Hanle i8 returns
[llvm/msp430.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blobceac594bdbfce6cd81bcf49f3a06fa617f8da67d
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Type.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAGISel.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Streams.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Statistic.h"
42 using namespace llvm;
44 #include "llvm/Support/CommandLine.h"
45 static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
47 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
49 //===----------------------------------------------------------------------===//
50 // Pattern Matcher Implementation
51 //===----------------------------------------------------------------------===//
53 namespace {
54 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
55 /// SDValue's instead of register numbers for the leaves of the matched
56 /// tree.
57 struct X86ISelAddressMode {
58 enum {
59 RegBase,
60 FrameIndexBase
61 } BaseType;
63 struct { // This is really a union, discriminated by BaseType!
64 SDValue Reg;
65 int FrameIndex;
66 } Base;
68 bool isRIPRel; // RIP as base?
69 unsigned Scale;
70 SDValue IndexReg;
71 int32_t Disp;
72 SDValue Segment;
73 GlobalValue *GV;
74 Constant *CP;
75 const char *ES;
76 int JT;
77 unsigned Align; // CP alignment.
79 X86ISelAddressMode()
80 : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
81 Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0) {
84 bool hasSymbolicDisplacement() const {
85 return GV != 0 || CP != 0 || ES != 0 || JT != -1;
88 void dump() {
89 cerr << "X86ISelAddressMode " << this << "\n";
90 cerr << "Base.Reg ";
91 if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
92 else cerr << "nul";
93 cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
94 cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
95 cerr << "IndexReg ";
96 if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
97 else cerr << "nul";
98 cerr << " Disp " << Disp << "\n";
99 cerr << "GV "; if (GV) GV->dump();
100 else cerr << "nul";
101 cerr << " CP "; if (CP) CP->dump();
102 else cerr << "nul";
103 cerr << "\n";
104 cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
105 cerr << " JT" << JT << " Align" << Align << "\n";
110 namespace {
111 //===--------------------------------------------------------------------===//
112 /// ISel - X86 specific code to select X86 machine instructions for
113 /// SelectionDAG operations.
115 class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
116 /// TM - Keep a reference to X86TargetMachine.
118 X86TargetMachine &TM;
120 /// X86Lowering - This object fully describes how to lower LLVM code to an
121 /// X86-specific SelectionDAG.
122 X86TargetLowering &X86Lowering;
124 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
125 /// make the right decision when generating code for different targets.
126 const X86Subtarget *Subtarget;
128 /// CurBB - Current BB being isel'd.
130 MachineBasicBlock *CurBB;
132 /// OptForSize - If true, selector should try to optimize for code size
133 /// instead of performance.
134 bool OptForSize;
136 public:
137 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
138 : SelectionDAGISel(tm, OptLevel),
139 TM(tm), X86Lowering(*TM.getTargetLowering()),
140 Subtarget(&TM.getSubtarget<X86Subtarget>()),
141 OptForSize(false) {}
143 virtual const char *getPassName() const {
144 return "X86 DAG->DAG Instruction Selection";
147 /// InstructionSelect - This callback is invoked by
148 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
149 virtual void InstructionSelect();
151 virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
153 virtual
154 bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
156 // Include the pieces autogenerated from the target description.
157 #include "X86GenDAGISel.inc"
159 private:
160 SDNode *Select(SDValue N);
161 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
163 bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
164 bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
165 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
166 bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
167 unsigned Depth = 0);
168 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
169 bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
170 SDValue &Scale, SDValue &Index, SDValue &Disp,
171 SDValue &Segment);
172 bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
173 SDValue &Scale, SDValue &Index, SDValue &Disp);
174 bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
175 SDValue N, SDValue &Base, SDValue &Scale,
176 SDValue &Index, SDValue &Disp,
177 SDValue &Segment,
178 SDValue &InChain, SDValue &OutChain);
179 bool TryFoldLoad(SDValue P, SDValue N,
180 SDValue &Base, SDValue &Scale,
181 SDValue &Index, SDValue &Disp,
182 SDValue &Segment);
183 void PreprocessForRMW();
184 void PreprocessForFPConvert();
186 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
187 /// inline asm expressions.
188 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
189 char ConstraintCode,
190 std::vector<SDValue> &OutOps);
192 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
194 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
195 SDValue &Scale, SDValue &Index,
196 SDValue &Disp, SDValue &Segment) {
197 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
198 CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
199 AM.Base.Reg;
200 Scale = getI8Imm(AM.Scale);
201 Index = AM.IndexReg;
202 // These are 32-bit even in 64-bit mode since RIP relative offset
203 // is 32-bit.
204 if (AM.GV)
205 Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
206 else if (AM.CP)
207 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
208 AM.Align, AM.Disp);
209 else if (AM.ES)
210 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
211 else if (AM.JT != -1)
212 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
213 else
214 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
216 if (AM.Segment.getNode())
217 Segment = AM.Segment;
218 else
219 Segment = CurDAG->getRegister(0, MVT::i32);
222 /// getI8Imm - Return a target constant with the specified value, of type
223 /// i8.
224 inline SDValue getI8Imm(unsigned Imm) {
225 return CurDAG->getTargetConstant(Imm, MVT::i8);
228 /// getI16Imm - Return a target constant with the specified value, of type
229 /// i16.
230 inline SDValue getI16Imm(unsigned Imm) {
231 return CurDAG->getTargetConstant(Imm, MVT::i16);
234 /// getI32Imm - Return a target constant with the specified value, of type
235 /// i32.
236 inline SDValue getI32Imm(unsigned Imm) {
237 return CurDAG->getTargetConstant(Imm, MVT::i32);
240 /// getGlobalBaseReg - Return an SDNode that returns the value of
241 /// the global base register. Output instructions required to
242 /// initialize the global base register, if necessary.
244 SDNode *getGlobalBaseReg();
246 #ifndef NDEBUG
247 unsigned Indent;
248 #endif
252 /// findFlagUse - Return use of MVT::Flag value produced by the specified
253 /// SDNode.
255 static SDNode *findFlagUse(SDNode *N) {
256 unsigned FlagResNo = N->getNumValues()-1;
257 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
258 SDUse &Use = I.getUse();
259 if (Use.getResNo() == FlagResNo)
260 return Use.getUser();
262 return NULL;
265 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
266 /// This function recursively traverses up the operand chain, ignoring
267 /// certain nodes.
