1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Target/TargetAsmInfo.h"
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden
);
49 X86InstrInfo::X86InstrInfo(X86TargetMachine
&tm
)
50 : TargetInstrInfoImpl(X86Insts
, array_lengthof(X86Insts
)),
51 TM(tm
), RI(tm
, *this) {
52 SmallVector
<unsigned,16> AmbEntries
;
53 static const unsigned OpTbl2Addr
[][2] = {
54 { X86::ADC32ri
, X86::ADC32mi
},
55 { X86::ADC32ri8
, X86::ADC32mi8
},
56 { X86::ADC32rr
, X86::ADC32mr
},
57 { X86::ADC64ri32
, X86::ADC64mi32
},
58 { X86::ADC64ri8
, X86::ADC64mi8
},
59 { X86::ADC64rr
, X86::ADC64mr
},
60 { X86::ADD16ri
, X86::ADD16mi
},
61 { X86::ADD16ri8
, X86::ADD16mi8
},
62 { X86::ADD16rr
, X86::ADD16mr
},
63 { X86::ADD32ri
, X86::ADD32mi
},
64 { X86::ADD32ri8
, X86::ADD32mi8
},
65 { X86::ADD32rr
, X86::ADD32mr
},
66 { X86::ADD64ri32
, X86::ADD64mi32
},
67 { X86::ADD64ri8
, X86::ADD64mi8
},
68 { X86::ADD64rr
, X86::ADD64mr
},
69 { X86::ADD8ri
, X86::ADD8mi
},
70 { X86::ADD8rr
, X86::ADD8mr
},
71 { X86::AND16ri
, X86::AND16mi
},
72 { X86::AND16ri8
, X86::AND16mi8
},
73 { X86::AND16rr
, X86::AND16mr
},
74 { X86::AND32ri
, X86::AND32mi
},
75 { X86::AND32ri8
, X86::AND32mi8
},
76 { X86::AND32rr
, X86::AND32mr
},
77 { X86::AND64ri32
, X86::AND64mi32
},
78 { X86::AND64ri8
, X86::AND64mi8
},
79 { X86::AND64rr
, X86::AND64mr
},
80 { X86::AND8ri
, X86::AND8mi
},
81 { X86::AND8rr
, X86::AND8mr
},
82 { X86::DEC16r
, X86::DEC16m
},
83 { X86::DEC32r
, X86::DEC32m
},
84 { X86::DEC64_16r
, X86::DEC64_16m
},
85 { X86::DEC64_32r
, X86::DEC64_32m
},
86 { X86::DEC64r
, X86::DEC64m
},
87 { X86::DEC8r
, X86::DEC8m
},
88 { X86::INC16r
, X86::INC16m
},
89 { X86::INC32r
, X86::INC32m
},
90 { X86::INC64_16r
, X86::INC64_16m
},
91 { X86::INC64_32r
, X86::INC64_32m
},
92 { X86::INC64r
, X86::INC64m
},
93 { X86::INC8r
, X86::INC8m
},
94 { X86::NEG16r
, X86::NEG16m
},
95 { X86::NEG32r
, X86::NEG32m
},
96 { X86::NEG64r
, X86::NEG64m
},
97 { X86::NEG8r
, X86::NEG8m
},
98 { X86::NOT16r
, X86::NOT16m
},
99 { X86::NOT32r
, X86::NOT32m
},
100 { X86::NOT64r
, X86::NOT64m
},
101 { X86::NOT8r
, X86::NOT8m
},
102 { X86::OR16ri
, X86::OR16mi
},
103 { X86::OR16ri8
, X86::OR16mi8
},
104 { X86::OR16rr
, X86::OR16mr
},
105 { X86::OR32ri
, X86::OR32mi
},
106 { X86::OR32ri8
, X86::OR32mi8
},
107 { X86::OR32rr
, X86::OR32mr
},
108 { X86::OR64ri32
, X86::OR64mi32
},
109 { X86::OR64ri8
, X86::OR64mi8
},
110 { X86::OR64rr
, X86::OR64mr
},
111 { X86::OR8ri
, X86::OR8mi
},
112 { X86::OR8rr
, X86::OR8mr
},
113 { X86::ROL16r1
, X86::ROL16m1
},
114 { X86::ROL16rCL
, X86::ROL16mCL
},
115 { X86::ROL16ri
, X86::ROL16mi
},
116 { X86::ROL32r1
, X86::ROL32m1
},
117 { X86::ROL32rCL
, X86::ROL32mCL
},
118 { X86::ROL32ri
, X86::ROL32mi
},
119 { X86::ROL64r1
, X86::ROL64m1
},
120 { X86::ROL64rCL
, X86::ROL64mCL
},
121 { X86::ROL64ri
, X86::ROL64mi
},
122 { X86::ROL8r1
, X86::ROL8m1
},
123 { X86::ROL8rCL
, X86::ROL8mCL
},
124 { X86::ROL8ri
, X86::ROL8mi
},
125 { X86::ROR16r1
, X86::ROR16m1
},
126 { X86::ROR16rCL
, X86::ROR16mCL
},
127 { X86::ROR16ri
, X86::ROR16mi
},
128 { X86::ROR32r1
, X86::ROR32m1
},
129 { X86::ROR32rCL
, X86::ROR32mCL
},
130 { X86::ROR32ri
, X86::ROR32mi
},
131 { X86::ROR64r1
, X86::ROR64m1
},
132 { X86::ROR64rCL
, X86::ROR64mCL
},
133 { X86::ROR64ri
, X86::ROR64mi
},
134 { X86::ROR8r1
, X86::ROR8m1
},
135 { X86::ROR8rCL
, X86::ROR8mCL
},
136 { X86::ROR8ri
, X86::ROR8mi
},
137 { X86::SAR16r1
, X86::SAR16m1
},
138 { X86::SAR16rCL
, X86::SAR16mCL
},
139 { X86::SAR16ri
, X86::SAR16mi
},
140 { X86::SAR32r1
, X86::SAR32m1
},
141 { X86::SAR32rCL
, X86::SAR32mCL
},
142 { X86::SAR32ri
, X86::SAR32mi
},
143 { X86::SAR64r1
, X86::SAR64m1
},
144 { X86::SAR64rCL
, X86::SAR64mCL
},
145 { X86::SAR64ri
, X86::SAR64mi
},
146 { X86::SAR8r1
, X86::SAR8m1
},
147 { X86::SAR8rCL
, X86::SAR8mCL
},
148 { X86::SAR8ri
, X86::SAR8mi
},
149 { X86::SBB32ri
, X86::SBB32mi
},
150 { X86::SBB32ri8
, X86::SBB32mi8
},
151 { X86::SBB32rr
, X86::SBB32mr
},
152 { X86::SBB64ri32
, X86::SBB64mi32
},
153 { X86::SBB64ri8
, X86::SBB64mi8
},
154 { X86::SBB64rr
, X86::SBB64mr
},
155 { X86::SHL16rCL
, X86::SHL16mCL
},
156 { X86::SHL16ri
, X86::SHL16mi
},
157 { X86::SHL32rCL
, X86::SHL32mCL
},
158 { X86::SHL32ri
, X86::SHL32mi
},
159 { X86::SHL64rCL
, X86::SHL64mCL
},
160 { X86::SHL64ri
, X86::SHL64mi
},
161 { X86::SHL8rCL
, X86::SHL8mCL
},
162 { X86::SHL8ri
, X86::SHL8mi
},
163 { X86::SHLD16rrCL
, X86::SHLD16mrCL
},
164 { X86::SHLD16rri8
, X86::SHLD16mri8
},
165 { X86::SHLD32rrCL
, X86::SHLD32mrCL
},
166 { X86::SHLD32rri8
, X86::SHLD32mri8
},
167 { X86::SHLD64rrCL
, X86::SHLD64mrCL
},
168 { X86::SHLD64rri8
, X86::SHLD64mri8
},
169 { X86::SHR16r1
, X86::SHR16m1
},
170 { X86::SHR16rCL
, X86::SHR16mCL
},
171 { X86::SHR16ri
, X86::SHR16mi
},
172 { X86::SHR32r1
, X86::SHR32m1
},
173 { X86::SHR32rCL
, X86::SHR32mCL
},
174 { X86::SHR32ri
, X86::SHR32mi
},
175 { X86::SHR64r1
, X86::SHR64m1
},
176 { X86::SHR64rCL
, X86::SHR64mCL
},
177 { X86::SHR64ri
, X86::SHR64mi
},
178 { X86::SHR8r1
, X86::SHR8m1
},
179 { X86::SHR8rCL
, X86::SHR8mCL
},
180 { X86::SHR8ri
, X86::SHR8mi
},
181 { X86::SHRD16rrCL
, X86::SHRD16mrCL
},
182 { X86::SHRD16rri8
, X86::SHRD16mri8
},
183 { X86::SHRD32rrCL
, X86::SHRD32mrCL
},
184 { X86::SHRD32rri8
, X86::SHRD32mri8
},
185 { X86::SHRD64rrCL
, X86::SHRD64mrCL
},
186 { X86::SHRD64rri8
, X86::SHRD64mri8
},
187 { X86::SUB16ri
, X86::SUB16mi
},
188 { X86::SUB16ri8
, X86::SUB16mi8
},
189 { X86::SUB16rr
, X86::SUB16mr
},
190 { X86::SUB32ri
, X86::SUB32mi
},
191 { X86::SUB32ri8
, X86::SUB32mi8
},
192 { X86::SUB32rr
, X86::SUB32mr
},
193 { X86::SUB64ri32
, X86::SUB64mi32
},
194 { X86::SUB64ri8
, X86::SUB64mi8
},
195 { X86::SUB64rr
, X86::SUB64mr
},
196 { X86::SUB8ri
, X86::SUB8mi
},
197 { X86::SUB8rr
, X86::SUB8mr
},
198 { X86::XOR16ri
, X86::XOR16mi
},
199 { X86::XOR16ri8
, X86::XOR16mi8
},
200 { X86::XOR16rr
, X86::XOR16mr
},
