Hanle i8 returns
[llvm/msp430.git] / lib / Target / X86 / X86InstrInfo.cpp
blobd8b3761835e0a41b21d94a0e0a95b42ffad06af9
1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Target/TargetAsmInfo.h"
32 using namespace llvm;
34 namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
43 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
49 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
50 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
51 TM(tm), RI(tm, *this) {
52 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
219 std::make_pair(RegOp,
220 AuxInfo))).second)
221 AmbEntries.push_back(MemOp);
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
226 { X86::BT16ri8, X86::BT16mi8, 1 },
227 { X86::BT32ri8, X86::BT32mi8, 1 },
228 { X86::BT64ri8, X86::BT64mi8, 1 },
229 { X86::CALL32r, X86::CALL32m, 1 },
230 { X86::CALL64r, X86::CALL64m, 1 },
231 { X86::CMP16ri, X86::CMP16mi, 1 },
232 { X86::CMP16ri8, X86::CMP16mi8, 1 },
233 { X86::CMP16rr, X86::CMP16mr, 1 },
234 { X86::CMP32ri, X86::CMP32mi, 1 },
235 { X86::CMP32ri8, X86::CMP32mi8, 1 },
236 { X86::CMP32rr, X86::CMP32mr, 1 },
237 { X86::CMP64ri32, X86::CMP64mi32, 1 },
238 { X86::CMP64ri8, X86::CMP64mi8, 1 },
239 { X86::CMP64rr, X86::CMP64mr, 1 },
240 { X86::CMP8ri, X86::CMP8mi, 1 },
241 { X86::CMP8rr, X86::CMP8mr, 1 },
242 { X86::DIV16r, X86::DIV16m, 1 },
243 { X86::DIV32r, X86::DIV32m, 1 },
244 { X86::DIV64r, X86::DIV64m, 1 },
245 { X86::DIV8r, X86::DIV8m, 1 },
246 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
247 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
248 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
249 { X86::IDIV16r, X86::IDIV16m, 1 },
250 { X86::IDIV32r, X86::IDIV32m, 1 },
251 { X86::IDIV64r, X86::IDIV64m, 1 },
252 { X86::IDIV8r, X86::IDIV8m, 1 },
253 { X86::IMUL16r, X86::IMUL16m, 1 },
254 { X86::IMUL32r, X86::IMUL32m, 1 },
255 { X86::IMUL64r, X86::IMUL64m, 1 },
256 { X86::IMUL8r, X86::IMUL8m, 1 },
257 { X86::JMP32r, X86::JMP32m, 1 },
258 { X86::JMP64r, X86::JMP64m, 1 },
259 { X86::MOV16ri, X86::MOV16mi, 0 },
260 { X86::MOV16rr, X86::MOV16mr, 0 },
261 { X86::MOV32ri, X86::MOV32mi, 0 },
262 { X86::MOV32rr, X86::MOV32mr, 0 },
263 { X86::MOV64ri32, X86::MOV64mi32, 0 },
264 { X86::MOV64rr, X86::MOV64mr, 0 },
265 { X86::MOV8ri, X86::MOV8mi, 0 },
266 { X86::MOV8rr, X86::MOV8mr, 0 },
267 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
268 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
269 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
270 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
271 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
272 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
273 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
274 { X86::MOVSDrr, X86::MOVSDmr, 0 },
275 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
276 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
277 { X86::MOVSSrr, X86::MOVSSmr, 0 },
278 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
279 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
280 { X86::MUL16r, X86::MUL16m, 1 },
281 { X86::MUL32r, X86::MUL32m, 1 },
282 { X86::MUL64r, X86::MUL64m, 1 },
283 { X86::MUL8r, X86::MUL8m, 1 },
284 { X86::SETAEr, X86::SETAEm, 0 },
285 { X86::SETAr, X86::SETAm, 0 },
286 { X86::SETBEr, X86::SETBEm, 0 },
287 { X86::SETBr, X86::SETBm, 0 },
288 { X86::SETEr, X86::SETEm, 0 },
289 { X86::SETGEr, X86::SETGEm, 0 },
290 { X86::SETGr, X86::SETGm, 0 },
291 { X86::SETLEr, X86::SETLEm, 0 },
292 { X86::SETLr, X86::SETLm, 0 },
293 { X86::SETNEr, X86::SETNEm, 0 },
294 { X86::SETNOr, X86::SETNOm, 0 },
295 { X86::SETNPr, X86::SETNPm, 0 },
296 { X86::SETNSr, X86::SETNSm, 0 },
297 { X86::SETOr, X86::SETOm, 0 },
298 { X86::SETPr, X86::SETPm, 0 },
299 { X86::SETSr, X86::SETSm, 0 },
300 { X86::TAILJMPr, X86::TAILJMPm, 1 },
301 { X86::TEST16ri, X86::TEST16mi, 1 },
302 { X86::TEST32ri, X86::TEST32mi, 1 },
303 { X86::TEST64ri32, X86::TEST64mi32, 1 },
304 { X86::TEST8ri, X86::TEST8mi, 1 }
307 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
308 unsigned RegOp = OpTbl0[i][0];
309 unsigned MemOp = OpTbl0[i][1];
310 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
311 MemOp)).second)
312 assert(false && "Duplicated entries?");
313 unsigned FoldedLoad = OpTbl0[i][2];
314 // Index 0, folded load or store.
315 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
316 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
317 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
318 std::make_pair(RegOp, AuxInfo))).second)
319 AmbEntries.push_back(MemOp);
322 static const unsigned OpTbl1[][2] = {
323 { X86::CMP16rr, X86::CMP16rm },
324 { X86::CMP32rr, X86::CMP32rm },
325 { X86::CMP64rr, X86::CMP64rm },
326 { X86::CMP8rr, X86::CMP8rm },
327 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
328 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
329 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
330 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
331 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
332 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
333 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
334 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
335 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
336 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
337 { X86::FsMOVAPDrr, X86::MOVSDrm },
338 { X86::FsMOVAPSrr, X86::MOVSSrm },
339 { X86::IMUL16rri, X86::IMUL16rmi },
340 { X86::IMUL16rri8, X86::IMUL16rmi8 },
341 { X86::IMUL32rri, X86::IMUL32rmi },
342 { X86::IMUL32rri8, X86::IMUL32rmi8 },
343 { X86::IMUL64rri32, X86::IMUL64rmi32 },
344 { X86::IMUL64rri8, X86::IMUL64rmi8 },
345 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
346 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
347 { X86::Int_COMISDrr, X86::Int_COMISDrm },
348 { X86::Int_COMISSrr, X86::Int_COMISSrm },
349 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
350 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
351 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
352 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
353 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
354 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
355 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
356 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
357 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
358 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
359 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
360 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
361 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
362 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
363 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
364 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
365 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
366 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
367 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
368 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
369 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
370 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
371 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
372 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
373 { X86::MOV16rr, X86::MOV16rm },
374 { X86::MOV32rr, X86::MOV32rm },
375 { X86::MOV64rr, X86::MOV64rm },
376 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
377 { X86::MOV64toSDrr, X86::MOV64toSDrm },
378 { X86::MOV8rr, X86::MOV8rm },
379 { X86::MOVAPDrr, X86::MOVAPDrm },
380 { X86::MOVAPSrr, X86::MOVAPSrm },
381 { X86::MOVDDUPrr, X86::MOVDDUPrm },
382 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
383 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
384 { X86::MOVDQArr, X86::MOVDQArm },
385 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
386 { X86::MOVSDrr, X86::MOVSDrm },
387 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
388 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
389 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
390 { X86::MOVSSrr, X86::MOVSSrm },
391 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
392 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
393 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
394 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
395 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
396 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
397 { X86::MOVUPDrr, X86::MOVUPDrm },
398 { X86::MOVUPSrr, X86::MOVUPSrm },
399 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
400 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
401 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
402 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
403 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
404 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
405 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
406 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
407 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
408 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
409 { X86::PSHUFDri, X86::PSHUFDmi },
410 { X86::PSHUFHWri, X86::PSHUFHWmi },
411 { X86::PSHUFLWri, X86::PSHUFLWmi },
412 { X86::RCPPSr, X86::RCPPSm },
413 { X86::RCPPSr_Int, X86::RCPPSm_Int },
414 { X86::RSQRTPSr, X86::RSQRTPSm },
415 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
416 { X86::RSQRTSSr, X86::RSQRTSSm },
417 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
418 { X86::SQRTPDr, X86::SQRTPDm },
419 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
420 { X86::SQRTPSr, X86::SQRTPSm },
421 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
422 { X86::SQRTSDr, X86::SQRTSDm },
423 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
424 { X86::SQRTSSr, X86::SQRTSSm },
425 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
426 { X86::TEST16rr, X86::TEST16rm },
427 { X86::TEST32rr, X86::TEST32rm },
428 { X86::TEST64rr, X86::TEST64rm },
429 { X86::TEST8rr, X86::TEST8rm },
430 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
431 { X86::UCOMISDrr, X86::UCOMISDrm },
432 { X86::UCOMISSrr, X86::UCOMISSrm }
435 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
436 unsigned RegOp = OpTbl1[i][0];
437 unsigned MemOp = OpTbl1[i][1];
438 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
439 MemOp)).second)
440 assert(false && "Duplicated entries?");
441 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
442 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
443 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
444 std::make_pair(RegOp, AuxInfo))).second)
445 AmbEntries.push_back(MemOp);
448 static const unsigned OpTbl2[][2] = {
449 { X86::ADC32rr, X86::ADC32rm },
450 { X86::ADC64rr, X86::ADC64rm },
451 { X86::ADD16rr, X86::ADD16rm },
452 { X86::ADD32rr, X86::ADD32rm },
453 { X86::ADD64rr, X86::ADD64rm },
454 { X86::ADD8rr, X86::ADD8rm },
455 { X86::ADDPDrr, X86::ADDPDrm },
456 { X86::ADDPSrr, X86::ADDPSrm },
457 { X86::ADDSDrr, X86::ADDSDrm },
458 { X86::ADDSSrr, X86::ADDSSrm },
459 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
460 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
461 { X86::AND16rr, X86::AND16rm },
462 { X86::AND32rr, X86::AND32rm },
