1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/Target/TargetMachineRegistry.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Streams.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Config/config.h"
39 static cl::opt
<std::string
>
40 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
41 cl::value_desc("function name"));
54 static cl::opt
<WhatToGenerate
> GenerationType("cppgen", cl::Optional
,
55 cl::desc("Choose what kind of output to generate"),
58 clEnumValN(GenProgram
, "program", "Generate a complete program"),
59 clEnumValN(GenModule
, "module", "Generate a module definition"),
60 clEnumValN(GenContents
, "contents", "Generate contents of a module"),
61 clEnumValN(GenFunction
, "function", "Generate a function definition"),
62 clEnumValN(GenFunctions
,"functions", "Generate all function definitions"),
63 clEnumValN(GenInline
, "inline", "Generate an inline function"),
64 clEnumValN(GenVariable
, "variable", "Generate a variable definition"),
65 clEnumValN(GenType
, "type", "Generate a type definition"),
70 static cl::opt
<std::string
> NameToGenerate("cppfor", cl::Optional
,
71 cl::desc("Specify the name of the thing to generate"),
74 /// CppBackendTargetMachineModule - Note that this is used on hosts
75 /// that cannot link in a library unless there are references into the
76 /// library. In particular, it seems that it is not possible to get
77 /// things to work on Win32 without this. Though it is unused, do not
79 extern "C" int CppBackendTargetMachineModule
;
80 int CppBackendTargetMachineModule
= 0;
82 // Register the target.
83 static RegisterTarget
<CPPTargetMachine
> X("cpp", "C++ backend");
86 typedef std::vector
<const Type
*> TypeList
;
87 typedef std::map
<const Type
*,std::string
> TypeMap
;
88 typedef std::map
<const Value
*,std::string
> ValueMap
;
89 typedef std::set
<std::string
> NameSet
;
90 typedef std::set
<const Type
*> TypeSet
;
91 typedef std::set
<const Value
*> ValueSet
;
92 typedef std::map
<const Value
*,std::string
> ForwardRefMap
;
94 /// CppWriter - This class is the main chunk of code that converts an LLVM
95 /// module to a C++ translation unit.
96 class CppWriter
: public ModulePass
{
98 const Module
*TheModule
;
102 TypeMap UnresolvedTypes
;
105 TypeSet DefinedTypes
;
106 ValueSet DefinedValues
;
107 ForwardRefMap ForwardRefs
;
112 explicit CppWriter(raw_ostream
&o
) :
113 ModulePass(&ID
), Out(o
), uniqueNum(0), is_inline(false) {}
115 virtual const char *getPassName() const { return "C++ backend"; }
117 bool runOnModule(Module
&M
);
119 void printProgram(const std::string
& fname
, const std::string
& modName
);
120 void printModule(const std::string
& fname
, const std::string
& modName
);
121 void printContents(const std::string
& fname
, const std::string
& modName
);
122 void printFunction(const std::string
& fname
, const std::string
& funcName
);
123 void printFunctions();
124 void printInline(const std::string
& fname
, const std::string
& funcName
);
125 void printVariable(const std::string
& fname
, const std::string
& varName
);
126 void printType(const std::string
& fname
, const std::string
& typeName
);
128 void error(const std::string
& msg
);
131 void printLinkageType(GlobalValue::LinkageTypes LT
);
132 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes
);
133 void printCallingConv(unsigned cc
);
134 void printEscapedString(const std::string
& str
);
135 void printCFP(const ConstantFP
* CFP
);
137 std::string
getCppName(const Type
* val
);
138 inline void printCppName(const Type
* val
);
140 std::string
getCppName(const Value
* val
);
141 inline void printCppName(const Value
* val
);
143 void printAttributes(const AttrListPtr
&PAL
, const std::string
&name
);
144 bool printTypeInternal(const Type
* Ty
);
145 inline void printType(const Type
* Ty
);
146 void printTypes(const Module
* M
);
148 void printConstant(const Constant
*CPV
);
149 void printConstants(const Module
* M
);
151 void printVariableUses(const GlobalVariable
*GV
);
152 void printVariableHead(const GlobalVariable
*GV
);
153 void printVariableBody(const GlobalVariable
*GV
);
155 void printFunctionUses(const Function
*F
);
156 void printFunctionHead(const Function
*F
);
157 void printFunctionBody(const Function
*F
);
158 void printInstruction(const Instruction
*I
, const std::string
& bbname
);
159 std::string
getOpName(Value
*);
161 void printModuleBody();
164 static unsigned indent_level
= 0;
165 inline raw_ostream
& nl(raw_ostream
& Out
, int delta
= 0) {
167 if (delta
>= 0 || indent_level
>= unsigned(-delta
))
168 indent_level
+= delta
;
169 for (unsigned i
= 0; i
< indent_level
; ++i
)
174 inline void in() { indent_level
++; }
175 inline void out() { if (indent_level
>0) indent_level
--; }
178 sanitize(std::string
& str
) {
179 for (size_t i
= 0; i
< str
.length(); ++i
)
180 if (!isalnum(str
[i
]) && str
[i
] != '_')
185 getTypePrefix(const Type
* Ty
) {
186 switch (Ty
->getTypeID()) {
187 case Type::VoidTyID
: return "void_";
188 case Type::IntegerTyID
:
189 return std::string("int") + utostr(cast
<IntegerType
>(Ty
)->getBitWidth()) +
191 case Type::FloatTyID
: return "float_";
192 case Type::DoubleTyID
: return "double_";
193 case Type::LabelTyID
: return "label_";
194 case Type::FunctionTyID
: return "func_";
195 case Type::StructTyID
: return "struct_";
196 case Type::ArrayTyID
: return "array_";
197 case Type::PointerTyID
: return "ptr_";
198 case Type::VectorTyID
: return "packed_";
199 case Type::OpaqueTyID
: return "opaque_";
200 default: return "other_";
205 // Looks up the type in the symbol table and returns a pointer to its name or
206 // a null pointer if it wasn't found. Note that this isn't the same as the
207 // Mode::getTypeName function which will return an empty string, not a null
208 // pointer if the name is not found.
209 inline const std::string
*
210 findTypeName(const TypeSymbolTable
& ST
, const Type
* Ty
) {
211 TypeSymbolTable::const_iterator TI
= ST
.begin();
212 TypeSymbolTable::const_iterator TE
= ST
.end();
213 for (;TI
!= TE
; ++TI
)
214 if (TI
->second
== Ty
)
219 void CppWriter::error(const std::string
& msg
) {
224 // printCFP - Print a floating point constant .. very carefully :)
225 // This makes sure that conversion to/from floating yields the same binary
226 // result so that we don't lose precision.
227 void CppWriter::printCFP(const ConstantFP
*CFP
) {
229 APFloat APF
= APFloat(CFP
->getValueAPF()); // copy
230 if (CFP
->getType() == Type::FloatTy
)
231 APF
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &ignored
);
232 Out
<< "ConstantFP::get(";
236 sprintf(Buffer
, "%A", APF
.convertToDouble());
237 if ((!strncmp(Buffer
, "0x", 2) ||
238 !strncmp(Buffer
, "-0x", 3) ||
239 !strncmp(Buffer
, "+0x", 3)) &&
240 APF
.bitwiseIsEqual(APFloat(atof(Buffer
)))) {
241 if (CFP
->getType() == Type::DoubleTy
)
242 Out
<< "BitsToDouble(" << Buffer
<< ")";
244 Out
<< "BitsToFloat((float)" << Buffer
<< ")";
248 std::string StrVal
= ftostr(CFP
->getValueAPF());
250 while (StrVal
[0] == ' ')
251 StrVal
.erase(StrVal
.begin());
253 // Check to make sure that the stringized number is not some string like
254 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
255 if (((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
256 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
257 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) &&
258 (CFP
->isExactlyValue(atof(StrVal
.c_str())))) {
259 if (CFP
->getType() == Type::DoubleTy
)
262 Out
<< StrVal
<< "f";
263 } else if (CFP
->getType() == Type::DoubleTy
)
264 Out
<< "BitsToDouble(0x"
265 << utohexstr(CFP
->getValueAPF().bitcastToAPInt().getZExtValue())
266 << "ULL) /* " << StrVal
<< " */";
268 Out
<< "BitsToFloat(0x"
269 << utohexstr((uint32_t)CFP
->getValueAPF().
270 bitcastToAPInt().getZExtValue())
271 << "U) /* " << StrVal
<< " */";
279 void CppWriter::printCallingConv(unsigned cc
){
280 // Print the calling convention.