201 { X86::XOR32ri
, X86::XOR32mi
},
202 { X86::XOR32ri8
, X86::XOR32mi8
},
203 { X86::XOR32rr
, X86::XOR32mr
},
204 { X86::XOR64ri32
, X86::XOR64mi32
},
205 { X86::XOR64ri8
, X86::XOR64mi8
},
206 { X86::XOR64rr
, X86::XOR64mr
},
207 { X86::XOR8ri
, X86::XOR8mi
},
208 { X86::XOR8rr
, X86::XOR8mr
}
211 for (unsigned i
= 0, e
= array_lengthof(OpTbl2Addr
); i
!= e
; ++i
) {
212 unsigned RegOp
= OpTbl2Addr
[i
][0];
213 unsigned MemOp
= OpTbl2Addr
[i
][1];
214 if (!RegOp2MemOpTable2Addr
.insert(std::make_pair((unsigned*)RegOp
,
216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo
= 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
219 std::make_pair(RegOp
,
221 AmbEntries
.push_back(MemOp
);
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0
[][3] = {
226 { X86::BT16ri8
, X86::BT16mi8
, 1 },
227 { X86::BT32ri8
, X86::BT32mi8
, 1 },
228 { X86::BT64ri8
, X86::BT64mi8
, 1 },
229 { X86::CALL32r
, X86::CALL32m
, 1 },
230 { X86::CALL64r
, X86::CALL64m
, 1 },
231 { X86::CMP16ri
, X86::CMP16mi
, 1 },
232 { X86::CMP16ri8
, X86::CMP16mi8
, 1 },
233 { X86::CMP16rr
, X86::CMP16mr
, 1 },
234 { X86::CMP32ri
, X86::CMP32mi
, 1 },
235 { X86::CMP32ri8
, X86::CMP32mi8
, 1 },
236 { X86::CMP32rr
, X86::CMP32mr
, 1 },
237 { X86::CMP64ri32
, X86::CMP64mi32
, 1 },
238 { X86::CMP64ri8
, X86::CMP64mi8
, 1 },
239 { X86::CMP64rr
, X86::CMP64mr
, 1 },
240 { X86::CMP8ri
, X86::CMP8mi
, 1 },
241 { X86::CMP8rr
, X86::CMP8mr
, 1 },
242 { X86::DIV16r
, X86::DIV16m
, 1 },
243 { X86::DIV32r
, X86::DIV32m
, 1 },
244 { X86::DIV64r
, X86::DIV64m
, 1 },
245 { X86::DIV8r
, X86::DIV8m
, 1 },
246 { X86::EXTRACTPSrr
, X86::EXTRACTPSmr
, 0 },
247 { X86::FsMOVAPDrr
, X86::MOVSDmr
, 0 },
248 { X86::FsMOVAPSrr
, X86::MOVSSmr
, 0 },
249 { X86::IDIV16r
, X86::IDIV16m
, 1 },
250 { X86::IDIV32r
, X86::IDIV32m
, 1 },
251 { X86::IDIV64r
, X86::IDIV64m
, 1 },
252 { X86::IDIV8r
, X86::IDIV8m
, 1 },
253 { X86::IMUL16r
, X86::IMUL16m
, 1 },
254 { X86::IMUL32r
, X86::IMUL32m
, 1 },
255 { X86::IMUL64r
, X86::IMUL64m
, 1 },
256 { X86::IMUL8r
, X86::IMUL8m
, 1 },
257 { X86::JMP32r
, X86::JMP32m
, 1 },
258 { X86::JMP64r
, X86::JMP64m
, 1 },
259 { X86::MOV16ri
, X86::MOV16mi
, 0 },
260 { X86::MOV16rr
, X86::MOV16mr
, 0 },
261 { X86::MOV32ri
, X86::MOV32mi
, 0 },
262 { X86::MOV32rr
, X86::MOV32mr
, 0 },
263 { X86::MOV64ri32
, X86::MOV64mi32
, 0 },
264 { X86::MOV64rr
, X86::MOV64mr
, 0 },
265 { X86::MOV8ri
, X86::MOV8mi
, 0 },
266 { X86::MOV8rr
, X86::MOV8mr
, 0 },
267 { X86::MOV8rr_NOREX
, X86::MOV8mr_NOREX
, 0 },
268 { X86::MOVAPDrr
, X86::MOVAPDmr
, 0 },
269 { X86::MOVAPSrr
, X86::MOVAPSmr
, 0 },
270 { X86::MOVDQArr
, X86::MOVDQAmr
, 0 },
271 { X86::MOVPDI2DIrr
, X86::MOVPDI2DImr
, 0 },
272 { X86::MOVPQIto64rr
,X86::MOVPQI2QImr
, 0 },
273 { X86::MOVPS2SSrr
, X86::MOVPS2SSmr
, 0 },
274 { X86::MOVSDrr
, X86::MOVSDmr
, 0 },
275 { X86::MOVSDto64rr
, X86::MOVSDto64mr
, 0 },
276 { X86::MOVSS2DIrr
, X86::MOVSS2DImr
, 0 },
277 { X86::MOVSSrr
, X86::MOVSSmr
, 0 },
278 { X86::MOVUPDrr
, X86::MOVUPDmr
, 0 },
279 { X86::MOVUPSrr
, X86::MOVUPSmr
, 0 },
280 { X86::MUL16r
, X86::MUL16m
, 1 },
281 { X86::MUL32r
, X86::MUL32m
, 1 },
282 { X86::MUL64r
, X86::MUL64m
, 1 },
283 { X86::MUL8r
, X86::MUL8m
, 1 },
284 { X86::SETAEr
, X86::SETAEm
, 0 },
285 { X86::SETAr
, X86::SETAm
, 0 },
286 { X86::SETBEr
, X86::SETBEm
, 0 },
287 { X86::SETBr
, X86::SETBm
, 0 },
288 { X86::SETEr
, X86::SETEm
, 0 },
289 { X86::SETGEr
, X86::SETGEm
, 0 },
290 { X86::SETGr
, X86::SETGm
, 0 },
291 { X86::SETLEr
, X86::SETLEm
, 0 },
292 { X86::SETLr
, X86::SETLm
, 0 },
293 { X86::SETNEr
, X86::SETNEm
, 0 },
294 { X86::SETNOr
, X86::SETNOm
, 0 },
295 { X86::SETNPr
, X86::SETNPm
, 0 },
296 { X86::SETNSr
, X86::SETNSm
, 0 },
297 { X86::SETOr
, X86::SETOm
, 0 },
298 { X86::SETPr
, X86::SETPm
, 0 },
299 { X86::SETSr
, X86::SETSm
, 0 },
300 { X86::TAILJMPr
, X86::TAILJMPm
, 1 },
301 { X86::TEST16ri
, X86::TEST16mi
, 1 },
302 { X86::TEST32ri
, X86::TEST32mi
, 1 },
303 { X86::TEST64ri32
, X86::TEST64mi32
, 1 },
304 { X86::TEST8ri
, X86::TEST8mi
, 1 }
307 for (unsigned i
= 0, e
= array_lengthof(OpTbl0
); i
!= e
; ++i
) {
308 unsigned RegOp
= OpTbl0
[i
][0];
309 unsigned MemOp
= OpTbl0
[i
][1];
310 if (!RegOp2MemOpTable0
.insert(std::make_pair((unsigned*)RegOp
,
312 assert(false && "Duplicated entries?");
313 unsigned FoldedLoad
= OpTbl0
[i
][2];
314 // Index 0, folded load or store.
315 unsigned AuxInfo
= 0 | (FoldedLoad
<< 4) | ((FoldedLoad
^1) << 5);
316 if (RegOp
!= X86::FsMOVAPDrr
&& RegOp
!= X86::FsMOVAPSrr
)
317 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
318 std::make_pair(RegOp
, AuxInfo
))).second
)
319 AmbEntries
.push_back(MemOp
);
322 static const unsigned OpTbl1
[][2] = {
323 { X86::CMP16rr
, X86::CMP16rm
},
324 { X86::CMP32rr
, X86::CMP32rm
},
325 { X86::CMP64rr
, X86::CMP64rm
},
326 { X86::CMP8rr
, X86::CMP8rm
},
327 { X86::CVTSD2SSrr
, X86::CVTSD2SSrm
},
328 { X86::CVTSI2SD64rr
, X86::CVTSI2SD64rm
},
329 { X86::CVTSI2SDrr
, X86::CVTSI2SDrm
},
330 { X86::CVTSI2SS64rr
, X86::CVTSI2SS64rm
},
331 { X86::CVTSI2SSrr
, X86::CVTSI2SSrm
},
332 { X86::CVTSS2SDrr
, X86::CVTSS2SDrm
},
333 { X86::CVTTSD2SI64rr
, X86::CVTTSD2SI64rm
},
334 { X86::CVTTSD2SIrr
, X86::CVTTSD2SIrm
},
335 { X86::CVTTSS2SI64rr
, X86::CVTTSS2SI64rm
},
336 { X86::CVTTSS2SIrr
, X86::CVTTSS2SIrm
},
337 { X86::FsMOVAPDrr
, X86::MOVSDrm
},
338 { X86::FsMOVAPSrr
, X86::MOVSSrm
},
339 { X86::IMUL16rri
, X86::IMUL16rmi
},
340 { X86::IMUL16rri8
, X86::IMUL16rmi8
},
341 { X86::IMUL32rri
, X86::IMUL32rmi
},
342 { X86::IMUL32rri8
, X86::IMUL32rmi8
},
343 { X86::IMUL64rri32
, X86::IMUL64rmi32
},
344 { X86::IMUL64rri8
, X86::IMUL64rmi8
},
345 { X86::Int_CMPSDrr
, X86::Int_CMPSDrm
},
346 { X86::Int_CMPSSrr
, X86::Int_CMPSSrm
},
347 { X86::Int_COMISDrr
, X86::Int_COMISDrm
},
348 { X86::Int_COMISSrr
, X86::Int_COMISSrm
},
349 { X86::Int_CVTDQ2PDrr
, X86::Int_CVTDQ2PDrm
},
