1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
33 #include "X86InstrInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
50 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
51 STATISTIC(NumFP
, "Number of floating point instructions");
54 struct VISIBILITY_HIDDEN FPS
: public MachineFunctionPass
{
56 FPS() : MachineFunctionPass(&ID
) {}
58 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
59 AU
.addPreservedID(MachineLoopInfoID
);
60 AU
.addPreservedID(MachineDominatorsID
);
61 MachineFunctionPass::getAnalysisUsage(AU
);
64 virtual bool runOnMachineFunction(MachineFunction
&MF
);
66 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69 const TargetInstrInfo
*TII
; // Machine instruction info.
70 MachineBasicBlock
*MBB
; // Current basic block
71 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
72 unsigned RegMap
[8]; // Track which stack slot contains each register
73 unsigned StackTop
; // The current top of the FP stack.
75 void dumpStack() const {
76 cerr
<< "Stack contents:";
77 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
78 cerr
<< " FP" << Stack
[i
];
79 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
84 /// isStackEmpty - Return true if the FP stack is empty.
85 bool isStackEmpty() const {
89 // getSlot - Return the stack slot number a particular register number is
91 unsigned getSlot(unsigned RegNo
) const {
92 assert(RegNo
< 8 && "Regno out of range!");
96 // getStackEntry - Return the X86::FP<n> register in register ST(i).
97 unsigned getStackEntry(unsigned STi
) const {
98 assert(STi
< StackTop
&& "Access past stack top!");
99 return Stack
[StackTop
-1-STi
];
102 // getSTReg - Return the X86::ST(i) register which contains the specified
103 // FP<RegNo> register.
104 unsigned getSTReg(unsigned RegNo
) const {
105 return StackTop
- 1 - getSlot(RegNo
) + llvm::X86::ST0
;
108 // pushReg - Push the specified FP<n> register onto the stack.
109 void pushReg(unsigned Reg
) {
110 assert(Reg
< 8 && "Register number out of range!");
111 assert(StackTop
< 8 && "Stack overflow!");
112 Stack
[StackTop
] = Reg
;
113 RegMap
[Reg
] = StackTop
++;
116 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
117 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
118 MachineInstr
*MI
= I
;
119 DebugLoc dl
= MI
->getDebugLoc();
120 if (isAtTop(RegNo
)) return;
122 unsigned STReg
= getSTReg(RegNo
);
123 unsigned RegOnTop
= getStackEntry(0);
125 // Swap the slots the regs are in.
126 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
128 // Swap stack slot contents.
129 assert(RegMap
[RegOnTop
] < StackTop
);
130 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
132 // Emit an fxch to update the runtime processors version of the state.
133 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
137 void duplicateToTop(unsigned RegNo
, unsigned AsReg
, MachineInstr
*I
) {
138 DebugLoc dl
= I
->getDebugLoc();
139 unsigned STReg
= getSTReg(RegNo
);
140 pushReg(AsReg
); // New register on top of stack
142 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
145 // popStackAfter - Pop the current value off of the top of the FP stack
146 // after the specified instruction.
147 void popStackAfter(MachineBasicBlock::iterator
&I
);
149 // freeStackSlotAfter - Free the specified register from the register stack,
150 // so that it is no longer in a register. If the register is currently at
151 // the top of the stack, we just pop the current instruction, otherwise we
152 // store the current top-of-stack into the specified slot, then pop the top
154 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
156 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
158 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
159 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
160 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
161 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
162 void handleCompareFP(MachineBasicBlock::iterator
&I
);
163 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
164 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
169 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
171 /// getFPReg - Return the X86::FPx register number for the specified operand.
172 /// For example, this returns 3 for X86::FP3.
173 static unsigned getFPReg(const MachineOperand
&MO
) {
174 assert(MO
.isReg() && "Expected an FP register!");
175 unsigned Reg
= MO
.getReg();
176 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
177 return Reg
- X86::FP0
;
181 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
182 /// register references into FP stack references.
184 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
185 // We only need to run this pass if there are any FP registers used in this
186 // function. If it is all integer, there is nothing for us to do!
187 bool FPIsUsed
= false;
189 assert(X86::FP6
== X86::FP0
+6 && "Register enums aren't sorted right!");
190 for (unsigned i
= 0; i
<= 6; ++i
)
191 if (MF
.getRegInfo().isPhysRegUsed(X86::FP0
+i
)) {
197 if (!FPIsUsed
) return false;
199 TII
= MF
.getTarget().getInstrInfo();
202 // Process the function in depth first order so that we process at least one
203 // of the predecessors for every reachable block in the function.