463 { X86::AND64rr, X86::AND64rm },
464 { X86::AND8rr, X86::AND8rm },
465 { X86::ANDNPDrr, X86::ANDNPDrm },
466 { X86::ANDNPSrr, X86::ANDNPSrm },
467 { X86::ANDPDrr, X86::ANDPDrm },
468 { X86::ANDPSrr, X86::ANDPSrm },
469 { X86::CMOVA16rr, X86::CMOVA16rm },
470 { X86::CMOVA32rr, X86::CMOVA32rm },
471 { X86::CMOVA64rr, X86::CMOVA64rm },
472 { X86::CMOVAE16rr, X86::CMOVAE16rm },
473 { X86::CMOVAE32rr, X86::CMOVAE32rm },
474 { X86::CMOVAE64rr, X86::CMOVAE64rm },
475 { X86::CMOVB16rr, X86::CMOVB16rm },
476 { X86::CMOVB32rr, X86::CMOVB32rm },
477 { X86::CMOVB64rr, X86::CMOVB64rm },
478 { X86::CMOVBE16rr, X86::CMOVBE16rm },
479 { X86::CMOVBE32rr, X86::CMOVBE32rm },
480 { X86::CMOVBE64rr, X86::CMOVBE64rm },
481 { X86::CMOVE16rr, X86::CMOVE16rm },
482 { X86::CMOVE32rr, X86::CMOVE32rm },
483 { X86::CMOVE64rr, X86::CMOVE64rm },
484 { X86::CMOVG16rr, X86::CMOVG16rm },
485 { X86::CMOVG32rr, X86::CMOVG32rm },
486 { X86::CMOVG64rr, X86::CMOVG64rm },
487 { X86::CMOVGE16rr, X86::CMOVGE16rm },
488 { X86::CMOVGE32rr, X86::CMOVGE32rm },
489 { X86::CMOVGE64rr, X86::CMOVGE64rm },
490 { X86::CMOVL16rr, X86::CMOVL16rm },
491 { X86::CMOVL32rr, X86::CMOVL32rm },
492 { X86::CMOVL64rr, X86::CMOVL64rm },
493 { X86::CMOVLE16rr, X86::CMOVLE16rm },
494 { X86::CMOVLE32rr, X86::CMOVLE32rm },
495 { X86::CMOVLE64rr, X86::CMOVLE64rm },
496 { X86::CMOVNE16rr, X86::CMOVNE16rm },
497 { X86::CMOVNE32rr, X86::CMOVNE32rm },
498 { X86::CMOVNE64rr, X86::CMOVNE64rm },
499 { X86::CMOVNO16rr, X86::CMOVNO16rm },
500 { X86::CMOVNO32rr, X86::CMOVNO32rm },
501 { X86::CMOVNO64rr, X86::CMOVNO64rm },
502 { X86::CMOVNP16rr, X86::CMOVNP16rm },
503 { X86::CMOVNP32rr, X86::CMOVNP32rm },
504 { X86::CMOVNP64rr, X86::CMOVNP64rm },
505 { X86::CMOVNS16rr, X86::CMOVNS16rm },
506 { X86::CMOVNS32rr, X86::CMOVNS32rm },
507 { X86::CMOVNS64rr, X86::CMOVNS64rm },
508 { X86::CMOVO16rr, X86::CMOVO16rm },
509 { X86::CMOVO32rr, X86::CMOVO32rm },
510 { X86::CMOVO64rr, X86::CMOVO64rm },
511 { X86::CMOVP16rr, X86::CMOVP16rm },
512 { X86::CMOVP32rr, X86::CMOVP32rm },
513 { X86::CMOVP64rr, X86::CMOVP64rm },
514 { X86::CMOVS16rr, X86::CMOVS16rm },
515 { X86::CMOVS32rr, X86::CMOVS32rm },
516 { X86::CMOVS64rr, X86::CMOVS64rm },
517 { X86::CMPPDrri, X86::CMPPDrmi },
518 { X86::CMPPSrri, X86::CMPPSrmi },
519 { X86::CMPSDrr, X86::CMPSDrm },
520 { X86::CMPSSrr, X86::CMPSSrm },
521 { X86::DIVPDrr, X86::DIVPDrm },
522 { X86::DIVPSrr, X86::DIVPSrm },
523 { X86::DIVSDrr, X86::DIVSDrm },
524 { X86::DIVSSrr, X86::DIVSSrm },
525 { X86::FsANDNPDrr, X86::FsANDNPDrm },
526 { X86::FsANDNPSrr, X86::FsANDNPSrm },
527 { X86::FsANDPDrr, X86::FsANDPDrm },
528 { X86::FsANDPSrr, X86::FsANDPSrm },
529 { X86::FsORPDrr, X86::FsORPDrm },
530 { X86::FsORPSrr, X86::FsORPSrm },
531 { X86::FsXORPDrr, X86::FsXORPDrm },
532 { X86::FsXORPSrr, X86::FsXORPSrm },
533 { X86::HADDPDrr, X86::HADDPDrm },
534 { X86::HADDPSrr, X86::HADDPSrm },
535 { X86::HSUBPDrr, X86::HSUBPDrm },
536 { X86::HSUBPSrr, X86::HSUBPSrm },
537 { X86::IMUL16rr, X86::IMUL16rm },
538 { X86::IMUL32rr, X86::IMUL32rm },
539 { X86::IMUL64rr, X86::IMUL64rm },
540 { X86::MAXPDrr, X86::MAXPDrm },
541 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
542 { X86::MAXPSrr, X86::MAXPSrm },
543 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
544 { X86::MAXSDrr, X86::MAXSDrm },
545 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
546 { X86::MAXSSrr, X86::MAXSSrm },
547 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
548 { X86::MINPDrr, X86::MINPDrm },
549 { X86::MINPDrr_Int, X86::MINPDrm_Int },
550 { X86::MINPSrr, X86::MINPSrm },
551 { X86::MINPSrr_Int, X86::MINPSrm_Int },
552 { X86::MINSDrr, X86::MINSDrm },
553 { X86::MINSDrr_Int, X86::MINSDrm_Int },
554 { X86::MINSSrr, X86::MINSSrm },
555 { X86::MINSSrr_Int, X86::MINSSrm_Int },
556 { X86::MULPDrr, X86::MULPDrm },
557 { X86::MULPSrr, X86::MULPSrm },
558 { X86::MULSDrr, X86::MULSDrm },
559 { X86::MULSSrr, X86::MULSSrm },
560 { X86::OR16rr, X86::OR16rm },
561 { X86::OR32rr, X86::OR32rm },
562 { X86::OR64rr, X86::OR64rm },
563 { X86::OR8rr, X86::OR8rm },
564 { X86::ORPDrr, X86::ORPDrm },
565 { X86::ORPSrr, X86::ORPSrm },
566 { X86::PACKSSDWrr, X86::PACKSSDWrm },
567 { X86::PACKSSWBrr, X86::PACKSSWBrm },
568 { X86::PACKUSWBrr, X86::PACKUSWBrm },
569 { X86::PADDBrr, X86::PADDBrm },
570 { X86::PADDDrr, X86::PADDDrm },
571 { X86::PADDQrr, X86::PADDQrm },
572 { X86::PADDSBrr, X86::PADDSBrm },
573 { X86::PADDSWrr, X86::PADDSWrm },
574 { X86::PADDWrr, X86::PADDWrm },
575 { X86::PANDNrr, X86::PANDNrm },
576 { X86::PANDrr, X86::PANDrm },
577 { X86::PAVGBrr, X86::PAVGBrm },
578 { X86::PAVGWrr, X86::PAVGWrm },
579 { X86::PCMPEQBrr, X86::PCMPEQBrm },
580 { X86::PCMPEQDrr, X86::PCMPEQDrm },
581 { X86::PCMPEQWrr, X86::PCMPEQWrm },
582 { X86::PCMPGTBrr, X86::PCMPGTBrm },
583 { X86::PCMPGTDrr, X86::PCMPGTDrm },
584 { X86::PCMPGTWrr, X86::PCMPGTWrm },
585 { X86::PINSRWrri, X86::PINSRWrmi },
586 { X86::PMADDWDrr, X86::PMADDWDrm },
587 { X86::PMAXSWrr, X86::PMAXSWrm },
588 { X86::PMAXUBrr, X86::PMAXUBrm },
589 { X86::PMINSWrr, X86::PMINSWrm },
590 { X86::PMINUBrr, X86::PMINUBrm },
591 { X86::PMULDQrr, X86::PMULDQrm },
592 { X86::PMULHUWrr, X86::PMULHUWrm },
593 { X86::PMULHWrr, X86::PMULHWrm },
594 { X86::PMULLDrr, X86::PMULLDrm },
595 { X86::PMULLDrr_int, X86::PMULLDrm_int },
596 { X86::PMULLWrr, X86::PMULLWrm },
597 { X86::PMULUDQrr, X86::PMULUDQrm },
598 { X86::PORrr, X86::PORrm },
599 { X86::PSADBWrr, X86::PSADBWrm },
600 { X86::PSLLDrr, X86::PSLLDrm },
601 { X86::PSLLQrr, X86::PSLLQrm },
602 { X86::PSLLWrr, X86::PSLLWrm },
603 { X86::PSRADrr, X86::PSRADrm },
604 { X86::PSRAWrr, X86::PSRAWrm },
605 { X86::PSRLDrr, X86::PSRLDrm },
606 { X86::PSRLQrr, X86::PSRLQrm },
607 { X86::PSRLWrr, X86::PSRLWrm },
608 { X86::PSUBBrr, X86::PSUBBrm },
609 { X86::PSUBDrr, X86::PSUBDrm },
610 { X86::PSUBSBrr, X86::PSUBSBrm },
611 { X86::PSUBSWrr, X86::PSUBSWrm },
612 { X86::PSUBWrr, X86::PSUBWrm },
613 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
614 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
615 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
616 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
617 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
618 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
619 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
620 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
621 { X86::PXORrr, X86::PXORrm },
622 { X86::SBB32rr, X86::SBB32rm },
623 { X86::SBB64rr, X86::SBB64rm },
624 { X86::SHUFPDrri, X86::SHUFPDrmi },
625 { X86::SHUFPSrri, X86::SHUFPSrmi },
626 { X86::SUB16rr, X86::SUB16rm },
627 { X86::SUB32rr, X86::SUB32rm },
628 { X86::SUB64rr, X86::SUB64rm },
629 { X86::SUB8rr, X86::SUB8rm },
630 { X86::SUBPDrr, X86::SUBPDrm },
631 { X86::SUBPSrr, X86::SUBPSrm },
632 { X86::SUBSDrr, X86::SUBSDrm },
633 { X86::SUBSSrr, X86::SUBSSrm },
634 // FIXME: TEST*rr -> swapped operand of TEST*mr.
635 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
636 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
637 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
638 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
639 { X86::XOR16rr, X86::XOR16rm },
640 { X86::XOR32rr, X86::XOR32rm },
641 { X86::XOR64rr, X86::XOR64rm },
642 { X86::XOR8rr, X86::XOR8rm },
643 { X86::XORPDrr, X86::XORPDrm },
644 { X86::XORPSrr, X86::XORPSrm }
647 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
648 unsigned RegOp = OpTbl2[i][0];
649 unsigned MemOp = OpTbl2[i][1];
650 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
651 MemOp)).second)
652 assert(false && "Duplicated entries?");
653 unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
654 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
655 std::make_pair(RegOp, AuxInfo))).second)
656 AmbEntries.push_back(MemOp);
659 // Remove ambiguous entries.
660 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
663 bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
664 unsigned &SrcReg, unsigned &DstReg,
665 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
666 switch (MI.getOpcode()) {
667 default:
668 return false;
669 case X86::MOV8rr:
670 case X86::MOV8rr_NOREX:
671 case X86::MOV16rr:
672 case X86::MOV32rr:
673 case X86::MOV64rr:
674 case X86::MOVSSrr:
675 case X86::MOVSDrr:
677 // FP Stack register class copies
678 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
679 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
680 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
682 case X86::FsMOVAPSrr:
683 case X86::FsMOVAPDrr:
684 case X86::MOVAPSrr:
685 case X86::MOVAPDrr:
686 case X86::MOVDQArr:
687 case X86::MOVSS2PSrr:
688 case X86::MOVSD2PDrr:
689 case X86::MOVPS2SSrr:
690 case X86::MOVPD2SDrr:
691 case X86::MMX_MOVQ64rr:
692 assert(MI.getNumOperands() >= 2 &&
693 MI.getOperand(0).isReg() &&
694 MI.getOperand(1).isReg() &&
695 "invalid register-register move instruction");
696 SrcReg = MI.getOperand(1).getReg();
697 DstReg = MI.getOperand(0).getReg();
698 SrcSubIdx = MI.getOperand(1).getSubReg();
699 DstSubIdx = MI.getOperand(0).getSubReg();
700 return true;
704 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
705 int &FrameIndex) const {
706 switch (MI->getOpcode()) {
707 default: break;
708 case X86::MOV8rm:
709 case X86::MOV16rm:
710 case X86::MOV32rm:
711 case X86::MOV64rm:
712 case X86::LD_Fp64m:
713 case X86::MOVSSrm:
714 case X86::MOVSDrm:
715 case X86::MOVAPSrm:
716 case X86::MOVAPDrm:
717 case X86::MOVDQArm:
718 case X86::MMX_MOVD64rm:
719 case X86::MMX_MOVQ64rm:
720 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
721 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
722 MI->getOperand(2).getImm() == 1 &&
723 MI->getOperand(3).getReg() == 0 &&
724 MI->getOperand(4).getImm() == 0) {
725 FrameIndex = MI->getOperand(1).getIndex();
726 return MI->getOperand(0).getReg();
728 break;
730 return 0;
733 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
734 int &FrameIndex) const {
735 switch (MI->getOpcode()) {
736 default: break;
737 case X86::MOV8mr:
738 case X86::MOV16mr:
739 case X86::MOV32mr:
740 case X86::MOV64mr:
741 case X86::ST_FpP64m:
742 case X86::MOVSSmr:
743 case X86::MOVSDmr:
744 case X86::MOVAPSmr:
745 case X86::MOVAPDmr:
746 case X86::MOVDQAmr:
747 case X86::MMX_MOVD64mr:
748 case X86::MMX_MOVQ64mr:
749 case X86::MMX_MOVNTQmr:
750 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
751 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
752 MI->getOperand(1).getImm() == 1 &&
753 MI->getOperand(2).getReg() == 0 &&
754 MI->getOperand(3).getImm() == 0) {
755 FrameIndex = MI->getOperand(0).getIndex();
756 return MI->getOperand(X86AddrNumOperands).getReg();
758 break;
760 return 0;
764 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
765 /// X86::MOVPC32r.
766 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
767 bool isPICBase = false;
768 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
769 E = MRI.def_end(); I != E; ++I) {
770 MachineInstr *DefMI = I.getOperand().getParent();
771 if (DefMI->getOpcode() != X86::MOVPC32r)
772 return false;
773 assert(!isPICBase && "More than one PIC base?");
774 isPICBase = true;
776 return isPICBase;
779 /// isGVStub - Return true if the GV requires an extra load to get the
780 /// real address.
