TypeSize
) +
469 LocalKnownZero
.countTrailingOnes()));
473 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) & Mask
;
476 case Instruction::PHI
: {
477 PHINode
*P
= cast
<PHINode
>(I
);
478 // Handle the case of a simple two-predecessor recurrence PHI.
479 // There's a lot more that could theoretically be done here, but
480 // this is sufficient to catch some interesting cases.
481 if (P
->getNumIncomingValues() == 2) {
482 for (unsigned i
= 0; i
!= 2; ++i
) {
483 Value
*L
= P
->getIncomingValue(i
);
484 Value
*R
= P
->getIncomingValue(!i
);
485 User
*LU
= dyn_cast
<User
>(L
);
488 unsigned Opcode
= getOpcode(LU
);
489 // Check for operations that have the property that if
490 // both their operands have low zero bits, the result
491 // will have low zero bits.
492 if (Opcode
== Instruction::Add
||
493 Opcode
== Instruction::Sub
||
494 Opcode
== Instruction::And
||
495 Opcode
== Instruction::Or
||
496 Opcode
== Instruction::Mul
) {
497 Value
*LL
= LU
->getOperand(0);
498 Value
*LR
= LU
->getOperand(1);
499 // Find a recurrence.
506 // Ok, we have a PHI of the form L op= R. Check for low
508 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
509 ComputeMaskedBits(R
, Mask2
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
510 Mask2
= APInt::getLowBitsSet(BitWidth
,
511 KnownZero2
.countTrailingOnes());
513 // We need to take the minimum number of known bits
514 APInt
KnownZero3(KnownZero
), KnownOne3(KnownOne
);
515 ComputeMaskedBits(L
, Mask2
, KnownZero3
, KnownOne3
, TD
, Depth
+1);
518 APInt::getLowBitsSet(BitWidth
,
519 std::min(KnownZero2
.countTrailingOnes(),
520 KnownZero3
.countTrailingOnes()));
527 case Instruction::Call
:
528 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
529 switch (II
->getIntrinsicID()) {
531 case Intrinsic::ctpop
:
532 case Intrinsic::ctlz
:
533 case Intrinsic::cttz
: {
534 unsigned LowBits
= Log2_32(BitWidth
)+1;
535 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
544 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
545 /// this predicate to simplify operations downstream. Mask is known to be zero
546 /// for bits that V cannot have.
547 bool llvm::MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
548 TargetData
*TD
, unsigned Depth
) {
549 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
550 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
551 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
552 return (KnownZero
& Mask
) == Mask
;
557 /// ComputeNumSignBits - Return the number of times the sign bit of the
558 /// register is replicated into the other bits. We know that at least 1 bit
559 /// is always equal to the sign bit (itself), but other cases can give us
560 /// information. For example, immediately after an "ashr X, 2", we know that
561 /// the top 3 bits are all equal to each other, so we return 3.
563 /// 'Op' must have a scalar integer type.
565 unsigned llvm::ComputeNumSignBits(Value
*V
, TargetData
*TD
, unsigned Depth
) {
566 const IntegerType
*Ty
= cast
<IntegerType
>(V
->getType());
567 unsigned TyBits
= Ty
->getBitWidth();
569 unsigned FirstAnswer
= 1;
571 // Note that ConstantInt is handled by the general ComputeMaskedBits case
575 return 1; // Limit search depth.
577 User
*U
= dyn_cast
<User
>(V
);
578 switch (getOpcode(V
)) {
580 case Instruction::SExt
:
581 Tmp
= TyBits
-cast
<IntegerType
>(U
->getOperand(0)->getType())->getBitWidth();
582 return ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1) + Tmp
;
584 case Instruction::AShr
:
585 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
586 // ashr X, C -> adds C sign bits.
587 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
588 Tmp
+= C
->getZExtValue();
589 if (Tmp
> TyBits
) Tmp
= TyBits
;
592 case Instruction::Shl
:
593 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
594 // shl destroys sign bits.
595 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
596 if (C
->getZExtValue() >= TyBits
|| // Bad shift.
597 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
598 return Tmp
- C
->getZExtValue();
601 case Instruction::And
:
602 case Instruction::Or
:
603 case Instruction::Xor
: // NOT is handled here.
604 // Logical binary ops preserve the number of sign bits at the worst.
605 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
607 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
608 FirstAnswer
= std::min(Tmp
, Tmp2
);
609 // We computed what we know about the sign bits as our first
610 // answer. Now proceed to the generic code that uses
611 // ComputeMaskedBits, and pick whichever answer is better.