204 SmallPtrSet
<MachineBasicBlock
*, 8> Processed
;
205 MachineBasicBlock
*Entry
= MF
.begin();
207 bool Changed
= false;
208 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*, 8> >
209 I
= df_ext_begin(Entry
, Processed
), E
= df_ext_end(Entry
, Processed
);
211 Changed
|= processBasicBlock(MF
, **I
);
216 /// processBasicBlock - Loop over all of the instructions in the basic block,
217 /// transforming FP instructions into their stack form.
219 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
220 bool Changed
= false;
223 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
224 MachineInstr
*MI
= I
;
225 unsigned Flags
= MI
->getDesc().TSFlags
;
227 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
228 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
)
229 FPInstClass
= X86II::SpecialFP
;
231 if (FPInstClass
== X86II::NotFP
)
232 continue; // Efficiently ignore non-fp insts!
234 MachineInstr
*PrevMI
= 0;
238 ++NumFP
; // Keep track of # of pseudo instrs
239 DOUT
<< "\nFPInst:\t" << *MI
;
241 // Get dead variables list now because the MI pointer may be deleted as part
243 SmallVector
<unsigned, 8> DeadRegs
;
244 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
245 const MachineOperand
&MO
= MI
->getOperand(i
);
246 if (MO
.isReg() && MO
.isDead())
247 DeadRegs
.push_back(MO
.getReg());
250 switch (FPInstClass
) {
251 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
252 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
253 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
254 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
255 case X86II::CompareFP
: handleCompareFP(I
); break;
256 case X86II::CondMovFP
: handleCondMovFP(I
); break;
257 case X86II::SpecialFP
: handleSpecialFP(I
); break;
258 default: assert(0 && "Unknown FP Type!");
261 // Check to see if any of the values defined by this instruction are dead
262 // after definition. If so, pop them.
263 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
264 unsigned Reg
= DeadRegs
[i
];
265 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
266 DOUT
<< "Register FP#" << Reg
-X86::FP0
<< " is dead!\n";
267 freeStackSlotAfter(I
, Reg
-X86::FP0
);
271 // Print out all of the instructions expanded to if -debug
273 MachineBasicBlock::iterator
PrevI(PrevMI
);
275 cerr
<< "Just deleted pseudo instruction\n";
277 MachineBasicBlock::iterator Start
= I
;
278 // Rewind to first instruction newly inserted.
279 while (Start
!= BB
.begin() && prior(Start
) != PrevI
) --Start
;
280 cerr
<< "Inserted instructions:\n\t";
281 Start
->print(*cerr
.stream(), &MF
.getTarget());
282 while (++Start
!= next(I
)) {}
290 assert(isStackEmpty() && "Stack not empty at end of basic block?");
294 //===----------------------------------------------------------------------===//
295 // Efficient Lookup Table Support
296 //===----------------------------------------------------------------------===//
302 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
303 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
306 friend bool operator<(unsigned V
, const TableEntry
&TE
) {
313 static bool TableIsSorted(const TableEntry
*Table
, unsigned NumEntries
) {
314 for (unsigned i
= 0; i
!= NumEntries
-1; ++i
)
315 if (!(Table
[i
] < Table
[i
+1])) return false;
320 static int Lookup(const TableEntry
*Table
, unsigned N
, unsigned Opcode
) {
321 const TableEntry
*I
= std::lower_bound(Table
, Table
+N
, Opcode
);
322 if (I
!= Table
+N
&& I
->from
== Opcode
)
328 #define ASSERT_SORTED(TABLE)
330 #define ASSERT_SORTED(TABLE) \
331 { static bool TABLE##Checked = false; \
332 if (!TABLE##Checked) { \
333 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
334 "All lookup tables must be sorted for efficient access!"); \
335 TABLE##Checked = true; \
340 //===----------------------------------------------------------------------===//
341 // Register File -> Register Stack Mapping Methods
342 //===----------------------------------------------------------------------===//
344 // OpcodeTable - Sorted map of register instructions to their stack version.
345 // The first element is an register file pseudo instruction, the second is the
346 // concrete X86 instruction which uses the register stack.