781 static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
782 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
785 bool
786 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
787 switch (MI->getOpcode()) {
788 default: break;
789 case X86::MOV8rm:
790 case X86::MOV16rm:
791 case X86::MOV32rm:
792 case X86::MOV64rm:
793 case X86::LD_Fp64m:
794 case X86::MOVSSrm:
795 case X86::MOVSDrm:
796 case X86::MOVAPSrm:
797 case X86::MOVAPDrm:
798 case X86::MOVDQArm:
799 case X86::MMX_MOVD64rm:
800 case X86::MMX_MOVQ64rm: {
801 // Loads from constant pools are trivially rematerializable.
802 if (MI->getOperand(1).isReg() &&
803 MI->getOperand(2).isImm() &&
804 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
805 (MI->getOperand(4).isCPI() ||
806 (MI->getOperand(4).isGlobal() &&
807 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
808 unsigned BaseReg = MI->getOperand(1).getReg();
809 if (BaseReg == 0)
810 return true;
811 // Allow re-materialization of PIC load.
812 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
813 return false;
814 const MachineFunction &MF = *MI->getParent()->getParent();
815 const MachineRegisterInfo &MRI = MF.getRegInfo();
816 bool isPICBase = false;
817 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
818 E = MRI.def_end(); I != E; ++I) {
819 MachineInstr *DefMI = I.getOperand().getParent();
820 if (DefMI->getOpcode() != X86::MOVPC32r)
821 return false;
822 assert(!isPICBase && "More than one PIC base?");
823 isPICBase = true;
825 return isPICBase;
827 return false;
830 case X86::LEA32r:
831 case X86::LEA64r: {
832 if (MI->getOperand(2).isImm() &&
833 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
834 !MI->getOperand(4).isReg()) {
835 // lea fi#, lea GV, etc. are all rematerializable.
836 if (!MI->getOperand(1).isReg())
837 return true;
838 unsigned BaseReg = MI->getOperand(1).getReg();
839 if (BaseReg == 0)
840 return true;
841 // Allow re-materialization of lea PICBase + x.
842 const MachineFunction &MF = *MI->getParent()->getParent();
843 const MachineRegisterInfo &MRI = MF.getRegInfo();
844 return regIsPICBase(BaseReg, MRI);
846 return false;
850 // All other instructions marked M_REMATERIALIZABLE are always trivially
851 // rematerializable.
852 return true;
855 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
856 /// would clobber the EFLAGS condition register. Note the result may be
857 /// conservative. If it cannot definitely determine the safety after visiting
858 /// two instructions it assumes it's not safe.
859 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
860 MachineBasicBlock::iterator I) {
861 // It's always safe to clobber EFLAGS at the end of a block.
862 if (I == MBB.end())
863 return true;
865 // For compile time consideration, if we are not able to determine the
866 // safety after visiting 2 instructions, we will assume it's not safe.
867 for (unsigned i = 0; i < 2; ++i) {
868 bool SeenDef = false;
869 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
870 MachineOperand &MO = I->getOperand(j);
871 if (!MO.isReg())
872 continue;
873 if (MO.getReg() == X86::EFLAGS) {
874 if (MO.isUse())
875 return false;
876 SeenDef = true;
880 if (SeenDef)
881 // This instruction defines EFLAGS, no need to look any further.
882 return true;
883 ++I;
885 // If we make it to the end of the block, it's safe to clobber EFLAGS.
886 if (I == MBB.end())
887 return true;
890 // Conservative answer.
891 return false;
894 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
895 MachineBasicBlock::iterator I,
896 unsigned DestReg,
897 const MachineInstr *Orig) const {
898 DebugLoc DL = DebugLoc::getUnknownLoc();
899 if (I != MBB.end()) DL = I->getDebugLoc();
901 unsigned SubIdx = Orig->getOperand(0).isReg()
902 ? Orig->getOperand(0).getSubReg() : 0;
903 bool ChangeSubIdx = SubIdx != 0;
904 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
905 DestReg = RI.getSubReg(DestReg, SubIdx);
906 SubIdx = 0;
909 // MOV32r0 etc. are implemented with xor which clobbers condition code.
910 // Re-materialize them as movri instructions to avoid side effects.
911 bool Emitted = false;
912 switch (Orig->getOpcode()) {
913 default: break;
914 case X86::MOV8r0:
915 case X86::MOV16r0:
916 case X86::MOV32r0:
917 case X86::MOV64r0: {
918 if (!isSafeToClobberEFLAGS(MBB, I)) {
919 unsigned Opc = 0;
920 switch (Orig->getOpcode()) {
921 default: break;
922 case X86::MOV8r0: Opc = X86::MOV8ri; break;
923 case X86::MOV16r0: Opc = X86::MOV16ri; break;
924 case X86::MOV32r0: Opc = X86::MOV32ri; break;
925 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
927 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
928 Emitted = true;
930 break;
934 if (!Emitted) {
935 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
936 MI->getOperand(0).setReg(DestReg);
937 MBB.insert(I, MI);
940 if (ChangeSubIdx) {
941 MachineInstr *NewMI = prior(I);
942 NewMI->getOperand(0).setSubReg(SubIdx);
946 /// isInvariantLoad - Return true if the specified instruction (which is marked
947 /// mayLoad) is loading from a location whose value is invariant across the
948 /// function. For example, loading a value from the constant pool or from
949 /// from the argument area of a function if it does not change. This should
950 /// only return true of *all* loads the instruction does are invariant (if it
951 /// does multiple loads).
952 bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
953 // This code cares about loads from three cases: constant pool entries,
954 // invariant argument slots, and global stubs. In order to handle these cases
955 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
956 // operand and base our analysis on it. This is safe because the address of
957 // none of these three cases is ever used as anything other than a load base
958 // and X86 doesn't have any instructions that load from multiple places.
960 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
961 const MachineOperand &MO = MI->getOperand(i);
962 // Loads from constant pools are trivially invariant.
963 if (MO.isCPI())
964 return true;
966 if (MO.isGlobal())
967 return isGVStub(MO.getGlobal(), TM);
969 // If this is a load from an invariant stack slot, the load is a constant.
970 if (MO.isFI()) {
971 const MachineFrameInfo &MFI =
972 *MI->getParent()->getParent()->getFrameInfo();
973 int Idx = MO.getIndex();
974 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
978 // All other instances of these instructions are presumed to have other
979 // issues.
980 return false;
983 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
984 /// is not marked dead.
985 static bool hasLiveCondCodeDef(MachineInstr *MI) {
986 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
987 MachineOperand &MO = MI->getOperand(i);
988 if (MO.isReg() && MO.isDef() &&
989 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
990 return true;
993 return false;
996 /// convertToThreeAddress - This method must be implemented by targets that
997 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
998 /// may be able to convert a two-address instruction into a true
999 /// three-address instruction on demand. This allows the X86 target (for
1000 /// example) to convert ADD and SHL instructions into LEA instructions if they
1001 /// would require register copies due to two-addressness.
1003 /// This method returns a null pointer if the transformation cannot be
1004 /// performed, otherwise it returns the new instruction.
1006 MachineInstr *
1007 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1008 MachineBasicBlock::iterator &MBBI,
1009 LiveVariables *LV) const {
1010 MachineInstr *MI = MBBI;
1011 MachineFunction &MF = *MI->getParent()->getParent();
1012 // All instructions input are two-addr instructions. Get the known operands.
1013 unsigned Dest = MI->getOperand(0).getReg();
1014 unsigned Src = MI->getOperand(1).getReg();
1015 bool isDead = MI->getOperand(0).isDead();
1016 bool isKill = MI->getOperand(1).isKill();
1018 MachineInstr *NewMI = NULL;
1019 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1020 // we have better subtarget support, enable the 16-bit LEA generation here.
1021 bool DisableLEA16 = true;
1023 unsigned MIOpc = MI->getOpcode();
1024 switch (MIOpc) {
1025 case X86::SHUFPSrri: {
1026 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1027 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1029 unsigned B = MI->getOperand(1).getReg();
1030 unsigned C = MI->getOperand(2).getReg();
1031 if (B != C) return 0;
1032 unsigned A = MI->getOperand(0).getReg();
1033 unsigned M = MI->getOperand(3).getImm();
1034 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1035 .addReg(A, true, false, false, isDead)
1036 .addReg(B, false, false, isKill).addImm(M);
1037 break;
1039 case X86::SHL64ri: {
1040 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1041 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042 // the flags produced by a shift yet, so this is safe.
1043 unsigned ShAmt = MI->getOperand(2).getImm();
1044 if (ShAmt == 0 || ShAmt >= 4) return 0;
1046 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1047 .addReg(Dest, true, false, false, isDead)
1048 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1049 break;
1051 case X86::SHL32ri: {
1052 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1053 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054 // the flags produced by a shift yet, so this is safe.
1055 unsigned ShAmt = MI->getOperand(2).getImm();
1056 if (ShAmt == 0 || ShAmt >= 4) return 0;
1058 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1059 X86::LEA64_32r : X86::LEA32r;
1060 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1061 .addReg(Dest, true, false, false, isDead)
1062 .addReg(0).addImm(1 << ShAmt)
1063 .addReg(Src, false, false, isKill).addImm(0);
1064 break;
1066 case X86::SHL16ri: {
1067 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1068 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1069 // the flags produced by a shift yet, so this is safe.
1070 unsigned ShAmt = MI->getOperand(2).getImm();
1071 if (ShAmt == 0 || ShAmt >= 4) return 0;
1073 if (DisableLEA16) {
1074 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1075 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1076 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1077 ? X86::LEA64_32r : X86::LEA32r;
1078 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1079 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1081 // Build and insert into an implicit UNDEF value. This is OK because
1082 // well be shifting and then extracting the lower 16-bits.
1083 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1084 MachineInstr *InsMI =
1085 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1086 .addReg(leaInReg).addReg(Src, false, false, isKill)
1087 .addImm(X86::SUBREG_16BIT);
1089 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1090 .addReg(0).addImm(1 << ShAmt)
1091 .addReg(leaInReg, false, false, true).addImm(0);
1093 MachineInstr *ExtMI =
1094 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1095 .addReg(Dest, true, false, false, isDead)
1096 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1098 if (LV) {
1099 // Update live variables
1100 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1101 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1102 if (isKill)
1103 LV->replaceKillInstruction(Src, MI, InsMI);
1104 if (isDead)
1105 LV->replaceKillInstruction(Dest, MI, ExtMI);
1107 return ExtMI;
1108 } else {
1109 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1110 .addReg(Dest, true, false, false, isDead)
1111 .addReg(0).addImm(1 << ShAmt)
1112 .addReg(Src, false, false, isKill).addImm(0);
1114 break;
1116 default: {
1117 // The following opcodes also sets the condition code register(s). Only
1118 // convert them to equivalent lea if the condition code register def's
1119 // are dead!
1120 if (hasLiveCondCodeDef(MI))
1121 return 0;
1123 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1124 switch (MIOpc) {
1125 default: return 0;
1126 case X86::INC64r:
1127 case X86::INC32r:
1128 case X86::INC64_32r: {
1129 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1130 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1131 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1132 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1133 .addReg(Dest, true, false, false, isDead),
1134 Src, isKill, 1);
1135 break;
1137 case X86::INC16r:
1138 case X86::INC64_16r:
1139 if (DisableLEA16) return 0;
1140 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1141 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1142 .addReg(Dest, true, false, false, isDead),
1143 Src, isKill, 1);
1144 break;
1145 case X86::DEC64r:
1146 case X86::DEC32r:
1147 case X86::DEC64_32r: {
1148 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1149 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1150 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1151 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1152 .addReg(Dest, true, false, false, isDead),
1153 Src, isKill, -1);
1154 break;
1156 case X86::DEC16r:
1157 case X86::DEC64_16r:
1158 if (DisableLEA16) return 0;
1159 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1160 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1161 .addReg(Dest, true, false, false, isDead),
1162 Src, isKill, -1);
1163 break;
1164 case X86::ADD64rr:
1165 case X86::ADD32rr: {
1166 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1167 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1168 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1169 unsigned Src2 = MI->getOperand(2).getReg();
1170 bool isKill2 = MI->getOperand(2).isKill();
1171 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1172 .addReg(Dest, true, false, false, isDead),
1173 Src, isKill, Src2, isKill2);
1174 if (LV && isKill2)
1175 LV->replaceKillInstruction(Src2, MI, NewMI);
1176 break;
1178 case X86::ADD16rr: {
1179 if (DisableLEA16) return 0;
1180 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1181 unsigned Src2 = MI->getOperand(2).getReg();
1182 bool isKill2 = MI->getOperand(2).isKill();
1183 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1184 .addReg(Dest, true, false, false, isDead),
1185 Src, isKill, Src2, isKill2);
1186 if (LV && isKill2)
1187 LV->replaceKillInstruction(Src2, MI, NewMI);
1188 break;
1190 case X86::ADD64ri32:
1191 case X86::ADD64ri8:
1192 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1193 if (MI->getOperand(2).isImm())
1194 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1195 .addReg(Dest, true, false, false, isDead),
1196 Src, isKill, MI->getOperand(2).getImm());
1197 break;
1198 case X86::ADD32ri:
1199 case X86::ADD32ri8:
1200 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1201 if (MI->getOperand(2).isImm()) {
1202 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1203 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1204 .addReg(Dest, true, false, false, isDead),
1205 Src, isKill, MI->getOperand(2).getImm());
1207 break;
1208 case X86::ADD16ri:
1209 case X86::ADD16ri8:
1210 if (DisableLEA16) return 0;
1211 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1212 if (MI->getOperand(2).isImm())
1213 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1214 .addReg(Dest, true, false, false, isDead),
1215 Src, isKill, MI->getOperand(2).getImm());
1216 break;
1217 case X86::SHL16ri:
1218 if (DisableLEA16) return 0;
1219 case X86::SHL32ri:
1220 case X86::SHL64ri: {
1221 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1222 "Unknown shl instruction!");
1223 unsigned ShAmt = MI->getOperand(2).getImm();
1224 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1225 X86AddressMode AM;
1226 AM.Scale = 1 << ShAmt;
1227 AM.IndexReg = Src;
1228 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1229 : (MIOpc == X86::SHL32ri
1230 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1231 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1232 .addReg(Dest, true, false, false, isDead), AM);
1233 if (isKill)
1234 NewMI->getOperand(3).setIsKill(true);
1236 break;
1242 if (!NewMI) return 0;
1244 if (LV) { // Update live variables
1245 if (isKill)
1246 LV->replaceKillInstruction(Src, MI, NewMI);
1247 if (isDead)
1248 LV->replaceKillInstruction(Dest, MI, NewMI);
1251 MFI->insert(MBBI, NewMI); // Insert the new inst
1252 return NewMI;
1255 /// commuteInstruction - We have a few instructions that must be hacked on to
1256 /// commute them.