268 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
269 SDNode *Root,
270 SmallPtrSet<SDNode*, 16> &Visited) {
271 if (Use->getNodeId() < Def->getNodeId() ||
272 !Visited.insert(Use))
273 return false;
275 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
276 SDNode *N = Use->getOperand(i).getNode();
277 if (N == Def) {
278 if (Use == ImmedUse || Use == Root)
279 continue; // We are not looking for immediate use.
280 assert(N != Root);
281 return true;
284 // Traverse up the operand chain.
285 if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
286 return true;
288 return false;
291 /// isNonImmUse - Start searching from Root up the DAG to check is Def can
292 /// be reached. Return true if that's the case. However, ignore direct uses
293 /// by ImmedUse (which would be U in the example illustrated in
294 /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
295 /// case).
296 /// FIXME: to be really generic, we should allow direct use by any node
297 /// that is being folded. But realisticly since we only fold loads which
298 /// have one non-chain use, we only need to watch out for load/op/store
299 /// and load/op/cmp case where the root (store / cmp) may reach the load via
300 /// its chain operand.
301 static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
302 SmallPtrSet<SDNode*, 16> Visited;
303 return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
307 bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
308 SDNode *Root) const {
309 if (OptLevel == CodeGenOpt::None) return false;
311 if (U == Root)
312 switch (U->getOpcode()) {
313 default: break;
314 case ISD::ADD:
315 case ISD::ADDC:
316 case ISD::ADDE:
317 case ISD::AND:
318 case ISD::OR:
319 case ISD::XOR: {
320 SDValue Op1 = U->getOperand(1);
322 // If the other operand is a 8-bit immediate we should fold the immediate
323 // instead. This reduces code size.
324 // e.g.
325 // movl 4(%esp), %eax
326 // addl $4, %eax
327 // vs.
328 // movl $4, %eax
329 // addl 4(%esp), %eax
330 // The former is 2 bytes shorter. In case where the increment is 1, then
331 // the saving can be 4 bytes (by using incl %eax).
332 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
333 if (Imm->getAPIntValue().isSignedIntN(8))
334 return false;
336 // If the other operand is a TLS address, we should fold it instead.
337 // This produces
338 // movl %gs:0, %eax
339 // leal i@NTPOFF(%eax), %eax
340 // instead of
341 // movl $i@NTPOFF, %eax
342 // addl %gs:0, %eax
343 // if the block also has an access to a second TLS address this will save
344 // a load.
345 // FIXME: This is probably also true for non TLS addresses.
346 if (Op1.getOpcode() == X86ISD::Wrapper) {
347 SDValue Val = Op1.getOperand(0);
348 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
349 return false;
354 // If Root use can somehow reach N through a path that that doesn't contain
355 // U then folding N would create a cycle. e.g. In the following
356 // diagram, Root can reach N through X. If N is folded into into Root, then
357 // X is both a predecessor and a successor of U.
359 // [N*] //
360 // ^ ^ //
361 // / \ //
362 // [U*] [X]? //
363 // ^ ^ //
364 // \ / //
365 // \ / //
366 // [Root*] //
368 // * indicates nodes to be folded together.
370 // If Root produces a flag, then it gets (even more) interesting. Since it
371 // will be "glued" together with its flag use in the scheduler, we need to
372 // check if it might reach N.
374 // [N*] //
375 // ^ ^ //
376 // / \ //
377 // [U*] [X]? //
378 // ^ ^ //
379 // \ \ //
380 // \ | //
381 // [Root*] | //
382 // ^ | //
383 // f | //
384 // | / //
385 // [Y] / //
386 // ^ / //
387 // f / //
388 // | / //
389 // [FU] //
391 // If FU (flag use) indirectly reaches N (the load), and Root folds N
392 // (call it Fold), then X is a predecessor of FU and a successor of
393 // Fold. But since Fold and FU are flagged together, this will create
394 // a cycle in the scheduling graph.
396 MVT VT = Root->getValueType(Root->getNumValues()-1);
397 while (VT == MVT::Flag) {
398 SDNode *FU = findFlagUse(Root);
399 if (FU == NULL)
400 break;
401 Root = FU;
402 VT = Root->getValueType(Root->getNumValues()-1);
405 return !isNonImmUse(Root, N, U);
408 /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
409 /// and move load below the TokenFactor. Replace store's chain operand with
410 /// load's chain result.
411 static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
412 SDValue Store, SDValue TF) {
413 SmallVector<SDValue, 4> Ops;
414 for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
415 if (Load.getNode() == TF.getOperand(i).getNode())
416 Ops.push_back(Load.getOperand(0));
417 else
418 Ops.push_back(TF.getOperand(i));
419 CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
420 CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
421 CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
422 Store.getOperand(2), Store.getOperand(3));
425 /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
426 ///
427 static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
428 SDValue &Load) {
429 if (N.getOpcode() == ISD::BIT_CONVERT)
430 N = N.getOperand(0);
432 LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
433 if (!LD || LD->isVolatile())
434 return false;
435 if (LD->getAddressingMode() != ISD::UNINDEXED)
436 return false;
438 ISD::LoadExtType ExtType = LD->getExtensionType();
439 if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
440 return false;
442 if (N.hasOneUse() &&
443 N.getOperand(1) == Address &&
444 N.getNode()->isOperandOf(Chain.getNode())) {
445 Load = N;
446 return true;
448 return false;
451 /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
452 /// operand and move load below the call's chain operand.
453 static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
454 SDValue Call, SDValue CallSeqStart) {
455 SmallVector<SDValue, 8> Ops;
456 SDValue Chain = CallSeqStart.getOperand(0);
457 if (Chain.getNode() == Load.getNode())
458 Ops.push_back(Load.getOperand(0));
459 else {
460 assert(Chain.getOpcode() == ISD::TokenFactor &&
461 "Unexpected CallSeqStart chain operand");
462 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
463 if (Chain.getOperand(i).getNode() == Load.getNode())
464 Ops.push_back(Load.getOperand(0));
465 else
466 Ops.push_back(Chain.getOperand(i));
467 SDValue NewChain =
468 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
469 MVT::Other, &Ops[0], Ops.size());
470 Ops.clear();
471 Ops.push_back(NewChain);
473 for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
474 Ops.push_back(CallSeqStart.getOperand(i));
475 CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
476 CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
477 Load.getOperand(1), Load.getOperand(2));
478 Ops.clear();
479 Ops.push_back(SDValue(Load.getNode(), 1));
480 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
481 Ops.push_back(Call.getOperand(i));
482 CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
485 /// isCalleeLoad - Return true if call address is a load and it can be
486 /// moved below CALLSEQ_START and the chains leading up to the call.