615 case Instruction::Select
:
616 Tmp
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
617 if (Tmp
== 1) return 1; // Early out.
618 Tmp2
= ComputeNumSignBits(U
->getOperand(2), TD
, Depth
+1);
619 return std::min(Tmp
, Tmp2
);
621 case Instruction::Add
:
622 // Add can have at most one carry bit. Thus we know that the output
623 // is, at worst, one more bit than the inputs.
624 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
625 if (Tmp
== 1) return 1; // Early out.
627 // Special case decrementing a value (ADD X, -1):
628 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
629 if (CRHS
->isAllOnesValue()) {
630 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
631 APInt Mask
= APInt::getAllOnesValue(TyBits
);
632 ComputeMaskedBits(U
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
635 // If the input is known to be 0 or 1, the output is 0/-1, which is all
637 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
640 // If we are subtracting one from a positive number, there is no carry
641 // out of the result.
642 if (KnownZero
.isNegative())
646 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
647 if (Tmp2
== 1) return 1;
648 return std::min(Tmp
, Tmp2
)-1;
651 case Instruction::Sub
:
652 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
653 if (Tmp2
== 1) return 1;
656 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(U
->getOperand(0)))
657 if (CLHS
->isNullValue()) {
658 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
659 APInt Mask
= APInt::getAllOnesValue(TyBits
);
660 ComputeMaskedBits(U
->getOperand(1), Mask
, KnownZero
, KnownOne
,
662 // If the input is known to be 0 or 1, the output is 0/-1, which is all
664 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
667 // If the input is known to be positive (the sign bit is known clear),
668 // the output of the NEG has the same number of sign bits as the input.
669 if (KnownZero
.isNegative())
672 // Otherwise, we treat this like a SUB.
675 // Sub can have at most one carry bit. Thus we know that the output
676 // is, at worst, one more bit than the inputs.
677 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
678 if (Tmp
== 1) return 1; // Early out.
679 return std::min(Tmp
, Tmp2
)-1;
681 case Instruction::Trunc
:
682 // FIXME: it's tricky to do anything useful for this, but it is an important
683 // case for targets like X86.
687 // Finally, if we can prove that the top bits of the result are 0's or 1's,
688 // use this information.
689 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
690 APInt Mask
= APInt::getAllOnesValue(TyBits
);
691 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
693 if (KnownZero
.isNegative()) { // sign bit is 0
695 } else if (KnownOne
.isNegative()) { // sign bit is 1;
702 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
703 // the number of identical bits in the top of the input value.
705 Mask
<<= Mask
.getBitWidth()-TyBits
;
706 // Return # leading zeros. We use 'min' here in case Val was zero before
707 // shifting. We don't want to return '64' as for an i32 "0".
708 return std::max(FirstAnswer
, std::min(TyBits
, Mask
.countLeadingZeros()));
711 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
712 /// value is never equal to -0.0.
714 /// NOTE: this function will need to be revisited when we support non-default
717 bool llvm::CannotBeNegativeZero(const Value
*V
, unsigned Depth
) {
718 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
))
719 return !CFP
->getValueAPF().isNegZero();
722 return 1; // Limit search depth.
724 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
725 if (I
== 0) return false;
727 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
728 if (I
->getOpcode() == Instruction::Add
&&
729 isa
<ConstantFP
>(I
->getOperand(1)) &&
730 cast
<ConstantFP
>(I
->getOperand(1))->isNullValue())
733 // sitofp and uitofp turn into +0.0 for zero.
734 if (isa
<SIToFPInst
>(I
) || isa
<UIToFPInst
>(I
))
737 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
738 // sqrt(-0.0) = -0.0, no other negative results are possible.