350 { X86::Int_CVTDQ2PSrr
, X86::Int_CVTDQ2PSrm
},
351 { X86::Int_CVTPD2DQrr
, X86::Int_CVTPD2DQrm
},
352 { X86::Int_CVTPD2PSrr
, X86::Int_CVTPD2PSrm
},
353 { X86::Int_CVTPS2DQrr
, X86::Int_CVTPS2DQrm
},
354 { X86::Int_CVTPS2PDrr
, X86::Int_CVTPS2PDrm
},
355 { X86::Int_CVTSD2SI64rr
,X86::Int_CVTSD2SI64rm
},
356 { X86::Int_CVTSD2SIrr
, X86::Int_CVTSD2SIrm
},
357 { X86::Int_CVTSD2SSrr
, X86::Int_CVTSD2SSrm
},
358 { X86::Int_CVTSI2SD64rr
,X86::Int_CVTSI2SD64rm
},
359 { X86::Int_CVTSI2SDrr
, X86::Int_CVTSI2SDrm
},
360 { X86::Int_CVTSI2SS64rr
,X86::Int_CVTSI2SS64rm
},
361 { X86::Int_CVTSI2SSrr
, X86::Int_CVTSI2SSrm
},
362 { X86::Int_CVTSS2SDrr
, X86::Int_CVTSS2SDrm
},
363 { X86::Int_CVTSS2SI64rr
,X86::Int_CVTSS2SI64rm
},
364 { X86::Int_CVTSS2SIrr
, X86::Int_CVTSS2SIrm
},
365 { X86::Int_CVTTPD2DQrr
, X86::Int_CVTTPD2DQrm
},
366 { X86::Int_CVTTPS2DQrr
, X86::Int_CVTTPS2DQrm
},
367 { X86::Int_CVTTSD2SI64rr
,X86::Int_CVTTSD2SI64rm
},
368 { X86::Int_CVTTSD2SIrr
, X86::Int_CVTTSD2SIrm
},
369 { X86::Int_CVTTSS2SI64rr
,X86::Int_CVTTSS2SI64rm
},
370 { X86::Int_CVTTSS2SIrr
, X86::Int_CVTTSS2SIrm
},
371 { X86::Int_UCOMISDrr
, X86::Int_UCOMISDrm
},
372 { X86::Int_UCOMISSrr
, X86::Int_UCOMISSrm
},
373 { X86::MOV16rr
, X86::MOV16rm
},
374 { X86::MOV32rr
, X86::MOV32rm
},
375 { X86::MOV64rr
, X86::MOV64rm
},
376 { X86::MOV64toPQIrr
, X86::MOVQI2PQIrm
},
377 { X86::MOV64toSDrr
, X86::MOV64toSDrm
},
378 { X86::MOV8rr
, X86::MOV8rm
},
379 { X86::MOVAPDrr
, X86::MOVAPDrm
},
380 { X86::MOVAPSrr
, X86::MOVAPSrm
},
381 { X86::MOVDDUPrr
, X86::MOVDDUPrm
},
382 { X86::MOVDI2PDIrr
, X86::MOVDI2PDIrm
},
383 { X86::MOVDI2SSrr
, X86::MOVDI2SSrm
},
384 { X86::MOVDQArr
, X86::MOVDQArm
},
385 { X86::MOVSD2PDrr
, X86::MOVSD2PDrm
},
386 { X86::MOVSDrr
, X86::MOVSDrm
},
387 { X86::MOVSHDUPrr
, X86::MOVSHDUPrm
},
388 { X86::MOVSLDUPrr
, X86::MOVSLDUPrm
},
389 { X86::MOVSS2PSrr
, X86::MOVSS2PSrm
},
390 { X86::MOVSSrr
, X86::MOVSSrm
},
391 { X86::MOVSX16rr8
, X86::MOVSX16rm8
},
392 { X86::MOVSX32rr16
, X86::MOVSX32rm16
},
393 { X86::MOVSX32rr8
, X86::MOVSX32rm8
},
394 { X86::MOVSX64rr16
, X86::MOVSX64rm16
},
395 { X86::MOVSX64rr32
, X86::MOVSX64rm32
},
396 { X86::MOVSX64rr8
, X86::MOVSX64rm8
},
397 { X86::MOVUPDrr
, X86::MOVUPDrm
},
398 { X86::MOVUPSrr
, X86::MOVUPSrm
},
399 { X86::MOVZDI2PDIrr
, X86::MOVZDI2PDIrm
},
400 { X86::MOVZQI2PQIrr
, X86::MOVZQI2PQIrm
},
401 { X86::MOVZPQILo2PQIrr
, X86::MOVZPQILo2PQIrm
},
402 { X86::MOVZX16rr8
, X86::MOVZX16rm8
},
403 { X86::MOVZX32rr16
, X86::MOVZX32rm16
},
404 { X86::MOVZX32_NOREXrr8
, X86::MOVZX32_NOREXrm8
},
405 { X86::MOVZX32rr8
, X86::MOVZX32rm8
},
406 { X86::MOVZX64rr16
, X86::MOVZX64rm16
},
407 { X86::MOVZX64rr32
, X86::MOVZX64rm32
},
408 { X86::MOVZX64rr8
, X86::MOVZX64rm8
},
409 { X86::PSHUFDri
, X86::PSHUFDmi
},
410 { X86::PSHUFHWri
, X86::PSHUFHWmi
},
411 { X86::PSHUFLWri
, X86::PSHUFLWmi
},
412 { X86::RCPPSr
, X86::RCPPSm
},
413 { X86::RCPPSr_Int
, X86::RCPPSm_Int
},
414 { X86::RSQRTPSr
, X86::RSQRTPSm
},
415 { X86::RSQRTPSr_Int
, X86::RSQRTPSm_Int
},
416 { X86::RSQRTSSr
, X86::RSQRTSSm
},
417 { X86::RSQRTSSr_Int
, X86::RSQRTSSm_Int
},
418 { X86::SQRTPDr
, X86::SQRTPDm
},
419 { X86::SQRTPDr_Int
, X86::SQRTPDm_Int
},
420 { X86::SQRTPSr
, X86::SQRTPSm
},
421 { X86::SQRTPSr_Int
, X86::SQRTPSm_Int
},
422 { X86::SQRTSDr
, X86::SQRTSDm
},
423 { X86::SQRTSDr_Int
, X86::SQRTSDm_Int
},
424 { X86::SQRTSSr
, X86::SQRTSSm
},
425 { X86::SQRTSSr_Int
, X86::SQRTSSm_Int
},
426 { X86::TEST16rr
, X86::TEST16rm
},
427 { X86::TEST32rr
, X86::TEST32rm
},
428 { X86::TEST64rr
, X86::TEST64rm
},
429 { X86::TEST8rr
, X86::TEST8rm
},
430 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
431 { X86::UCOMISDrr
, X86::UCOMISDrm
},
432 { X86::UCOMISSrr
, X86::UCOMISSrm
}
435 for (unsigned i
= 0, e
= array_lengthof(OpTbl1
); i
!= e
; ++i
) {
436 unsigned RegOp
= OpTbl1
[i
][0];
437 unsigned MemOp
= OpTbl1
[i
][1];
438 if (!RegOp2MemOpTable1
.insert(std::make_pair((unsigned*)RegOp
,
440 assert(false && "Duplicated entries?");
441 unsigned AuxInfo
= 1 | (1 << 4); // Index 1, folded load
442 if (RegOp
!= X86::FsMOVAPDrr
&& RegOp
!= X86::FsMOVAPSrr
)
443 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
444 std::make_pair(RegOp
, AuxInfo
))).second
)
445 AmbEntries
.push_back(MemOp
);
448 static const unsigned OpTbl2
[][2] = {
449 { X86::ADC32rr
, X86::ADC32rm
},
450 { X86::ADC64rr
, X86::ADC64rm
},
451 { X86::ADD16rr
, X86::ADD16rm
},
452 { X86::ADD32rr
, X86::ADD32rm
},
453 { X86::ADD64rr
, X86::ADD64rm
},
454 { X86::ADD8rr
, X86::ADD8rm
},
455 { X86::ADDPDrr
, X86::ADDPDrm
},
456 { X86::ADDPSrr
, X86::ADDPSrm
},
457 { X86::ADDSDrr
, X86::ADDSDrm
},
458 { X86::ADDSSrr
, X86::ADDSSrm
},
459 { X86::ADDSUBPDrr
, X86::ADDSUBPDrm
},
460 { X86::ADDSUBPSrr
, X86::ADDSUBPSrm
},
461 { X86::AND16rr
, X86::AND16rm
},
462 { X86::AND32rr
, X86::AND32rm
},
463 { X86::AND64rr
, X86::AND64rm
},
464 { X86::AND8rr
, X86::AND8rm
},
465 { X86::ANDNPDrr
, X86::ANDNPDrm
},
466 { X86::ANDNPSrr
, X86::ANDNPSrm
},
467 { X86::ANDPDrr
, X86::ANDPDrm
},
468 { X86::ANDPSrr
, X86::ANDPSrm
},
469 { X86::CMOVA16rr
, X86::CMOVA16rm
},
470 { X86::CMOVA32rr
, X86::CMOVA32rm
},
471 { X86::CMOVA64rr
, X86::CMOVA64rm
},
472 { X86::CMOVAE16rr
, X86::CMOVAE16rm
},
473 { X86::CMOVAE32rr
, X86::CMOVAE32rm
},
474 { X86::CMOVAE64rr
, X86::CMOVAE64rm
},
475 { X86::CMOVB16rr
, X86::CMOVB16rm
},
476 { X86::CMOVB32rr
, X86::CMOVB32rm
},
477 { X86::CMOVB64rr
, X86::CMOVB64rm
},
478 { X86::CMOVBE16rr
, X86::CMOVBE16rm
},
479 { X86::CMOVBE32rr
, X86::CMOVBE32rm
},
480 { X86::CMOVBE64rr
, X86::CMOVBE64rm
},
481 { X86::CMOVE16rr
, X86::CMOVE16rm
},
482 { X86::CMOVE32rr
, X86::CMOVE32rm
},
483 { X86::CMOVE64rr
, X86::CMOVE64rm
},
484 { X86::CMOVG16rr
, X86::CMOVG16rm
},
485 { X86::CMOVG32rr
, X86::CMOVG32rm
},
486 { X86::CMOVG64rr
, X86::CMOVG64rm
},
487 { X86::CMOVGE16rr
, X86::CMOVGE16rm
},
488 { X86::CMOVGE32rr