282 case CallingConv::C
: Out
<< "CallingConv::C"; break;
283 case CallingConv::Fast
: Out
<< "CallingConv::Fast"; break;
284 case CallingConv::Cold
: Out
<< "CallingConv::Cold"; break;
285 case CallingConv::FirstTargetCC
: Out
<< "CallingConv::FirstTargetCC"; break;
286 default: Out
<< cc
; break;
290 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT
) {
292 case GlobalValue::InternalLinkage
:
293 Out
<< "GlobalValue::InternalLinkage"; break;
294 case GlobalValue::PrivateLinkage
:
295 Out
<< "GlobalValue::PrivateLinkage"; break;
296 case GlobalValue::AvailableExternallyLinkage
:
297 Out
<< "GlobalValue::AvailableExternallyLinkage "; break;
298 case GlobalValue::LinkOnceAnyLinkage
:
299 Out
<< "GlobalValue::LinkOnceAnyLinkage "; break;
300 case GlobalValue::LinkOnceODRLinkage
:
301 Out
<< "GlobalValue::LinkOnceODRLinkage "; break;
302 case GlobalValue::WeakAnyLinkage
:
303 Out
<< "GlobalValue::WeakAnyLinkage"; break;
304 case GlobalValue::WeakODRLinkage
:
305 Out
<< "GlobalValue::WeakODRLinkage"; break;
306 case GlobalValue::AppendingLinkage
:
307 Out
<< "GlobalValue::AppendingLinkage"; break;
308 case GlobalValue::ExternalLinkage
:
309 Out
<< "GlobalValue::ExternalLinkage"; break;
310 case GlobalValue::DLLImportLinkage
:
311 Out
<< "GlobalValue::DLLImportLinkage"; break;
312 case GlobalValue::DLLExportLinkage
:
313 Out
<< "GlobalValue::DLLExportLinkage"; break;
314 case GlobalValue::ExternalWeakLinkage
:
315 Out
<< "GlobalValue::ExternalWeakLinkage"; break;
316 case GlobalValue::GhostLinkage
:
317 Out
<< "GlobalValue::GhostLinkage"; break;
318 case GlobalValue::CommonLinkage
:
319 Out
<< "GlobalValue::CommonLinkage"; break;
323 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType
) {
325 default: assert(0 && "Unknown GVar visibility");
326 case GlobalValue::DefaultVisibility
:
327 Out
<< "GlobalValue::DefaultVisibility";
329 case GlobalValue::HiddenVisibility
:
330 Out
<< "GlobalValue::HiddenVisibility";
332 case GlobalValue::ProtectedVisibility
:
333 Out
<< "GlobalValue::ProtectedVisibility";
338 // printEscapedString - Print each character of the specified string, escaping
339 // it if it is not printable or if it is an escape char.
340 void CppWriter::printEscapedString(const std::string
&Str
) {
341 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
) {
342 unsigned char C
= Str
[i
];
343 if (isprint(C
) && C
!= '"' && C
!= '\\') {
347 << (char) ((C
/16 < 10) ? ( C
/16 +'0') : ( C
/16 -10+'A'))
348 << (char)(((C
&15) < 10) ? ((C
&15)+'0') : ((C
&15)-10+'A'));
353 std::string
CppWriter::getCppName(const Type
* Ty
) {
354 // First, handle the primitive types .. easy
355 if (Ty
->isPrimitiveType() || Ty
->isInteger()) {
356 switch (Ty
->getTypeID()) {
357 case Type::VoidTyID
: return "Type::VoidTy";
358 case Type::IntegerTyID
: {
359 unsigned BitWidth
= cast
<IntegerType
>(Ty
)->getBitWidth();
360 return "IntegerType::get(" + utostr(BitWidth
) + ")";
362 case Type::X86_FP80TyID
: return "Type::X86_FP80Ty";
363 case Type::FloatTyID
: return "Type::FloatTy";
364 case Type::DoubleTyID
: return "Type::DoubleTy";
365 case Type::LabelTyID
: return "Type::LabelTy";
367 error("Invalid primitive type");
370 return "Type::VoidTy"; // shouldn't be returned, but make it sensible
373 // Now, see if we've seen the type before and return that
374 TypeMap::iterator I
= TypeNames
.find(Ty
);
375 if (I
!= TypeNames
.end())
378 // Okay, let's build a new name for this type. Start with a prefix
379 const char* prefix
= 0;
380 switch (Ty
->getTypeID()) {
381 case Type::FunctionTyID
: prefix
= "FuncTy_"; break;
382 case Type::StructTyID
: prefix
= "StructTy_"; break;
383 case Type::ArrayTyID
: prefix
= "ArrayTy_"; break;
384 case Type::PointerTyID
: prefix
= "PointerTy_"; break;
385 case Type::OpaqueTyID
: prefix
= "OpaqueTy_"; break;
386 case Type::VectorTyID
: prefix
= "VectorTy_"; break;
387 default: prefix
= "OtherTy_"; break; // prevent breakage
390 // See if the type has a name in the symboltable and build accordingly
391 const std::string
* tName
= findTypeName(TheModule
->getTypeSymbolTable(), Ty
);
394 name
= std::string(prefix
) + *tName
;
396 name
= std::string(prefix
) + utostr(uniqueNum
++);
400 return TypeNames
[Ty
] = name
;
403 void CppWriter::printCppName(const Type
* Ty
) {
404 printEscapedString(getCppName(Ty
));
407 std::string
CppWriter::getCppName(const Value
* val
) {
409 ValueMap::iterator I
= ValueNames
.find(val
);
410 if (I
!= ValueNames
.end() && I
->first
== val
)
413 if (const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(val
)) {
414 name
= std::string("gvar_") +
415 getTypePrefix(GV
->getType()->getElementType());
416 } else if (isa
<Function
>(val
)) {
417 name
= std::string("func_");
418 } else if (const Constant
* C
= dyn_cast
<Constant
>(val
)) {
419 name
= std::string("const_") + getTypePrefix(C
->getType());
420 } else if (const Argument
* Arg
= dyn_cast
<Argument
>(val
)) {
422 unsigned argNum
= std::distance(Arg
->getParent()->arg_begin(),
423 Function::const_arg_iterator(Arg
)) + 1;
424 name
= std::string("arg_") + utostr(argNum
);
425 NameSet::iterator NI
= UsedNames
.find(name
);
426 if (NI
!= UsedNames
.end())
427 name
+= std::string("_") + utostr(uniqueNum
++);
428 UsedNames
.insert(name
);
429 return ValueNames
[val
] = name
;
431 name
= getTypePrefix(val
->getType());
434 name
= getTypePrefix(val
->getType());
436 name
+= (val
->hasName() ? val
->getName() : utostr(uniqueNum
++));
438 NameSet::iterator NI
= UsedNames
.find(name
);
439 if (NI
!= UsedNames
.end())
440 name
+= std::string("_") + utostr(uniqueNum
++);
441 UsedNames
.insert(name
);
442 return ValueNames
[val
] = name
;
445 void CppWriter::printCppName(const Value
* val
) {
446 printEscapedString(getCppName(val
));
449 void CppWriter::printAttributes(const AttrListPtr
&PAL
,
450 const std::string
&name
) {
451 Out
<< "AttrListPtr " << name
<< "_PAL;";
453 if (!PAL
.isEmpty()) {
454 Out
<< '{'; in(); nl(Out
);
455 Out
<< "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out
);
456 Out
<< "AttributeWithIndex PAWI;"; nl(Out
);
457 for (unsigned i
= 0; i
< PAL
.getNumSlots(); ++i
) {
458 unsigned index
= PAL
.getSlot(i
).Index
;
459 Attributes attrs
= PAL
.getSlot(i
).Attrs
;
460 Out
<< "PAWI.Index = " << index
<< "U; PAWI.Attrs = 0 ";
461 #define HANDLE_ATTR(X) \
462 if (attrs & Attribute::X) \
463 Out << " | Attribute::" #X; \
464 attrs &= ~Attribute::X;
468 HANDLE_ATTR(StructRet
);
470 HANDLE_ATTR(NoReturn
);
471 HANDLE_ATTR(NoUnwind
);
473 HANDLE_ATTR(NoAlias
);
475 HANDLE_ATTR(ReadNone
);
476 HANDLE_ATTR(ReadOnly
);
477 HANDLE_ATTR(NoCapture
);
479 assert(attrs
== 0 && "Unhandled attribute!");
482 Out
<< "Attrs.push_back(PAWI);";
485 Out
<< name
<< "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
492 bool CppWriter::printTypeInternal(const Type
* Ty
) {
493 // We don't print definitions for primitive types
494 if (Ty
->isPrimitiveType() || Ty
->isInteger())
497 // If we already defined this type, we don't need to define it again.
498 if (DefinedTypes
.find(Ty
) != DefinedTypes
.end())
501 // Everything below needs the name for the type so get it now.
502 std::string
typeName(getCppName(Ty
));
504 // Search the type stack for recursion. If we find it, then generate this
505 // as an OpaqueType, but make sure not to do this multiple times because
506 // the type could appear in multiple places on the stack. Once the opaque
507 // definition is issued, it must not be re-issued. Consequently we have to
508 // check the UnresolvedTypes list as well.
509 TypeList::const_iterator TI
= std::find(TypeStack
.begin(), TypeStack
.end(),
511 if (TI
!= TypeStack
.end()) {
512 TypeMap::const_iterator I
= UnresolvedTypes
.find(Ty
);
513 if (I
== UnresolvedTypes
.end()) {
514 Out
<< "PATypeHolder " << typeName
<< "_fwd = OpaqueType::get();";
516 UnresolvedTypes
[Ty
] = typeName
;
521 // We're going to print a derived type which, by definition, contains other
522 // types. So, push this one we're printing onto the type stack to assist with
523 // recursive definitions.