1258 MachineInstr *
1259 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1260 switch (MI->getOpcode()) {
1261 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1262 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1263 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1264 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1265 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1266 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1267 unsigned Opc;
1268 unsigned Size;
1269 switch (MI->getOpcode()) {
1270 default: assert(0 && "Unreachable!");
1271 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1272 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1273 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1274 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1275 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1276 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1278 unsigned Amt = MI->getOperand(3).getImm();
1279 if (NewMI) {
1280 MachineFunction &MF = *MI->getParent()->getParent();
1281 MI = MF.CloneMachineInstr(MI);
1282 NewMI = false;
1284 MI->setDesc(get(Opc));
1285 MI->getOperand(3).setImm(Size-Amt);
1286 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1288 case X86::CMOVB16rr:
1289 case X86::CMOVB32rr:
1290 case X86::CMOVB64rr:
1291 case X86::CMOVAE16rr:
1292 case X86::CMOVAE32rr:
1293 case X86::CMOVAE64rr:
1294 case X86::CMOVE16rr:
1295 case X86::CMOVE32rr:
1296 case X86::CMOVE64rr:
1297 case X86::CMOVNE16rr:
1298 case X86::CMOVNE32rr:
1299 case X86::CMOVNE64rr:
1300 case X86::CMOVBE16rr:
1301 case X86::CMOVBE32rr:
1302 case X86::CMOVBE64rr:
1303 case X86::CMOVA16rr:
1304 case X86::CMOVA32rr:
1305 case X86::CMOVA64rr:
1306 case X86::CMOVL16rr:
1307 case X86::CMOVL32rr:
1308 case X86::CMOVL64rr:
1309 case X86::CMOVGE16rr:
1310 case X86::CMOVGE32rr:
1311 case X86::CMOVGE64rr:
1312 case X86::CMOVLE16rr:
1313 case X86::CMOVLE32rr:
1314 case X86::CMOVLE64rr:
1315 case X86::CMOVG16rr:
1316 case X86::CMOVG32rr:
1317 case X86::CMOVG64rr:
1318 case X86::CMOVS16rr:
1319 case X86::CMOVS32rr:
1320 case X86::CMOVS64rr:
1321 case X86::CMOVNS16rr:
1322 case X86::CMOVNS32rr:
1323 case X86::CMOVNS64rr:
1324 case X86::CMOVP16rr:
1325 case X86::CMOVP32rr:
1326 case X86::CMOVP64rr:
1327 case X86::CMOVNP16rr:
1328 case X86::CMOVNP32rr:
1329 case X86::CMOVNP64rr:
1330 case X86::CMOVO16rr:
1331 case X86::CMOVO32rr:
1332 case X86::CMOVO64rr:
1333 case X86::CMOVNO16rr:
1334 case X86::CMOVNO32rr:
1335 case X86::CMOVNO64rr: {
1336 unsigned Opc = 0;
1337 switch (MI->getOpcode()) {
1338 default: break;
1339 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1340 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1341 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1342 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1343 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1344 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1345 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1346 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1347 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1348 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1349 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1350 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1351 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1352 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1353 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1354 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1355 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1356 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1357 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1358 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1359 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1360 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1361 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1362 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1363 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1364 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1365 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1366 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1367 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1368 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1369 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1370 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1371 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
1372 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1373 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1374 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1375 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1376 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1377 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
1378 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1379 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1380 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1381 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1382 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1383 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
1384 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1385 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1386 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1388 if (NewMI) {
1389 MachineFunction &MF = *MI->getParent()->getParent();
1390 MI = MF.CloneMachineInstr(MI);
1391 NewMI = false;
1393 MI->setDesc(get(Opc));
1394 // Fallthrough intended.
1396 default:
1397 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1401 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1402 switch (BrOpc) {
1403 default: return X86::COND_INVALID;
1404 case X86::JE: return X86::COND_E;
1405 case X86::JNE: return X86::COND_NE;
1406 case X86::JL: return X86::COND_L;
1407 case X86::JLE: return X86::COND_LE;
1408 case X86::JG: return X86::COND_G;
1409 case X86::JGE: return X86::COND_GE;
1410 case X86::JB: return X86::COND_B;
1411 case X86::JBE: return X86::COND_BE;
1412 case X86::JA: return X86::COND_A;
1413 case X86::JAE: return X86::COND_AE;
1414 case X86::JS: return X86::COND_S;
1415 case X86::JNS: return X86::COND_NS;
1416 case X86::JP: return X86::COND_P;
1417 case X86::JNP: return X86::COND_NP;
1418 case X86::JO: return X86::COND_O;
1419 case X86::JNO: return X86::COND_NO;
1423 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1424 switch (CC) {
1425 default: assert(0 && "Illegal condition code!");
1426 case X86::COND_E: return X86::JE;
1427 case X86::COND_NE: return X86::JNE;
1428 case X86::COND_L: return X86::JL;
1429 case X86::COND_LE: return X86::JLE;
1430 case X86::COND_G: return X86::JG;
1431 case X86::COND_GE: return X86::JGE;
1432 case X86::COND_B: return X86::JB;
1433 case X86::COND_BE: return X86::JBE;
1434 case X86::COND_A: return X86::JA;
1435 case X86::COND_AE: return X86::JAE;
1436 case X86::COND_S: return X86::JS;
1437 case X86::COND_NS: return X86::JNS;
1438 case X86::COND_P: return X86::JP;
1439 case X86::COND_NP: return X86::JNP;
1440 case X86::COND_O: return X86::JO;
1441 case X86::COND_NO: return X86::JNO;
1445 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1446 /// e.g. turning COND_E to COND_NE.
1447 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1448 switch (CC) {
1449 default: assert(0 && "Illegal condition code!");
1450 case X86::COND_E: return X86::COND_NE;
1451 case X86::COND_NE: return X86::COND_E;
1452 case X86::COND_L: return X86::COND_GE;
1453 case X86::COND_LE: return X86::COND_G;
1454 case X86::COND_G: return X86::COND_LE;
1455 case X86::COND_GE: return X86::COND_L;
1456 case X86::COND_B: return X86::COND_AE;
1457 case X86::COND_BE: return X86::COND_A;
1458 case X86::COND_A: return X86::COND_BE;
1459 case X86::COND_AE: return X86::COND_B;
1460 case X86::COND_S: return X86::COND_NS;
1461 case X86::COND_NS: return X86::COND_S;
1462 case X86::COND_P: return X86::COND_NP;
1463 case X86::COND_NP: return X86::COND_P;
1464 case X86::COND_O: return X86::COND_NO;
1465 case X86::COND_NO: return X86::COND_O;
1469 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1470 const TargetInstrDesc &TID = MI->getDesc();
1471 if (!TID.isTerminator()) return false;
1473 // Conditional branch is a special case.
1474 if (TID.isBranch() && !TID.isBarrier())
1475 return true;
1476 if (!TID.isPredicable())
1477 return true;
1478 return !isPredicated(MI);
1481 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1482 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1483 const X86InstrInfo &TII) {
1484 if (MI->getOpcode() == X86::FP_REG_KILL)
1485 return false;
1486 return TII.isUnpredicatedTerminator(MI);
1489 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1490 MachineBasicBlock *&TBB,
1491 MachineBasicBlock *&FBB,
1492 SmallVectorImpl<MachineOperand> &Cond,
1493 bool AllowModify) const {
1494 // Start from the bottom of the block and work up, examining the
1495 // terminator instructions.
1496 MachineBasicBlock::iterator I = MBB.end();
1497 while (I != MBB.begin()) {
1498 --I;
1499 // Working from the bottom, when we see a non-terminator
1500 // instruction, we're done.
1501 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1502 break;
1503 // A terminator that isn't a branch can't easily be handled
1504 // by this analysis.
1505 if (!I->getDesc().isBranch())
1506 return true;
1507 // Handle unconditional branches.
1508 if (I->getOpcode() == X86::JMP) {
1509 if (!AllowModify) {
1510 TBB = I->getOperand(0).getMBB();
1511 return false;
1514 // If the block has any instructions after a JMP, delete them.
1515 while (next(I) != MBB.end())
1516 next(I)->eraseFromParent();
1517 Cond.clear();
1518 FBB = 0;
1519 // Delete the JMP if it's equivalent to a fall-through.
1520 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1521 TBB = 0;
1522 I->eraseFromParent();
1523 I = MBB.end();
1524 continue;
1526 // TBB is used to indicate the unconditinal destination.
1527 TBB = I->getOperand(0).getMBB();
1528 continue;
1530 // Handle conditional branches.
1531 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1532 if (BranchCode == X86::COND_INVALID)
1533 return true; // Can't handle indirect branch.
1534 // Working from the bottom, handle the first conditional branch.
1535 if (Cond.empty()) {
1536 FBB = TBB;
1537 TBB = I->getOperand(0).getMBB();
1538 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1539 continue;
1541 // Handle subsequent conditional branches. Only handle the case
1542 // where all conditional branches branch to the same destination
1543 // and their condition opcodes fit one of the special
1544 // multi-branch idioms.
1545 assert(Cond.size() == 1);
1546 assert(TBB);
1547 // Only handle the case where all conditional branches branch to
1548 // the same destination.
1549 if (TBB != I->getOperand(0).getMBB())
1550 return true;
1551 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1552 // If the conditions are the same, we can leave them alone.
1553 if (OldBranchCode == BranchCode)
1554 continue;
1555 // If they differ, see if they fit one of the known patterns.
1556 // Theoretically we could handle more patterns here, but
1557 // we shouldn't expect to see them if instruction selection
1558 // has done a reasonable job.
1559 if ((OldBranchCode == X86::COND_NP &&
1560 BranchCode == X86::COND_E) ||
1561 (OldBranchCode == X86::COND_E &&
1562 BranchCode == X86::COND_NP))
1563 BranchCode = X86::COND_NP_OR_E;
1564 else if ((OldBranchCode == X86::COND_P &&
1565 BranchCode == X86::COND_NE) ||
1566 (OldBranchCode == X86::COND_NE &&
1567 BranchCode == X86::COND_P))
1568 BranchCode = X86::COND_NE_OR_P;
1569 else
1570 return true;
1571 // Update the MachineOperand.
1572 Cond[0].setImm(BranchCode);
1575 return false;
1578 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1579 MachineBasicBlock::iterator I = MBB.end();
1580 unsigned Count = 0;
1582 while (I != MBB.begin()) {
1583 --I;
1584 if (I->getOpcode() != X86::JMP &&
1585 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1586 break;
1587 // Remove the branch.
1588 I->eraseFromParent();
1589 I = MBB.end();
1590 ++Count;
1593 return Count;
1596 unsigned
1597 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1598 MachineBasicBlock *FBB,
1599 const SmallVectorImpl<MachineOperand> &Cond) const {
1600 // FIXME this should probably have a DebugLoc operand
1601 DebugLoc dl = DebugLoc::getUnknownLoc();
1602 // Shouldn't be a fall through.
1603 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1604 assert((Cond.size() == 1 || Cond.size() == 0) &&
1605 "X86 branch conditions have one component!");
1607 if (Cond.empty()) {
1608 // Unconditional branch?