348 static const TableEntry OpcodeTable
[] = {
349 { X86::ABS_Fp32
, X86::ABS_F
},
350 { X86::ABS_Fp64
, X86::ABS_F
},
351 { X86::ABS_Fp80
, X86::ABS_F
},
352 { X86::ADD_Fp32m
, X86::ADD_F32m
},
353 { X86::ADD_Fp64m
, X86::ADD_F64m
},
354 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
355 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
356 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
357 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
358 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
359 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
360 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
361 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
362 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
363 { X86::CHS_Fp32
, X86::CHS_F
},
364 { X86::CHS_Fp64
, X86::CHS_F
},
365 { X86::CHS_Fp80
, X86::CHS_F
},
366 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
367 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
368 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
369 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
370 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
371 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
372 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
373 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
374 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
375 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
376 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
377 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
378 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
379 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
380 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
381 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
382 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
383 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
384 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
385 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
386 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
387 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
388 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
389 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
390 { X86::COS_Fp32
, X86::COS_F
},
391 { X86::COS_Fp64
, X86::COS_F
},
392 { X86::COS_Fp80
, X86::COS_F
},
393 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
394 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
395 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
396 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
397 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
398 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
399 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
400 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
401 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
402 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
403 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
404 { X86::DIV_Fp32m
, X86::DIV_F32m
},
405 { X86::DIV_Fp64m
, X86::DIV_F64m
},
406 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
407 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
408 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
409 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
410 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
411 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
412 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
413 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
414 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
415 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
416 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
417 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
418 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
419 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
420 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
421 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
422 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
423 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
424 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
425 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
426 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
427 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
428 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
429 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
430 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
431 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
432 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
433 { X86::IST_Fp16m32
, X86::IST_F16m
},
434 { X86::IST_Fp16m64
, X86::IST_F16m
},
435 { X86::IST_Fp16m80
, X86::IST_F16m
},
436 { X86::IST_Fp32m32
, X86::IST_F32m
},
437 { X86::IST_Fp32m64
, X86::IST_F32m
},
438 { X86::IST_Fp32m80
, X86::IST_F32m
},
439 { X86::IST_Fp64m32
, X86::IST_FP64m
},
440 { X86::IST_Fp64m64
, X86::IST_FP64m
},
441 { X86::IST_Fp64m80
, X86::IST_FP64m
},
442 { X86::LD_Fp032
, X86::LD_F0
},
443 { X86::LD_Fp064
, X86::LD_F0
},
444 { X86::LD_Fp080
, X86::LD_F0
},
445 { X86::LD_Fp132
, X86::LD_F1
},
446 { X86::LD_Fp164
, X86::LD_F1
},
447 { X86::LD_Fp180
, X86::LD_F1
},
448 { X86::LD_Fp32m
, X86::LD_F32m
},
449 { X86::LD_Fp32m64
, X86::LD_F32m
},
450 { X86::LD_Fp32m80
, X86::LD_F32m
},
451 { X86::LD_Fp64m
, X86::LD_F64m
},
452 { X86::LD_Fp64m80
, X86::LD_F64m
},
453 { X86::LD_Fp80m
, X86::LD_F80m
},
454 { X86::MUL_Fp32m
, X86::MUL_F32m
},
455 { X86::MUL_Fp64m
, X86::MUL_F64m
},
456 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
457 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
458 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
459 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
460 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
461 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
462 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
463 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
464 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
465 { X86::SIN_Fp32
, X86::SIN_F
},
466 { X86::SIN_Fp64
, X86::SIN_F
},
467 { X86::SIN_Fp80
, X86::SIN_F
},
468 { X86::SQRT_Fp32
, X86::SQRT_F
},
469 { X86::SQRT_Fp64
, X86::SQRT_F
},
470 { X86::SQRT_Fp80
, X86::SQRT_F
},
471 { X86::ST_Fp32m
, X86::ST_F32m
},
472 { X86::ST_Fp64m
, X86::ST_F64m
},
473 { X86::ST_Fp64m32
, X86::ST_F32m
},
474 { X86::ST_Fp80m32
, X86::ST_F32m
},
475 { X86::ST_Fp80m64
, X86::ST_F64m
},
476 { X86::ST_FpP80m
, X86::ST_FP80m
},
477 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
478 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
479 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
480 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
481 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
482 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
483 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
484 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
485 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
486 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
487 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
488 { X86::SUB_Fp32m
, X86::SUB_F32m
},
489 { X86::SUB_Fp64m
, X86::SUB_F64m
},
490 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
491 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
492 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
493 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
494 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
495 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
496 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
497 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
498 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
499 { X86::TST_Fp32
, X86::TST_F
},
500 { X86::TST_Fp64
, X86::TST_F
},
501 { X86::TST_Fp80
, X86::TST_F
},
502 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
503 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
504 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
505 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
506 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
507 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
510 static unsigned getConcreteOpcode(unsigned Opcode
) {
511 ASSERT_SORTED(OpcodeTable
);
512 int Opc
= Lookup(OpcodeTable
, array_lengthof(OpcodeTable
), Opcode
);
513 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
517 //===----------------------------------------------------------------------===//
519 //===----------------------------------------------------------------------===//
521 // PopTable - Sorted map of instructions to their popping version. The first
522 // element is an instruction, the second is the version which pops.