487 /// Return the CALLSEQ_START by reference as a second output.
488 static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
489 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
490 return false;
491 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
492 if (!LD ||
493 LD->isVolatile() ||
494 LD->getAddressingMode() != ISD::UNINDEXED ||
495 LD->getExtensionType() != ISD::NON_EXTLOAD)
496 return false;
498 // Now let's find the callseq_start.
499 while (Chain.getOpcode() != ISD::CALLSEQ_START) {
500 if (!Chain.hasOneUse())
501 return false;
502 Chain = Chain.getOperand(0);
505 if (Chain.getOperand(0).getNode() == Callee.getNode())
506 return true;
507 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
508 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
509 return true;
510 return false;
514 /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
515 /// This is only run if not in -O0 mode.
516 /// This allows the instruction selector to pick more read-modify-write
517 /// instructions. This is a common case:
519 /// [Load chain]
520 /// ^
521 /// |
522 /// [Load]
523 /// ^ ^
524 /// | |
525 /// / \-
526 /// / |
527 /// [TokenFactor] [Op]
528 /// ^ ^
529 /// | |
530 /// \ /
531 /// \ /
532 /// [Store]
534 /// The fact the store's chain operand != load's chain will prevent the
535 /// (store (op (load))) instruction from being selected. We can transform it to:
537 /// [Load chain]
538 /// ^
539 /// |
540 /// [TokenFactor]
541 /// ^
542 /// |
543 /// [Load]
544 /// ^ ^
545 /// | |
546 /// | \-
547 /// | |
548 /// | [Op]
549 /// | ^
550 /// | |
551 /// \ /
552 /// \ /
553 /// [Store]
554 void X86DAGToDAGISel::PreprocessForRMW() {
555 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
556 E = CurDAG->allnodes_end(); I != E; ++I) {
557 if (I->getOpcode() == X86ISD::CALL) {
558 /// Also try moving call address load from outside callseq_start to just
559 /// before the call to allow it to be folded.
561 /// [Load chain]
562 /// ^
563 /// |
564 /// [Load]
565 /// ^ ^
566 /// | |
567 /// / \--
568 /// / |
569 ///[CALLSEQ_START] |
570 /// ^ |
571 /// | |
572 /// [LOAD/C2Reg] |
573 /// | |
574 /// \ /
575 /// \ /
576 /// [CALL]
577 SDValue Chain = I->getOperand(0);
578 SDValue Load = I->getOperand(1);
579 if (!isCalleeLoad(Load, Chain))
580 continue;
581 MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
582 ++NumLoadMoved;
583 continue;
586 if (!ISD::isNON_TRUNCStore(I))
587 continue;
588 SDValue Chain = I->getOperand(0);
590 if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
591 continue;
593 SDValue N1 = I->getOperand(1);
594 SDValue N2 = I->getOperand(2);
595 if ((N1.getValueType().isFloatingPoint() &&
596 !N1.getValueType().isVector()) ||
597 !N1.hasOneUse())
598 continue;
600 bool RModW = false;
601 SDValue Load;
602 unsigned Opcode = N1.getNode()->getOpcode();
603 switch (Opcode) {
604 case ISD::ADD:
605 case ISD::MUL:
606 case ISD::AND:
607 case ISD::OR:
608 case ISD::XOR:
609 case ISD::ADDC:
610 case ISD::ADDE:
611 case ISD::VECTOR_SHUFFLE: {
612 SDValue N10 = N1.getOperand(0);
613 SDValue N11 = N1.getOperand(1);
614 RModW = isRMWLoad(N10, Chain, N2, Load);
615 if (!RModW)
616 RModW = isRMWLoad(N11, Chain, N2, Load);
617 break;
619 case ISD::SUB:
620 case ISD::SHL:
621 case ISD::SRA:
622 case ISD::SRL:
623 case ISD::ROTL:
624 case ISD::ROTR:
625 case ISD::SUBC:
626 case ISD::SUBE:
627 case X86ISD::SHLD:
628 case X86ISD::SHRD: {
629 SDValue N10 = N1.getOperand(0);
630 RModW = isRMWLoad(N10, Chain, N2, Load);
631 break;
635 if (RModW) {
636 MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
637 ++NumLoadMoved;
643 /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
644 /// nodes that target the FP stack to be store and load to the stack. This is a
645 /// gross hack. We would like to simply mark these as being illegal, but when
646 /// we do that, legalize produces these when it expands calls, then expands
647 /// these in the same legalize pass. We would like dag combine to be able to
648 /// hack on these between the call expansion and the node legalization. As such
649 /// this pass basically does "really late" legalization of these inline with the
650 /// X86 isel pass.
651 void X86DAGToDAGISel::PreprocessForFPConvert() {
652 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
653 E = CurDAG->allnodes_end(); I != E; ) {
654 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
655 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
656 continue;
658 // If the source and destination are SSE registers, then this is a legal
659 // conversion that should not be lowered.
660 MVT SrcVT = N->getOperand(0).getValueType();
661 MVT DstVT = N->getValueType(0);
662 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
663 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
664 if (SrcIsSSE && DstIsSSE)
665 continue;
667 if (!SrcIsSSE && !DstIsSSE) {
668 // If this is an FPStack extension, it is a noop.
669 if (N->getOpcode() == ISD::FP_EXTEND)
670 continue;
671 // If this is a value-preserving FPStack truncation, it is a noop.
672 if (N->getConstantOperandVal(1))
673 continue;
676 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
677 // FPStack has extload and truncstore. SSE can fold direct loads into other
678 // operations. Based on this, decide what we want to do.
679 MVT MemVT;
680 if (N->getOpcode() == ISD::FP_ROUND)
681 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
682 else
683 MemVT = SrcIsSSE ? SrcVT : DstVT;
685 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
686 DebugLoc dl = N->getDebugLoc();
688 // FIXME: optimize the case where the src/dest is a load or store?