, X86::CMOVGE32rm
},
489 { X86::CMOVGE64rr
, X86::CMOVGE64rm
},
490 { X86::CMOVL16rr
, X86::CMOVL16rm
},
491 { X86::CMOVL32rr
, X86::CMOVL32rm
},
492 { X86::CMOVL64rr
, X86::CMOVL64rm
},
493 { X86::CMOVLE16rr
, X86::CMOVLE16rm
},
494 { X86::CMOVLE32rr
, X86::CMOVLE32rm
},
495 { X86::CMOVLE64rr
, X86::CMOVLE64rm
},
496 { X86::CMOVNE16rr
, X86::CMOVNE16rm
},
497 { X86::CMOVNE32rr
, X86::CMOVNE32rm
},
498 { X86::CMOVNE64rr
, X86::CMOVNE64rm
},
499 { X86::CMOVNO16rr
, X86::CMOVNO16rm
},
500 { X86::CMOVNO32rr
, X86::CMOVNO32rm
},
501 { X86::CMOVNO64rr
, X86::CMOVNO64rm
},
502 { X86::CMOVNP16rr
, X86::CMOVNP16rm
},
503 { X86::CMOVNP32rr
, X86::CMOVNP32rm
},
504 { X86::CMOVNP64rr
, X86::CMOVNP64rm
},
505 { X86::CMOVNS16rr
, X86::CMOVNS16rm
},
506 { X86::CMOVNS32rr
, X86::CMOVNS32rm
},
507 { X86::CMOVNS64rr
, X86::CMOVNS64rm
},
508 { X86::CMOVO16rr
, X86::CMOVO16rm
},
509 { X86::CMOVO32rr
, X86::CMOVO32rm
},
510 { X86::CMOVO64rr
, X86::CMOVO64rm
},
511 { X86::CMOVP16rr
, X86::CMOVP16rm
},
512 { X86::CMOVP32rr
, X86::CMOVP32rm
},
513 { X86::CMOVP64rr
, X86::CMOVP64rm
},
514 { X86::CMOVS16rr
, X86::CMOVS16rm
},
515 { X86::CMOVS32rr
, X86::CMOVS32rm
},
516 { X86::CMOVS64rr
, X86::CMOVS64rm
},
517 { X86::CMPPDrri
, X86::CMPPDrmi
},
518 { X86::CMPPSrri
, X86::CMPPSrmi
},
519 { X86::CMPSDrr
, X86::CMPSDrm
},
520 { X86::CMPSSrr
, X86::CMPSSrm
},
521 { X86::DIVPDrr
, X86::DIVPDrm
},
522 { X86::DIVPSrr
, X86::DIVPSrm
},
523 { X86::DIVSDrr
, X86::DIVSDrm
},
524 { X86::DIVSSrr
, X86::DIVSSrm
},
525 { X86::FsANDNPDrr
, X86::FsANDNPDrm
},
526 { X86::FsANDNPSrr
, X86::FsANDNPSrm
},
527 { X86::FsANDPDrr
, X86::FsANDPDrm
},
528 { X86::FsANDPSrr
, X86::FsANDPSrm
},
529 { X86::FsORPDrr
, X86::FsORPDrm
},
530 { X86::FsORPSrr
, X86::FsORPSrm
},
531 { X86::FsXORPDrr
, X86::FsXORPDrm
},
532 { X86::FsXORPSrr
, X86::FsXORPSrm
},
533 { X86::HADDPDrr
, X86::HADDPDrm
},
534 { X86::HADDPSrr
, X86::HADDPSrm
},
535 { X86::HSUBPDrr
, X86::HSUBPDrm
},
536 { X86::HSUBPSrr
, X86::HSUBPSrm
},
537 { X86::IMUL16rr
, X86::IMUL16rm
},
538 { X86::IMUL32rr
, X86::IMUL32rm
},
539 { X86::IMUL64rr
, X86::IMUL64rm
},
540 { X86::MAXPDrr
, X86::MAXPDrm
},
541 { X86::MAXPDrr_Int
, X86::MAXPDrm_Int
},
542 { X86::MAXPSrr
, X86::MAXPSrm
},
543 { X86::MAXPSrr_Int
, X86::MAXPSrm_Int
},
544 { X86::MAXSDrr
, X86::MAXSDrm
},
545 { X86::MAXSDrr_Int
, X86::MAXSDrm_Int
},
546 { X86::MAXSSrr
, X86::MAXSSrm
},
547 { X86::MAXSSrr_Int
, X86::MAXSSrm_Int
},
548 { X86::MINPDrr
, X86::MINPDrm
},
549 { X86::MINPDrr_Int
, X86::MINPDrm_Int
},
550 { X86::MINPSrr
, X86::MINPSrm
},
551 { X86::MINPSrr_Int
, X86::MINPSrm_Int
},
552 { X86::MINSDrr
, X86::MINSDrm
},
553 { X86::MINSDrr_Int
, X86::MINSDrm_Int
},
554 { X86::MINSSrr
, X86::MINSSrm
},
555 { X86::MINSSrr_Int
, X86::MINSSrm_Int
},
556 { X86::MULPDrr
, X86::MULPDrm
},
557 { X86::MULPSrr
, X86::MULPSrm
},
558 { X86::MULSDrr
, X86::MULSDrm
},
559 { X86::MULSSrr
, X86::MULSSrm
},
560 { X86::OR16rr
, X86::OR16rm
},
561 { X86::OR32rr
, X86::OR32rm
},
562 { X86::OR64rr
, X86::OR64rm
},
563 { X86::OR8rr
, X86::OR8rm
},
564 { X86::ORPDrr
, X86::ORPDrm
},
565 { X86::ORPSrr
, X86::ORPSrm
},
566 { X86::PACKSSDWrr
, X86::PACKSSDWrm
},
567 { X86::PACKSSWBrr
, X86::PACKSSWBrm
},
568 { X86::PACKUSWBrr
, X86::PACKUSWBrm
},
569 { X86::PADDBrr
, X86::PADDBrm
},
570 { X86::PADDDrr
, X86::PADDDrm
},
571 { X86::PADDQrr
, X86::PADDQrm
},
572 { X86::PADDSBrr
, X86::PADDSBrm
},
573 { X86::PADDSWrr
, X86::PADDSWrm
},
574 { X86::PADDWrr
, X86::PADDWrm
},
575 { X86::PANDNrr
, X86::PANDNrm
},
576 { X86::PANDrr
, X86::PANDrm
},
577 { X86::PAVGBrr
, X86::PAVGBrm
},
578 { X86::PAVGWrr
, X86::PAVGWrm
},
579 { X86::PCMPEQBrr
, X86::PCMPEQBrm
},
580 { X86::PCMPEQDrr
, X86::PCMPEQDrm
},
581 { X86::PCMPEQWrr
, X86::PCMPEQWrm
},
582 { X86::PCMPGTBrr
, X86::PCMPGTBrm
},
583 { X86::PCMPGTDrr
, X86::PCMPGTDrm
},
584 { X86::PCMPGTWrr
, X86::PCMPGTWrm
},
585 { X86::PINSRWrri
, X86::PINSRWrmi
},
586 { X86::PMADDWDrr
, X86::PMADDWDrm
},
587 { X86::PMAXSWrr
, X86::PMAXSWrm
},
588 { X86::PMAXUBrr
, X86::PMAXUBrm
},
589 { X86::PMINSWrr
, X86::PMINSWrm
},
590 { X86::PMINUBrr
, X86::PMINUBrm
},
591 { X86::PMULDQrr
, X86::PMULDQrm
},
592 { X86::PMULHUWrr
, X86::PMULHUWrm
},
593 { X86::PMULHWrr
, X86::PMULHWrm
},
594 { X86::PMULLDrr
, X86::PMULLDrm
},
595 { X86::PMULLDrr_int
, X86::PMULLDrm_int
},
596 { X86::PMULLWrr
, X86::PMULLWrm
},
597 { X86::PMULUDQrr
, X86::PMULUDQrm
},
598 { X86::PORrr
, X86::PORrm
},
599 { X86::PSADBWrr
, X86::PSADBWrm
},
600 { X86::PSLLDrr
, X86::PSLLDrm
},
601 { X86::PSLLQrr
, X86::PSLLQrm
},
602 { X86::PSLLWrr
, X86::PSLLWrm
},
603 { X86::PSRADrr
, X86::PSRADrm
},
604 { X86::PSRAWrr
, X86::PSRAWrm
},
605 { X86::PSRLDrr
, X86::PSRLDrm
},
606 { X86::PSRLQrr
, X86::PSRLQrm
},
607 { X86::PSRLWrr
, X86::PSRLWrm
},
608 { X86::PSUBBrr
, X86::PSUBBrm
},
609 { X86::PSUBDrr
, X86::PSUBDrm
},
610 { X86::PSUBSBrr
, X86::PSUBSBrm
},
611 { X86::PSUBSWrr
, X86::PSUBSWrm
},
612 { X86::PSUBWrr
, X86::PSUBWrm
},
613 { X86::PUNPCKHBWrr
, X86::PUNPCKHBWrm
},
614 { X86::PUNPCKHDQrr
, X86::PUNPCKHDQrm
},
615 { X86::PUNPCKHQDQrr
, X86::PUNPCKHQDQrm
},
616 { X86::PUNPCKHWDrr
, X86::PUNPCKHWDrm
},
617 { X86::PUNPCKLBWrr
, X86::PUNPCKLBWrm
},
618 { X86::PUNPCKLDQrr
, X86::PUNPCKLDQrm
},
619 { X86::PUNPCKLQDQrr
, X86::PUNPCKLQDQrm
},
620 { X86::PUNPCKLWDrr
, X86::PUNPCKLWDrm
},
621 { X86::PXORrr
, X86::PXORrm
},
622 { X86::SBB32rr
, X86::SBB32rm
},
623 { X86::SBB64rr
, X86::SBB64rm
},
624 { X86::SHUFPDrri
, X86::SHUFPDrmi
},
625 { X86::SHUFPSrri
, X86::SHUFPSrmi
},
626 { X86::SUB16rr
, X86::SUB16rm
},
627 { X86::SUB32rr
, X86::SUB32rm
},
628 { X86::SUB64rr
, X86::SUB64rm
},
629 { X86::SUB8rr
, X86::SUB8rm
},
630 { X86::SUBPDrr
, X86::SUBPDrm
},
631 { X86::SUBPSrr
, X86::SUBPSrm
},
632 { X86::SUBSDrr
, X86::SUBSDrm
},
633 { X86::SUBSSrr
, X86::SUBSSrm
},
634 // FIXME: TEST*rr -> swapped operand of TEST*mr.