524 static const TableEntry PopTable
[] = {
525 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
527 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
528 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
530 { X86::IST_F16m
, X86::IST_FP16m
},
531 { X86::IST_F32m
, X86::IST_FP32m
},
533 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
535 { X86::ST_F32m
, X86::ST_FP32m
},
536 { X86::ST_F64m
, X86::ST_FP64m
},
537 { X86::ST_Frr
, X86::ST_FPrr
},
539 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
540 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
542 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
544 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
545 { X86::UCOM_Fr
, X86::UCOM_FPr
},
548 /// popStackAfter - Pop the current value off of the top of the FP stack after
549 /// the specified instruction. This attempts to be sneaky and combine the pop
550 /// into the instruction itself if possible. The iterator is left pointing to
551 /// the last instruction, be it a new pop instruction inserted, or the old
552 /// instruction if it was modified in place.
554 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
555 MachineInstr
* MI
= I
;
556 DebugLoc dl
= MI
->getDebugLoc();
557 ASSERT_SORTED(PopTable
);
558 assert(StackTop
> 0 && "Cannot pop empty stack!");
559 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
561 // Check to see if there is a popping version of this instruction...
562 int Opcode
= Lookup(PopTable
, array_lengthof(PopTable
), I
->getOpcode());
564 I
->setDesc(TII
->get(Opcode
));
565 if (Opcode
== X86::UCOM_FPPr
)
567 } else { // Insert an explicit pop
568 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
572 /// freeStackSlotAfter - Free the specified register from the register stack, so
573 /// that it is no longer in a register. If the register is currently at the top
574 /// of the stack, we just pop the current instruction, otherwise we store the
575 /// current top-of-stack into the specified slot, then pop the top of stack.
576 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
577 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
582 // Otherwise, store the top of stack into the dead slot, killing the operand
583 // without having to add in an explicit xchg then pop.
585 unsigned STReg
= getSTReg(FPRegNo
);
586 unsigned OldSlot
= getSlot(FPRegNo
);
587 unsigned TopReg
= Stack
[StackTop
-1];
588 Stack
[OldSlot
] = TopReg
;
589 RegMap
[TopReg
] = OldSlot
;
590 RegMap
[FPRegNo
] = ~0;
591 Stack
[--StackTop
] = ~0;
592 MachineInstr
*MI
= I
;
593 DebugLoc dl
= MI
->getDebugLoc();
594 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(STReg
);
598 //===----------------------------------------------------------------------===//
599 // Instruction transformation implementation
600 //===----------------------------------------------------------------------===//
602 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
604 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
605 MachineInstr
*MI
= I
;
606 unsigned DestReg
= getFPReg(MI
->getOperand(0));
608 // Change from the pseudo instruction to the concrete instruction.
609 MI
->RemoveOperand(0); // Remove the explicit ST(0) operand
610 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
612 // Result gets pushed on the stack.
616 /// handleOneArgFP - fst <mem>, ST(0)
618 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
619 MachineInstr
*MI
= I
;
620 unsigned NumOps
= MI
->getDesc().getNumOperands();
621 assert((NumOps
== X86AddrNumOperands
+ 1 || NumOps
== 1) &&
622 "Can only handle fst* & ftst instructions!");
624 // Is this the last use of the source register?
625 unsigned Reg
= getFPReg(MI
->getOperand(NumOps
-1));
626 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
628 // FISTP64m is strange because there isn't a non-popping versions.
