Hanle i8 returns
[llvm/msp430.git] / lib / Target / PowerPC / PPCISelLowering.h
blob79464749724e094bdf07bb4649221c6ca1cb0cec
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
18 #include "llvm/Target/TargetLowering.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "PPC.h"
21 #include "PPCSubtarget.h"
23 namespace llvm {
24 namespace PPCISD {
25 enum NodeType {
26 // Start the numbering where the builtin ops and target ops leave off.
27 FIRST_NUMBER = ISD::BUILTIN_OP_END,
29 /// FSEL - Traditional three-operand fsel node.
30 ///
31 FSEL,
33 /// FCFID - The FCFID instruction, taking an f64 operand and producing
34 /// and f64 value containing the FP representation of the integer that
35 /// was temporarily in the f64 operand.
36 FCFID,
38 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39 /// operand, producing an f64 value containing the integer representation
40 /// of that FP value.
41 FCTIDZ, FCTIWZ,
43 /// STFIWX - The STFIWX instruction. The first operand is an input token
44 /// chain, then an f64 value to store, then an address to store it to,
45 /// then a SRCVALUE for the address.
46 STFIWX,
48 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49 // three v4f32 operands and producing a v4f32 result.
50 VMADDFP, VNMSUBFP,
52 /// VPERM - The PPC VPERM Instruction.
53 ///
54 VPERM,
56 /// Hi/Lo - These represent the high and low 16-bit parts of a global
57 /// address respectively. These nodes have two operands, the first of
58 /// which must be a TargetGlobalAddress, and the second of which must be a
59 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
60 /// though these are usually folded into other nodes.
61 Hi, Lo,
63 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65 /// compute an allocation on the stack.
66 DYNALLOC,
68 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69 /// at function entry, used for PIC code.
70 GlobalBaseReg,
72 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73 /// shift amounts. These nodes are generated by the multi-precision shift
74 /// code.
75 SRL, SRA, SHL,
77 /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78 /// registers.
79 EXTSW_32,
81 /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82 STD_32,
84 /// CALL - A direct function call.
85 CALL_Macho, CALL_ELF,
87 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88 /// MTCTR instruction.
89 MTCTR,
91 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92 /// BCTRL instruction.
93 BCTRL_Macho, BCTRL_ELF,
95 /// Return with a flag operand, matched by 'blr'
96 RET_FLAG,
98 /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99 /// This copies the bits corresponding to the specified CRREG into the
100 /// resultant GPR. Bits corresponding to other CR regs are undefined.
101 MFCR,
103 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104 /// instructions. For lack of better number, we use the opcode number
105 /// encoding for the OPC field to identify the compare. For example, 838
106 /// is VCMPGTSH.
107 VCMP,
109 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110 /// altivec VCMP*o instructions. For lack of better number, we use the
111 /// opcode number encoding for the OPC field to identify the compare. For
112 /// example, 838 is VCMPGTSH.
113 VCMPo,
115 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
117 /// condition register to branch on, OPC is the branch opcode to use (e.g.
118 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119 /// an optional input flag argument.
120 COND_BRANCH,
122 /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
124 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
125 /// i32.
126 STBRX,
128 /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
130 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
131 /// or i32.
132 LBRX,
134 // The following 5 instructions are used only as part of the
135 // long double-to-int conversion sequence.
137 /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
138 /// register.
139 MFFS,
141 /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
142 MTFSB0,
144 /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
145 MTFSB1,
147 /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
148 /// rounding towards zero. It has flags added so it won't move past the
149 /// FPSCR-setting instructions.
150 FADDRTZ,
152 /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
153 MTFSF,
155 /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
156 /// reserve indexed. This is used to implement atomic operations.
157 LARX,
159 /// STCX = This corresponds to PPC stcx. instrcution: store conditional
160 /// indexed. This is used to implement atomic operations.
161 STCX,
163 /// TAILCALL - Indicates a tail call should be taken.
164 TAILCALL,
165 /// TC_RETURN - A tail call return.
166 /// operand #0 chain
167 /// operand #1 callee (register or absolute)
168 /// operand #2 stack adjustment
169 /// operand #3 optional in flag
170 TC_RETURN
174 /// Define some predicates that are used for node matching.
175 namespace PPC {
176 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
177 /// VPKUHUM instruction.
178 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
180 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
181 /// VPKUWUM instruction.
182 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
184 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
185 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
186 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
187 bool isUnary);
189 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
190 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
191 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
192 bool isUnary);
194 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
195 /// amount, otherwise return -1.
196 int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
198 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
199 /// specifies a splat of a single element that is suitable for input to
200 /// VSPLTB/VSPLTH/VSPLTW.
201 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
203 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
204 /// are -0.0.
205 bool isAllNegativeZeroVector(SDNode *N);
207 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
208 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
209 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
211 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
212 /// formed by using a vspltis[bhw] instruction of the specified element
213 /// size, return the constant being splatted. The ByteSize field indicates
214 /// the number of bytes of each element [124] -> [bhw].
215 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
218 class PPCTargetLowering : public TargetLowering {
219 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
220 int VarArgsStackOffset; // StackOffset for start of stack
221 // arguments.