635 { X86::UNPCKHPDrr
, X86::UNPCKHPDrm
},
636 { X86::UNPCKHPSrr
, X86::UNPCKHPSrm
},
637 { X86::UNPCKLPDrr
, X86::UNPCKLPDrm
},
638 { X86::UNPCKLPSrr
, X86::UNPCKLPSrm
},
639 { X86::XOR16rr
, X86::XOR16rm
},
640 { X86::XOR32rr
, X86::XOR32rm
},
641 { X86::XOR64rr
, X86::XOR64rm
},
642 { X86::XOR8rr
, X86::XOR8rm
},
643 { X86::XORPDrr
, X86::XORPDrm
},
644 { X86::XORPSrr
, X86::XORPSrm
}
647 for (unsigned i
= 0, e
= array_lengthof(OpTbl2
); i
!= e
; ++i
) {
648 unsigned RegOp
= OpTbl2
[i
][0];
649 unsigned MemOp
= OpTbl2
[i
][1];
650 if (!RegOp2MemOpTable2
.insert(std::make_pair((unsigned*)RegOp
,
652 assert(false && "Duplicated entries?");
653 unsigned AuxInfo
= 2 | (1 << 4); // Index 2, folded load
654 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
655 std::make_pair(RegOp
, AuxInfo
))).second
)
656 AmbEntries
.push_back(MemOp
);
659 // Remove ambiguous entries.
660 assert(AmbEntries
.empty() && "Duplicated entries in unfolding maps?");
663 bool X86InstrInfo::isMoveInstr(const MachineInstr
& MI
,
664 unsigned &SrcReg
, unsigned &DstReg
,
665 unsigned &SrcSubIdx
, unsigned &DstSubIdx
) const {
666 switch (MI
.getOpcode()) {
670 case X86::MOV8rr_NOREX
:
677 // FP Stack register class copies
678 case X86::MOV_Fp3232
: case X86::MOV_Fp6464
: case X86::MOV_Fp8080
:
679 case X86::MOV_Fp3264
: case X86::MOV_Fp3280
:
680 case X86::MOV_Fp6432
: case X86::MOV_Fp8032
:
682 case X86::FsMOVAPSrr
:
683 case X86::FsMOVAPDrr
:
687 case X86::MOVSS2PSrr
:
688 case X86::MOVSD2PDrr
:
689 case X86::MOVPS2SSrr
:
690 case X86::MOVPD2SDrr
:
691 case X86::MMX_MOVQ64rr
:
692 assert(MI
.getNumOperands() >= 2 &&
693 MI
.getOperand(0).isReg() &&
694 MI
.getOperand(1).isReg() &&
695 "invalid register-register move instruction");
696 SrcReg
= MI
.getOperand(1).getReg();
697 DstReg
= MI
.getOperand(0).getReg();
698 SrcSubIdx
= MI
.getOperand(1).getSubReg();
699 DstSubIdx
= MI
.getOperand(0).getSubReg();
704 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
*MI
,
705 int &FrameIndex
) const {
706 switch (MI
->getOpcode()) {
718 case X86::MMX_MOVD64rm
:
719 case X86::MMX_MOVQ64rm
:
720 if (MI
->getOperand(1).isFI() && MI
->getOperand(2).isImm() &&
721 MI
->getOperand(3).isReg() && MI
->getOperand(4).isImm() &&
722 MI
->getOperand(2).getImm() == 1 &&
723 MI
->getOperand(3).getReg() == 0 &&
724 MI
->getOperand(4).getImm() == 0) {
725 FrameIndex
= MI
->getOperand(1).getIndex();
726 return MI
->getOperand(0).getReg();
733 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
*MI
,
734 int &FrameIndex
) const {
735 switch (MI
->getOpcode()) {
747 case X86::MMX_MOVD64mr
:
748 case X86::MMX_MOVQ64mr
:
749 case X86::MMX_MOVNTQmr
:
750 if (MI
->getOperand(0).isFI() && MI
->getOperand(1).isImm() &&
751 MI
->getOperand(2).isReg() && MI
->getOperand(3).isImm() &&
752 MI
->getOperand(1).getImm() == 1 &&
753 MI
->getOperand(2).getReg() == 0 &&
754 MI
->getOperand(3).getImm() == 0) {
755 FrameIndex
= MI
->getOperand(0).getIndex();
756 return MI
->getOperand(X86AddrNumOperands
).getReg();
764 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
766 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
767 bool isPICBase
= false;
768 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
769 E
= MRI
.def_end(); I
!= E
; ++I
) {
770 MachineInstr
*DefMI
= I
.getOperand().getParent();
771 if (DefMI
->getOpcode() != X86::MOVPC32r
)
773 assert(!isPICBase
&& "More than one PIC base?");
779 /// isGVStub - Return true if the GV requires an extra load to get the
781 static inline bool isGVStub(GlobalValue
*GV
, X86TargetMachine
&TM
) {
782 return TM
.getSubtarget
<X86Subtarget
>().GVRequiresExtraLoad(GV
, TM
, false);
786 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
*MI
) const {
787 switch (MI
->getOpcode()) {
799 case X86::MMX_MOVD64rm
:
800 case X86::MMX_MOVQ64rm
: {
801 // Loads from constant pools are trivially rematerializable.
802 if (MI
->getOperand(1).isReg() &&
803 MI
->getOperand(2).isImm() &&
804 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
805 (MI
->getOperand(4).isCPI() ||
806 (MI
->getOperand(4).isGlobal() &&
807 isGVStub(MI
->getOperand(4).getGlobal(), TM
)))) {
808 unsigned BaseReg
= MI
->getOperand(1).getReg();
811 // Allow re-materialization of PIC load.
812 if (!ReMatPICStubLoad
&& MI
->getOperand(4).isGlobal())
814 const MachineFunction
&MF
= *MI
->getParent()->getParent();
815 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
816 bool isPICBase
= false;
817 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
818 E
= MRI
.def_end(); I
!= E
; ++I
) {
819 MachineInstr
*DefMI
= I
.getOperand().getParent();
820 if (DefMI
->getOpcode() != X86::MOVPC32r
)
822 assert(!isPICBase
&& "More than one PIC base?");
832 if (MI
->getOperand(2).isImm() &&
833 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
834 !MI
->getOperand(4).isReg()) {
835 // lea fi#, lea GV, etc. are all rematerializable.
836 if (!MI
->getOperand(1).isReg())
838 unsigned BaseReg
= MI
->getOperand(1).getReg();
841 // Allow re-materialization of lea PICBase + x.
842 const MachineFunction
&MF
= *MI
->getParent()->getParent();
843 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
844 return regIsPICBase(BaseReg
, MRI
);
850 // All other instructions marked M_REMATERIALIZABLE are always trivially
855 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
856 /// would clobber the EFLAGS condition register. Note the result may be
857 /// conservative. If it cannot definitely determine the safety after visiting
858 /// two instructions it assumes it's not safe.
859 static bool isSafeToClobberEFLAGS(MachineBasicBlock
&MBB
,
860 MachineBasicBlock::iterator I
) {
861 // It's always safe to clobber EFLAGS at the end of a block.
865 // For compile time consideration, if we are not able to determine the
866 // safety after visiting 2 instructions, we will assume it's not safe.
867 for (unsigned i
= 0; i
< 2; ++i
) {
868 bool SeenDef
= false;
869 for (unsigned j
= 0, e
= I
->getNumOperands(); j
!= e
; ++j
) {
870 MachineOperand
&MO
= I
->getOperand(j
);
873 if (MO
.getReg() == X86::EFLAGS
) {
881 // This instruction defines EFLAGS, no need to look any further.
885 // If we make it to the end of the block, it's safe to clobber EFLAGS.
890 // Conservative answer.
894 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
895 MachineBasicBlock::iterator I
,
897 const MachineInstr
*Orig
) const {
898 DebugLoc DL
= DebugLoc::getUnknownLoc();
899 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
901 unsigned SubIdx
= Orig
->getOperand(0).isReg()
902 ? Orig
->getOperand(0).getSubReg() : 0;
903 bool ChangeSubIdx
= SubIdx
!= 0;
904 if (SubIdx
&& TargetRegisterInfo::isPhysicalRegister(DestReg
)) {
905 DestReg
= RI
.getSubReg(DestReg
, SubIdx
);
909 // MOV32r0 etc. are implemented with xor which clobbers condition code.
910 // Re-materialize them as movri instructions to avoid side effects.
911 bool Emitted
= false;
912 switch (Orig
->getOpcode()) {
918 if (!isSafeToClobberEFLAGS(MBB
, I
)) {
920 switch (Orig
->getOpcode()) {
922 case X86::MOV8r0
: Opc
= X86::MOV8ri
; break;
923 case X86::MOV16r0
: Opc
= X86::MOV16ri
; break;
924 case X86::MOV32r0
: Opc
= X86::MOV32ri
; break;
925 case X86::MOV64r0
: Opc
= X86::MOV64ri32
; break;
927 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
).addImm(0);
935 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(Orig
);
936 MI
->getOperand(0).setReg(DestReg
);
941 MachineInstr
*NewMI
= prior(I
);
942 NewMI
->getOperand(0).setSubReg(SubIdx
);
946 /// isInvariantLoad - Return true if the specified instruction (which is marked
947 /// mayLoad) is loading from a location whose value is invariant across the
948 /// function. For example, loading a value from the constant pool or from
949 /// from the argument area of a function if it does not change. This should
950 /// only return true of *all* loads the instruction does are invariant (if it
951 /// does multiple loads).
952 bool X86InstrInfo::isInvariantLoad(const MachineInstr
*MI
) const {
953 // This code cares about loads from three cases: constant pool entries,
954 // invariant argument slots, and global stubs. In order to handle these cases
955 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
956 // operand and base our analysis on it. This is safe because the address of
957 // none of these three cases is ever used as anything other than a load base
958 // and X86 doesn't have any instructions that load from multiple places.
960 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
961 const MachineOperand
&MO
= MI
->getOperand(i
);
962 // Loads from constant pools are trivially invariant.
967 return isGVStub(MO
.getGlobal(), TM
);
969 // If this is a load from an invariant stack slot, the load is a constant.
971 const MachineFrameInfo
&MFI
=
972 *MI
->getParent()->getParent()->getFrameInfo();
973 int Idx
= MO
.getIndex();
974 return MFI
.isFixedObjectIndex(Idx
) && MFI
.isImmutableObjectIndex(Idx
);
978 // All other instances of these instructions are presumed to have other
983 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
984 /// is not marked dead.