629 // If we have one _and_ we don't want to pop the operand, duplicate the value
630 // on the stack instead of moving it. This ensure that popping the value is
632 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
635 (MI
->getOpcode() == X86::IST_Fp64m32
||
636 MI
->getOpcode() == X86::ISTT_Fp16m32
||
637 MI
->getOpcode() == X86::ISTT_Fp32m32
||
638 MI
->getOpcode() == X86::ISTT_Fp64m32
||
639 MI
->getOpcode() == X86::IST_Fp64m64
||
640 MI
->getOpcode() == X86::ISTT_Fp16m64
||
641 MI
->getOpcode() == X86::ISTT_Fp32m64
||
642 MI
->getOpcode() == X86::ISTT_Fp64m64
||
643 MI
->getOpcode() == X86::IST_Fp64m80
||
644 MI
->getOpcode() == X86::ISTT_Fp16m80
||
645 MI
->getOpcode() == X86::ISTT_Fp32m80
||
646 MI
->getOpcode() == X86::ISTT_Fp64m80
||
647 MI
->getOpcode() == X86::ST_FpP80m
)) {
648 duplicateToTop(Reg
, 7 /*temp register*/, I
);
650 moveToTop(Reg
, I
); // Move to the top of the stack...
653 // Convert from the pseudo instruction to the concrete instruction.
654 MI
->RemoveOperand(NumOps
-1); // Remove explicit ST(0) operand
655 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
657 if (MI
->getOpcode() == X86::IST_FP64m
||
658 MI
->getOpcode() == X86::ISTT_FP16m
||
659 MI
->getOpcode() == X86::ISTT_FP32m
||
660 MI
->getOpcode() == X86::ISTT_FP64m
||
661 MI
->getOpcode() == X86::ST_FP80m
) {
662 assert(StackTop
> 0 && "Stack empty??");
664 } else if (KillsSrc
) { // Last use of operand?
670 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
671 /// replace the value with a newly computed value. These instructions may have
672 /// non-fp operands after their FP operands.
676 /// R1 = fadd R2, [mem]
678 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
679 MachineInstr
*MI
= I
;
681 unsigned NumOps
= MI
->getDesc().getNumOperands();
682 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
685 // Is this the last use of the source register?
686 unsigned Reg
= getFPReg(MI
->getOperand(1));
687 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
690 // If this is the last use of the source register, just make sure it's on
691 // the top of the stack.
693 assert(StackTop
> 0 && "Stack cannot be empty!");
695 pushReg(getFPReg(MI
->getOperand(0)));
697 // If this is not the last use of the source register, _copy_ it to the top
699 duplicateToTop(Reg
, getFPReg(MI
->getOperand(0)), I
);
702 // Change from the pseudo instruction to the concrete instruction.
703 MI
->RemoveOperand(1); // Drop the source operand.
704 MI
->RemoveOperand(0); // Drop the destination operand.
705 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
709 //===----------------------------------------------------------------------===//
710 // Define tables of various ways to map pseudo instructions
713 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
714 static const TableEntry ForwardST0Table
[] = {
715 { X86::ADD_Fp32
, X86::ADD_FST0r
},
716 { X86::ADD_Fp64
, X86::ADD_FST0r
},
717 { X86::ADD_Fp80
, X86::ADD_FST0r
},
718 { X86::DIV_Fp32
, X86::DIV_FST0r
},
719 { X86::DIV_Fp64
, X86::DIV_FST0r
},
720 { X86::DIV_Fp80
, X86::DIV_FST0r
},
721 { X86::MUL_Fp32
, X86::MUL_FST0r
},
722 { X86::MUL_Fp64
, X86::MUL_FST0r
},
723 { X86::MUL_Fp80
, X86::MUL_FST0r
},
724 { X86::SUB_Fp32
, X86::SUB_FST0r
},
725 { X86::SUB_Fp64
, X86::SUB_FST0r
},
726 { X86::SUB_Fp80
, X86::SUB_FST0r
},
729 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
730 static const TableEntry ReverseST0Table
[] = {
731 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
732 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
733 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
734 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
735 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
736 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
737 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
738 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
739 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
740 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
741 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
742 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
745 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
746 static const TableEntry ForwardSTiTable
[] = {
747 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
748 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
749 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
750 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
751 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
752 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
753 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
754 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
755 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
756 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
757 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
758 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
761 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
762 static const TableEntry ReverseSTiTable
[] = {
763 { X86::ADD_Fp32
, X86::ADD_FrST0
},
764 { X86::ADD_Fp64
, X86::ADD_FrST0
},
765 { X86::ADD_Fp80
, X86::ADD_FrST0
},
766 { X86::DIV_Fp32
, X86::DIV_FrST0
},
767 { X86::DIV_Fp64
, X86::DIV_FrST0
},
768 { X86::DIV_Fp80
, X86::DIV_FrST0
},
769 { X86::MUL_Fp32
, X86::MUL_FrST0
},
770 { X86::MUL_Fp64
, X86::MUL_FrST0
},
771 { X86::MUL_Fp80
, X86::MUL_FrST0
},
772 { X86::SUB_Fp32
, X86::SUB_FrST0
},
773 { X86::SUB_Fp64
, X86::SUB_FrST0
},
774 { X86::SUB_Fp80
, X86::SUB_FrST0
},
778 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
779 /// instructions which need to be simplified and possibly transformed.