222 unsigned VarArgsNumGPR; // Index of the first unused integer
223 // register for parameter passing.
224 unsigned VarArgsNumFPR; // Index of the first unused double
225 // register for parameter passing.
226 int ReturnAddrIndex; // FrameIndex for return slot.
227 const PPCSubtarget &PPCSubTarget;
228 public:
229 explicit PPCTargetLowering(PPCTargetMachine &TM);
231 /// getTargetNodeName() - This method returns the name of a target specific
232 /// DAG node.
233 virtual const char *getTargetNodeName(unsigned Opcode) const;
235 /// getSetCCResultType - Return the ISD::SETCC ValueType
236 virtual MVT getSetCCResultType(MVT VT) const;
238 /// getPreIndexedAddressParts - returns true by value, base pointer and
239 /// offset pointer and addressing mode by reference if the node's address
240 /// can be legally represented as pre-indexed load / store address.
241 virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
242 SDValue &Offset,
243 ISD::MemIndexedMode &AM,
244 SelectionDAG &DAG) const;
246 /// SelectAddressRegReg - Given the specified addressed, check to see if it
247 /// can be represented as an indexed [r+r] operation. Returns false if it
248 /// can be more efficiently represented with [r+imm].
249 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
250 SelectionDAG &DAG) const;
252 /// SelectAddressRegImm - Returns true if the address N can be represented
253 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
254 /// is not better represented as reg+reg.
255 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
256 SelectionDAG &DAG) const;
258 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
259 /// represented as an indexed [r+r] operation.
260 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
261 SelectionDAG &DAG) const;
263 /// SelectAddressRegImmShift - Returns true if the address N can be
264 /// represented by a base register plus a signed 14-bit displacement
265 /// [r+imm*4]. Suitable for use by STD and friends.
266 bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
267 SelectionDAG &DAG) const;
270 /// LowerOperation - Provide custom lowering hooks for some operations.
272 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
274 /// ReplaceNodeResults - Replace the results of node with an illegal result
275 /// type with new values built out of custom code.
277 virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
278 SelectionDAG &DAG);
280 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
282 virtual void computeMaskedBitsForTargetNode(const SDValue Op,
283 const APInt &Mask,
284 APInt &KnownZero,
285 APInt &KnownOne,
286 const SelectionDAG &DAG,
287 unsigned Depth = 0) const;
289 virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
290 MachineBasicBlock *MBB) const;
291 MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
292 MachineBasicBlock *MBB, bool is64Bit,
293 unsigned BinOpcode) const;
294 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
295 MachineBasicBlock *MBB,
296 bool is8bit, unsigned Opcode) const;
298 ConstraintType getConstraintType(const std::string &Constraint) const;
299 std::pair<unsigned, const TargetRegisterClass*>
300 getRegForInlineAsmConstraint(const std::string &Constraint,
301 MVT VT) const;
303 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
304 /// function arguments in the caller parameter area. This is the actual
305 /// alignment, not its logarithm.
306 unsigned getByValTypeAlignment(const Type *Ty) const;
308 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
309 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
310 /// true it means one of the asm constraint of the inline asm instruction
311 /// being processed is 'm'.
312 virtual void LowerAsmOperandForConstraint(SDValue Op,
313 char ConstraintLetter,
314 bool hasMemory,
315 std::vector<SDValue> &Ops,
316 SelectionDAG &DAG) const;
318 /// isLegalAddressingMode - Return true if the addressing mode represented
319 /// by AM is legal for this target, for a load/store of the specified type.
320 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
322 /// isLegalAddressImmediate - Return true if the integer value can be used
323 /// as the offset of the target addressing mode for load / store of the
324 /// given type.
325 virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
327 /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
328 /// the offset of the target addressing mode.
329 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
331 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
332 /// for tail call optimization. Target which want to do tail call
333 /// optimization should implement this function.
334 virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
335 SDValue Ret,
336 SelectionDAG &DAG) const;
338 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
340 private:
341 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
342 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
344 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
345 int SPDiff,
346 SDValue Chain,
347 SDValue &LROpOut,
348 SDValue &FPOpOut,
349 DebugLoc dl);
351 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
352 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
353 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
354 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
355 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
356 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
357 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
358 SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
359 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
360 int VarArgsFrameIndex, int VarArgsStackOffset,
361 unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
362 const PPCSubtarget &Subtarget);
363 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
364 int VarArgsStackOffset, unsigned VarArgsNumGPR,
365 unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
366 SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG,
367 int &VarArgsFrameIndex,
368 int &VarArgsStackOffset,
369 unsigned &VarArgsNumGPR,
370 unsigned &VarArgsNumFPR,
371 const PPCSubtarget &Subtarget);
372 SDValue LowerCALL(SDValue Op, SelectionDAG &DAG,
373 const PPCSubtarget &Subtarget, TargetMachine &TM);
374 SDValue LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM);
375 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
376 const PPCSubtarget &Subtarget);
377 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
378 const PPCSubtarget &Subtarget);
379 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
380 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, DebugLoc dl);
381 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
382 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
383 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
384 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
385 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
386 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
387 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
388 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
389 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
390 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
394 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H