524 TypeStack
.push_back(Ty
);
526 // Print the type definition
527 switch (Ty
->getTypeID()) {
528 case Type::FunctionTyID
: {
529 const FunctionType
* FT
= cast
<FunctionType
>(Ty
);
530 Out
<< "std::vector<const Type*>" << typeName
<< "_args;";
532 FunctionType::param_iterator PI
= FT
->param_begin();
533 FunctionType::param_iterator PE
= FT
->param_end();
534 for (; PI
!= PE
; ++PI
) {
535 const Type
* argTy
= static_cast<const Type
*>(*PI
);
536 bool isForward
= printTypeInternal(argTy
);
537 std::string
argName(getCppName(argTy
));
538 Out
<< typeName
<< "_args.push_back(" << argName
;
544 bool isForward
= printTypeInternal(FT
->getReturnType());
545 std::string
retTypeName(getCppName(FT
->getReturnType()));
546 Out
<< "FunctionType* " << typeName
<< " = FunctionType::get(";
547 in(); nl(Out
) << "/*Result=*/" << retTypeName
;
551 nl(Out
) << "/*Params=*/" << typeName
<< "_args,";
552 nl(Out
) << "/*isVarArg=*/" << (FT
->isVarArg() ? "true" : "false") << ");";
557 case Type::StructTyID
: {
558 const StructType
* ST
= cast
<StructType
>(Ty
);
559 Out
<< "std::vector<const Type*>" << typeName
<< "_fields;";
561 StructType::element_iterator EI
= ST
->element_begin();
562 StructType::element_iterator EE
= ST
->element_end();
563 for (; EI
!= EE
; ++EI
) {
564 const Type
* fieldTy
= static_cast<const Type
*>(*EI
);
565 bool isForward
= printTypeInternal(fieldTy
);
566 std::string
fieldName(getCppName(fieldTy
));
567 Out
<< typeName
<< "_fields.push_back(" << fieldName
;
573 Out
<< "StructType* " << typeName
<< " = StructType::get("
574 << typeName
<< "_fields, /*isPacked=*/"
575 << (ST
->isPacked() ? "true" : "false") << ");";
579 case Type::ArrayTyID
: {
580 const ArrayType
* AT
= cast
<ArrayType
>(Ty
);
581 const Type
* ET
= AT
->getElementType();
582 bool isForward
= printTypeInternal(ET
);
583 std::string
elemName(getCppName(ET
));
584 Out
<< "ArrayType* " << typeName
<< " = ArrayType::get("
585 << elemName
<< (isForward
? "_fwd" : "")
586 << ", " << utostr(AT
->getNumElements()) << ");";
590 case Type::PointerTyID
: {
591 const PointerType
* PT
= cast
<PointerType
>(Ty
);
592 const Type
* ET
= PT
->getElementType();
593 bool isForward
= printTypeInternal(ET
);
594 std::string
elemName(getCppName(ET
));
595 Out
<< "PointerType* " << typeName
<< " = PointerType::get("
596 << elemName
<< (isForward
? "_fwd" : "")
597 << ", " << utostr(PT
->getAddressSpace()) << ");";
601 case Type::VectorTyID
: {
602 const VectorType
* PT
= cast
<VectorType
>(Ty
);
603 const Type
* ET
= PT
->getElementType();
604 bool isForward
= printTypeInternal(ET
);
605 std::string
elemName(getCppName(ET
));
606 Out
<< "VectorType* " << typeName
<< " = VectorType::get("
607 << elemName
<< (isForward
? "_fwd" : "")
608 << ", " << utostr(PT
->getNumElements()) << ");";
612 case Type::OpaqueTyID
: {
613 Out
<< "OpaqueType* " << typeName
<< " = OpaqueType::get();";
618 error("Invalid TypeID");
621 // If the type had a name, make sure we recreate it.
622 const std::string
* progTypeName
=
623 findTypeName(TheModule
->getTypeSymbolTable(),Ty
);
625 Out
<< "mod->addTypeName(\"" << *progTypeName
<< "\", "
630 // Pop us off the type stack
631 TypeStack
.pop_back();
633 // Indicate that this type is now defined.
634 DefinedTypes
.insert(Ty
);
636 // Early resolve as many unresolved types as possible. Search the unresolved
637 // types map for the type we just printed. Now that its definition is complete
638 // we can resolve any previous references to it. This prevents a cascade of
640 TypeMap::iterator I
= UnresolvedTypes
.find(Ty
);
641 if (I
!= UnresolvedTypes
.end()) {
642 Out
<< "cast<OpaqueType>(" << I
->second
643 << "_fwd.get())->refineAbstractTypeTo(" << I
->second
<< ");";
645 Out
<< I
->second
<< " = cast<";
646 switch (Ty
->getTypeID()) {
647 case Type::FunctionTyID
: Out
<< "FunctionType"; break;
648 case Type::ArrayTyID
: Out
<< "ArrayType"; break;
649 case Type::StructTyID
: Out
<< "StructType"; break;
650 case Type::VectorTyID
: Out
<< "VectorType"; break;
651 case Type::PointerTyID
: Out
<< "PointerType"; break;
652 case Type::OpaqueTyID
: Out
<< "OpaqueType"; break;
653 default: Out
<< "NoSuchDerivedType"; break;
655 Out
<< ">(" << I
->second
<< "_fwd.get());";
657 UnresolvedTypes
.erase(I
);
660 // Finally, separate the type definition from other with a newline.
663 // We weren't a recursive type
667 // Prints a type definition. Returns true if it could not resolve all the
668 // types in the definition but had to use a forward reference.
669 void CppWriter::printType(const Type
* Ty
) {
670 assert(TypeStack
.empty());
672 printTypeInternal(Ty
);
673 assert(TypeStack
.empty());
676 void CppWriter::printTypes(const Module
* M
) {
677 // Walk the symbol table and print out all its types
678 const TypeSymbolTable
& symtab
= M
->getTypeSymbolTable();
679 for (TypeSymbolTable::const_iterator TI
= symtab
.begin(), TE
= symtab
.end();
682 // For primitive types and types already defined, just add a name
683 TypeMap::const_iterator TNI
= TypeNames
.find(TI
->second
);
684 if (TI
->second
->isInteger() || TI
->second
->isPrimitiveType() ||
685 TNI
!= TypeNames
.end()) {
686 Out
<< "mod->addTypeName(\"";
687 printEscapedString(TI
->first
);
688 Out
<< "\", " << getCppName(TI
->second
) << ");";
690 // For everything else, define the type
692 printType(TI
->second
);
696 // Add all of the global variables to the value table...
697 for (Module::const_global_iterator I
= TheModule
->global_begin(),
698 E
= TheModule
->global_end(); I
!= E
; ++I
) {
699 if (I
->hasInitializer())
700 printType(I
->getInitializer()->getType());
701 printType(I
->getType());
704 // Add all the functions to the table
705 for (Module::const_iterator FI
= TheModule
->begin(), FE
= TheModule
->end();
707 printType(FI
->getReturnType());
708 printType(FI
->getFunctionType());
709 // Add all the function arguments
710 for (Function::const_arg_iterator AI
= FI
->arg_begin(),
711 AE
= FI
->arg_end(); AI
!= AE
; ++AI
) {
712 printType(AI
->getType());
715 // Add all of the basic blocks and instructions
716 for (Function::const_iterator BB
= FI
->begin(),
717 E
= FI
->end(); BB
!= E
; ++BB
) {
718 printType(BB
->getType());
719 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
;
721 printType(I
->getType());
722 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
)
723 printType(I
->getOperand(i
)->getType());
730 // printConstant - Print out a constant pool entry...
731 void CppWriter::printConstant(const Constant
*CV
) {
732 // First, if the constant is actually a GlobalValue (variable or function)
733 // or its already in the constant list then we've printed it already and we
735 if (isa
<GlobalValue
>(CV
) || ValueNames
.find(CV
) != ValueNames
.end())
738 std::string
constName(getCppName(CV
));
739 std::string
typeName(getCppName(CV
->getType()));
741 if (isa
<GlobalValue
>(CV
)) {
742 // Skip variables and functions, we emit them elsewhere
746 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
747 std::string constValue
= CI
->getValue().toString(10, true);
748 Out
<< "ConstantInt* " << constName
<< " = ConstantInt::get(APInt("
749 << cast
<IntegerType
>(CI
->getType())->getBitWidth() << ", \""
750 << constValue
<< "\", " << constValue
.length() << ", 10));";
751 } else if (isa
<ConstantAggregateZero
>(CV
)) {
752 Out
<< "ConstantAggregateZero* " << constName
753 << " = ConstantAggregateZero::get(" << typeName
<< ");";
754 } else if (isa
<ConstantPointerNull
>(CV
)) {
755 Out
<< "ConstantPointerNull* " << constName
756 << " = ConstantPointerNull::get(" << typeName
<< ");";
757 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
758 Out
<< "ConstantFP* " << constName
<< " = ";
761 } else if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
762 if (CA
->isString() && CA
->getType()->getElementType() == Type::Int8Ty
) {
763 Out
<< "Constant* " << constName
<< " = ConstantArray::get(\"";
764 std::string tmp
= CA
->getAsString();
765 bool nullTerminate
= false;
766 if (tmp
[tmp
.length()-1] == 0) {
767 tmp
.erase(tmp
.length()-1);
768 nullTerminate
= true;
770 printEscapedString(tmp
);
771 // Determine if we want null termination or not.