781 /// Result: ST(0) = fsub ST(0), ST(i)
782 /// ST(i) = fsub ST(0), ST(i)
783 /// ST(0) = fsubr ST(0), ST(i)
784 /// ST(i) = fsubr ST(0), ST(i)
786 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
787 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
788 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
789 MachineInstr
*MI
= I
;
791 unsigned NumOperands
= MI
->getDesc().getNumOperands();
792 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
793 unsigned Dest
= getFPReg(MI
->getOperand(0));
794 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
795 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
796 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
797 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
798 DebugLoc dl
= MI
->getDebugLoc();
800 unsigned TOS
= getStackEntry(0);
802 // One of our operands must be on the top of the stack. If neither is yet, we
804 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
805 // We can choose to move either operand to the top of the stack. If one of
806 // the operands is killed by this instruction, we want that one so that we
807 // can update right on top of the old version.
809 moveToTop(Op0
, I
); // Move dead operand to TOS.
811 } else if (KillsOp1
) {
815 // All of the operands are live after this instruction executes, so we
816 // cannot update on top of any operand. Because of this, we must
817 // duplicate one of the stack elements to the top. It doesn't matter
818 // which one we pick.
820 duplicateToTop(Op0
, Dest
, I
);
824 } else if (!KillsOp0
&& !KillsOp1
) {
825 // If we DO have one of our operands at the top of the stack, but we don't
826 // have a dead operand, we must duplicate one of the operands to a new slot
828 duplicateToTop(Op0
, Dest
, I
);
833 // Now we know that one of our operands is on the top of the stack, and at
834 // least one of our operands is killed by this instruction.
835 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
836 "Stack conditions not set up right!");
838 // We decide which form to use based on what is on the top of the stack, and
839 // which operand is killed by this instruction.
840 const TableEntry
*InstTable
;
841 bool isForward
= TOS
== Op0
;
842 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
845 InstTable
= ForwardST0Table
;
847 InstTable
= ReverseST0Table
;
850 InstTable
= ForwardSTiTable
;
852 InstTable
= ReverseSTiTable
;
855 int Opcode
= Lookup(InstTable
, array_lengthof(ForwardST0Table
),
857 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
859 // NotTOS - The register which is not on the top of stack...
860 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
862 // Replace the old instruction with a new instruction
864 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
866 // If both operands are killed, pop one off of the stack in addition to
867 // overwriting the other one.
868 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
869 assert(!updateST0
&& "Should have updated other operand!");
870 popStackAfter(I
); // Pop the top of stack
873 // Update stack information so that we know the destination register is now on
875 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
876 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
877 Stack
[UpdatedSlot
] = Dest
;
878 RegMap
[Dest
] = UpdatedSlot
;
879 MBB
->getParent()->DeleteMachineInstr(MI
); // Remove the old instruction
882 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
883 /// register arguments and no explicit destinations.
885 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
886 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
887 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
888 MachineInstr
*MI
= I
;
890 unsigned NumOperands
= MI
->getDesc().getNumOperands();
891 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
892 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
893 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
894 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
895 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
897 // Make sure the first operand is on the top of stack, the other one can be
901 // Change from the pseudo instruction to the concrete instruction.
902 MI
->getOperand(0).setReg(getSTReg(Op1
));
903 MI
->RemoveOperand(1);
904 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
906 // If any of the operands are killed by this instruction, free them.
907 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
908 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
911 /// handleCondMovFP - Handle two address conditional move instructions. These
912 /// instructions move a st(i) register to st(0) iff a condition is true. These
913 /// instructions require that the first operand is at the top of the stack, but
914 /// otherwise don't modify the stack at all.
915 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
916 MachineInstr
*MI
= I
;
918 unsigned Op0
= getFPReg(MI
->getOperand(0));
919 unsigned Op1
= getFPReg(MI
->getOperand(2));
920 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
922 // The first operand *must* be on the top of the stack.