985 static bool hasLiveCondCodeDef(MachineInstr
*MI
) {
986 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
987 MachineOperand
&MO
= MI
->getOperand(i
);
988 if (MO
.isReg() && MO
.isDef() &&
989 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
996 /// convertToThreeAddress - This method must be implemented by targets that
997 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
998 /// may be able to convert a two-address instruction into a true
999 /// three-address instruction on demand. This allows the X86 target (for
1000 /// example) to convert ADD and SHL instructions into LEA instructions if they
1001 /// would require register copies due to two-addressness.
1003 /// This method returns a null pointer if the transformation cannot be
1004 /// performed, otherwise it returns the new instruction.
1007 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
1008 MachineBasicBlock::iterator
&MBBI
,
1009 LiveVariables
*LV
) const {
1010 MachineInstr
*MI
= MBBI
;
1011 MachineFunction
&MF
= *MI
->getParent()->getParent();
1012 // All instructions input are two-addr instructions. Get the known operands.
1013 unsigned Dest
= MI
->getOperand(0).getReg();
1014 unsigned Src
= MI
->getOperand(1).getReg();
1015 bool isDead
= MI
->getOperand(0).isDead();
1016 bool isKill
= MI
->getOperand(1).isKill();
1018 MachineInstr
*NewMI
= NULL
;
1019 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1020 // we have better subtarget support, enable the 16-bit LEA generation here.
1021 bool DisableLEA16
= true;
1023 unsigned MIOpc
= MI
->getOpcode();
1025 case X86::SHUFPSrri
: {
1026 assert(MI
->getNumOperands() == 4 && "Unknown shufps instruction!");
1027 if (!TM
.getSubtarget
<X86Subtarget
>().hasSSE2()) return 0;
1029 unsigned B
= MI
->getOperand(1).getReg();
1030 unsigned C
= MI
->getOperand(2).getReg();
1031 if (B
!= C
) return 0;
1032 unsigned A
= MI
->getOperand(0).getReg();
1033 unsigned M
= MI
->getOperand(3).getImm();
1034 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::PSHUFDri
))
1035 .addReg(A
, true, false, false, isDead
)
1036 .addReg(B
, false, false, isKill
).addImm(M
);
1039 case X86::SHL64ri
: {
1040 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1041 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042 // the flags produced by a shift yet, so this is safe.
1043 unsigned ShAmt
= MI
->getOperand(2).getImm();
1044 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1046 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1047 .addReg(Dest
, true, false, false, isDead
)
1048 .addReg(0).addImm(1 << ShAmt
).addReg(Src
, false, false, isKill
).addImm(0);
1051 case X86::SHL32ri
: {
1052 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1053 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054 // the flags produced by a shift yet, so this is safe.
1055 unsigned ShAmt
= MI
->getOperand(2).getImm();
1056 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1058 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit() ?
1059 X86::LEA64_32r
: X86::LEA32r
;
1060 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1061 .addReg(Dest
, true, false, false, isDead
)
1062 .addReg(0).addImm(1 << ShAmt
)
1063 .addReg(Src
, false, false, isKill
).addImm(0);
1066 case X86::SHL16ri
: {
1067 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1068 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1069 // the flags produced by a shift yet, so this is safe.
1070 unsigned ShAmt
= MI
->getOperand(2).getImm();
1071 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1074 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1075 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
1076 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit()
1077 ? X86::LEA64_32r
: X86::LEA32r
;
1078 unsigned leaInReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1079 unsigned leaOutReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1081 // Build and insert into an implicit UNDEF value. This is OK because
1082 // well be shifting and then extracting the lower 16-bits.
1083 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg
);
1084 MachineInstr
*InsMI
=
1085 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::INSERT_SUBREG
),leaInReg
)
1086 .addReg(leaInReg
).addReg(Src
, false, false, isKill
)
1087 .addImm(X86::SUBREG_16BIT
);
1089 NewMI
= BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(Opc
), leaOutReg
)
1090 .addReg(0).addImm(1 << ShAmt
)
1091 .addReg(leaInReg
, false, false, true).addImm(0);
1093 MachineInstr
*ExtMI
=
1094 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::EXTRACT_SUBREG
))
1095 .addReg(Dest
, true, false, false, isDead
)
1096 .addReg(leaOutReg
, false, false, true).addImm(X86::SUBREG_16BIT
);
1099 // Update live variables
1100 LV
->getVarInfo(leaInReg
).Kills
.push_back(NewMI
);
1101 LV
->getVarInfo(leaOutReg
).Kills
.push_back(ExtMI
);
1103 LV
->replaceKillInstruction(Src
, MI
, InsMI
);
1105 LV
->replaceKillInstruction(Dest
, MI
, ExtMI
);
1109 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1110 .addReg(Dest
, true, false, false, isDead
)
1111 .addReg(0).addImm(1 << ShAmt
)
1112 .addReg(Src
, false, false, isKill
).addImm(0);
1117 // The following opcodes also sets the condition code register(s). Only
1118 // convert them to equivalent lea if the condition code register def's
1120 if (hasLiveCondCodeDef(MI
))
1123 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
1128 case X86::INC64_32r
: {
1129 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1130 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
1131 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1132 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1133 .addReg(Dest
, true, false, false, isDead
),
1138 case X86::INC64_16r
:
1139 if (DisableLEA16
) return 0;
1140 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1141 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1142 .addReg(Dest
, true, false, false, isDead
),
1147 case X86::DEC64_32r
: {
1148 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1149 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1150 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1151 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1152 .addReg(Dest
, true, false, false, isDead
),
1157 case X86::DEC64_16r
:
1158 if (DisableLEA16
) return 0;
1159 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1160 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1161 .addReg(Dest
, true, false, false, isDead
),
1165 case X86::ADD32rr
: {
1166 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1167 unsigned Opc
= MIOpc
== X86::ADD64rr
? X86::LEA64r
1168 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1169 unsigned Src2
= MI
->getOperand(2).getReg();
1170 bool isKill2
= MI
->getOperand(2).isKill();
1171 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1172 .addReg(Dest
, true, false, false, isDead
),
1173 Src
, isKill
, Src2
, isKill2
);
1175 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1178 case X86::ADD16rr
: {
1179 if (DisableLEA16
) return 0;
1180 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1181 unsigned Src2
= MI
->getOperand(2).getReg();
1182 bool isKill2
= MI
->getOperand(2).isKill();
1183 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1184 .addReg(Dest
, true, false, false, isDead
),
1185 Src
, isKill
, Src2
, isKill2
);
1187 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1190 case X86::ADD64ri32
:
1192 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1193 if (MI
->getOperand(2).isImm())
1194 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1195 .addReg(Dest
, true, false, false, isDead
),
1196 Src
, isKill
, MI
->getOperand(2).getImm());
1200 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1201 if (MI
->getOperand(2).isImm()) {
1202 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1203 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1204 .addReg(Dest
, true, false, false, isDead
),
1205 Src
, isKill
, MI
->getOperand(2).getImm());
1210 if (DisableLEA16
) return 0;
1211 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1212 if (MI
->getOperand(2).isImm())
1213 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1214 .addReg(Dest
, true, false, false, isDead
),
1215 Src
, isKill
, MI
->getOperand(2).getImm());
1218 if (DisableLEA16
) return 0;
1220 case X86::SHL64ri
: {
1221 assert(MI
->getNumOperands() >= 3 && MI
->getOperand(2).isImm() &&
1222 "Unknown shl instruction!");
1223 unsigned ShAmt
= MI
->getOperand(2).getImm();
1224 if (ShAmt
== 1 || ShAmt
== 2 || ShAmt
== 3) {
1226 AM
.Scale
= 1 << ShAmt
;
1228 unsigned Opc
= MIOpc
== X86::SHL64ri
? X86::LEA64r
1229 : (MIOpc
== X86::SHL32ri
1230 ? (is64Bit
? X86::LEA64_32r
: X86::LEA32r
) : X86::LEA16r
);
1231 NewMI
= addFullAddress(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1232 .addReg(Dest
, true, false, false, isDead
), AM
);
1234 NewMI
->getOperand(3).setIsKill(true);
1242 if (!NewMI
) return 0;
1244 if (LV
) { // Update live variables
1246 LV
->replaceKillInstruction(Src
, MI
, NewMI
);
1248 LV
->replaceKillInstruction(Dest
, MI
, NewMI
);
1251 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
1255 /// commuteInstruction - We have a few instructions that must be hacked on to
1259 X86InstrInfo::commuteInstruction(MachineInstr
*MI
, bool NewMI
) const {
1260 switch (MI
->getOpcode()) {