773 Out
<< "\", true"; // Indicate that the null terminator should be
776 Out
<< "\", false";// No null terminator
779 Out
<< "std::vector<Constant*> " << constName
<< "_elems;";
781 unsigned N
= CA
->getNumOperands();
782 for (unsigned i
= 0; i
< N
; ++i
) {
783 printConstant(CA
->getOperand(i
)); // recurse to print operands
784 Out
<< constName
<< "_elems.push_back("
785 << getCppName(CA
->getOperand(i
)) << ");";
788 Out
<< "Constant* " << constName
<< " = ConstantArray::get("
789 << typeName
<< ", " << constName
<< "_elems);";
791 } else if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
792 Out
<< "std::vector<Constant*> " << constName
<< "_fields;";
794 unsigned N
= CS
->getNumOperands();
795 for (unsigned i
= 0; i
< N
; i
++) {
796 printConstant(CS
->getOperand(i
));
797 Out
<< constName
<< "_fields.push_back("
798 << getCppName(CS
->getOperand(i
)) << ");";
801 Out
<< "Constant* " << constName
<< " = ConstantStruct::get("
802 << typeName
<< ", " << constName
<< "_fields);";
803 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
804 Out
<< "std::vector<Constant*> " << constName
<< "_elems;";
806 unsigned N
= CP
->getNumOperands();
807 for (unsigned i
= 0; i
< N
; ++i
) {
808 printConstant(CP
->getOperand(i
));
809 Out
<< constName
<< "_elems.push_back("
810 << getCppName(CP
->getOperand(i
)) << ");";
813 Out
<< "Constant* " << constName
<< " = ConstantVector::get("
814 << typeName
<< ", " << constName
<< "_elems);";
815 } else if (isa
<UndefValue
>(CV
)) {
816 Out
<< "UndefValue* " << constName
<< " = UndefValue::get("
818 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
819 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
820 Out
<< "std::vector<Constant*> " << constName
<< "_indices;";
822 printConstant(CE
->getOperand(0));
823 for (unsigned i
= 1; i
< CE
->getNumOperands(); ++i
) {
824 printConstant(CE
->getOperand(i
));
825 Out
<< constName
<< "_indices.push_back("
826 << getCppName(CE
->getOperand(i
)) << ");";
829 Out
<< "Constant* " << constName
830 << " = ConstantExpr::getGetElementPtr("
831 << getCppName(CE
->getOperand(0)) << ", "
832 << "&" << constName
<< "_indices[0], "
833 << constName
<< "_indices.size()"
835 } else if (CE
->isCast()) {
836 printConstant(CE
->getOperand(0));
837 Out
<< "Constant* " << constName
<< " = ConstantExpr::getCast(";
838 switch (CE
->getOpcode()) {
839 default: assert(0 && "Invalid cast opcode");
840 case Instruction::Trunc
: Out
<< "Instruction::Trunc"; break;
841 case Instruction::ZExt
: Out
<< "Instruction::ZExt"; break;
842 case Instruction::SExt
: Out
<< "Instruction::SExt"; break;
843 case Instruction::FPTrunc
: Out
<< "Instruction::FPTrunc"; break;
844 case Instruction::FPExt
: Out
<< "Instruction::FPExt"; break;
845 case Instruction::FPToUI
: Out
<< "Instruction::FPToUI"; break;
846 case Instruction::FPToSI
: Out
<< "Instruction::FPToSI"; break;
847 case Instruction::UIToFP
: Out
<< "Instruction::UIToFP"; break;
848 case Instruction::SIToFP
: Out
<< "Instruction::SIToFP"; break;
849 case Instruction::PtrToInt
: Out
<< "Instruction::PtrToInt"; break;
850 case Instruction::IntToPtr
: Out
<< "Instruction::IntToPtr"; break;
851 case Instruction::BitCast
: Out
<< "Instruction::BitCast"; break;
853 Out
<< ", " << getCppName(CE
->getOperand(0)) << ", "
854 << getCppName(CE
->getType()) << ");";
856 unsigned N
= CE
->getNumOperands();
857 for (unsigned i
= 0; i
< N
; ++i
) {
858 printConstant(CE
->getOperand(i
));
860 Out
<< "Constant* " << constName
<< " = ConstantExpr::";
861 switch (CE
->getOpcode()) {
862 case Instruction::Add
: Out
<< "getAdd("; break;
863 case Instruction::Sub
: Out
<< "getSub("; break;
864 case Instruction::Mul
: Out
<< "getMul("; break;
865 case Instruction::UDiv
: Out
<< "getUDiv("; break;
866 case Instruction::SDiv
: Out
<< "getSDiv("; break;
867 case Instruction::FDiv
: Out
<< "getFDiv("; break;
868 case Instruction::URem
: Out
<< "getURem("; break;
869 case Instruction::SRem
: Out
<< "getSRem("; break;
870 case Instruction::FRem
: Out
<< "getFRem("; break;
871 case Instruction::And
: Out
<< "getAnd("; break;
872 case Instruction::Or
: Out
<< "getOr("; break;
873 case Instruction::Xor
: Out
<< "getXor("; break;
874 case Instruction::ICmp
:
875 Out
<< "getICmp(ICmpInst::ICMP_";
876 switch (CE
->getPredicate()) {
877 case ICmpInst::ICMP_EQ
: Out
<< "EQ"; break;
878 case ICmpInst::ICMP_NE
: Out
<< "NE"; break;
879 case ICmpInst::ICMP_SLT
: Out
<< "SLT"; break;
880 case ICmpInst::ICMP_ULT
: Out
<< "ULT"; break;
881 case ICmpInst::ICMP_SGT
: Out
<< "SGT"; break;
882 case ICmpInst::ICMP_UGT
: Out
<< "UGT"; break;
883 case ICmpInst::ICMP_SLE
: Out
<< "SLE"; break;
884 case ICmpInst::ICMP_ULE
: Out
<< "ULE"; break;
885 case ICmpInst::ICMP_SGE
: Out
<< "SGE"; break;
886 case ICmpInst::ICMP_UGE
: Out
<< "UGE"; break;
887 default: error("Invalid ICmp Predicate");
890 case Instruction::FCmp
:
891 Out
<< "getFCmp(FCmpInst::FCMP_";
892 switch (CE
->getPredicate()) {
893 case FCmpInst::FCMP_FALSE
: Out
<< "FALSE"; break;
894 case FCmpInst::FCMP_ORD
: Out
<< "ORD"; break;
895 case FCmpInst::FCMP_UNO
: Out
<< "UNO"; break;
896 case FCmpInst::FCMP_OEQ
: Out
<< "OEQ"; break;
897 case FCmpInst::FCMP_UEQ
: Out
<< "UEQ"; break;
898 case FCmpInst::FCMP_ONE
: Out
<< "ONE"; break;
899 case FCmpInst::FCMP_UNE
: Out
<< "UNE"; break;
900 case FCmpInst::FCMP_OLT
: Out
<< "OLT"; break;
901 case FCmpInst::FCMP_ULT
: Out
<< "ULT"; break;
902 case FCmpInst::FCMP_OGT
: Out
<< "OGT"; break;
903 case FCmpInst::FCMP_UGT
: Out
<< "UGT"; break;
904 case FCmpInst::FCMP_OLE
: Out
<< "OLE"; break;
905 case FCmpInst::FCMP_ULE
: Out
<< "ULE"; break;
906 case FCmpInst::FCMP_OGE
: Out
<< "OGE"; break;
907 case FCmpInst::FCMP_UGE
: Out
<< "UGE"; break;
908 case FCmpInst::FCMP_TRUE
: Out
<< "TRUE"; break;
909 default: error("Invalid FCmp Predicate");
912 case Instruction::Shl
: Out
<< "getShl("; break;
913 case Instruction::LShr
: Out
<< "getLShr("; break;
914 case Instruction::AShr
: Out
<< "getAShr("; break;
915 case Instruction::Select
: Out
<< "getSelect("; break;
916 case Instruction::ExtractElement
: Out
<< "getExtractElement("; break;
917 case Instruction::InsertElement
: Out
<< "getInsertElement("; break;
918 case Instruction::ShuffleVector
: Out
<< "getShuffleVector("; break;
920 error("Invalid constant expression");
923 Out
<< getCppName(CE
->getOperand(0));
924 for (unsigned i
= 1; i
< CE
->getNumOperands(); ++i
)
925 Out
<< ", " << getCppName(CE
->getOperand(i
));
929 error("Bad Constant");
930 Out
<< "Constant* " << constName
<< " = 0; ";
935 void CppWriter::printConstants(const Module
* M
) {
936 // Traverse all the global variables looking for constant initializers
937 for (Module::const_global_iterator I
= TheModule
->global_begin(),
938 E
= TheModule
->global_end(); I
!= E
; ++I
)
939 if (I
->hasInitializer())
940 printConstant(I
->getInitializer());
942 // Traverse the LLVM functions looking for constants
943 for (Module::const_iterator FI
= TheModule
->begin(), FE
= TheModule
->end();
945 // Add all of the basic blocks and instructions
946 for (Function::const_iterator BB
= FI
->begin(),
947 E
= FI
->end(); BB
!= E
; ++BB
) {
948 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
;
950 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
951 if (Constant
* C
= dyn_cast
<Constant
>(I
->getOperand(i
))) {
960 void CppWriter::printVariableUses(const GlobalVariable
*GV
) {
961 nl(Out
) << "// Type Definitions";
963 printType(GV
->getType());
964 if (GV
->hasInitializer()) {
965 Constant
* Init
= GV
->getInitializer();
966 printType(Init
->getType());
967 if (Function
* F
= dyn_cast
<Function
>(Init
)) {
968 nl(Out
)<< "/ Function Declarations"; nl(Out
);
969 printFunctionHead(F
);
970 } else if (GlobalVariable
* gv
= dyn_cast
<GlobalVariable
>(Init
)) {
971 nl(Out
) << "// Global Variable Declarations"; nl(Out
);
972 printVariableHead(gv
);
974 nl(Out
) << "// Constant Definitions"; nl(Out
);
977 if (GlobalVariable
* gv
= dyn_cast
<GlobalVariable
>(Init
)) {
978 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
979 printVariableBody(gv
);
984 void CppWriter::printVariableHead(const GlobalVariable
*GV
) {
985 nl(Out
) << "GlobalVariable* " << getCppName(GV
);
987 Out
<< " = mod->getGlobalVariable(";
988 printEscapedString(GV
->getName());
989 Out
<< ", " << getCppName(GV
->getType()->getElementType()) << ",true)";
990 nl(Out
) << "if (!" << getCppName(GV
) << ") {";
991 in(); nl(Out
) << getCppName(GV
);
993 Out
<< " = new GlobalVariable(";
994 nl(Out
) << "/*Type=*/";
995 printCppName(GV
->getType()->getElementType());
997 nl(Out
) << "/*isConstant=*/" << (GV
->isConstant()?"true":"false");
999 nl(Out
) << "/*Linkage=*/";
1000 printLinkageType(GV
->getLinkage());
1002 nl(Out
) << "/*Initializer=*/0, ";
1003 if (GV
->hasInitializer()) {
1004 Out
<< "// has initializer, specified below";
1006 nl(Out
) << "/*Name=*/\"";
1007 printEscapedString(GV
->getName());
1012 if (GV
->hasSection()) {
1014 Out
<< "->setSection(\"";
1015 printEscapedString(GV
->getSection());
1019 if (GV
->getAlignment()) {
1021 Out
<< "->setAlignment(" << utostr(GV
->getAlignment()) << ");";
1024 if (GV
->getVisibility() != GlobalValue::DefaultVisibility
) {
1026 Out
<< "->setVisibility(";
1027 printVisibilityType(GV
->getVisibility());
1032 out(); Out
<< "}"; nl(Out
);
1036 void CppWriter::printVariableBody(const GlobalVariable
*GV
) {
1037 if (GV
->hasInitializer()) {
1039 Out
<< "->setInitializer(";
1040 Out
<< getCppName(GV
->getInitializer()) << ");";
1045 std::string
CppWriter::getOpName(Value
* V
) {
1046 if (!isa
<Instruction
>(V
) || DefinedValues
.find(V
) != DefinedValues
.end())
1047 return getCppName(V
);
1049 // See if its alread in the map of forward references, if so just return the
1050 // name we already set up for it
1051 ForwardRefMap::const_iterator I
= ForwardRefs
.find(V
);
1052 if (I
!= ForwardRefs
.end())
1055 // This is a new forward reference. Generate a unique name for it
1056 std::string
result(std::string("fwdref_") + utostr(uniqueNum
++));
1058 // Yes, this is a hack. An Argument is the smallest instantiable value that
1059 // we can make as a placeholder for the real value. We'll replace these
1060 // Argument instances later.