1609 assert(!FBB && "Unconditional branch with multiple successors!");
1610 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1611 return 1;
1614 // Conditional branch.
1615 unsigned Count = 0;
1616 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1617 switch (CC) {
1618 case X86::COND_NP_OR_E:
1619 // Synthesize NP_OR_E with two branches.
1620 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1621 ++Count;
1622 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1623 ++Count;
1624 break;
1625 case X86::COND_NE_OR_P:
1626 // Synthesize NE_OR_P with two branches.
1627 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1628 ++Count;
1629 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1630 ++Count;
1631 break;
1632 default: {
1633 unsigned Opc = GetCondBranchFromCond(CC);
1634 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1635 ++Count;
1638 if (FBB) {
1639 // Two-way Conditional branch. Insert the second branch.
1640 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1641 ++Count;
1643 return Count;
1646 /// isHReg - Test if the given register is a physical h register.
1647 static bool isHReg(unsigned Reg) {
1648 return X86::GR8_ABCD_HRegClass.contains(Reg);
1651 bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1652 MachineBasicBlock::iterator MI,
1653 unsigned DestReg, unsigned SrcReg,
1654 const TargetRegisterClass *DestRC,
1655 const TargetRegisterClass *SrcRC) const {
1656 DebugLoc DL = DebugLoc::getUnknownLoc();
1657 if (MI != MBB.end()) DL = MI->getDebugLoc();
1659 // Determine if DstRC and SrcRC have a common superclass in common.
1660 const TargetRegisterClass *CommonRC = DestRC;
1661 if (DestRC == SrcRC)
1662 /* Source and destination have the same register class. */;
1663 else if (CommonRC->hasSuperClass(SrcRC))
1664 CommonRC = SrcRC;
1665 else if (!DestRC->hasSubClass(SrcRC))
1666 CommonRC = 0;
1668 if (CommonRC) {
1669 unsigned Opc;
1670 if (CommonRC == &X86::GR64RegClass) {
1671 Opc = X86::MOV64rr;
1672 } else if (CommonRC == &X86::GR32RegClass) {
1673 Opc = X86::MOV32rr;
1674 } else if (CommonRC == &X86::GR16RegClass) {
1675 Opc = X86::MOV16rr;
1676 } else if (CommonRC == &X86::GR8RegClass) {
1677 // Copying to or from a physical H register on x86-64 requires a NOREX
1678 // move. Otherwise use a normal move.
1679 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1680 TM.getSubtarget<X86Subtarget>().is64Bit())
1681 Opc = X86::MOV8rr_NOREX;
1682 else
1683 Opc = X86::MOV8rr;
1684 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1685 Opc = X86::MOV64rr;
1686 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1687 Opc = X86::MOV32rr;
1688 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1689 Opc = X86::MOV16rr;
1690 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1691 Opc = X86::MOV8rr;
1692 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1693 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1694 Opc = X86::MOV8rr_NOREX;
1695 else
1696 Opc = X86::MOV8rr;
1697 } else if (CommonRC == &X86::GR64_NOREXRegClass) {
1698 Opc = X86::MOV64rr;
1699 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1700 Opc = X86::MOV32rr;
1701 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1702 Opc = X86::MOV16rr;
1703 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1704 Opc = X86::MOV8rr;
1705 } else if (CommonRC == &X86::RFP32RegClass) {
1706 Opc = X86::MOV_Fp3232;
1707 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1708 Opc = X86::MOV_Fp6464;
1709 } else if (CommonRC == &X86::RFP80RegClass) {
1710 Opc = X86::MOV_Fp8080;
1711 } else if (CommonRC == &X86::FR32RegClass) {
1712 Opc = X86::FsMOVAPSrr;
1713 } else if (CommonRC == &X86::FR64RegClass) {
1714 Opc = X86::FsMOVAPDrr;
1715 } else if (CommonRC == &X86::VR128RegClass) {
1716 Opc = X86::MOVAPSrr;
1717 } else if (CommonRC == &X86::VR64RegClass) {
1718 Opc = X86::MMX_MOVQ64rr;
1719 } else {
1720 return false;
1722 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1723 return true;
1726 // Moving EFLAGS to / from another register requires a push and a pop.
1727 if (SrcRC == &X86::CCRRegClass) {
1728 if (SrcReg != X86::EFLAGS)
1729 return false;
1730 if (DestRC == &X86::GR64RegClass) {
1731 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1732 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1733 return true;
1734 } else if (DestRC == &X86::GR32RegClass) {
1735 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1736 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1737 return true;
1739 } else if (DestRC == &X86::CCRRegClass) {
1740 if (DestReg != X86::EFLAGS)
1741 return false;
1742 if (SrcRC == &X86::GR64RegClass) {
1743 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1744 BuildMI(MBB, MI, DL, get(X86::POPFQ));
1745 return true;
1746 } else if (SrcRC == &X86::GR32RegClass) {
1747 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1748 BuildMI(MBB, MI, DL, get(X86::POPFD));
1749 return true;
1753 // Moving from ST(0) turns into FpGET_ST0_32 etc.
1754 if (SrcRC == &X86::RSTRegClass) {
1755 // Copying from ST(0)/ST(1).
1756 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1757 // Can only copy from ST(0)/ST(1) right now
1758 return false;
1759 bool isST0 = SrcReg == X86::ST0;
1760 unsigned Opc;
1761 if (DestRC == &X86::RFP32RegClass)
1762 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1763 else if (DestRC == &X86::RFP64RegClass)
1764 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1765 else {
1766 if (DestRC != &X86::RFP80RegClass)
1767 return false;
1768 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1770 BuildMI(MBB, MI, DL, get(Opc), DestReg);
1771 return true;
1774 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1775 if (DestRC == &X86::RSTRegClass) {
1776 // Copying to ST(0) / ST(1).
1777 if (DestReg != X86::ST0 && DestReg != X86::ST1)
1778 // Can only copy to TOS right now
1779 return false;
1780 bool isST0 = DestReg == X86::ST0;
1781 unsigned Opc;
1782 if (SrcRC == &X86::RFP32RegClass)
1783 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1784 else if (SrcRC == &X86::RFP64RegClass)
1785 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1786 else {
1787 if (SrcRC != &X86::RFP80RegClass)
1788 return false;
1789 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
1791 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
1792 return true;
1795 // Not yet supported!
1796 return false;
1799 static unsigned getStoreRegOpcode(unsigned SrcReg,
1800 const TargetRegisterClass *RC,
1801 bool isStackAligned,
1802 TargetMachine &TM) {
1803 unsigned Opc = 0;
1804 if (RC == &X86::GR64RegClass) {
1805 Opc = X86::MOV64mr;
1806 } else if (RC == &X86::GR32RegClass) {
1807 Opc = X86::MOV32mr;
1808 } else if (RC == &X86::GR16RegClass) {
1809 Opc = X86::MOV16mr;
1810 } else if (RC == &X86::GR8RegClass) {
1811 // Copying to or from a physical H register on x86-64 requires a NOREX
1812 // move. Otherwise use a normal move.
1813 if (isHReg(SrcReg) &&
1814 TM.getSubtarget<X86Subtarget>().is64Bit())
1815 Opc = X86::MOV8mr_NOREX;
1816 else
1817 Opc = X86::MOV8mr;
1818 } else if (RC == &X86::GR64_ABCDRegClass) {
1819 Opc = X86::MOV64mr;
1820 } else if (RC == &X86::GR32_ABCDRegClass) {
1821 Opc = X86::MOV32mr;
1822 } else if (RC == &X86::GR16_ABCDRegClass) {
1823 Opc = X86::MOV16mr;
1824 } else if (RC == &X86::GR8_ABCD_LRegClass) {
1825 Opc = X86::MOV8mr;
1826 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1827 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1828 Opc = X86::MOV8mr_NOREX;
1829 else
1830 Opc = X86::MOV8mr;
1831 } else if (RC == &X86::GR64_NOREXRegClass) {
1832 Opc = X86::MOV64mr;
1833 } else if (RC == &X86::GR32_NOREXRegClass) {
1834 Opc = X86::MOV32mr;
1835 } else if (RC == &X86::GR16_NOREXRegClass) {
1836 Opc = X86::MOV16mr;
1837 } else if (RC == &X86::GR8_NOREXRegClass) {
1838 Opc = X86::MOV8mr;
1839 } else if (RC == &X86::RFP80RegClass) {
1840 Opc = X86::ST_FpP80m; // pops
1841 } else if (RC == &X86::RFP64RegClass) {
1842 Opc = X86::ST_Fp64m;
1843 } else if (RC == &X86::RFP32RegClass) {
1844 Opc = X86::ST_Fp32m;
1845 } else if (RC == &X86::FR32RegClass) {
1846 Opc = X86::MOVSSmr;
1847 } else if (RC == &X86::FR64RegClass) {
1848 Opc = X86::MOVSDmr;
1849 } else if (RC == &X86::VR128RegClass) {
1850 // If stack is realigned we can use aligned stores.
1851 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1852 } else if (RC == &X86::VR64RegClass) {
1853 Opc = X86::MMX_MOVQ64mr;
1854 } else {
1855 assert(0 && "Unknown regclass");
1856 abort();
1859 return Opc;
1862 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1863 MachineBasicBlock::iterator MI,
1864 unsigned SrcReg, bool isKill, int FrameIdx,
1865 const TargetRegisterClass *RC) const {
1866 const MachineFunction &MF = *MBB.getParent();
1867 bool isAligned = (RI.getStackAlignment() >= 16) ||
1868 RI.needsStackRealignment(MF);
1869 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1870 DebugLoc DL = DebugLoc::getUnknownLoc();
1871 if (MI != MBB.end()) DL = MI->getDebugLoc();
1872 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1873 .addReg(SrcReg, false, false, isKill);
1876 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1877 bool isKill,
1878 SmallVectorImpl<MachineOperand> &Addr,
1879 const TargetRegisterClass *RC,
1880 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1881 bool isAligned = (RI.getStackAlignment() >= 16) ||
1882 RI.needsStackRealignment(MF);
1883 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1884 DebugLoc DL = DebugLoc::getUnknownLoc();
1885 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
1886 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1887 MIB.addOperand(Addr[i]);
1888 MIB.addReg(SrcReg, false, false, isKill);
1889 NewMIs.push_back(MIB);
1892 static unsigned getLoadRegOpcode(unsigned DestReg,
1893 const TargetRegisterClass *RC,
1894 bool isStackAligned,
1895 const TargetMachine &TM) {
1896 unsigned Opc = 0;
1897 if (RC == &X86::GR64RegClass) {
1898 Opc = X86::MOV64rm;
1899 } else if (RC == &X86::GR32RegClass) {
1900 Opc = X86::MOV32rm;
1901 } else if (RC == &X86::GR16RegClass) {
1902 Opc = X86::MOV16rm;
1903 } else if (RC == &X86::GR8RegClass) {
1904 // Copying to or from a physical H register on x86-64 requires a NOREX
1905 // move. Otherwise use a normal move.
1906 if (isHReg(DestReg) &&
1907 TM.getSubtarget<X86Subtarget>().is64Bit())
1908 Opc = X86::MOV8rm_NOREX;
1909 else
1910 Opc = X86::MOV8rm;
1911 } else if (RC == &X86::GR64_ABCDRegClass) {
1912 Opc = X86::MOV64rm;
1913 } else if (RC == &X86::GR32_ABCDRegClass) {
1914 Opc = X86::MOV32rm;
1915 } else if (RC == &X86::GR16_ABCDRegClass) {
1916 Opc = X86::MOV16rm;
1917 } else if (RC == &X86::GR8_ABCD_LRegClass) {
1918 Opc = X86::MOV8rm;
1919 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1920 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1921 Opc = X86::MOV8rm_NOREX;
1922 else
1923 Opc = X86::MOV8rm;
1924 } else if (RC == &X86::GR64_NOREXRegClass) {
1925 Opc = X86::MOV64rm;
1926 } else if (RC == &X86::GR32_NOREXRegClass) {
1927 Opc = X86::MOV32rm;
1928 } else if (RC == &X86::GR16_NOREXRegClass) {
1929 Opc = X86::MOV16rm;
1930 } else if (RC == &X86::GR8_NOREXRegClass) {
1931 Opc = X86::MOV8rm;
1932 } else if (RC == &X86::RFP80RegClass) {
1933 Opc = X86::LD_Fp80m;
1934 } else if (RC == &X86::RFP64RegClass) {
1935 Opc = X86::LD_Fp64m;
1936 } else if (RC == &X86::RFP32RegClass) {
1937 Opc = X86::LD_Fp32m;
1938 } else if (RC == &X86::FR32RegClass) {
1939 Opc = X86::MOVSSrm;
1940 } else if (RC == &X86::FR64RegClass) {
1941 Opc = X86::MOVSDrm;
1942 } else if (RC == &X86::VR128RegClass) {
1943 // If stack is realigned we can use aligned loads.