1261 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1262 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1263 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1264 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1265 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1266 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1269 switch (MI
->getOpcode()) {
1270 default: assert(0 && "Unreachable!");
1271 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1272 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1273 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1274 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1275 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1276 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1278 unsigned Amt
= MI
->getOperand(3).getImm();
1280 MachineFunction
&MF
= *MI
->getParent()->getParent();
1281 MI
= MF
.CloneMachineInstr(MI
);
1284 MI
->setDesc(get(Opc
));
1285 MI
->getOperand(3).setImm(Size
-Amt
);
1286 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1288 case X86::CMOVB16rr
:
1289 case X86::CMOVB32rr
:
1290 case X86::CMOVB64rr
:
1291 case X86::CMOVAE16rr
:
1292 case X86::CMOVAE32rr
:
1293 case X86::CMOVAE64rr
:
1294 case X86::CMOVE16rr
:
1295 case X86::CMOVE32rr
:
1296 case X86::CMOVE64rr
:
1297 case X86::CMOVNE16rr
:
1298 case X86::CMOVNE32rr
:
1299 case X86::CMOVNE64rr
:
1300 case X86::CMOVBE16rr
:
1301 case X86::CMOVBE32rr
:
1302 case X86::CMOVBE64rr
:
1303 case X86::CMOVA16rr
:
1304 case X86::CMOVA32rr
:
1305 case X86::CMOVA64rr
:
1306 case X86::CMOVL16rr
:
1307 case X86::CMOVL32rr
:
1308 case X86::CMOVL64rr
:
1309 case X86::CMOVGE16rr
:
1310 case X86::CMOVGE32rr
:
1311 case X86::CMOVGE64rr
:
1312 case X86::CMOVLE16rr
:
1313 case X86::CMOVLE32rr
:
1314 case X86::CMOVLE64rr
:
1315 case X86::CMOVG16rr
:
1316 case X86::CMOVG32rr
:
1317 case X86::CMOVG64rr
:
1318 case X86::CMOVS16rr
:
1319 case X86::CMOVS32rr
:
1320 case X86::CMOVS64rr
:
1321 case X86::CMOVNS16rr
:
1322 case X86::CMOVNS32rr
:
1323 case X86::CMOVNS64rr
:
1324 case X86::CMOVP16rr
:
1325 case X86::CMOVP32rr
:
1326 case X86::CMOVP64rr
:
1327 case X86::CMOVNP16rr
:
1328 case X86::CMOVNP32rr
:
1329 case X86::CMOVNP64rr
:
1330 case X86::CMOVO16rr
:
1331 case X86::CMOVO32rr
:
1332 case X86::CMOVO64rr
:
1333 case X86::CMOVNO16rr
:
1334 case X86::CMOVNO32rr
:
1335 case X86::CMOVNO64rr
: {
1337 switch (MI
->getOpcode()) {
1339 case X86::CMOVB16rr
: Opc
= X86::CMOVAE16rr
; break;
1340 case X86::CMOVB32rr
: Opc
= X86::CMOVAE32rr
; break;
1341 case X86::CMOVB64rr
: Opc
= X86::CMOVAE64rr
; break;
1342 case X86::CMOVAE16rr
: Opc
= X86::CMOVB16rr
; break;
1343 case X86::CMOVAE32rr
: Opc
= X86::CMOVB32rr
; break;
1344 case X86::CMOVAE64rr
: Opc
= X86::CMOVB64rr
; break;
1345 case X86::CMOVE16rr
: Opc
= X86::CMOVNE16rr
; break;
1346 case X86::CMOVE32rr
: Opc
= X86::CMOVNE32rr
; break;
1347 case X86::CMOVE64rr
: Opc
= X86::CMOVNE64rr
; break;
1348 case X86::CMOVNE16rr
: Opc
= X86::CMOVE16rr
; break;
1349 case X86::CMOVNE32rr
: Opc
= X86::CMOVE32rr
; break;
1350 case X86::CMOVNE64rr
: Opc
= X86::CMOVE64rr
; break;
1351 case X86::CMOVBE16rr
: Opc
= X86::CMOVA16rr
; break;
1352 case X86::CMOVBE32rr
: Opc
= X86::CMOVA32rr
; break;
1353 case X86::CMOVBE64rr
: Opc
= X86::CMOVA64rr
; break;
1354 case X86::CMOVA16rr
: Opc
= X86::CMOVBE16rr
; break;
1355 case X86::CMOVA32rr
: Opc
= X86::CMOVBE32rr
; break;
1356 case X86::CMOVA64rr
: Opc
= X86::CMOVBE64rr
; break;
1357 case X86::CMOVL16rr
: Opc
= X86::CMOVGE16rr
; break;
1358 case X86::CMOVL32rr
: Opc
= X86::CMOVGE32rr
; break;
1359 case X86::CMOVL64rr
: Opc
= X86::CMOVGE64rr
; break;
1360 case X86::CMOVGE16rr
: Opc
= X86::CMOVL16rr
; break;
1361 case X86::CMOVGE32rr
: Opc
= X86::CMOVL32rr
; break;
1362 case X86::CMOVGE64rr
: Opc
= X86::CMOVL64rr
; break;
1363 case X86::CMOVLE16rr
: Opc
= X86::CMOVG16rr
; break;
1364 case X86::CMOVLE32rr
: Opc
= X86::CMOVG32rr
; break;
1365 case X86::CMOVLE64rr
: Opc
= X86::CMOVG64rr
; break;
1366 case X86::CMOVG16rr
: Opc
= X86::CMOVLE16rr
; break;
1367 case X86::CMOVG32rr
: Opc
= X86::CMOVLE32rr
; break;
1368 case X86::CMOVG64rr
: Opc
= X86::CMOVLE64rr
; break;
1369 case X86::CMOVS16rr
: Opc
= X86::CMOVNS16rr
; break;
1370 case X86::CMOVS32rr
: Opc
= X86::CMOVNS32rr
; break;
1371 case X86::CMOVS64rr
: Opc
= X86::CMOVNS64rr
; break;
1372 case X86::CMOVNS16rr
: Opc
= X86::CMOVS16rr
; break;
1373 case X86::CMOVNS32rr
: Opc
= X86::CMOVS32rr
; break;
1374 case X86::CMOVNS64rr
: Opc
= X86::CMOVS64rr
; break;
1375 case X86::CMOVP16rr
: Opc
= X86::CMOVNP16rr
; break;
1376 case X86::CMOVP32rr
: Opc
= X86::CMOVNP32rr
; break;
1377 case X86::CMOVP64rr
: Opc
= X86::CMOVNP64rr
; break;
1378 case X86::CMOVNP16rr
: Opc
= X86::CMOVP16rr
; break;
1379 case X86::CMOVNP32rr
: Opc
= X86::CMOVP32rr
; break;
1380 case X86::CMOVNP64rr
: Opc
= X86::CMOVP64rr
; break;
1381 case X86::CMOVO16rr
: Opc
= X86::CMOVNO16rr
; break;
1382 case X86::CMOVO32rr
: Opc
= X86::CMOVNO32rr
; break;
1383 case X86::CMOVO64rr
: Opc
= X86::CMOVNO64rr
; break;
1384 case X86::CMOVNO16rr
: Opc
= X86::CMOVO16rr
; break;
1385 case X86::CMOVNO32rr
: Opc
= X86::CMOVO32rr
; break;
1386 case X86::CMOVNO64rr
: Opc
= X86::CMOVO64rr
; break;
1389 MachineFunction
&MF
= *MI
->getParent()->getParent();
1390 MI
= MF
.CloneMachineInstr(MI
);
1393 MI
->setDesc(get(Opc
));
1394 // Fallthrough intended.
1397 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1401 static X86::CondCode
GetCondFromBranchOpc(unsigned BrOpc
) {
1403 default: return X86::COND_INVALID
;
1404 case X86::JE
: return X86::COND_E
;
1405 case X86::JNE
: return X86::COND_NE
;
1406 case X86::JL
: return X86::COND_L
;
1407 case X86::JLE
: return X86::COND_LE
;
1408 case X86::JG
: return X86::COND_G
;
1409 case X86::JGE
: return X86::COND_GE
;
1410 case X86::JB
: return X86::COND_B
;
1411 case X86::JBE
: return X86::COND_BE
;
1412 case X86::JA
: return X86::COND_A
;
1413 case X86::JAE
: return X86::COND_AE
;
1414 case X86::JS
: return X86::COND_S
;
1415 case X86::JNS
: return X86::COND_NS
;
1416 case X86::JP
: return X86::COND_P
;
1417 case X86::JNP
: return X86::COND_NP
;
1418 case X86::JO
: return X86::COND_O
;
1419 case X86::JNO
: return X86::COND_NO
;
1423 unsigned X86::GetCondBranchFromCond(X86::CondCode CC
) {
1425 default: assert(0 && "Illegal condition code!");
1426 case X86::COND_E
: return X86::JE
;
1427 case X86::COND_NE
: return X86::JNE
;
1428 case X86::COND_L
: return X86::JL
;
1429 case X86::COND_LE
: return X86::JLE
;
1430 case X86::COND_G
: return X86::JG
;
1431 case X86::COND_GE
: return X86::JGE
;
1432 case X86::COND_B
: return X86::JB
;
1433 case X86::COND_BE
: return X86::JBE
;
1434 case X86::COND_A
: return X86::JA
;
1435 case X86::COND_AE
: return X86::JAE
;
1436 case X86::COND_S
: return X86::JS
;
1437 case X86::COND_NS
: return X86::JNS
;
1438 case X86::COND_P
: return X86::JP
;
1439 case X86::COND_NP
: return X86::JNP
;
1440 case X86::COND_O
: return X86::JO
;
1441 case X86::COND_NO
: return X86::JNO
;
1445 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1446 /// e.g. turning COND_E to COND_NE.
1447 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
1449 default: assert(0 && "Illegal condition code!");
1450 case X86::COND_E
: return X86::COND_NE
;
1451 case X86::COND_NE
: return X86::COND_E
;
1452 case X86::COND_L
: return X86::COND_GE
;
1453 case X86::COND_LE
: return X86::COND_G
;
1454 case X86::COND_G
: return X86::COND_LE
;
1455 case X86::COND_GE
: return X86::COND_L
;
1456 case X86::COND_B
: return X86::COND_AE
;
1457 case X86::COND_BE
: return X86::COND_A
;
1458 case X86::COND_A
: return X86::COND_BE
;
1459 case X86::COND_AE
: return X86::COND_B
;
1460 case X86::COND_S
: return X86::COND_NS
;
1461 case X86::COND_NS
: return X86::COND_S
;
1462 case X86::COND_P
: return X86::COND_NP
;
1463 case X86::COND_NP
: return X86::COND_P
;
1464 case X86::COND_O
: return X86::COND_NO
;
1465 case X86::COND_NO
: return X86::COND_O
;
1469 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
*MI
) const {
1470 const TargetInstrDesc
&TID
= MI
->getDesc();
1471 if (!TID
.isTerminator()) return false;
1473 // Conditional branch is a special case.
1474 if (TID
.isBranch() && !TID
.isBarrier())
1476 if (!TID
.isPredicable())
1478 return !isPredicated(MI
);
1481 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1482 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr
*MI
,
1483 const X86InstrInfo
&TII
) {
1484 if (MI
->getOpcode() == X86::FP_REG_KILL
)
1486 return TII
.isUnpredicatedTerminator(MI
);
1489 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,
1490 MachineBasicBlock
*&TBB
,
1491 MachineBasicBlock
*&FBB
,
1492 SmallVectorImpl
<MachineOperand
> &Cond
,
1493 bool AllowModify
) const {
1494 // Start from the bottom of the block and work up, examining the
1495 // terminator instructions.
1496 MachineBasicBlock::iterator I
= MBB
.end();
1497 while (I
!= MBB
.begin()) {
1499 // Working from the bottom, when we see a non-terminator
1500 // instruction, we're done.
1501 if (!isBrAnalysisUnpredicatedTerminator(I
, *this))
1503 // A terminator that isn't a branch can't easily be handled
1504 // by this analysis.
1505 if (!I
->getDesc().isBranch())
1507 // Handle unconditional branches.
1508 if (I
->getOpcode() == X86::JMP
) {
1510 TBB
= I
->getOperand(0).getMBB();
1514 // If the block has any instructions after a JMP, delete them.