739 if (II
->getIntrinsicID() == Intrinsic::sqrt
)
740 return CannotBeNegativeZero(II
->getOperand(1), Depth
+1);
742 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
743 if (const Function
*F
= CI
->getCalledFunction()) {
744 if (F
->isDeclaration()) {
745 switch (F
->getNameLen()) {
746 case 3: // abs(x) != -0.0
747 if (!strcmp(F
->getNameStart(), "abs")) return true;
749 case 4: // abs[lf](x) != -0.0
750 if (!strcmp(F
->getNameStart(), "absf")) return true;
751 if (!strcmp(F
->getNameStart(), "absl")) return true;
760 // This is the recursive version of BuildSubAggregate. It takes a few different
761 // arguments. Idxs is the index within the nested struct From that we are
762 // looking at now (which is of type IndexedType). IdxSkip is the number of
763 // indices from Idxs that should be left out when inserting into the resulting
764 // struct. To is the result struct built so far, new insertvalue instructions
766 Value
*BuildSubAggregate(Value
*From
, Value
* To
, const Type
*IndexedType
,
767 SmallVector
<unsigned, 10> &Idxs
,
769 Instruction
*InsertBefore
) {
770 const llvm::StructType
*STy
= llvm::dyn_cast
<llvm::StructType
>(IndexedType
);
772 // Save the original To argument so we can modify it
774 // General case, the type indexed by Idxs is a struct
775 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
776 // Process each struct element recursively
779 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
783 // Couldn't find any inserted value for this index? Cleanup
784 while (PrevTo
!= OrigTo
) {
785 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
786 PrevTo
= Del
->getAggregateOperand();
787 Del
->eraseFromParent();
789 // Stop processing elements
793 // If we succesfully found a value for each of our subaggregates
797 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
798 // the struct's elements had a value that was inserted directly. In the latter
799 // case, perhaps we can't determine each of the subelements individually, but
800 // we might be able to find the complete struct somewhere.
802 // Find the value that is at that particular spot
803 Value
*V
= FindInsertedValue(From
, Idxs
.begin(), Idxs
.end());
808 // Insert the value in the new (sub) aggregrate
809 return llvm::InsertValueInst::Create(To
, V
, Idxs
.begin() + IdxSkip
,
810 Idxs
.end(), "tmp", InsertBefore
);
813 // This helper takes a nested struct and extracts a part of it (which is again a
814 // struct) into a new value. For example, given the struct:
815 // { a, { b, { c, d }, e } }
816 // and the indices "1, 1" this returns
819 // It does this by inserting an insertvalue for each element in the resulting
820 // struct, as opposed to just inserting a single struct. This will only work if
821 // each of the elements of the substruct are known (ie, inserted into From by an
822 // insertvalue instruction somewhere).
824 // All inserted insertvalue instructions are inserted before InsertBefore
825 Value
*BuildSubAggregate(Value
*From
, const unsigned *idx_begin
,
826 const unsigned *idx_end
, Instruction
*InsertBefore
) {
827 assert(InsertBefore
&& "Must have someplace to insert!");
828 const Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
831 Value
*To
= UndefValue::get(IndexedType
);
832 SmallVector
<unsigned, 10> Idxs(idx_begin
, idx_end
);
833 unsigned IdxSkip
= Idxs
.size();
835 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
, InsertBefore
);
838 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
839 /// the scalar value indexed is already around as a register, for example if it
840 /// were inserted directly into the aggregrate.
842 /// If InsertBefore is not null, this function will duplicate (modified)
843 /// insertvalues when a part of a nested struct is extracted.
844 Value
*llvm::FindInsertedValue(Value
*V
, const unsigned *idx_begin
,
845 const unsigned *idx_end
, Instruction
*InsertBefore
) {
846 // Nothing to index? Just return V then (this is useful at the end of our
848 if (idx_begin
== idx_end
)
850 // We have indices, so V should have an indexable type
851 assert((isa
<StructType
>(V
->getType()) || isa
<ArrayType
>(V
->getType()))
852 && "Not looking at a struct or array?");
853 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_begin
, idx_end
)
854 && "Invalid indices for type?");
855 const CompositeType
*PTy
= cast
<CompositeType
>(V
->getType());
857 if (isa
<UndefValue
>(V
))
858 return UndefValue::get(ExtractValueInst::getIndexedType(PTy
,
861 else if (isa
<ConstantAggregateZero
>(V
))
862 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy
,
865 else if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
866 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
))
867 // Recursively process this constant
868 return FindInsertedValue(C
->getOperand(*idx_begin
), idx_begin
+ 1, idx_end
,
870 } else if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
871 // Loop the indices for the insertvalue instruction in parallel with the
873 const unsigned *req_idx
= idx_begin
;
874 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
875 i
!= e
; ++i
, ++req_idx
) {
876 if (req_idx
== idx_end
) {
878 // The requested index identifies a part of a nested aggregate. Handle
879 // this specially. For example,
880 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
881 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
882 // %C = extractvalue {i32, { i32, i32 } } %B, 1
883 // This can be changed into
884 // %A = insertvalue {i32, i32 } undef, i32 10, 0
885 // %C = insertvalue {i32, i32 } %A, i32 11, 1
886 // which allows the unused 0,0 element from the nested struct to be
888 return BuildSubAggregate(V
, idx_begin
, req_idx
, InsertBefore
);
890 // We can't handle this without inserting insertvalues
894 // This insert value inserts something else than what we are looking for.