689 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
690 N->getOperand(0),
691 MemTmp, NULL, 0, MemVT);
692 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
693 NULL, 0, MemVT);
695 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
696 // extload we created. This will cause general havok on the dag because
697 // anything below the conversion could be folded into other existing nodes.
698 // To avoid invalidating 'I', back it up to the convert node.
699 --I;
700 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
702 // Now that we did that, the node is dead. Increment the iterator to the
703 // next node to process, then delete N.
704 ++I;
705 CurDAG->DeleteNode(N);
709 /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
710 /// when it has created a SelectionDAG for us to codegen.
711 void X86DAGToDAGISel::InstructionSelect() {
712 CurBB = BB; // BB can change as result of isel.
713 const Function *F = CurDAG->getMachineFunction().getFunction();
714 OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
716 DEBUG(BB->dump());
717 if (OptLevel != CodeGenOpt::None)
718 PreprocessForRMW();
720 // FIXME: This should only happen when not compiled with -O0.
721 PreprocessForFPConvert();
723 // Codegen the basic block.
724 #ifndef NDEBUG
725 DOUT << "===== Instruction selection begins:\n";
726 Indent = 0;
727 #endif
728 SelectRoot(*CurDAG);
729 #ifndef NDEBUG
730 DOUT << "===== Instruction selection ends:\n";
731 #endif
733 CurDAG->RemoveDeadNodes();
736 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
737 /// the main function.
738 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
739 MachineFrameInfo *MFI) {
740 const TargetInstrInfo *TII = TM.getInstrInfo();
741 if (Subtarget->isTargetCygMing())
742 BuildMI(BB, DebugLoc::getUnknownLoc(),
743 TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
746 void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
747 // If this is main, emit special code for main.
748 MachineBasicBlock *BB = MF.begin();
749 if (Fn.hasExternalLinkage() && Fn.getName() == "main")
750 EmitSpecialCodeForMain(BB, MF.getFrameInfo());
754 bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
755 X86ISelAddressMode &AM) {
756 assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
757 SDValue Segment = N.getOperand(0);
759 if (AM.Segment.getNode() == 0) {
760 AM.Segment = Segment;
761 return false;
764 return true;
767 bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
768 // This optimization is valid because the GNU TLS model defines that
769 // gs:0 (or fs:0 on X86-64) contains its own address.
770 // For more information see http://people.redhat.com/drepper/tls.pdf
772 SDValue Address = N.getOperand(1);
773 if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
774 !MatchSegmentBaseAddress (Address, AM))
775 return false;
777 return true;
780 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
781 bool is64Bit = Subtarget->is64Bit();
782 DOUT << "Wrapper: 64bit " << is64Bit;
783 DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
785 // Under X86-64 non-small code model, GV (and friends) are 64-bits.
786 if (is64Bit && (TM.getCodeModel() != CodeModel::Small))
787 return true;
789 // Base and index reg must be 0 in order to use rip as base.
790 bool canUsePICRel = !AM.Base.Reg.getNode() && !AM.IndexReg.getNode();
791 if (is64Bit && !canUsePICRel && TM.symbolicAddressesAreRIPRel())
792 return true;
794 if (AM.hasSymbolicDisplacement())
795 return true;
796 // If value is available in a register both base and index components have
797 // been picked, we can't fit the result available in the register in the
798 // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
800 SDValue N0 = N.getOperand(0);
801 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
802 uint64_t Offset = G->getOffset();
803 if (!is64Bit || isInt32(AM.Disp + Offset)) {
804 GlobalValue *GV = G->getGlobal();
805 bool isRIPRel = TM.symbolicAddressesAreRIPRel();
806 if (N0.getOpcode() == llvm::ISD::TargetGlobalTLSAddress) {
807 TLSModel::Model model =
808 getTLSModel (GV, TM.getRelocationModel());
809 if (is64Bit && model == TLSModel::InitialExec)
810 isRIPRel = true;
812 AM.GV = GV;
813 AM.Disp += Offset;
814 AM.isRIPRel = isRIPRel;
815 return false;
817 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
818 uint64_t Offset = CP->getOffset();
819 if (!is64Bit || isInt32(AM.Disp + Offset)) {
820 AM.CP = CP->getConstVal();
821 AM.Align = CP->getAlignment();
822 AM.Disp += Offset;
823 AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
824 return false;
826 } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
827 AM.ES = S->getSymbol();
828 AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
829 return false;
830 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
831 AM.JT = J->getIndex();
832 AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
833 return false;
836 return true;
839 /// MatchAddress - Add the specified node to the specified addressing mode,
840 /// returning true if it cannot be done. This just pattern matches for the
841 /// addressing mode.
842 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
843 unsigned Depth) {
844 bool is64Bit = Subtarget->is64Bit();
845 DebugLoc dl = N.getDebugLoc();
846 DOUT << "MatchAddress: "; DEBUG(AM.dump());
847 // Limit recursion.
848 if (Depth > 5)
849 return MatchAddressBase(N, AM);
851 // RIP relative addressing: %rip + 32-bit displacement!
852 if (AM.isRIPRel) {
853 if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
854 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
855 if (!is64Bit || isInt32(AM.Disp + Val)) {
856 AM.Disp += Val;
857 return false;
860 return true;
863 switch (N.getOpcode()) {
864 default: break;
865 case ISD::Constant: {
866 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
867 if (!is64Bit || isInt32(AM.Disp + Val)) {
868 AM.Disp += Val;
869 return false;
871 break;
874 case X86ISD::SegmentBaseAddress:
875 if (!MatchSegmentBaseAddress(N, AM))
876 return false;
877 break;
879 case X86ISD::Wrapper:
880 if (!MatchWrapper(N, AM))
881 return false;
882 break;
884 case ISD::LOAD:
885 if (!MatchLoad(N, AM))
886 return false;
887 break;
889 case ISD::FrameIndex:
890 if (AM.BaseType == X86ISelAddressMode::RegBase
891 && AM.Base.Reg.getNode() == 0) {
892 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
893 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
894 return false;
896 break;
898 case ISD::SHL:
899 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
900 break;
902 if (ConstantSDNode
903 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
904 unsigned Val = CN->getZExtValue();
905 if (Val == 1 || Val == 2 || Val == 3) {
906 AM.Scale = 1 << Val;
907 SDValue ShVal = N.getNode()->getOperand(0);
909 // Okay, we know that we have a scale by now. However, if the scaled
910 // value is an add of something and a constant, we can fold the
911 // constant into the disp field here.