1061 Out
<< "Argument* " << result
<< " = new Argument("
1062 << getCppName(V
->getType()) << ");";
1064 ForwardRefs
[V
] = result
;
1068 // printInstruction - This member is called for each Instruction in a function.
1069 void CppWriter::printInstruction(const Instruction
*I
,
1070 const std::string
& bbname
) {
1071 std::string
iName(getCppName(I
));
1073 // Before we emit this instruction, we need to take care of generating any
1074 // forward references. So, we get the names of all the operands in advance
1075 std::string
* opNames
= new std::string
[I
->getNumOperands()];
1076 for (unsigned i
= 0; i
< I
->getNumOperands(); i
++) {
1077 opNames
[i
] = getOpName(I
->getOperand(i
));
1080 switch (I
->getOpcode()) {
1082 error("Invalid instruction");
1085 case Instruction::Ret
: {
1086 const ReturnInst
* ret
= cast
<ReturnInst
>(I
);
1087 Out
<< "ReturnInst::Create("
1088 << (ret
->getReturnValue() ? opNames
[0] + ", " : "") << bbname
<< ");";
1091 case Instruction::Br
: {
1092 const BranchInst
* br
= cast
<BranchInst
>(I
);
1093 Out
<< "BranchInst::Create(" ;
1094 if (br
->getNumOperands() == 3 ) {
1095 Out
<< opNames
[0] << ", "
1096 << opNames
[1] << ", "
1097 << opNames
[2] << ", ";
1099 } else if (br
->getNumOperands() == 1) {
1100 Out
<< opNames
[0] << ", ";
1102 error("Branch with 2 operands?");
1104 Out
<< bbname
<< ");";
1107 case Instruction::Switch
: {
1108 const SwitchInst
* sw
= cast
<SwitchInst
>(I
);
1109 Out
<< "SwitchInst* " << iName
<< " = SwitchInst::Create("
1110 << opNames
[0] << ", "
1111 << opNames
[1] << ", "
1112 << sw
->getNumCases() << ", " << bbname
<< ");";
1114 for (unsigned i
= 2; i
< sw
->getNumOperands(); i
+= 2 ) {
1115 Out
<< iName
<< "->addCase("
1116 << opNames
[i
] << ", "
1117 << opNames
[i
+1] << ");";
1122 case Instruction::Invoke
: {
1123 const InvokeInst
* inv
= cast
<InvokeInst
>(I
);
1124 Out
<< "std::vector<Value*> " << iName
<< "_params;";
1126 for (unsigned i
= 3; i
< inv
->getNumOperands(); ++i
) {
1127 Out
<< iName
<< "_params.push_back("
1128 << opNames
[i
] << ");";
1131 Out
<< "InvokeInst *" << iName
<< " = InvokeInst::Create("
1132 << opNames
[0] << ", "
1133 << opNames
[1] << ", "
1134 << opNames
[2] << ", "
1135 << iName
<< "_params.begin(), " << iName
<< "_params.end(), \"";
1136 printEscapedString(inv
->getName());
1137 Out
<< "\", " << bbname
<< ");";
1138 nl(Out
) << iName
<< "->setCallingConv(";
1139 printCallingConv(inv
->getCallingConv());
1141 printAttributes(inv
->getAttributes(), iName
);
1142 Out
<< iName
<< "->setAttributes(" << iName
<< "_PAL);";
1146 case Instruction::Unwind
: {
1147 Out
<< "new UnwindInst("
1151 case Instruction::Unreachable
:{
1152 Out
<< "new UnreachableInst("
1156 case Instruction::Add
:
1157 case Instruction::Sub
:
1158 case Instruction::Mul
:
1159 case Instruction::UDiv
:
1160 case Instruction::SDiv
:
1161 case Instruction::FDiv
:
1162 case Instruction::URem
:
1163 case Instruction::SRem
:
1164 case Instruction::FRem
:
1165 case Instruction::And
:
1166 case Instruction::Or
:
1167 case Instruction::Xor
:
1168 case Instruction::Shl
:
1169 case Instruction::LShr
:
1170 case Instruction::AShr
:{
1171 Out
<< "BinaryOperator* " << iName
<< " = BinaryOperator::Create(";
1172 switch (I
->getOpcode()) {
1173 case Instruction::Add
: Out
<< "Instruction::Add"; break;
1174 case Instruction::Sub
: Out
<< "Instruction::Sub"; break;
1175 case Instruction::Mul
: Out
<< "Instruction::Mul"; break;
1176 case Instruction::UDiv
:Out
<< "Instruction::UDiv"; break;
1177 case Instruction::SDiv
:Out
<< "Instruction::SDiv"; break;
1178 case Instruction::FDiv
:Out
<< "Instruction::FDiv"; break;
1179 case Instruction::URem
:Out
<< "Instruction::URem"; break;
1180 case Instruction::SRem
:Out
<< "Instruction::SRem"; break;
1181 case Instruction::FRem
:Out
<< "Instruction::FRem"; break;
1182 case Instruction::And
: Out
<< "Instruction::And"; break;
1183 case Instruction::Or
: Out
<< "Instruction::Or"; break;
1184 case Instruction::Xor
: Out
<< "Instruction::Xor"; break;
1185 case Instruction::Shl
: Out
<< "Instruction::Shl"; break;
1186 case Instruction::LShr
:Out
<< "Instruction::LShr"; break;
1187 case Instruction::AShr
:Out
<< "Instruction::AShr"; break;
1188 default: Out
<< "Instruction::BadOpCode"; break;
1190 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1191 printEscapedString(I
->getName());
1192 Out
<< "\", " << bbname
<< ");";
1195 case Instruction::FCmp
: {
1196 Out
<< "FCmpInst* " << iName
<< " = new FCmpInst(";
1197 switch (cast
<FCmpInst
>(I
)->getPredicate()) {
1198 case FCmpInst::FCMP_FALSE
: Out
<< "FCmpInst::FCMP_FALSE"; break;
1199 case FCmpInst::FCMP_OEQ
: Out
<< "FCmpInst::FCMP_OEQ"; break;
1200 case FCmpInst::FCMP_OGT
: Out
<< "FCmpInst::FCMP_OGT"; break;
1201 case FCmpInst::FCMP_OGE
: Out
<< "FCmpInst::FCMP_OGE"; break;
1202 case FCmpInst::FCMP_OLT
: Out
<< "FCmpInst::FCMP_OLT"; break;
1203 case FCmpInst::FCMP_OLE
: Out
<< "FCmpInst::FCMP_OLE"; break;
1204 case FCmpInst::FCMP_ONE
: Out
<< "FCmpInst::FCMP_ONE"; break;
1205 case FCmpInst::FCMP_ORD
: Out
<< "FCmpInst::FCMP_ORD"; break;
1206 case FCmpInst::FCMP_UNO
: Out
<< "FCmpInst::FCMP_UNO"; break;
1207 case FCmpInst::FCMP_UEQ
: Out
<< "FCmpInst::FCMP_UEQ"; break;
1208 case FCmpInst::FCMP_UGT
: Out
<< "FCmpInst::FCMP_UGT"; break;
1209 case FCmpInst::FCMP_UGE
: Out
<< "FCmpInst::FCMP_UGE"; break;
1210 case FCmpInst::FCMP_ULT
: Out
<< "FCmpInst::FCMP_ULT"; break;
1211 case FCmpInst::FCMP_ULE
: Out
<< "FCmpInst::FCMP_ULE"; break;
1212 case FCmpInst::FCMP_UNE
: Out
<< "FCmpInst::FCMP_UNE"; break;
1213 case FCmpInst::FCMP_TRUE
: Out
<< "FCmpInst::FCMP_TRUE"; break;
1214 default: Out
<< "FCmpInst::BAD_ICMP_PREDICATE"; break;
1216 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1217 printEscapedString(I
->getName());
1218 Out
<< "\", " << bbname
<< ");";
1221 case Instruction::ICmp
: {
1222 Out
<< "ICmpInst* " << iName
<< " = new ICmpInst(";
1223 switch (cast
<ICmpInst
>(I
)->getPredicate()) {
1224 case ICmpInst::ICMP_EQ
: Out
<< "ICmpInst::ICMP_EQ"; break;
1225 case ICmpInst::ICMP_NE
: Out
<< "ICmpInst::ICMP_NE"; break;
1226 case ICmpInst::ICMP_ULE
: Out
<< "ICmpInst::ICMP_ULE"; break;
1227 case ICmpInst::ICMP_SLE
: Out
<< "ICmpInst::ICMP_SLE"; break;
1228 case ICmpInst::ICMP_UGE
: Out
<< "ICmpInst::ICMP_UGE"; break;
1229 case ICmpInst::ICMP_SGE
: Out
<< "ICmpInst::ICMP_SGE"; break;
1230 case ICmpInst::ICMP_ULT
: Out
<< "ICmpInst::ICMP_ULT"; break;
1231 case ICmpInst::ICMP_SLT
: Out
<< "ICmpInst::ICMP_SLT"; break;
1232 case ICmpInst::ICMP_UGT
: Out
<< "ICmpInst::ICMP_UGT"; break;