1944 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1945 } else if (RC == &X86::VR64RegClass) {
1946 Opc = X86::MMX_MOVQ64rm;
1947 } else {
1948 assert(0 && "Unknown regclass");
1949 abort();
1952 return Opc;
1955 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1956 MachineBasicBlock::iterator MI,
1957 unsigned DestReg, int FrameIdx,
1958 const TargetRegisterClass *RC) const{
1959 const MachineFunction &MF = *MBB.getParent();
1960 bool isAligned = (RI.getStackAlignment() >= 16) ||
1961 RI.needsStackRealignment(MF);
1962 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
1963 DebugLoc DL = DebugLoc::getUnknownLoc();
1964 if (MI != MBB.end()) DL = MI->getDebugLoc();
1965 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
1968 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1969 SmallVectorImpl<MachineOperand> &Addr,
1970 const TargetRegisterClass *RC,
1971 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1972 bool isAligned = (RI.getStackAlignment() >= 16) ||
1973 RI.needsStackRealignment(MF);
1974 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
1975 DebugLoc DL = DebugLoc::getUnknownLoc();
1976 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
1977 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1978 MIB.addOperand(Addr[i]);
1979 NewMIs.push_back(MIB);
1982 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1983 MachineBasicBlock::iterator MI,
1984 const std::vector<CalleeSavedInfo> &CSI) const {
1985 if (CSI.empty())
1986 return false;
1988 DebugLoc DL = DebugLoc::getUnknownLoc();
1989 if (MI != MBB.end()) DL = MI->getDebugLoc();
1991 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1992 unsigned SlotSize = is64Bit ? 8 : 4;
1994 MachineFunction &MF = *MBB.getParent();
1995 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1996 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1998 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1999 for (unsigned i = CSI.size(); i != 0; --i) {
2000 unsigned Reg = CSI[i-1].getReg();
2001 // Add the callee-saved register as live-in. It's killed at the spill.
2002 MBB.addLiveIn(Reg);
2003 BuildMI(MBB, MI, DL, get(Opc))
2004 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
2006 return true;
2009 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2010 MachineBasicBlock::iterator MI,
2011 const std::vector<CalleeSavedInfo> &CSI) const {
2012 if (CSI.empty())
2013 return false;
2015 DebugLoc DL = DebugLoc::getUnknownLoc();
2016 if (MI != MBB.end()) DL = MI->getDebugLoc();
2018 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2020 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2021 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2022 unsigned Reg = CSI[i].getReg();
2023 BuildMI(MBB, MI, DL, get(Opc), Reg);
2025 return true;
2028 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2029 const SmallVectorImpl<MachineOperand> &MOs,
2030 MachineInstr *MI,
2031 const TargetInstrInfo &TII) {
2032 // Create the base instruction with the memory operand as the first part.
2033 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2034 MI->getDebugLoc(), true);
2035 MachineInstrBuilder MIB(NewMI);
2036 unsigned NumAddrOps = MOs.size();
2037 for (unsigned i = 0; i != NumAddrOps; ++i)
2038 MIB.addOperand(MOs[i]);
2039 if (NumAddrOps < 4) // FrameIndex only
2040 addOffset(MIB, 0);
2042 // Loop over the rest of the ri operands, converting them over.
2043 unsigned NumOps = MI->getDesc().getNumOperands()-2;
2044 for (unsigned i = 0; i != NumOps; ++i) {
2045 MachineOperand &MO = MI->getOperand(i+2);
2046 MIB.addOperand(MO);
2048 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2049 MachineOperand &MO = MI->getOperand(i);
2050 MIB.addOperand(MO);
2052 return MIB;
2055 static MachineInstr *FuseInst(MachineFunction &MF,
2056 unsigned Opcode, unsigned OpNo,
2057 const SmallVectorImpl<MachineOperand> &MOs,
2058 MachineInstr *MI, const TargetInstrInfo &TII) {
2059 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2060 MI->getDebugLoc(), true);
2061 MachineInstrBuilder MIB(NewMI);
2063 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2064 MachineOperand &MO = MI->getOperand(i);
2065 if (i == OpNo) {
2066 assert(MO.isReg() && "Expected to fold into reg operand!");
2067 unsigned NumAddrOps = MOs.size();
2068 for (unsigned i = 0; i != NumAddrOps; ++i)
2069 MIB.addOperand(MOs[i]);
2070 if (NumAddrOps < 4) // FrameIndex only
2071 addOffset(MIB, 0);
2072 } else {
2073 MIB.addOperand(MO);
2076 return MIB;
2079 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2080 const SmallVectorImpl<MachineOperand> &MOs,
2081 MachineInstr *MI) {
2082 MachineFunction &MF = *MI->getParent()->getParent();
2083 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2085 unsigned NumAddrOps = MOs.size();
2086 for (unsigned i = 0; i != NumAddrOps; ++i)
2087 MIB.addOperand(MOs[i]);
2088 if (NumAddrOps < 4) // FrameIndex only
2089 addOffset(MIB, 0);
2090 return MIB.addImm(0);
2093 MachineInstr*
2094 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2095 MachineInstr *MI, unsigned i,
2096 const SmallVectorImpl<MachineOperand> &MOs) const{
2097 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2098 bool isTwoAddrFold = false;
2099 unsigned NumOps = MI->getDesc().getNumOperands();
2100 bool isTwoAddr = NumOps > 1 &&
2101 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2103 MachineInstr *NewMI = NULL;
2104 // Folding a memory location into the two-address part of a two-address
2105 // instruction is different than folding it other places. It requires
2106 // replacing the *two* registers with the memory location.
2107 if (isTwoAddr && NumOps >= 2 && i < 2 &&
2108 MI->getOperand(0).isReg() &&
2109 MI->getOperand(1).isReg() &&
2110 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2111 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2112 isTwoAddrFold = true;
2113 } else if (i == 0) { // If operand 0
2114 if (MI->getOpcode() == X86::MOV16r0)
2115 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2116 else if (MI->getOpcode() == X86::MOV32r0)
2117 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2118 else if (MI->getOpcode() == X86::MOV64r0)
2119 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2120 else if (MI->getOpcode() == X86::MOV8r0)
2121 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2122 if (NewMI)
2123 return NewMI;
2125 OpcodeTablePtr = &RegOp2MemOpTable0;
2126 } else if (i == 1) {
2127 OpcodeTablePtr = &RegOp2MemOpTable1;
2128 } else if (i == 2) {
2129 OpcodeTablePtr = &RegOp2MemOpTable2;
2132 // If table selected...
2133 if (OpcodeTablePtr) {
2134 // Find the Opcode to fuse
2135 DenseMap<unsigned*, unsigned>::iterator I =
2136 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2137 if (I != OpcodeTablePtr->end()) {
2138 if (isTwoAddrFold)
2139 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2140 else
2141 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2142 return NewMI;
2146 // No fusion
2147 if (PrintFailedFusing)
2148 cerr << "We failed to fuse operand " << i << " in " << *MI;
2149 return NULL;
2153 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2154 MachineInstr *MI,
2155 const SmallVectorImpl<unsigned> &Ops,
2156 int FrameIndex) const {
2157 // Check switch flag
2158 if (NoFusing) return NULL;
2160 const MachineFrameInfo *MFI = MF.getFrameInfo();
2161 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2162 // FIXME: Move alignment requirement into tables?
2163 if (Alignment < 16) {
2164 switch (MI->getOpcode()) {
2165 default: break;
2166 // Not always safe to fold movsd into these instructions since their load
2167 // folding variants expects the address to be 16 byte aligned.
2168 case X86::FsANDNPDrr:
2169 case X86::FsANDNPSrr:
2170 case X86::FsANDPDrr:
2171 case X86::FsANDPSrr:
2172 case X86::FsORPDrr:
2173 case X86::FsORPSrr:
2174 case X86::FsXORPDrr:
2175 case X86::FsXORPSrr:
2176 return NULL;
2180 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2181 unsigned NewOpc = 0;
2182 switch (MI->getOpcode()) {
2183 default: return NULL;
2184 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2185 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2186 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2187 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2189 // Change to CMPXXri r, 0 first.
2190 MI->setDesc(get(NewOpc));
2191 MI->getOperand(1).ChangeToImmediate(0);
2192 } else if (Ops.size() != 1)
2193 return NULL;
2195 SmallVector<MachineOperand,4> MOs;
2196 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2197 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2200 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2201 MachineInstr *MI,
2202 const SmallVectorImpl<unsigned> &Ops,
2203 MachineInstr *LoadMI) const {
2204 // Check switch flag
2205 if (NoFusing) return NULL;
2207 // Determine the alignment of the load.
2208 unsigned Alignment = 0;
2209 if (LoadMI->hasOneMemOperand())
2210 Alignment = LoadMI->memoperands_begin()->getAlignment();
2212 // FIXME: Move alignment requirement into tables?
2213 if (Alignment < 16) {
2214 switch (MI->getOpcode()) {
2215 default: break;
2216 // Not always safe to fold movsd into these instructions since their load
2217 // folding variants expects the address to be 16 byte aligned.
2218 case X86::FsANDNPDrr:
2219 case X86::FsANDNPSrr:
2220 case X86::FsANDPDrr:
2221 case X86::FsANDPSrr:
2222 case X86::FsORPDrr:
2223 case X86::FsORPSrr:
2224 case X86::FsXORPDrr:
2225 case X86::FsXORPSrr:
2226 return NULL;
2230 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2231 unsigned NewOpc = 0;
2232 switch (MI->getOpcode()) {
2233 default: return NULL;
2234 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2235 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2236 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2237 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2239 // Change to CMPXXri r, 0 first.
2240 MI->setDesc(get(NewOpc));
2241 MI->getOperand(1).ChangeToImmediate(0);
2242 } else if (Ops.size() != 1)
2243 return NULL;
2245 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2246 if (LoadMI->getOpcode() == X86::V_SET0 ||
2247 LoadMI->getOpcode() == X86::V_SETALLONES) {
2248 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2249 // Create a constant-pool entry and operands to load from it.
2251 // x86-32 PIC requires a PIC base register for constant pools.
2252 unsigned PICBase = 0;
2253 if (TM.getRelocationModel() == Reloc::PIC_ &&
2254 !TM.getSubtarget<X86Subtarget>().is64Bit())
2255 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2256 // This doesn't work for several reasons.
2257 // 1. GlobalBaseReg may have been spilled.
2258 // 2. It may not be live at MI.
2259 return false;
2261 // Create a v4i32 constant-pool entry.
2262 MachineConstantPool &MCP = *MF.getConstantPool();
2263 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2264 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2265 ConstantVector::getNullValue(Ty) :
2266 ConstantVector::getAllOnesValue(Ty);
2267 unsigned CPI = MCP.getConstantPoolIndex(C, 16);
2269 // Create operands to load from the constant pool entry.
2270 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2271 MOs.push_back(MachineOperand::CreateImm(1));
2272 MOs.push_back(MachineOperand::CreateReg(0, false));
2273 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2274 MOs.push_back(MachineOperand::CreateReg(0, false));
2275 } else {
2276 // Folding a normal load. Just copy the load's address operands.
2277 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2278 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2279 MOs.push_back(LoadMI->getOperand(i));
2281 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2285 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2286 const SmallVectorImpl<unsigned> &Ops) const {
2287 // Check switch flag
2288 if (NoFusing) return 0;
2290 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2291 switch (MI->getOpcode()) {
2292 default: return false;
2293 case X86::TEST8rr:
2294 case X86::TEST16rr:
2295 case X86::TEST32rr:
2296 case X86::TEST64rr:
2297 return true;
2301 if (Ops.size() != 1)
2302 return false;
2304 unsigned OpNum = Ops[0];
2305 unsigned Opc = MI->getOpcode();
2306 unsigned NumOps = MI->getDesc().getNumOperands();
2307 bool isTwoAddr = NumOps > 1 &&
2308 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2310 // Folding a memory location into the two-address part of a two-address
2311 // instruction is different than folding it other places. It requires
2312 // replacing the *two* registers with the memory location.