912 if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
913 isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
914 AM.IndexReg = ShVal.getNode()->getOperand(0);
915 ConstantSDNode *AddVal =
916 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
917 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
918 if (!is64Bit || isInt32(Disp))
919 AM.Disp = Disp;
920 else
921 AM.IndexReg = ShVal;
922 } else {
923 AM.IndexReg = ShVal;
925 return false;
927 break;
930 case ISD::SMUL_LOHI:
931 case ISD::UMUL_LOHI:
932 // A mul_lohi where we need the low part can be folded as a plain multiply.
933 if (N.getResNo() != 0) break;
934 // FALL THROUGH
935 case ISD::MUL:
936 case X86ISD::MUL_IMM:
937 // X*[3,5,9] -> X+X*[2,4,8]
938 if (AM.BaseType == X86ISelAddressMode::RegBase &&
939 AM.Base.Reg.getNode() == 0 &&
940 AM.IndexReg.getNode() == 0 &&
941 !AM.isRIPRel) {
942 if (ConstantSDNode
943 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
944 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
945 CN->getZExtValue() == 9) {
946 AM.Scale = unsigned(CN->getZExtValue())-1;
948 SDValue MulVal = N.getNode()->getOperand(0);
949 SDValue Reg;
951 // Okay, we know that we have a scale by now. However, if the scaled
952 // value is an add of something and a constant, we can fold the
953 // constant into the disp field here.
954 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
955 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
956 Reg = MulVal.getNode()->getOperand(0);
957 ConstantSDNode *AddVal =
958 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
959 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
960 CN->getZExtValue();
961 if (!is64Bit || isInt32(Disp))
962 AM.Disp = Disp;
963 else
964 Reg = N.getNode()->getOperand(0);
965 } else {
966 Reg = N.getNode()->getOperand(0);
969 AM.IndexReg = AM.Base.Reg = Reg;
970 return false;
973 break;
975 case ISD::ADD: {
976 X86ISelAddressMode Backup = AM;
977 if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
978 !MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
979 return false;
980 AM = Backup;
981 if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
982 !MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
983 return false;
984 AM = Backup;
986 // If we couldn't fold both operands into the address at the same time,
987 // see if we can just put each operand into a register and fold at least
988 // the add.
989 if (AM.BaseType == X86ISelAddressMode::RegBase &&
990 !AM.Base.Reg.getNode() &&
991 !AM.IndexReg.getNode() &&
992 !AM.isRIPRel) {
993 AM.Base.Reg = N.getNode()->getOperand(0);
994 AM.IndexReg = N.getNode()->getOperand(1);
995 AM.Scale = 1;
996 return false;
998 break;
1001 case ISD::OR:
1002 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1003 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1004 X86ISelAddressMode Backup = AM;
1005 uint64_t Offset = CN->getSExtValue();
1006 // Start with the LHS as an addr mode.
1007 if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
1008 // Address could not have picked a GV address for the displacement.
1009 AM.GV == NULL &&
1010 // On x86-64, the resultant disp must fit in 32-bits.
1011 (!is64Bit || isInt32(AM.Disp + Offset)) &&
1012 // Check to see if the LHS & C is zero.
1013 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1014 AM.Disp += Offset;
1015 return false;
1017 AM = Backup;
1019 break;
1021 case ISD::AND: {
1022 // Perform some heroic transforms on an and of a constant-count shift
1023 // with a constant to enable use of the scaled offset field.
1025 SDValue Shift = N.getOperand(0);
1026 if (Shift.getNumOperands() != 2) break;
1028 // Scale must not be used already.
1029 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1031 // Not when RIP is used as the base.
1032 if (AM.isRIPRel) break;
1034 SDValue X = Shift.getOperand(0);
1035 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1036 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1037 if (!C1 || !C2) break;
1039 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1040 // allows us to convert the shift and and into an h-register extract and
1041 // a scaled index.
1042 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1043 unsigned ScaleLog = 8 - C1->getZExtValue();
1044 if (ScaleLog > 0 && ScaleLog < 4 &&
1045 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1046 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1047 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1048 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1049 X, Eight);
1050 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1051 Srl, Mask);
1052 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1053 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1054 And, ShlCount);
1056 // Insert the new nodes into the topological ordering.
1057 if (Eight.getNode()->getNodeId() == -1 ||
1058 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1059 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1060 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1062 if (Mask.getNode()->getNodeId() == -1 ||
1063 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1064 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1065 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1067 if (Srl.getNode()->getNodeId() == -1 ||
1068 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1069 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1070 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1072 if (And.getNode()->getNodeId() == -1 ||
1073 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1074 CurDAG->RepositionNode(N.getNode(), And.getNode());
1075 And.getNode()->setNodeId(N.getNode()->getNodeId());
1077 if (ShlCount.getNode()->getNodeId() == -1 ||
1078 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1079 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1080 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1082 if (Shl.getNode()->getNodeId() == -1 ||
1083 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1084 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1085 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1087 CurDAG->ReplaceAllUsesWith(N, Shl);
1088 AM.IndexReg = And;
1089 AM.Scale = (1 << ScaleLog);
1090 return false;
1094 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1095 // allows us to fold the shift into this addressing mode.
1096 if (Shift.getOpcode() != ISD::SHL) break;
1098 // Not likely to be profitable if either the AND or SHIFT node has more
1099 // than one use (unless all uses are for address computation). Besides,
1100 // isel mechanism requires their node ids to be reused.
1101 if (!N.hasOneUse() || !Shift.hasOneUse())
1102 break;
1104 // Verify that the shift amount is something we can fold.
1105 unsigned ShiftCst = C1->getZExtValue();
1106 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1107 break;
1109 // Get the new AND mask, this folds to a constant.
1110 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1111 SDValue(C2, 0), SDValue(C1, 0));
1112 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1113 NewANDMask);
1114 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1115 NewAND, SDValue(C1, 0));
1117 // Insert the new nodes into the topological ordering.