1233 case ICmpInst::ICMP_SGT
: Out
<< "ICmpInst::ICMP_SGT"; break;
1234 default: Out
<< "ICmpInst::BAD_ICMP_PREDICATE"; break;
1236 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1237 printEscapedString(I
->getName());
1238 Out
<< "\", " << bbname
<< ");";
1241 case Instruction::Malloc
: {
1242 const MallocInst
* mallocI
= cast
<MallocInst
>(I
);
1243 Out
<< "MallocInst* " << iName
<< " = new MallocInst("
1244 << getCppName(mallocI
->getAllocatedType()) << ", ";
1245 if (mallocI
->isArrayAllocation())
1246 Out
<< opNames
[0] << ", " ;
1248 printEscapedString(mallocI
->getName());
1249 Out
<< "\", " << bbname
<< ");";
1250 if (mallocI
->getAlignment())
1251 nl(Out
) << iName
<< "->setAlignment("
1252 << mallocI
->getAlignment() << ");";
1255 case Instruction::Free
: {
1256 Out
<< "FreeInst* " << iName
<< " = new FreeInst("
1257 << getCppName(I
->getOperand(0)) << ", " << bbname
<< ");";
1260 case Instruction::Alloca
: {
1261 const AllocaInst
* allocaI
= cast
<AllocaInst
>(I
);
1262 Out
<< "AllocaInst* " << iName
<< " = new AllocaInst("
1263 << getCppName(allocaI
->getAllocatedType()) << ", ";
1264 if (allocaI
->isArrayAllocation())
1265 Out
<< opNames
[0] << ", ";
1267 printEscapedString(allocaI
->getName());
1268 Out
<< "\", " << bbname
<< ");";
1269 if (allocaI
->getAlignment())
1270 nl(Out
) << iName
<< "->setAlignment("
1271 << allocaI
->getAlignment() << ");";
1274 case Instruction::Load
:{
1275 const LoadInst
* load
= cast
<LoadInst
>(I
);
1276 Out
<< "LoadInst* " << iName
<< " = new LoadInst("
1277 << opNames
[0] << ", \"";
1278 printEscapedString(load
->getName());
1279 Out
<< "\", " << (load
->isVolatile() ? "true" : "false" )
1280 << ", " << bbname
<< ");";
1283 case Instruction::Store
: {
1284 const StoreInst
* store
= cast
<StoreInst
>(I
);
1285 Out
<< " new StoreInst("
1286 << opNames
[0] << ", "
1287 << opNames
[1] << ", "
1288 << (store
->isVolatile() ? "true" : "false")
1289 << ", " << bbname
<< ");";
1292 case Instruction::GetElementPtr
: {
1293 const GetElementPtrInst
* gep
= cast
<GetElementPtrInst
>(I
);
1294 if (gep
->getNumOperands() <= 2) {
1295 Out
<< "GetElementPtrInst* " << iName
<< " = GetElementPtrInst::Create("
1297 if (gep
->getNumOperands() == 2)
1298 Out
<< ", " << opNames
[1];
1300 Out
<< "std::vector<Value*> " << iName
<< "_indices;";
1302 for (unsigned i
= 1; i
< gep
->getNumOperands(); ++i
) {
1303 Out
<< iName
<< "_indices.push_back("
1304 << opNames
[i
] << ");";
1307 Out
<< "Instruction* " << iName
<< " = GetElementPtrInst::Create("
1308 << opNames
[0] << ", " << iName
<< "_indices.begin(), "
1309 << iName
<< "_indices.end()";
1312 printEscapedString(gep
->getName());
1313 Out
<< "\", " << bbname
<< ");";
1316 case Instruction::PHI
: {
1317 const PHINode
* phi
= cast
<PHINode
>(I
);
1319 Out
<< "PHINode* " << iName
<< " = PHINode::Create("
1320 << getCppName(phi
->getType()) << ", \"";
1321 printEscapedString(phi
->getName());
1322 Out
<< "\", " << bbname
<< ");";
1323 nl(Out
) << iName
<< "->reserveOperandSpace("
1324 << phi
->getNumIncomingValues()
1327 for (unsigned i
= 0; i
< phi
->getNumOperands(); i
+=2) {
1328 Out
<< iName
<< "->addIncoming("
1329 << opNames
[i
] << ", " << opNames
[i
+1] << ");";
1334 case Instruction::Trunc
:
1335 case Instruction::ZExt
:
1336 case Instruction::SExt
:
1337 case Instruction::FPTrunc
:
1338 case Instruction::FPExt
:
1339 case Instruction::FPToUI
:
1340 case Instruction::FPToSI
:
1341 case Instruction::UIToFP
:
1342 case Instruction::SIToFP
:
1343 case Instruction::PtrToInt
:
1344 case Instruction::IntToPtr
:
1345 case Instruction::BitCast
: {
1346 const CastInst
* cst
= cast
<CastInst
>(I
);
1347 Out
<< "CastInst* " << iName
<< " = new ";
1348 switch (I
->getOpcode()) {
1349 case Instruction::Trunc
: Out
<< "TruncInst"; break;
1350 case Instruction::ZExt
: Out
<< "ZExtInst"; break;
1351 case Instruction::SExt
: Out
<< "SExtInst"; break;
1352 case Instruction::FPTrunc
: Out
<< "FPTruncInst"; break;
1353 case Instruction::FPExt
: Out
<< "FPExtInst"; break;
1354 case Instruction::FPToUI
: Out
<< "FPToUIInst"; break;
1355 case Instruction::FPToSI
: Out
<< "FPToSIInst"; break;
1356 case Instruction::UIToFP
: Out
<< "UIToFPInst"; break;
1357 case Instruction::SIToFP
: Out
<< "SIToFPInst"; break;
1358 case Instruction::PtrToInt
: Out
<< "PtrToIntInst"; break;
1359 case Instruction::IntToPtr
: Out
<< "IntToPtrInst"; break;
1360 case Instruction::BitCast
: Out
<< "BitCastInst"; break;
1361 default: assert(!"Unreachable"); break;
1363 Out
<< "(" << opNames
[0] << ", "
1364 << getCppName(cst
->getType()) << ", \"";
1365 printEscapedString(cst
->getName());
1366 Out
<< "\", " << bbname
<< ");";
1369 case Instruction::Call
:{
1370 const CallInst
* call
= cast
<CallInst
>(I
);
1371 if (const InlineAsm
* ila
= dyn_cast
<InlineAsm
>(call
->getCalledValue())) {
1372 Out
<< "InlineAsm* " << getCppName(ila
) << " = InlineAsm::get("
1373 << getCppName(ila
->getFunctionType()) << ", \""
1374 << ila
->getAsmString() << "\", \""
1375 << ila
->getConstraintString() << "\","
1376 << (ila
->hasSideEffects() ? "true" : "false") << ");";
1379 if (call
->getNumOperands() > 2) {
1380 Out
<< "std::vector<Value*> " << iName
<< "_params;";
1382 for (unsigned i
= 1; i
< call
->getNumOperands(); ++i
) {
1383 Out
<< iName
<< "_params.push_back(" << opNames
[i
] << ");";
1386 Out
<< "CallInst* " << iName
<< " = CallInst::Create("
1387 << opNames
[0] << ", " << iName
<< "_params.begin(), "
1388 << iName
<< "_params.end(), \"";
1389 } else if (call
->getNumOperands() == 2) {
1390 Out
<< "CallInst* " << iName
<< " = CallInst::Create("
1391 << opNames
[0] << ", " << opNames
[1] << ", \"";
1393 Out
<< "CallInst* " << iName
<< " = CallInst::Create(" << opNames
[0]
1396 printEscapedString(call
->getName());
1397 Out
<< "\", " << bbname
<< ");";
1398 nl(Out
) << iName
<< "->setCallingConv(";
1399 printCallingConv(call
->getCallingConv());
1401 nl(Out
) << iName
<< "->setTailCall("
1402 << (call
->isTailCall() ? "true":"false");
1404 printAttributes(call
->getAttributes(), iName
);
1405 Out
<< iName
<< "->setAttributes(" << iName
<< "_PAL);";
1409 case Instruction::Select
: {
1410 const SelectInst
* sel
= cast
<SelectInst
>(I
);
1411 Out
<< "SelectInst* " << getCppName(sel
) << " = SelectInst::Create(";
1412 Out
<< opNames
[0] << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1413 printEscapedString(sel
->getName());
1414 Out
<< "\", " << bbname
<< ");";
1417 case Instruction::UserOp1
:
1419 case Instruction::UserOp2
: {
1420 /// FIXME: What should be done here?