2313 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2314 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2315 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2316 } else if (OpNum == 0) { // If operand 0
2317 switch (Opc) {
2318 case X86::MOV16r0:
2319 case X86::MOV32r0:
2320 case X86::MOV64r0:
2321 case X86::MOV8r0:
2322 return true;
2323 default: break;
2325 OpcodeTablePtr = &RegOp2MemOpTable0;
2326 } else if (OpNum == 1) {
2327 OpcodeTablePtr = &RegOp2MemOpTable1;
2328 } else if (OpNum == 2) {
2329 OpcodeTablePtr = &RegOp2MemOpTable2;
2332 if (OpcodeTablePtr) {
2333 // Find the Opcode to fuse
2334 DenseMap<unsigned*, unsigned>::iterator I =
2335 OpcodeTablePtr->find((unsigned*)Opc);
2336 if (I != OpcodeTablePtr->end())
2337 return true;
2339 return false;
2342 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2343 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2344 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2345 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2346 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2347 if (I == MemOp2RegOpTable.end())
2348 return false;
2349 DebugLoc dl = MI->getDebugLoc();
2350 unsigned Opc = I->second.first;
2351 unsigned Index = I->second.second & 0xf;
2352 bool FoldedLoad = I->second.second & (1 << 4);
2353 bool FoldedStore = I->second.second & (1 << 5);
2354 if (UnfoldLoad && !FoldedLoad)
2355 return false;
2356 UnfoldLoad &= FoldedLoad;
2357 if (UnfoldStore && !FoldedStore)
2358 return false;
2359 UnfoldStore &= FoldedStore;
2361 const TargetInstrDesc &TID = get(Opc);
2362 const TargetOperandInfo &TOI = TID.OpInfo[Index];
2363 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2364 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2365 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2366 SmallVector<MachineOperand,2> BeforeOps;
2367 SmallVector<MachineOperand,2> AfterOps;
2368 SmallVector<MachineOperand,4> ImpOps;
2369 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2370 MachineOperand &Op = MI->getOperand(i);
2371 if (i >= Index && i < Index + X86AddrNumOperands)
2372 AddrOps.push_back(Op);
2373 else if (Op.isReg() && Op.isImplicit())
2374 ImpOps.push_back(Op);
2375 else if (i < Index)
2376 BeforeOps.push_back(Op);
2377 else if (i > Index)
2378 AfterOps.push_back(Op);
2381 // Emit the load instruction.
2382 if (UnfoldLoad) {
2383 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2384 if (UnfoldStore) {
2385 // Address operands cannot be marked isKill.
2386 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2387 MachineOperand &MO = NewMIs[0]->getOperand(i);
2388 if (MO.isReg())
2389 MO.setIsKill(false);
2394 // Emit the data processing instruction.
2395 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2396 MachineInstrBuilder MIB(DataMI);
2398 if (FoldedStore)
2399 MIB.addReg(Reg, true);
2400 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2401 MIB.addOperand(BeforeOps[i]);
2402 if (FoldedLoad)
2403 MIB.addReg(Reg);
2404 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2405 MIB.addOperand(AfterOps[i]);
2406 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2407 MachineOperand &MO = ImpOps[i];
2408 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2410 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2411 unsigned NewOpc = 0;
2412 switch (DataMI->getOpcode()) {
2413 default: break;
2414 case X86::CMP64ri32:
2415 case X86::CMP32ri:
2416 case X86::CMP16ri:
2417 case X86::CMP8ri: {
2418 MachineOperand &MO0 = DataMI->getOperand(0);
2419 MachineOperand &MO1 = DataMI->getOperand(1);
2420 if (MO1.getImm() == 0) {
2421 switch (DataMI->getOpcode()) {
2422 default: break;
2423 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2424 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2425 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2426 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2428 DataMI->setDesc(get(NewOpc));
2429 MO1.ChangeToRegister(MO0.getReg(), false);
2433 NewMIs.push_back(DataMI);
2435 // Emit the store instruction.
2436 if (UnfoldStore) {
2437 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2438 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2439 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2440 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2443 return true;
2446 bool
2447 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2448 SmallVectorImpl<SDNode*> &NewNodes) const {
2449 if (!N->isMachineOpcode())
2450 return false;
2452 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2453 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2454 if (I == MemOp2RegOpTable.end())
2455 return false;
2456 unsigned Opc = I->second.first;
2457 unsigned Index = I->second.second & 0xf;
2458 bool FoldedLoad = I->second.second & (1 << 4);
2459 bool FoldedStore = I->second.second & (1 << 5);
2460 const TargetInstrDesc &TID = get(Opc);
2461 const TargetOperandInfo &TOI = TID.OpInfo[Index];
2462 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2463 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2464 unsigned NumDefs = TID.NumDefs;
2465 std::vector<SDValue> AddrOps;
2466 std::vector<SDValue> BeforeOps;
2467 std::vector<SDValue> AfterOps;
2468 DebugLoc dl = N->getDebugLoc();
2469 unsigned NumOps = N->getNumOperands();
2470 for (unsigned i = 0; i != NumOps-1; ++i) {
2471 SDValue Op = N->getOperand(i);
2472 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2473 AddrOps.push_back(Op);
2474 else if (i < Index-NumDefs)
2475 BeforeOps.push_back(Op);
2476 else if (i > Index-NumDefs)
2477 AfterOps.push_back(Op);
2479 SDValue Chain = N->getOperand(NumOps-1);
2480 AddrOps.push_back(Chain);
2482 // Emit the load instruction.
2483 SDNode *Load = 0;
2484 const MachineFunction &MF = DAG.getMachineFunction();
2485 if (FoldedLoad) {
2486 MVT VT = *RC->vt_begin();
2487 bool isAligned = (RI.getStackAlignment() >= 16) ||
2488 RI.needsStackRealignment(MF);
2489 Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2490 VT, MVT::Other, &AddrOps[0], AddrOps.size());
2491 NewNodes.push_back(Load);
2494 // Emit the data processing instruction.
2495 std::vector<MVT> VTs;
2496 const TargetRegisterClass *DstRC = 0;
2497 if (TID.getNumDefs() > 0) {
2498 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2499 DstRC = DstTOI.isLookupPtrRegClass()
2500 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2501 VTs.push_back(*DstRC->vt_begin());
2503 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2504 MVT VT = N->getValueType(i);
2505 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2506 VTs.push_back(VT);
2508 if (Load)
2509 BeforeOps.push_back(SDValue(Load, 0));
2510 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2511 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2512 BeforeOps.size());
2513 NewNodes.push_back(NewNode);
2515 // Emit the store instruction.
2516 if (FoldedStore) {
2517 AddrOps.pop_back();
2518 AddrOps.push_back(SDValue(NewNode, 0));
2519 AddrOps.push_back(Chain);
2520 bool isAligned = (RI.getStackAlignment() >= 16) ||
2521 RI.needsStackRealignment(MF);
2522 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
2523 isAligned, TM),
2524 dl, MVT::Other,
2525 &AddrOps[0], AddrOps.size());
2526 NewNodes.push_back(Store);
2529 return true;
2532 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2533 bool UnfoldLoad, bool UnfoldStore) const {
2534 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2535 MemOp2RegOpTable.find((unsigned*)Opc);
2536 if (I == MemOp2RegOpTable.end())
2537 return 0;
2538 bool FoldedLoad = I->second.second & (1 << 4);
2539 bool FoldedStore = I->second.second & (1 << 5);
2540 if (UnfoldLoad && !FoldedLoad)
2541 return 0;
2542 if (UnfoldStore && !FoldedStore)
2543 return 0;
2544 return I->second.first;
2547 bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2548 if (MBB.empty()) return false;
2550 switch (MBB.back().getOpcode()) {
2551 case X86::TCRETURNri:
2552 case X86::TCRETURNdi:
2553 case X86::RET: // Return.
2554 case X86::RETI:
2555 case X86::TAILJMPd:
2556 case X86::TAILJMPr:
2557 case X86::TAILJMPm:
2558 case X86::JMP: // Uncond branch.
2559 case X86::JMP32r: // Indirect branch.
2560 case X86::JMP64r: // Indirect branch (64-bit).
2561 case X86::JMP32m: // Indirect branch through mem.
2562 case X86::JMP64m: // Indirect branch through mem (64-bit).
2563 return true;
2564 default: return false;
2568 bool X86InstrInfo::
2569 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2570 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2571 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2572 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2573 return true;
2574 Cond[0].setImm(GetOppositeBranchCondition(CC));
2575 return false;
2578 bool X86InstrInfo::
2579 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2580 // FIXME: Return false for x87 stack register classes for now. We can't
2581 // allow any loads of these registers before FpGet_ST0_80.
2582 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2583 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2586 unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2587 switch (Desc->TSFlags & X86II::ImmMask) {
2588 case X86II::Imm8: return 1;
2589 case X86II::Imm16: return 2;
2590 case X86II::Imm32: return 4;
2591 case X86II::Imm64: return 8;
2592 default: assert(0 && "Immediate size not set!");
2593 return 0;
2597 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2598 /// e.g. r8, xmm8, etc.
2599 bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2600 if (!MO.isReg()) return false;
2601 switch (MO.getReg()) {
2602 default: break;
2603 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2604 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2605 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2606 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2607 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2608 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2609 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2610 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2611 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2612 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2613 return true;
2615 return false;
2619 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2620 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2621 /// size, and 3) use of X86-64 extended registers.
2622 unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2623 unsigned REX = 0;
2624 const TargetInstrDesc &Desc = MI.getDesc();
2626 // Pseudo instructions do not need REX prefix byte.
2627 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2628 return 0;
2629 if (Desc.TSFlags & X86II::REX_W)
2630 REX |= 1 << 3;
2632 unsigned NumOps = Desc.getNumOperands();
2633 if (NumOps) {
2634 bool isTwoAddr = NumOps > 1 &&
2635 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2637 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2638 unsigned i = isTwoAddr ? 1 : 0;
2639 for (unsigned e = NumOps; i != e; ++i) {
2640 const MachineOperand& MO = MI.getOperand(i);
2641 if (MO.isReg()) {
2642 unsigned Reg = MO.getReg();
2643 if (isX86_64NonExtLowByteReg(Reg))
2644 REX |= 0x40;
2648 switch (Desc.TSFlags & X86II::FormMask) {
2649 case X86II::MRMInitReg:
2650 if (isX86_64ExtendedReg(MI.getOperand(0)))
2651 REX |= (1 << 0) | (1 << 2);
2652 break;
2653 case X86II::MRMSrcReg: {
2654 if (isX86_64ExtendedReg(MI.getOperand(0)))
2655 REX |= 1 << 2;
2656 i = isTwoAddr ? 2 : 1;
2657 for (unsigned e = NumOps; i != e; ++i) {
2658 const MachineOperand& MO = MI.getOperand(i);
2659 if (isX86_64ExtendedReg(MO))
2660 REX |= 1 << 0;
2662 break;
2664 case X86II::MRMSrcMem: {
2665 if (isX86_64ExtendedReg(MI.getOperand(0)))
2666 REX |= 1 << 2;
2667 unsigned Bit = 0;
2668 i = isTwoAddr ? 2 : 1;
2669 for (; i != NumOps; ++i) {
2670 const MachineOperand& MO = MI.getOperand(i);
2671 if (MO.isReg()) {
2672 if (isX86_64ExtendedReg(MO))
2673 REX |= 1 << Bit;
2674 Bit++;
2677 break;
2679 case X86II::MRM0m: case X86II::MRM1m:
2680 case X86II::MRM2m: case X86II::MRM3m:
2681 case X86II::MRM4m: case X86II::MRM5m:
2682 case X86II::MRM6m: case X86II::MRM7m:
2683 case X86II::MRMDestMem: {
2684 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
2685 i = isTwoAddr ? 1 : 0;
2686 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2687 REX |= 1 << 2;
2688 unsigned Bit = 0;
2689 for (; i != e; ++i) {
2690 const MachineOperand& MO = MI.getOperand(i);
2691 if (MO.isReg()) {
2692 if (isX86_64ExtendedReg(MO))
2693 REX |= 1 << Bit;
2694 Bit++;
2697 break;
2699 default: {
2700 if (isX86_64ExtendedReg(MI.getOperand(0)))
2701 REX |= 1 << 0;
2702 i = isTwoAddr ? 2 : 1;
2703 for (unsigned e = NumOps; i != e; ++i) {
2704 const MachineOperand& MO = MI.getOperand(i);
2705 if (isX86_64ExtendedReg(MO))
2706 REX |= 1 << 2;
2708 break;
2712 return REX;
2715 /// sizePCRelativeBlockAddress - This method returns the size of a PC
2716 /// relative block address instruction
2718 static unsigned sizePCRelativeBlockAddress() {
2719 return 4;
2722 /// sizeGlobalAddress - Give the size of the emission of this global address
2724 static unsigned sizeGlobalAddress(bool dword) {
2725 return dword ? 8 : 4;
2728 /// sizeConstPoolAddress - Give the size of the emission of this constant
2729 /// pool address
2731 static unsigned sizeConstPoolAddress(bool dword) {
2732 return dword ? 8 : 4;
2735 /// sizeExternalSymbolAddress - Give the size of the emission of this external
2736 /// symbol
2738 static unsigned sizeExternalSymbolAddress(bool dword) {
2739 return dword ? 8 : 4;
2742 /// sizeJumpTableAddress - Give the size of the emission of this jump
2743 /// table address
2745 static unsigned sizeJumpTableAddress(bool dword) {
2746 return dword ? 8 : 4;
2749 static unsigned sizeConstant(unsigned Size) {
2750 return Size;
2753 static unsigned sizeRegModRMByte(){
2754 return 1;
2757 static unsigned sizeSIBByte(){
2758 return 1;
2761 static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2762 unsigned FinalSize = 0;
2763 // If this is a simple integer displacement that doesn't require a relocation.