1118 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1119 CurDAG->RepositionNode(X.getNode(), C1);
1120 C1->setNodeId(X.getNode()->getNodeId());
1122 if (NewANDMask.getNode()->getNodeId() == -1 ||
1123 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1124 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1125 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1127 if (NewAND.getNode()->getNodeId() == -1 ||
1128 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1129 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1130 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1132 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1133 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1134 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1135 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1138 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1140 AM.Scale = 1 << ShiftCst;
1141 AM.IndexReg = NewAND;
1142 return false;
1146 return MatchAddressBase(N, AM);
1149 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1150 /// specified addressing mode without any further recursion.
1151 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1152 // Is the base register already occupied?
1153 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1154 // If so, check to see if the scale index register is set.
1155 if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1156 AM.IndexReg = N;
1157 AM.Scale = 1;
1158 return false;
1161 // Otherwise, we cannot select it.
1162 return true;
1165 // Default, generate it as a register.
1166 AM.BaseType = X86ISelAddressMode::RegBase;
1167 AM.Base.Reg = N;
1168 return false;
1171 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1172 /// It returns the operands which make up the maximal addressing mode it can
1173 /// match by reference.
1174 bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1175 SDValue &Scale, SDValue &Index,
1176 SDValue &Disp, SDValue &Segment) {
1177 X86ISelAddressMode AM;
1178 bool Done = false;
1179 if (AvoidDupAddrCompute && !N.hasOneUse()) {
1180 unsigned Opcode = N.getOpcode();
1181 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1182 Opcode != X86ISD::Wrapper) {
1183 // If we are able to fold N into addressing mode, then we'll allow it even
1184 // if N has multiple uses. In general, addressing computation is used as
1185 // addresses by all of its uses. But watch out for CopyToReg uses, that
1186 // means the address computation is liveout. It will be computed by a LEA
1187 // so we want to avoid computing the address twice.
1188 for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1189 UE = N.getNode()->use_end(); UI != UE; ++UI) {
1190 if (UI->getOpcode() == ISD::CopyToReg) {
1191 MatchAddressBase(N, AM);
1192 Done = true;
1193 break;
1199 if (!Done && MatchAddress(N, AM))
1200 return false;
1202 MVT VT = N.getValueType();
1203 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1204 if (!AM.Base.Reg.getNode())
1205 AM.Base.Reg = CurDAG->getRegister(0, VT);
1208 if (!AM.IndexReg.getNode())
1209 AM.IndexReg = CurDAG->getRegister(0, VT);
1211 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1212 return true;
1215 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1216 /// match a load whose top elements are either undef or zeros. The load flavor
1217 /// is derived from the type of N, which is either v4f32 or v2f64.
1218 bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1219 SDValue N, SDValue &Base,
1220 SDValue &Scale, SDValue &Index,
1221 SDValue &Disp, SDValue &Segment,
1222 SDValue &InChain,
1223 SDValue &OutChain) {
1224 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1225 InChain = N.getOperand(0).getValue(1);
1226 if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1227 InChain.getValue(0).hasOneUse() &&
1228 N.hasOneUse() &&
1229 IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1230 LoadSDNode *LD = cast<LoadSDNode>(InChain);
1231 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1232 return false;
1233 OutChain = LD->getChain();
1234 return true;
1238 // Also handle the case where we explicitly require zeros in the top
1239 // elements. This is a vector shuffle from the zero vector.
1240 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1241 // Check to see if the top elements are all zeros (or bitcast of zeros).
1242 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1243 N.getOperand(0).getNode()->hasOneUse() &&
1244 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1245 N.getOperand(0).getOperand(0).hasOneUse()) {
1246 // Okay, this is a zero extending load. Fold it.
1247 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1248 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1249 return false;
1250 OutChain = LD->getChain();
1251 InChain = SDValue(LD, 1);
1252 return true;
1254 return false;
1258 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1259 /// mode it matches can be cost effectively emitted as an LEA instruction.
1260 bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1261 SDValue &Base, SDValue &Scale,
1262 SDValue &Index, SDValue &Disp) {
1263 X86ISelAddressMode AM;
1265 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1266 // segments.
1267 SDValue Copy = AM.Segment;
1268 SDValue T = CurDAG->getRegister(0, MVT::i32);
1269 AM.Segment = T;
1270 if (MatchAddress(N, AM))
1271 return false;
1272 assert (T == AM.Segment);
1273 AM.Segment = Copy;
1275 MVT VT = N.getValueType();
1276 unsigned Complexity = 0;
1277 if (AM.BaseType == X86ISelAddressMode::RegBase)
1278 if (AM.Base.Reg.getNode())
1279 Complexity = 1;
1280 else
1281 AM.Base.Reg = CurDAG->getRegister(0, VT);
1282 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1283 Complexity = 4;
1285 if (AM.IndexReg.getNode())
1286 Complexity++;
1287 else
1288 AM.IndexReg = CurDAG->getRegister(0, VT);
1290 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1291 // a simple shift.
1292 if (AM.Scale > 1)
1293 Complexity++;
1295 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1296 // to a LEA. This is determined with some expermentation but is by no means
1297 // optimal (especially for code size consideration). LEA is nice because of
1298 // its three-address nature. Tweak the cost function again when we can run
1299 // convertToThreeAddress() at register allocation time.
1300 if (AM.hasSymbolicDisplacement()) {
1301 // For X86-64, we should always use lea to materialize RIP relative
1302 // addresses.
1303 if (Subtarget->is64Bit())
1304 Complexity = 4;
1305 else
1306 Complexity += 2;
1309 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1310 Complexity++;
1312 if (Complexity > 2) {
1313 SDValue Segment;
1314 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1315 return true;
1317 return false;
1320 bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1321 SDValue &Base, SDValue &Scale,
1322 SDValue &Index, SDValue &Disp,
1323 SDValue &Segment) {
1324 if (ISD::isNON_EXTLoad(N.getNode()) &&
1325 N.hasOneUse() &&
1326 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1327 return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1328 return false;
1331 /// getGlobalBaseReg - Return an SDNode that returns the value of
1332 /// the global base register. Output instructions required to
1333 /// initialize the global base register, if necessary.