925 // Change the second operand to the stack register that the operand is in.
926 // Change from the pseudo instruction to the concrete instruction.
927 MI
->RemoveOperand(0);
928 MI
->RemoveOperand(1);
929 MI
->getOperand(0).setReg(getSTReg(Op1
));
930 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
932 // If we kill the second operand, make sure to pop it from the stack.
933 if (Op0
!= Op1
&& KillsOp1
) {
934 // Get this value off of the register stack.
935 freeStackSlotAfter(I
, Op1
);
940 /// handleSpecialFP - Handle special instructions which behave unlike other
941 /// floating point instructions. This is primarily intended for use by pseudo
944 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&I
) {
945 MachineInstr
*MI
= I
;
946 DebugLoc dl
= MI
->getDebugLoc();
947 switch (MI
->getOpcode()) {
948 default: assert(0 && "Unknown SpecialFP instruction!");
949 case X86::FpGET_ST0_32
:// Appears immediately after a call returning FP type!
950 case X86::FpGET_ST0_64
:// Appears immediately after a call returning FP type!
951 case X86::FpGET_ST0_80
:// Appears immediately after a call returning FP type!
952 assert(StackTop
== 0 && "Stack should be empty after a call!");
953 pushReg(getFPReg(MI
->getOperand(0)));
955 case X86::FpGET_ST1_32
:// Appears immediately after a call returning FP type!
956 case X86::FpGET_ST1_64
:// Appears immediately after a call returning FP type!
957 case X86::FpGET_ST1_80
:{// Appears immediately after a call returning FP type!
958 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
959 // The pattern we expect is:
964 // At this point, we've pushed FP1 on the top of stack, so it should be
965 // present if it isn't dead. If it was dead, we already emitted a pop to
966 // remove it from the stack and StackTop = 0.
968 // Push FP4 as top of stack next.
969 pushReg(getFPReg(MI
->getOperand(0)));
971 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
972 // dead. In this case, the ST(1) value is the only thing that is live, so
973 // it should be on the TOS (after the pop that was emitted) and is. Just
974 // continue in this case.
978 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
979 // elements so that our accounting is correct.
980 unsigned RegOnTop
= getStackEntry(0);
981 unsigned RegNo
= getStackEntry(1);
983 // Swap the slots the regs are in.
984 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
986 // Swap stack slot contents.
987 assert(RegMap
[RegOnTop
] < StackTop
);
988 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
991 case X86::FpSET_ST0_32
:
992 case X86::FpSET_ST0_64
:
993 case X86::FpSET_ST0_80
:
994 assert((StackTop
== 1 || StackTop
== 2)
995 && "Stack should have one or two element on it to return!");
996 --StackTop
; // "Forget" we have something on the top of stack!
998 case X86::FpSET_ST1_32
:
999 case X86::FpSET_ST1_64
:
1000 case X86::FpSET_ST1_80
:
1001 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1002 if (StackTop
== 1) {
1003 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1008 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1009 --StackTop
; // "Forget" we have something on the top of stack!
1011 case X86::MOV_Fp3232
:
1012 case X86::MOV_Fp3264
:
1013 case X86::MOV_Fp6432
:
1014 case X86::MOV_Fp6464
:
1015 case X86::MOV_Fp3280
:
1016 case X86::MOV_Fp6480
:
1017 case X86::MOV_Fp8032
:
1018 case X86::MOV_Fp8064
:
1019 case X86::MOV_Fp8080
: {
1020 const MachineOperand
&MO1
= MI
->getOperand(1);
1021 unsigned SrcReg
= getFPReg(MO1
);
1023 const MachineOperand
&MO0
= MI
->getOperand(0);
1024 // These can be created due to inline asm. Two address pass can introduce
1025 // copies from RFP registers to virtual registers.
1026 if (MO0
.getReg() == X86::ST0
&& SrcReg
== 0) {
1027 assert(MO1
.isKill());
1028 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1029 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1030 assert((StackTop
== 1 || StackTop
== 2)
1031 && "Stack should have one or two element on it to return!");
1032 --StackTop
; // "Forget" we have something on the top of stack!
1034 } else if (MO0
.getReg() == X86::ST1
&& SrcReg
== 1) {
1035 assert(MO1
.isKill());
1036 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1037 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1038 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1039 if (StackTop
== 1) {
1040 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1045 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1046 --StackTop
; // "Forget" we have something on the top of stack!