1423 case Instruction::VAArg
: {
1424 const VAArgInst
* va
= cast
<VAArgInst
>(I
);
1425 Out
<< "VAArgInst* " << getCppName(va
) << " = new VAArgInst("
1426 << opNames
[0] << ", " << getCppName(va
->getType()) << ", \"";
1427 printEscapedString(va
->getName());
1428 Out
<< "\", " << bbname
<< ");";
1431 case Instruction::ExtractElement
: {
1432 const ExtractElementInst
* eei
= cast
<ExtractElementInst
>(I
);
1433 Out
<< "ExtractElementInst* " << getCppName(eei
)
1434 << " = new ExtractElementInst(" << opNames
[0]
1435 << ", " << opNames
[1] << ", \"";
1436 printEscapedString(eei
->getName());
1437 Out
<< "\", " << bbname
<< ");";
1440 case Instruction::InsertElement
: {
1441 const InsertElementInst
* iei
= cast
<InsertElementInst
>(I
);
1442 Out
<< "InsertElementInst* " << getCppName(iei
)
1443 << " = InsertElementInst::Create(" << opNames
[0]
1444 << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1445 printEscapedString(iei
->getName());
1446 Out
<< "\", " << bbname
<< ");";
1449 case Instruction::ShuffleVector
: {
1450 const ShuffleVectorInst
* svi
= cast
<ShuffleVectorInst
>(I
);
1451 Out
<< "ShuffleVectorInst* " << getCppName(svi
)
1452 << " = new ShuffleVectorInst(" << opNames
[0]
1453 << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1454 printEscapedString(svi
->getName());
1455 Out
<< "\", " << bbname
<< ");";
1458 case Instruction::ExtractValue
: {
1459 const ExtractValueInst
*evi
= cast
<ExtractValueInst
>(I
);
1460 Out
<< "std::vector<unsigned> " << iName
<< "_indices;";
1462 for (unsigned i
= 0; i
< evi
->getNumIndices(); ++i
) {
1463 Out
<< iName
<< "_indices.push_back("
1464 << evi
->idx_begin()[i
] << ");";
1467 Out
<< "ExtractValueInst* " << getCppName(evi
)
1468 << " = ExtractValueInst::Create(" << opNames
[0]
1470 << iName
<< "_indices.begin(), " << iName
<< "_indices.end(), \"";
1471 printEscapedString(evi
->getName());
1472 Out
<< "\", " << bbname
<< ");";
1475 case Instruction::InsertValue
: {
1476 const InsertValueInst
*ivi
= cast
<InsertValueInst
>(I
);
1477 Out
<< "std::vector<unsigned> " << iName
<< "_indices;";
1479 for (unsigned i
= 0; i
< ivi
->getNumIndices(); ++i
) {
1480 Out
<< iName
<< "_indices.push_back("
1481 << ivi
->idx_begin()[i
] << ");";
1484 Out
<< "InsertValueInst* " << getCppName(ivi
)
1485 << " = InsertValueInst::Create(" << opNames
[0]
1486 << ", " << opNames
[1] << ", "
1487 << iName
<< "_indices.begin(), " << iName
<< "_indices.end(), \"";
1488 printEscapedString(ivi
->getName());
1489 Out
<< "\", " << bbname
<< ");";
1493 DefinedValues
.insert(I
);
1498 // Print out the types, constants and declarations needed by one function
1499 void CppWriter::printFunctionUses(const Function
* F
) {
1500 nl(Out
) << "// Type Definitions"; nl(Out
);
1502 // Print the function's return type
1503 printType(F
->getReturnType());
1505 // Print the function's function type
1506 printType(F
->getFunctionType());
1508 // Print the types of each of the function's arguments
1509 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1511 printType(AI
->getType());
1515 // Print type definitions for every type referenced by an instruction and
1516 // make a note of any global values or constants that are referenced
1517 SmallPtrSet
<GlobalValue
*,64> gvs
;
1518 SmallPtrSet
<Constant
*,64> consts
;
1519 for (Function::const_iterator BB
= F
->begin(), BE
= F
->end();
1521 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
1523 // Print the type of the instruction itself
1524 printType(I
->getType());
1526 // Print the type of each of the instruction's operands
1527 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
1528 Value
* operand
= I
->getOperand(i
);
1529 printType(operand
->getType());
1531 // If the operand references a GVal or Constant, make a note of it
1532 if (GlobalValue
* GV
= dyn_cast
<GlobalValue
>(operand
)) {
1534 if (GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
1535 if (GVar
->hasInitializer())
1536 consts
.insert(GVar
->getInitializer());
1537 } else if (Constant
* C
= dyn_cast
<Constant
>(operand
))
1543 // Print the function declarations for any functions encountered
1544 nl(Out
) << "// Function Declarations"; nl(Out
);
1545 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1547 if (Function
* Fun
= dyn_cast
<Function
>(*I
)) {
1548 if (!is_inline
|| Fun
!= F
)
1549 printFunctionHead(Fun
);
1553 // Print the global variable declarations for any variables encountered
1554 nl(Out
) << "// Global Variable Declarations"; nl(Out
);
1555 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1557 if (GlobalVariable
* F
= dyn_cast
<GlobalVariable
>(*I
))
1558 printVariableHead(F
);
1561 // Print the constants found
1562 nl(Out
) << "// Constant Definitions"; nl(Out
);
1563 for (SmallPtrSet
<Constant
*,64>::iterator I
= consts
.begin(),
1564 E
= consts
.end(); I
!= E
; ++I
) {
1568 // Process the global variables definitions now that all the constants have
1569 // been emitted. These definitions just couple the gvars with their constant
1571 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
1572 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1574 if (GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(*I
))
1575 printVariableBody(GV
);
1579 void CppWriter::printFunctionHead(const Function
* F
) {
1580 nl(Out
) << "Function* " << getCppName(F
);
1582 Out
<< " = mod->getFunction(\"";
1583 printEscapedString(F
->getName());
1584 Out
<< "\", " << getCppName(F
->getFunctionType()) << ");";
1585 nl(Out
) << "if (!" << getCppName(F
) << ") {";
1586 nl(Out
) << getCppName(F
);
1588 Out
<< " = Function::Create(";
1589 nl(Out
,1) << "/*Type=*/" << getCppName(F
->getFunctionType()) << ",";
1590 nl(Out
) << "/*Linkage=*/";
1591 printLinkageType(F
->getLinkage());
1593 nl(Out
) << "/*Name=*/\"";
1594 printEscapedString(F
->getName());
1595 Out
<< "\", mod); " << (F
->isDeclaration()? "// (external, no body)" : "");
1598 Out
<< "->setCallingConv(";
1599 printCallingConv(F
->getCallingConv());
1602 if (F
->hasSection()) {
1604 Out
<< "->setSection(\"" << F
->getSection() << "\");";
1607 if (F
->getAlignment()) {
1609 Out
<< "->setAlignment(" << F
->getAlignment() << ");";
1612 if (F
->getVisibility() != GlobalValue::DefaultVisibility
) {
1614 Out
<< "->setVisibility(";
1615 printVisibilityType(F
->getVisibility());
1621 Out
<< "->setGC(\"" << F
->getGC() << "\");";
1628 printAttributes(F
->getAttributes(), getCppName(F
));
1630 Out
<< "->setAttributes(" << getCppName(F
) << "_PAL);";
1634 void CppWriter::printFunctionBody(const Function
*F
) {
1635 if (F
->isDeclaration())
1636 return; // external functions have no bodies.
1638 // Clear the DefinedValues and ForwardRefs maps because we can't have
1639 // cross-function forward refs
1640 ForwardRefs
.clear();
1641 DefinedValues
.clear();
1643 // Create all the argument values
1645 if (!F
->arg_empty()) {
1646 Out
<< "Function::arg_iterator args = " << getCppName(F
)
1647 << "->arg_begin();";
1650 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1652 Out
<< "Value* " << getCppName(AI
) << " = args++;";
1654 if (AI
->hasName()) {
1655 Out
<< getCppName(AI
) << "->setName(\"" << AI
->getName() << "\");";
1661 // Create all the basic blocks
1663 for (Function::const_iterator BI
= F
->begin(), BE
= F
->end();
1665 std::string
bbname(getCppName(BI
));
1666 Out
<< "BasicBlock* " << bbname
<< " = BasicBlock::Create(\"";
1668 printEscapedString(BI
->getName());
1669 Out
<< "\"," << getCppName(BI
->getParent()) << ",0);";
1673 // Output all of its basic blocks... for the function
1674 for (Function::const_iterator BI
= F
->begin(), BE
= F
->end();
1676 std::string
bbname(getCppName(BI
));
1677 nl(Out
) << "// Block " << BI
->getName() << " (" << bbname
<< ")";
1680 // Output all of the instructions in the basic block...