2764 if (!RelocOp) {
2765 FinalSize += sizeConstant(4);
2766 return FinalSize;
2769 // Otherwise, this is something that requires a relocation.
2770 if (RelocOp->isGlobal()) {
2771 FinalSize += sizeGlobalAddress(false);
2772 } else if (RelocOp->isCPI()) {
2773 FinalSize += sizeConstPoolAddress(false);
2774 } else if (RelocOp->isJTI()) {
2775 FinalSize += sizeJumpTableAddress(false);
2776 } else {
2777 assert(0 && "Unknown value to relocate!");
2779 return FinalSize;
2782 static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2783 bool IsPIC, bool Is64BitMode) {
2784 const MachineOperand &Op3 = MI.getOperand(Op+3);
2785 int DispVal = 0;
2786 const MachineOperand *DispForReloc = 0;
2787 unsigned FinalSize = 0;
2789 // Figure out what sort of displacement we have to handle here.
2790 if (Op3.isGlobal()) {
2791 DispForReloc = &Op3;
2792 } else if (Op3.isCPI()) {
2793 if (Is64BitMode || IsPIC) {
2794 DispForReloc = &Op3;
2795 } else {
2796 DispVal = 1;
2798 } else if (Op3.isJTI()) {
2799 if (Is64BitMode || IsPIC) {
2800 DispForReloc = &Op3;
2801 } else {
2802 DispVal = 1;
2804 } else {
2805 DispVal = 1;
2808 const MachineOperand &Base = MI.getOperand(Op);
2809 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2811 unsigned BaseReg = Base.getReg();
2813 // Is a SIB byte needed?
2814 if ((!Is64BitMode || DispForReloc) && IndexReg.getReg() == 0 &&
2815 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2816 if (BaseReg == 0) { // Just a displacement?
2817 // Emit special case [disp32] encoding
2818 ++FinalSize;
2819 FinalSize += getDisplacementFieldSize(DispForReloc);
2820 } else {
2821 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2822 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2823 // Emit simple indirect register encoding... [EAX] f.e.
2824 ++FinalSize;
2825 // Be pessimistic and assume it's a disp32, not a disp8
2826 } else {
2827 // Emit the most general non-SIB encoding: [REG+disp32]
2828 ++FinalSize;
2829 FinalSize += getDisplacementFieldSize(DispForReloc);
2833 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2834 assert(IndexReg.getReg() != X86::ESP &&
2835 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2837 bool ForceDisp32 = false;
2838 if (BaseReg == 0 || DispForReloc) {
2839 // Emit the normal disp32 encoding.
2840 ++FinalSize;
2841 ForceDisp32 = true;
2842 } else {
2843 ++FinalSize;
2846 FinalSize += sizeSIBByte();
2848 // Do we need to output a displacement?
2849 if (DispVal != 0 || ForceDisp32) {
2850 FinalSize += getDisplacementFieldSize(DispForReloc);
2853 return FinalSize;
2857 static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2858 const TargetInstrDesc *Desc,
2859 bool IsPIC, bool Is64BitMode) {
2861 unsigned Opcode = Desc->Opcode;
2862 unsigned FinalSize = 0;
2864 // Emit the lock opcode prefix as needed.
2865 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2867 // Emit segment overrid opcode prefix as needed.
2868 switch (Desc->TSFlags & X86II::SegOvrMask) {
2869 case X86II::FS:
2870 case X86II::GS:
2871 ++FinalSize;
2872 break;
2873 default: assert(0 && "Invalid segment!");
2874 case 0: break; // No segment override!
2877 // Emit the repeat opcode prefix as needed.
2878 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2880 // Emit the operand size opcode prefix as needed.
2881 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2883 // Emit the address size opcode prefix as needed.
2884 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2886 bool Need0FPrefix = false;
2887 switch (Desc->TSFlags & X86II::Op0Mask) {
2888 case X86II::TB: // Two-byte opcode prefix
2889 case X86II::T8: // 0F 38
2890 case X86II::TA: // 0F 3A
2891 Need0FPrefix = true;
2892 break;
2893 case X86II::REP: break; // already handled.
2894 case X86II::XS: // F3 0F
2895 ++FinalSize;
2896 Need0FPrefix = true;
2897 break;
2898 case X86II::XD: // F2 0F
2899 ++FinalSize;
2900 Need0FPrefix = true;
2901 break;
2902 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2903 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2904 ++FinalSize;
2905 break; // Two-byte opcode prefix
2906 default: assert(0 && "Invalid prefix!");
2907 case 0: break; // No prefix!
2910 if (Is64BitMode) {
2911 // REX prefix
2912 unsigned REX = X86InstrInfo::determineREX(MI);
2913 if (REX)
2914 ++FinalSize;
2917 // 0x0F escape code must be emitted just before the opcode.
2918 if (Need0FPrefix)
2919 ++FinalSize;
2921 switch (Desc->TSFlags & X86II::Op0Mask) {
2922 case X86II::T8: // 0F 38
2923 ++FinalSize;
2924 break;
2925 case X86II::TA: // 0F 3A
2926 ++FinalSize;
2927 break;
2930 // If this is a two-address instruction, skip one of the register operands.
2931 unsigned NumOps = Desc->getNumOperands();
2932 unsigned CurOp = 0;
2933 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2934 CurOp++;
2936 switch (Desc->TSFlags & X86II::FormMask) {
2937 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2938 case X86II::Pseudo:
2939 // Remember the current PC offset, this is the PIC relocation
2940 // base address.
2941 switch (Opcode) {
2942 default:
2943 break;
2944 case TargetInstrInfo::INLINEASM: {
2945 const MachineFunction *MF = MI.getParent()->getParent();
2946 const char *AsmStr = MI.getOperand(0).getSymbolName();
2947 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2948 FinalSize += AI->getInlineAsmLength(AsmStr);
2949 break;
2951 case TargetInstrInfo::DBG_LABEL:
2952 case TargetInstrInfo::EH_LABEL:
2953 break;
2954 case TargetInstrInfo::IMPLICIT_DEF:
2955 case TargetInstrInfo::DECLARE:
2956 case X86::DWARF_LOC:
2957 case X86::FP_REG_KILL:
2958 break;
2959 case X86::MOVPC32r: {
2960 // This emits the "call" portion of this pseudo instruction.
2961 ++FinalSize;
2962 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2963 break;
2966 CurOp = NumOps;
2967 break;
2968 case X86II::RawFrm:
2969 ++FinalSize;
2971 if (CurOp != NumOps) {
2972 const MachineOperand &MO = MI.getOperand(CurOp++);
2973 if (MO.isMBB()) {
2974 FinalSize += sizePCRelativeBlockAddress();
2975 } else if (MO.isGlobal()) {
2976 FinalSize += sizeGlobalAddress(false);
2977 } else if (MO.isSymbol()) {
2978 FinalSize += sizeExternalSymbolAddress(false);
2979 } else if (MO.isImm()) {
2980 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2981 } else {
2982 assert(0 && "Unknown RawFrm operand!");
2985 break;
2987 case X86II::AddRegFrm:
2988 ++FinalSize;
2989 ++CurOp;
2991 if (CurOp != NumOps) {
2992 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2993 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2994 if (MO1.isImm())
2995 FinalSize += sizeConstant(Size);
2996 else {
2997 bool dword = false;
2998 if (Opcode == X86::MOV64ri)
2999 dword = true;
3000 if (MO1.isGlobal()) {
3001 FinalSize += sizeGlobalAddress(dword);
3002 } else if (MO1.isSymbol())
3003 FinalSize += sizeExternalSymbolAddress(dword);
3004 else if (MO1.isCPI())
3005 FinalSize += sizeConstPoolAddress(dword);
3006 else if (MO1.isJTI())
3007 FinalSize += sizeJumpTableAddress(dword);
3010 break;
3012 case X86II::MRMDestReg: {
3013 ++FinalSize;
3014 FinalSize += sizeRegModRMByte();
3015 CurOp += 2;
3016 if (CurOp != NumOps) {
3017 ++CurOp;
3018 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3020 break;
3022 case X86II::MRMDestMem: {
3023 ++FinalSize;
3024 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3025 CurOp += 5;
3026 if (CurOp != NumOps) {
3027 ++CurOp;
3028 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3030 break;
3033 case X86II::MRMSrcReg:
3034 ++FinalSize;
3035 FinalSize += sizeRegModRMByte();
3036 CurOp += 2;
3037 if (CurOp != NumOps) {
3038 ++CurOp;
3039 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3041 break;
3043 case X86II::MRMSrcMem: {
3045 ++FinalSize;
3046 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3047 CurOp += 5;
3048 if (CurOp != NumOps) {
3049 ++CurOp;
3050 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3052 break;
3055 case X86II::MRM0r: case X86II::MRM1r:
3056 case X86II::MRM2r: case X86II::MRM3r:
3057 case X86II::MRM4r: case X86II::MRM5r:
3058 case X86II::MRM6r: case X86II::MRM7r:
3059 ++FinalSize;
3060 ++CurOp;
3061 FinalSize += sizeRegModRMByte();
3063 if (CurOp != NumOps) {
3064 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3065 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3066 if (MO1.isImm())
3067 FinalSize += sizeConstant(Size);
3068 else {
3069 bool dword = false;
3070 if (Opcode == X86::MOV64ri32)
3071 dword = true;
3072 if (MO1.isGlobal()) {
3073 FinalSize += sizeGlobalAddress(dword);
3074 } else if (MO1.isSymbol())
3075 FinalSize += sizeExternalSymbolAddress(dword);
3076 else if (MO1.isCPI())
3077 FinalSize += sizeConstPoolAddress(dword);
3078 else if (MO1.isJTI())
3079 FinalSize += sizeJumpTableAddress(dword);
3082 break;
3084 case X86II::MRM0m: case X86II::MRM1m:
3085 case X86II::MRM2m: case X86II::MRM3m:
3086 case X86II::MRM4m: case X86II::MRM5m:
3087 case X86II::MRM6m: case X86II::MRM7m: {
3089 ++FinalSize;
3090 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3091 CurOp += 4;
3093 if (CurOp != NumOps) {
3094 const MachineOperand &MO = MI.getOperand(CurOp++);
3095 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3096 if (MO.isImm())
3097 FinalSize += sizeConstant(Size);
3098 else {
3099 bool dword = false;
3100 if (Opcode == X86::MOV64mi32)
3101 dword = true;
3102 if (MO.isGlobal()) {
3103 FinalSize += sizeGlobalAddress(dword);
3104 } else if (MO.isSymbol())
3105 FinalSize += sizeExternalSymbolAddress(dword);
3106 else if (MO.isCPI())
3107 FinalSize += sizeConstPoolAddress(dword);
3108 else if (MO.isJTI())
3109 FinalSize += sizeJumpTableAddress(dword);
3112 break;
3115 case X86II::MRMInitReg:
3116 ++FinalSize;
3117 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3118 FinalSize += sizeRegModRMByte();
3119 ++CurOp;
3120 break;
3123 if (!Desc->isVariadic() && CurOp != NumOps) {
3124 cerr << "Cannot determine size: ";
3125 MI.dump();
3126 cerr << '\n';
3127 abort();
3131 return FinalSize;
3135 unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3136 const TargetInstrDesc &Desc = MI->getDesc();
3137 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3138 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3139 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3140 if (Desc.getOpcode() == X86::MOVPC32r) {
3141 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3143 return Size;
3146 /// getGlobalBaseReg - Return a virtual register initialized with the
3147 /// the global base register value. Output instructions required to
3148 /// initialize the register in the function entry block, if necessary.
3150 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3151 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3152 "X86-64 PIC uses RIP relative addressing");
3154 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3155 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3156 if (GlobalBaseReg != 0)
3157 return GlobalBaseReg;
3159 // Insert the set of GlobalBaseReg into the first MBB of the function
3160 MachineBasicBlock &FirstMBB = MF->front();
3161 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3162 DebugLoc DL = DebugLoc::getUnknownLoc();
3163 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3164 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3165 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3167 const TargetInstrInfo *TII = TM.getInstrInfo();
3168 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3169 // only used in JIT code emission as displacement to pc.
3170 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3171 .addImm(0);
3173 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3174 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3175 if (TM.getRelocationModel() == Reloc::PIC_ &&
3176 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3177 GlobalBaseReg =
3178 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3179 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3180 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3181 } else {
3182 GlobalBaseReg = PC;
3185 X86FI->setGlobalBaseReg(GlobalBaseReg);
3186 return GlobalBaseReg;