895 // See if the (aggregrate) value inserted into has the value we are
896 // looking for, then.
898 return FindInsertedValue(I
->getAggregateOperand(), idx_begin
, idx_end
,
901 // If we end up here, the indices of the insertvalue match with those
902 // requested (though possibly only partially). Now we recursively look at
903 // the inserted value, passing any remaining indices.
904 return FindInsertedValue(I
->getInsertedValueOperand(), req_idx
, idx_end
,
906 } else if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
907 // If we're extracting a value from an aggregrate that was extracted from
908 // something else, we can extract from that something else directly instead.
909 // However, we will need to chain I's indices with the requested indices.
911 // Calculate the number of indices required
912 unsigned size
= I
->getNumIndices() + (idx_end
- idx_begin
);
913 // Allocate some space to put the new indices in
914 SmallVector
<unsigned, 5> Idxs
;
916 // Add indices from the extract value instruction
917 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
921 // Add requested indices
922 for (const unsigned *i
= idx_begin
, *e
= idx_end
; i
!= e
; ++i
)
925 assert(Idxs
.size() == size
926 && "Number of indices added not correct?");
928 return FindInsertedValue(I
->getAggregateOperand(), Idxs
.begin(), Idxs
.end(),
931 // Otherwise, we don't know (such as, extracting from a function return value
932 // or load instruction)
936 /// GetConstantStringInfo - This function computes the length of a
937 /// null-terminated C string pointed to by V. If successful, it returns true
938 /// and returns the string in Str. If unsuccessful, it returns false.
939 bool llvm::GetConstantStringInfo(Value
*V
, std::string
&Str
, uint64_t Offset
,
941 // If V is NULL then return false;
942 if (V
== NULL
) return false;
944 // Look through bitcast instructions.
945 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
946 return GetConstantStringInfo(BCI
->getOperand(0), Str
, Offset
, StopAtNul
);
948 // If the value is not a GEP instruction nor a constant expression with a
949 // GEP instruction, then return false because ConstantArray can't occur
952 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
954 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
955 if (CE
->getOpcode() == Instruction::BitCast
)
956 return GetConstantStringInfo(CE
->getOperand(0), Str
, Offset
, StopAtNul
);
957 if (CE
->getOpcode() != Instruction::GetElementPtr
)
963 // Make sure the GEP has exactly three arguments.
964 if (GEP
->getNumOperands() != 3)
967 // Make sure the index-ee is a pointer to array of i8.
968 const PointerType
*PT
= cast
<PointerType
>(GEP
->getOperand(0)->getType());
969 const ArrayType
*AT
= dyn_cast
<ArrayType
>(PT
->getElementType());
970 if (AT
== 0 || AT
->getElementType() != Type::Int8Ty
)
973 // Check to make sure that the first operand of the GEP is an integer and
974 // has value 0 so that we are sure we're indexing into the initializer.
975 ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
976 if (FirstIdx
== 0 || !FirstIdx
->isZero())
979 // If the second index isn't a ConstantInt, then this is a variable index
980 // into the array. If this occurs, we can't say anything meaningful about
982 uint64_t StartIdx
= 0;
983 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
984 StartIdx
= CI
->getZExtValue();
987 return GetConstantStringInfo(GEP
->getOperand(0), Str
, StartIdx
+Offset
,
991 // The GEP instruction, constant or instruction, must reference a global
992 // variable that is a constant and is initialized. The referenced constant
993 // initializer is the array that we'll use for optimization.
994 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V
);
995 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer())
997 Constant
*GlobalInit
= GV
->getInitializer();
999 // Handle the ConstantAggregateZero case
1000 if (isa
<ConstantAggregateZero
>(GlobalInit
)) {
1001 // This is a degenerate case. The initializer is constant zero so the
1002 // length of the string must be zero.
1007 // Must be a Constant Array
1008 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1009 if (Array
== 0 || Array
->getType()->getElementType() != Type::Int8Ty
)
1012 // Get the number of elements in the array
1013 uint64_t NumElts
= Array
->getType()->getNumElements();
1015 if (Offset
> NumElts
)
1018 // Traverse the constant array from 'Offset' which is the place the GEP refers
1020 Str
.reserve(NumElts
-Offset
);
1021 for (unsigned i
= Offset
; i
!= NumElts
; ++i
) {
1022 Constant
*Elt
= Array
->getOperand(i
);
1023 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1024 if (!CI
) // This array isn't suitable, non-int initializer.
1026 if (StopAtNul
&& CI
->isZero())
1027 return true; // we found end of string, success!
1028 Str
+= (char)CI
->getZExtValue();
1031 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.