1335 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1336 MachineFunction *MF = CurBB->getParent();
1337 unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1338 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1341 static SDNode *FindCallStartFromCall(SDNode *Node) {
1342 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1343 assert(Node->getOperand(0).getValueType() == MVT::Other &&
1344 "Node doesn't have a token chain argument!");
1345 return FindCallStartFromCall(Node->getOperand(0).getNode());
1348 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1349 SDValue Chain = Node->getOperand(0);
1350 SDValue In1 = Node->getOperand(1);
1351 SDValue In2L = Node->getOperand(2);
1352 SDValue In2H = Node->getOperand(3);
1353 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1354 if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1355 return NULL;
1356 SDValue LSI = Node->getOperand(4); // MemOperand
1357 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1358 return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1359 MVT::i32, MVT::i32, MVT::Other, Ops,
1360 array_lengthof(Ops));
1363 SDNode *X86DAGToDAGISel::Select(SDValue N) {
1364 SDNode *Node = N.getNode();
1365 MVT NVT = Node->getValueType(0);
1366 unsigned Opc, MOpc;
1367 unsigned Opcode = Node->getOpcode();
1368 DebugLoc dl = Node->getDebugLoc();
1370 #ifndef NDEBUG
1371 DOUT << std::string(Indent, ' ') << "Selecting: ";
1372 DEBUG(Node->dump(CurDAG));
1373 DOUT << "\n";
1374 Indent += 2;
1375 #endif
1377 if (Node->isMachineOpcode()) {
1378 #ifndef NDEBUG
1379 DOUT << std::string(Indent-2, ' ') << "== ";
1380 DEBUG(Node->dump(CurDAG));
1381 DOUT << "\n";
1382 Indent -= 2;
1383 #endif
1384 return NULL; // Already selected.
1387 switch (Opcode) {
1388 default: break;
1389 case X86ISD::GlobalBaseReg:
1390 return getGlobalBaseReg();
1392 case X86ISD::ATOMOR64_DAG:
1393 return SelectAtomic64(Node, X86::ATOMOR6432);
1394 case X86ISD::ATOMXOR64_DAG:
1395 return SelectAtomic64(Node, X86::ATOMXOR6432);
1396 case X86ISD::ATOMADD64_DAG:
1397 return SelectAtomic64(Node, X86::ATOMADD6432);
1398 case X86ISD::ATOMSUB64_DAG:
1399 return SelectAtomic64(Node, X86::ATOMSUB6432);
1400 case X86ISD::ATOMNAND64_DAG:
1401 return SelectAtomic64(Node, X86::ATOMNAND6432);
1402 case X86ISD::ATOMAND64_DAG:
1403 return SelectAtomic64(Node, X86::ATOMAND6432);
1404 case X86ISD::ATOMSWAP64_DAG:
1405 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1407 case ISD::SMUL_LOHI:
1408 case ISD::UMUL_LOHI: {
1409 SDValue N0 = Node->getOperand(0);
1410 SDValue N1 = Node->getOperand(1);
1412 bool isSigned = Opcode == ISD::SMUL_LOHI;
1413 if (!isSigned)
1414 switch (NVT.getSimpleVT()) {
1415 default: assert(0 && "Unsupported VT!");
1416 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1417 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1418 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1419 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1421 else
1422 switch (NVT.getSimpleVT()) {
1423 default: assert(0 && "Unsupported VT!");
1424 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1425 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1426 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1427 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1430 unsigned LoReg, HiReg;
1431 switch (NVT.getSimpleVT()) {
1432 default: assert(0 && "Unsupported VT!");
1433 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1434 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1435 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1436 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1439 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1440 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1441 // multiplty is commmutative
1442 if (!foldedLoad) {
1443 foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1444 if (foldedLoad)
1445 std::swap(N0, N1);
1448 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1449 N0, SDValue()).getValue(1);
1451 if (foldedLoad) {
1452 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1453 InFlag };
1454 SDNode *CNode =
1455 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1456 array_lengthof(Ops));
1457 InFlag = SDValue(CNode, 1);
1458 // Update the chain.
1459 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1460 } else {
1461 InFlag =
1462 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1465 // Copy the low half of the result, if it is needed.
1466 if (!N.getValue(0).use_empty()) {
1467 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1468 LoReg, NVT, InFlag);
1469 InFlag = Result.getValue(2);
1470 ReplaceUses(N.getValue(0), Result);
1471 #ifndef NDEBUG
1472 DOUT << std::string(Indent-2, ' ') << "=> ";
1473 DEBUG(Result.getNode()->dump(CurDAG));
1474 DOUT << "\n";
1475 #endif
1477 // Copy the high half of the result, if it is needed.
1478 if (!N.getValue(1).use_empty()) {
1479 SDValue Result;
1480 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1481 // Prevent use of AH in a REX instruction by referencing AX instead.
1482 // Shift it down 8 bits.
1483 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1484 X86::AX, MVT::i16, InFlag);
1485 InFlag = Result.getValue(2);
1486 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1487 Result,
1488 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1489 // Then truncate it down to i8.
1490 SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1491 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1492 MVT::i8, Result, SRIdx), 0);
1493 } else {
1494 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1495 HiReg, NVT, InFlag);
1496 InFlag = Result.getValue(2);
1498 ReplaceUses(N.getValue(1), Result);
1499 #ifndef NDEBUG
1500 DOUT << std::string(Indent-2, ' ') << "=> ";
1501 DEBUG(Result.getNode()->dump(CurDAG));
1502 DOUT << "\n";
1503 #endif
1506 #ifndef NDEBUG
1507 Indent -= 2;
1508 #endif
1510 return NULL;
1513 case ISD::SDIVREM:
1514 case ISD::UDIVREM: {
1515 SDValue N0 = Node->getOperand(0);
1516 SDValue N1 = Node->getOperand(1);
1518 bool isSigned = Opcode == ISD::SDIVREM;
1519 if (!isSigned)
1520 switch (NVT.getSimpleVT()) {
1521 default: assert(0 && "Unsupported VT!");
1522 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1523 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1524 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1525 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1527 else
1528 switch (NVT.getSimpleVT()) {
1529 default: assert(0 && "Unsupported VT!");
1530 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1531 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1532 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1533 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1536 unsigned LoReg, HiReg;
1537 unsigned ClrOpcode, SExtOpcode;
1538 switch (NVT.getSimpleVT()) {
1539 default: assert(0 && "Unsupported VT!");
1540 case MVT::i8:
1541 LoReg = X86::AL; HiReg = X86::AH;
1542 ClrOpcode = 0;
1543 SExtOpcode = X86::CBW;
1544 break;
1545 case MVT::i16:
1546 LoReg = X86::AX; HiReg = X86::DX;
1547 ClrOpcode = X86::MOV16r0;
1548 SExtOpcode = X86::CWD;
1549 break;
1550 case MVT::i32:
1551 LoReg = X86::EAX; HiReg = X86::EDX;
1552 ClrOpcode = X86::MOV32r0;
1553 SExtOpcode = X86::CDQ;
1554 break;
1555 case MVT::i64:
1556 LoReg = X86::RAX; HiReg = X86::RDX;
1557 ClrOpcode = X86::MOV64r0;
1558 SExtOpcode = X86::CQO;
1559 break;
1562 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1563 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1564 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1566 SDValue InFlag;
1567 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1568 // Special case for div8, just use a move with zero extension to AX to
1569 // clear the upper 8 bits (AH).