1681 for (BasicBlock::const_iterator I
= BI
->begin(), E
= BI
->end();
1683 printInstruction(I
,bbname
);
1687 // Loop over the ForwardRefs and resolve them now that all instructions
1689 if (!ForwardRefs
.empty()) {
1690 nl(Out
) << "// Resolve Forward References";
1694 while (!ForwardRefs
.empty()) {
1695 ForwardRefMap::iterator I
= ForwardRefs
.begin();
1696 Out
<< I
->second
<< "->replaceAllUsesWith("
1697 << getCppName(I
->first
) << "); delete " << I
->second
<< ";";
1699 ForwardRefs
.erase(I
);
1703 void CppWriter::printInline(const std::string
& fname
,
1704 const std::string
& func
) {
1705 const Function
* F
= TheModule
->getFunction(func
);
1707 error(std::string("Function '") + func
+ "' not found in input module");
1710 if (F
->isDeclaration()) {
1711 error(std::string("Function '") + func
+ "' is external!");
1714 nl(Out
) << "BasicBlock* " << fname
<< "(Module* mod, Function *"
1716 unsigned arg_count
= 1;
1717 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1719 Out
<< ", Value* arg_" << arg_count
;
1724 printFunctionUses(F
);
1725 printFunctionBody(F
);
1727 Out
<< "return " << getCppName(F
->begin()) << ";";
1732 void CppWriter::printModuleBody() {
1733 // Print out all the type definitions
1734 nl(Out
) << "// Type Definitions"; nl(Out
);
1735 printTypes(TheModule
);
1737 // Functions can call each other and global variables can reference them so
1738 // define all the functions first before emitting their function bodies.
1739 nl(Out
) << "// Function Declarations"; nl(Out
);
1740 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
1742 printFunctionHead(I
);
1744 // Process the global variables declarations. We can't initialze them until
1745 // after the constants are printed so just print a header for each global
1746 nl(Out
) << "// Global Variable Declarations\n"; nl(Out
);
1747 for (Module::const_global_iterator I
= TheModule
->global_begin(),
1748 E
= TheModule
->global_end(); I
!= E
; ++I
) {
1749 printVariableHead(I
);
1752 // Print out all the constants definitions. Constants don't recurse except
1753 // through GlobalValues. All GlobalValues have been declared at this point
1754 // so we can proceed to generate the constants.
1755 nl(Out
) << "// Constant Definitions"; nl(Out
);
1756 printConstants(TheModule
);
1758 // Process the global variables definitions now that all the constants have
1759 // been emitted. These definitions just couple the gvars with their constant
1761 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
1762 for (Module::const_global_iterator I
= TheModule
->global_begin(),
1763 E
= TheModule
->global_end(); I
!= E
; ++I
) {
1764 printVariableBody(I
);
1767 // Finally, we can safely put out all of the function bodies.
1768 nl(Out
) << "// Function Definitions"; nl(Out
);
1769 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
1771 if (!I
->isDeclaration()) {
1772 nl(Out
) << "// Function: " << I
->getName() << " (" << getCppName(I
)
1776 printFunctionBody(I
);
1783 void CppWriter::printProgram(const std::string
& fname
,
1784 const std::string
& mName
) {
1785 Out
<< "#include <llvm/Module.h>\n";
1786 Out
<< "#include <llvm/DerivedTypes.h>\n";
1787 Out
<< "#include <llvm/Constants.h>\n";
1788 Out
<< "#include <llvm/GlobalVariable.h>\n";
1789 Out
<< "#include <llvm/Function.h>\n";
1790 Out
<< "#include <llvm/CallingConv.h>\n";
1791 Out
<< "#include <llvm/BasicBlock.h>\n";
1792 Out
<< "#include <llvm/Instructions.h>\n";
1793 Out
<< "#include <llvm/InlineAsm.h>\n";
1794 Out
<< "#include <llvm/Support/MathExtras.h>\n";
1795 Out
<< "#include <llvm/Support/raw_ostream.h>\n";
1796 Out
<< "#include <llvm/Pass.h>\n";
1797 Out
<< "#include <llvm/PassManager.h>\n";
1798 Out
<< "#include <llvm/ADT/SmallVector.h>\n";
1799 Out
<< "#include <llvm/Analysis/Verifier.h>\n";
1800 Out
<< "#include <llvm/Assembly/PrintModulePass.h>\n";
1801 Out
<< "#include <algorithm>\n";
1802 Out
<< "using namespace llvm;\n\n";
1803 Out
<< "Module* " << fname
<< "();\n\n";
1804 Out
<< "int main(int argc, char**argv) {\n";
1805 Out
<< " Module* Mod = " << fname
<< "();\n";
1806 Out
<< " verifyModule(*Mod, PrintMessageAction);\n";
1807 Out
<< " outs().flush();\n";
1808 Out
<< " PassManager PM;\n";
1809 Out
<< " PM.add(createPrintModulePass(&outs()));\n";
1810 Out
<< " PM.run(*Mod);\n";
1811 Out
<< " return 0;\n";
1813 printModule(fname
,mName
);
1816 void CppWriter::printModule(const std::string
& fname
,
1817 const std::string
& mName
) {
1818 nl(Out
) << "Module* " << fname
<< "() {";
1819 nl(Out
,1) << "// Module Construction";
1820 nl(Out
) << "Module* mod = new Module(\"" << mName
<< "\");";
1821 if (!TheModule
->getTargetTriple().empty()) {
1822 nl(Out
) << "mod->setDataLayout(\"" << TheModule
->getDataLayout() << "\");";
1824 if (!TheModule
->getTargetTriple().empty()) {
1825 nl(Out
) << "mod->setTargetTriple(\"" << TheModule
->getTargetTriple()
1829 if (!TheModule
->getModuleInlineAsm().empty()) {
1830 nl(Out
) << "mod->setModuleInlineAsm(\"";
1831 printEscapedString(TheModule
->getModuleInlineAsm());
1836 // Loop over the dependent libraries and emit them.
1837 Module::lib_iterator LI
= TheModule
->lib_begin();
1838 Module::lib_iterator LE
= TheModule
->lib_end();
1840 Out
<< "mod->addLibrary(\"" << *LI
<< "\");";
1845 nl(Out
) << "return mod;";
1850 void CppWriter::printContents(const std::string
& fname
,
1851 const std::string
& mName
) {
1852 Out
<< "\nModule* " << fname
<< "(Module *mod) {\n";
1853 Out
<< "\nmod->setModuleIdentifier(\"" << mName
<< "\");\n";
1855 Out
<< "\nreturn mod;\n";
1859 void CppWriter::printFunction(const std::string
& fname
,
1860 const std::string
& funcName
) {
1861 const Function
* F
= TheModule
->getFunction(funcName
);
1863 error(std::string("Function '") + funcName
+ "' not found in input module");
1866 Out
<< "\nFunction* " << fname
<< "(Module *mod) {\n";
1867 printFunctionUses(F
);
1868 printFunctionHead(F
);
1869 printFunctionBody(F
);
1870 Out
<< "return " << getCppName(F
) << ";\n";
1874 void CppWriter::printFunctions() {
1875 const Module::FunctionListType
&funcs
= TheModule
->getFunctionList();
1876 Module::const_iterator I
= funcs
.begin();
1877 Module::const_iterator IE
= funcs
.end();
1879 for (; I
!= IE
; ++I
) {
1880 const Function
&func
= *I
;
1881 if (!func
.isDeclaration()) {
1882 std::string
name("define_");
1883 name
+= func
.getName();
1884 printFunction(name
, func
.getName());
1889 void CppWriter::printVariable(const std::string
& fname
,
1890 const std::string
& varName
) {
1891 const GlobalVariable
* GV
= TheModule
->getNamedGlobal(varName
);
1894 error(std::string("Variable '") + varName
+ "' not found in input module");
1897 Out
<< "\nGlobalVariable* " << fname
<< "(Module *mod) {\n";
1898 printVariableUses(GV
);
1899 printVariableHead(GV
);
1900 printVariableBody(GV
);
1901 Out
<< "return " << getCppName(GV
) << ";\n";
1905 void CppWriter::printType(const std::string
& fname
,
1906 const std::string
& typeName
) {
1907 const Type
* Ty
= TheModule
->getTypeByName(typeName
);
1909 error(std::string("Type '") + typeName
+ "' not found in input module");
1912 Out
<< "\nType* " << fname
<< "(Module *mod) {\n";
1914 Out
<< "return " << getCppName(Ty
) << ";\n";
1918 bool CppWriter::runOnModule(Module
&M
) {
1922 Out
<< "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1924 // Get the name of the function we're supposed to generate
1925 std::string fname
= FuncName
.getValue();
1927 // Get the name of the thing we are to generate
1928 std::string tgtname
= NameToGenerate
.getValue();
1929 if (GenerationType
== GenModule
||
1930 GenerationType
== GenContents
||
1931 GenerationType
== GenProgram
||
1932 GenerationType
== GenFunctions
) {
1933 if (tgtname
== "!bad!") {
1934 if (M
.getModuleIdentifier() == "-")
1935 tgtname
= "<stdin>";
1937 tgtname
= M
.getModuleIdentifier();
1939 } else if (tgtname
== "!bad!")
1940 error("You must use the -for option with -gen-{function,variable,type}");
1942 switch (WhatToGenerate(GenerationType
)) {
1945 fname
= "makeLLVMModule";
1946 printProgram(fname
,tgtname
);
1950 fname
= "makeLLVMModule";
1951 printModule(fname
,tgtname
);
1955 fname
= "makeLLVMModuleContents";
1956 printContents(fname
,tgtname
);
1960 fname
= "makeLLVMFunction";
1961 printFunction(fname
,tgtname
);
1968 fname
= "makeLLVMInline";
1969 printInline(fname
,tgtname
);
1973 fname
= "makeLLVMVariable";
1974 printVariable(fname
,tgtname
);
1978 fname
= "makeLLVMType";
1979 printType(fname
,tgtname
);
1982 error("Invalid generation option");
1989 char CppWriter::ID
= 0;
1991 //===----------------------------------------------------------------------===//
1992 // External Interface declaration
1993 //===----------------------------------------------------------------------===//
1995 bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager
&PM
,
1997 CodeGenFileType FileType
,
1998 CodeGenOpt::Level OptLevel
) {
1999 if (FileType
!= TargetMachine::AssemblyFile
) return true;
2000 PM
.add(new CppWriter(o
));