1050 unsigned DestReg
= getFPReg(MO0
);
1051 if (MI
->killsRegister(X86::FP0
+SrcReg
)) {
1052 // If the input operand is killed, we can just change the owner of the
1053 // incoming stack slot into the result.
1054 unsigned Slot
= getSlot(SrcReg
);
1055 assert(Slot
< 7 && DestReg
< 7 && "FpMOV operands invalid!");
1056 Stack
[Slot
] = DestReg
;
1057 RegMap
[DestReg
] = Slot
;
1060 // For FMOV we just duplicate the specified value to a new stack slot.
1061 // This could be made better, but would require substantial changes.
1062 duplicateToTop(SrcReg
, DestReg
, I
);
1066 case TargetInstrInfo::INLINEASM
: {
1067 // The inline asm MachineInstr currently only *uses* FP registers for the
1068 // 'f' constraint. These should be turned into the current ST(x) register
1069 // in the machine instr. Also, any kills should be explicitly popped after
1072 unsigned NumKills
= 0;
1073 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1074 MachineOperand
&Op
= MI
->getOperand(i
);
1075 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1077 assert(Op
.isUse() && "Only handle inline asm uses right now");
1079 unsigned FPReg
= getFPReg(Op
);
1080 Op
.setReg(getSTReg(FPReg
));
1082 // If we kill this operand, make sure to pop it from the stack after the
1083 // asm. We just remember it for now, and pop them all off at the end in
1086 Kills
[NumKills
++] = FPReg
;
1089 // If this asm kills any FP registers (is the last use of them) we must
1090 // explicitly emit pop instructions for them. Do this now after the asm has
1091 // executed so that the ST(x) numbers are not off (which would happen if we
1092 // did this inline with operand rewriting).
1094 // Note: this might be a non-optimal pop sequence. We might be able to do
1095 // better by trying to pop in stack order or something.
1096 MachineBasicBlock::iterator InsertPt
= MI
;
1098 freeStackSlotAfter(InsertPt
, Kills
[--NumKills
]);
1100 // Don't delete the inline asm!
1106 // If RET has an FP register use operand, pass the first one in ST(0) and
1107 // the second one in ST(1).
1108 if (isStackEmpty()) return; // Quick check to see if any are possible.
1110 // Find the register operands.
1111 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1113 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1114 MachineOperand
&Op
= MI
->getOperand(i
);
1115 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1117 // FP Register uses must be kills unless there are two uses of the same
1118 // register, in which case only one will be a kill.
1119 assert(Op
.isUse() &&
1120 (Op
.isKill() || // Marked kill.
1121 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1122 MI
->killsRegister(Op
.getReg())) && // Later use is marked kill.
1123 "Ret only defs operands, and values aren't live beyond it");
1125 if (FirstFPRegOp
== ~0U)
1126 FirstFPRegOp
= getFPReg(Op
);
1128 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1129 SecondFPRegOp
= getFPReg(Op
);
1132 // Remove the operand so that later passes don't see it.
1133 MI
->RemoveOperand(i
);
1137 // There are only four possibilities here:
1138 // 1) we are returning a single FP value. In this case, it has to be in
1139 // ST(0) already, so just declare success by removing the value from the
1141 if (SecondFPRegOp
== ~0U) {
1142 // Assert that the top of stack contains the right FP register.
1143 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1144 "Top of stack not the right register for RET!");
1146 // Ok, everything is good, mark the value as not being on the stack
1147 // anymore so that our assertion about the stack being empty at end of
1148 // block doesn't fire.
1153 // Otherwise, we are returning two values:
1154 // 2) If returning the same value for both, we only have one thing in the FP
1155 // stack. Consider: RET FP1, FP1
1156 if (StackTop
== 1) {
1157 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1158 "Stack misconfiguration for RET!");
1160 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1161 // register to hold it.
1162 unsigned NewReg
= (FirstFPRegOp
+1)%7;
1163 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1164 FirstFPRegOp
= NewReg
;
1167 /// Okay we know we have two different FPx operands now:
1168 assert(StackTop
== 2 && "Must have two values live!");
1170 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1171 /// in ST(1). In this case, emit an fxch.
1172 if (getStackEntry(0) == SecondFPRegOp
) {
1173 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1174 moveToTop(FirstFPRegOp
, MI
);
1177 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1178 /// ST(1). Just remove both from our understanding of the stack and return.
1179 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1180 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1185 I
= MBB
->erase(I
); // Remove the pseudo instruction