1570 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1571 if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1572 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1573 Move =
1574 SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1575 MVT::Other, Ops,
1576 array_lengthof(Ops)), 0);
1577 Chain = Move.getValue(1);
1578 ReplaceUses(N0.getValue(1), Chain);
1579 } else {
1580 Move =
1581 SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1582 Chain = CurDAG->getEntryNode();
1584 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1585 InFlag = Chain.getValue(1);
1586 } else {
1587 InFlag =
1588 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1589 LoReg, N0, SDValue()).getValue(1);
1590 if (isSigned && !signBitIsZero) {
1591 // Sign extend the low part into the high part.
1592 InFlag =
1593 SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1594 } else {
1595 // Zero out the high part, effectively zero extending the input.
1596 SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
1598 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1599 ClrNode, InFlag).getValue(1);
1603 if (foldedLoad) {
1604 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1605 InFlag };
1606 SDNode *CNode =
1607 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1608 array_lengthof(Ops));
1609 InFlag = SDValue(CNode, 1);
1610 // Update the chain.
1611 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1612 } else {
1613 InFlag =
1614 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1617 // Copy the division (low) result, if it is needed.
1618 if (!N.getValue(0).use_empty()) {
1619 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1620 LoReg, NVT, InFlag);
1621 InFlag = Result.getValue(2);
1622 ReplaceUses(N.getValue(0), Result);
1623 #ifndef NDEBUG
1624 DOUT << std::string(Indent-2, ' ') << "=> ";
1625 DEBUG(Result.getNode()->dump(CurDAG));
1626 DOUT << "\n";
1627 #endif
1629 // Copy the remainder (high) result, if it is needed.
1630 if (!N.getValue(1).use_empty()) {
1631 SDValue Result;
1632 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1633 // Prevent use of AH in a REX instruction by referencing AX instead.
1634 // Shift it down 8 bits.
1635 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1636 X86::AX, MVT::i16, InFlag);
1637 InFlag = Result.getValue(2);
1638 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1639 Result,
1640 CurDAG->getTargetConstant(8, MVT::i8)),
1642 // Then truncate it down to i8.
1643 SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1644 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1645 MVT::i8, Result, SRIdx), 0);
1646 } else {
1647 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1648 HiReg, NVT, InFlag);
1649 InFlag = Result.getValue(2);
1651 ReplaceUses(N.getValue(1), Result);
1652 #ifndef NDEBUG
1653 DOUT << std::string(Indent-2, ' ') << "=> ";
1654 DEBUG(Result.getNode()->dump(CurDAG));
1655 DOUT << "\n";
1656 #endif
1659 #ifndef NDEBUG
1660 Indent -= 2;
1661 #endif
1663 return NULL;
1666 case ISD::DECLARE: {
1667 // Handle DECLARE nodes here because the second operand may have been
1668 // wrapped in X86ISD::Wrapper.
1669 SDValue Chain = Node->getOperand(0);
1670 SDValue N1 = Node->getOperand(1);
1671 SDValue N2 = Node->getOperand(2);
1672 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1674 // FIXME: We need to handle this for VLAs.
1675 if (!FINode) {
1676 ReplaceUses(N.getValue(0), Chain);
1677 return NULL;
1680 if (N2.getOpcode() == ISD::ADD &&
1681 N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1682 N2 = N2.getOperand(1);
1684 // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1685 // somehow, just ignore it.
1686 if (N2.getOpcode() != X86ISD::Wrapper) {
1687 ReplaceUses(N.getValue(0), Chain);
1688 return NULL;
1690 GlobalAddressSDNode *GVNode =
1691 dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1692 if (GVNode == 0) {
1693 ReplaceUses(N.getValue(0), Chain);
1694 return NULL;
1696 SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1697 TLI.getPointerTy());
1698 SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1699 TLI.getPointerTy());
1700 SDValue Ops[] = { Tmp1, Tmp2, Chain };
1701 return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1702 MVT::Other, Ops,
1703 array_lengthof(Ops));
1707 SDNode *ResNode = SelectCode(N);
1709 #ifndef NDEBUG
1710 DOUT << std::string(Indent-2, ' ') << "=> ";
1711 if (ResNode == NULL || ResNode == N.getNode())
1712 DEBUG(N.getNode()->dump(CurDAG));
1713 else
1714 DEBUG(ResNode->dump(CurDAG));
1715 DOUT << "\n";
1716 Indent -= 2;
1717 #endif
1719 return ResNode;
1722 bool X86DAGToDAGISel::
1723 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1724 std::vector<SDValue> &OutOps) {
1725 SDValue Op0, Op1, Op2, Op3, Op4;
1726 switch (ConstraintCode) {
1727 case 'o': // offsetable ??
1728 case 'v': // not offsetable ??
1729 default: return true;
1730 case 'm': // memory
1731 if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
1732 return true;
1733 break;
1736 OutOps.push_back(Op0);
1737 OutOps.push_back(Op1);
1738 OutOps.push_back(Op2);
1739 OutOps.push_back(Op3);
1740 OutOps.push_back(Op4);
1741 return false;
1744 /// createX86ISelDag - This pass converts a legalized DAG into a
1745 /// X86-specific DAG, ready for instruction scheduling.
1747 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
1748 llvm::CodeGenOpt::Level OptLevel) {
1749 return new X86DAGToDAGISel(TM, OptLevel);