1515 while (next(I
) != MBB
.end())
1516 next(I
)->eraseFromParent();
1519 // Delete the JMP if it's equivalent to a fall-through.
1520 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
1522 I
->eraseFromParent();
1526 // TBB is used to indicate the unconditinal destination.
1527 TBB
= I
->getOperand(0).getMBB();
1530 // Handle conditional branches.
1531 X86::CondCode BranchCode
= GetCondFromBranchOpc(I
->getOpcode());
1532 if (BranchCode
== X86::COND_INVALID
)
1533 return true; // Can't handle indirect branch.
1534 // Working from the bottom, handle the first conditional branch.
1537 TBB
= I
->getOperand(0).getMBB();
1538 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
1541 // Handle subsequent conditional branches. Only handle the case
1542 // where all conditional branches branch to the same destination
1543 // and their condition opcodes fit one of the special
1544 // multi-branch idioms.
1545 assert(Cond
.size() == 1);
1547 // Only handle the case where all conditional branches branch to
1548 // the same destination.
1549 if (TBB
!= I
->getOperand(0).getMBB())
1551 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
1552 // If the conditions are the same, we can leave them alone.
1553 if (OldBranchCode
== BranchCode
)
1555 // If they differ, see if they fit one of the known patterns.
1556 // Theoretically we could handle more patterns here, but
1557 // we shouldn't expect to see them if instruction selection
1558 // has done a reasonable job.
1559 if ((OldBranchCode
== X86::COND_NP
&&
1560 BranchCode
== X86::COND_E
) ||
1561 (OldBranchCode
== X86::COND_E
&&
1562 BranchCode
== X86::COND_NP
))
1563 BranchCode
= X86::COND_NP_OR_E
;
1564 else if ((OldBranchCode
== X86::COND_P
&&
1565 BranchCode
== X86::COND_NE
) ||
1566 (OldBranchCode
== X86::COND_NE
&&
1567 BranchCode
== X86::COND_P
))
1568 BranchCode
= X86::COND_NE_OR_P
;
1571 // Update the MachineOperand.
1572 Cond
[0].setImm(BranchCode
);
1578 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
1579 MachineBasicBlock::iterator I
= MBB
.end();
1582 while (I
!= MBB
.begin()) {
1584 if (I
->getOpcode() != X86::JMP
&&
1585 GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
1587 // Remove the branch.
1588 I
->eraseFromParent();
1597 X86InstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
1598 MachineBasicBlock
*FBB
,
1599 const SmallVectorImpl
<MachineOperand
> &Cond
) const {
1600 // FIXME this should probably have a DebugLoc operand
1601 DebugLoc dl
= DebugLoc::getUnknownLoc();
1602 // Shouldn't be a fall through.
1603 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
1604 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
1605 "X86 branch conditions have one component!");
1608 // Unconditional branch?
1609 assert(!FBB
&& "Unconditional branch with multiple successors!");
1610 BuildMI(&MBB
, dl
, get(X86::JMP
)).addMBB(TBB
);
1614 // Conditional branch.
1616 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
1618 case X86::COND_NP_OR_E
:
1619 // Synthesize NP_OR_E with two branches.
1620 BuildMI(&MBB
, dl
, get(X86::JNP
)).addMBB(TBB
);
1622 BuildMI(&MBB
, dl
, get(X86::JE
)).addMBB(TBB
);
1625 case X86::COND_NE_OR_P
:
1626 // Synthesize NE_OR_P with two branches.
1627 BuildMI(&MBB
, dl
, get(X86::JNE
)).addMBB(TBB
);
1629 BuildMI(&MBB
, dl
, get(X86::JP
)).addMBB(TBB
);
1633 unsigned Opc
= GetCondBranchFromCond(CC
);
1634 BuildMI(&MBB
, dl
, get(Opc
)).addMBB(TBB
);
1639 // Two-way Conditional branch. Insert the second branch.
1640 BuildMI(&MBB
, dl
, get(X86::JMP
)).addMBB(FBB
);
1646 /// isHReg - Test if the given register is a physical h register.
1647 static bool isHReg(unsigned Reg
) {
1648 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
1651 bool X86InstrInfo::copyRegToReg(MachineBasicBlock
&MBB
,
1652 MachineBasicBlock::iterator MI
,
1653 unsigned DestReg
, unsigned SrcReg
,
1654 const TargetRegisterClass
*DestRC
,
1655 const TargetRegisterClass
*SrcRC
) const {
1656 DebugLoc DL
= DebugLoc::getUnknownLoc();
1657 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1659 // Determine if DstRC and SrcRC have a common superclass in common.
1660 const TargetRegisterClass
*CommonRC
= DestRC
;
1661 if (DestRC
== SrcRC
)
1662 /* Source and destination have the same register class. */;
1663 else if (CommonRC
->hasSuperClass(SrcRC
))
1665 else if (!DestRC
->hasSubClass(SrcRC
))
1670 if (CommonRC
== &X86::GR64RegClass
) {
1672 } else if (CommonRC
== &X86::GR32RegClass
) {
1674 } else if (CommonRC
== &X86::GR16RegClass
) {
1676 } else if (CommonRC
== &X86::GR8RegClass
) {
1677 // Copying to or from a physical H register on x86-64 requires a NOREX
1678 // move. Otherwise use a normal move.
1679 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
1680 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1681 Opc
= X86::MOV8rr_NOREX
;
1684 } else if (CommonRC
== &X86::GR64_ABCDRegClass
) {
1686 } else if (CommonRC
== &X86::GR32_ABCDRegClass
) {
1688 } else if (CommonRC
== &X86::GR16_ABCDRegClass
) {
1690 } else if (CommonRC
== &X86::GR8_ABCD_LRegClass
) {
1692 } else if (CommonRC
== &X86::GR8_ABCD_HRegClass
) {
1693 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1694 Opc
= X86::MOV8rr_NOREX
;
1697 } else if (CommonRC
== &X86::GR64_NOREXRegClass
) {
1699 } else if (CommonRC
== &X86::GR32_NOREXRegClass
) {
1701 } else if (CommonRC
== &X86::GR16_NOREXRegClass
) {
1703 } else if (CommonRC
== &X86::GR8_NOREXRegClass
) {
1705 } else if (CommonRC
== &X86::RFP32RegClass
) {
1706 Opc
= X86::MOV_Fp3232
;
1707 } else if (CommonRC
== &X86::RFP64RegClass
|| CommonRC
== &X86::RSTRegClass
) {
1708 Opc
= X86::MOV_Fp6464
;
1709 } else if (CommonRC
== &X86::RFP80RegClass
) {
1710 Opc
= X86::MOV_Fp8080
;
1711 } else if (CommonRC
== &X86::FR32RegClass
) {
1712 Opc
= X86::FsMOVAPSrr
;
1713 } else if (CommonRC
== &X86::FR64RegClass
) {
1714 Opc
= X86::FsMOVAPDrr
;
1715 } else if (CommonRC
== &X86::VR128RegClass
) {
1716 Opc
= X86::MOVAPSrr
;
1717 } else if (CommonRC
== &X86::VR64RegClass
) {
1718 Opc
= X86::MMX_MOVQ64rr
;
1722 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
).addReg(SrcReg
);
1726 // Moving EFLAGS to / from another register requires a push and a pop.
1727 if (SrcRC
== &X86::CCRRegClass
) {
1728 if (SrcReg
!= X86::EFLAGS
)
1730 if (DestRC
== &X86::GR64RegClass
) {
1731 BuildMI(MBB
, MI
, DL
, get(X86::PUSHFQ
));
1732 BuildMI(MBB
, MI
, DL
, get(X86::POP64r
), DestReg
);
1734 } else if (DestRC
== &X86::GR32RegClass
) {
1735 BuildMI(MBB
, MI
, DL
, get(X86::PUSHFD
));
1736 BuildMI(MBB
, MI
, DL
, get(X86::POP32r
), DestReg
);
1739 } else if (DestRC
== &X86::CCRRegClass
) {
1740 if (DestReg
!= X86::EFLAGS
)
1742 if (SrcRC
== &X86::GR64RegClass
) {
1743 BuildMI(MBB
, MI
, DL
, get(X86::PUSH64r
)).addReg(SrcReg
);
1744 BuildMI(MBB
, MI
, DL
, get(X86::POPFQ
));
1746 } else if (SrcRC
== &X86::GR32RegClass
) {
1747 BuildMI(MBB
, MI
, DL
, get(X86::PUSH32r
)).addReg(SrcReg
);
1748 BuildMI(MBB
, MI
, DL
, get(X86::POPFD
));
1753 // Moving from ST(0) turns into FpGET_ST0_32 etc.
1754 if (SrcRC
== &X86::RSTRegClass
) {
1755 // Copying from ST(0)/ST(1).
1756 if (SrcReg
!= X86::ST0
&& SrcReg
!= X86::ST1
)
1757 // Can only copy from ST(0)/ST(1) right now
1759 bool isST0
= SrcReg
== X86::ST0
;
1761 if (DestRC
== &X86::RFP32RegClass
)
1762 Opc
= isST0
? X86::FpGET_ST0_32
: X86::FpGET_ST1_32
;
1763 else if (DestRC
== &X86::RFP64RegClass
)
1764 Opc
= isST0
? X86::FpGET_ST0_64
: X86::FpGET_ST1_64
;
1766 if (DestRC
!= &X86::RFP80RegClass
)
1768 Opc
= isST0
? X86::FpGET_ST0_80
: X86::FpGET_ST1_80
;
1770 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
);
1774 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1775 if (DestRC
== &X86::RSTRegClass
) {
1776 // Copying to ST(0) / ST(1).
1777 if (DestReg
!= X86::ST0
&& DestReg
!= X86::ST1
)
1778 // Can only copy to TOS right now
1780 bool isST0
= DestReg
== X86::ST0
;
1782 if (SrcRC
== &X86::RFP32RegClass
)
1783 Opc
= isST0
? X86::FpSET_ST0_32
: X86::FpSET_ST1_32
;
1784 else if (SrcRC
== &X86::RFP64RegClass
)
1785 Opc
= isST0
? X86::FpSET_ST0_64
: X86::FpSET_ST1_64
;
1787 if (SrcRC
!= &X86::RFP80RegClass
)
1789 Opc
= isST0
? X86::FpSET_ST0_80
: X86::FpSET_ST1_80
;
1791 BuildMI(MBB
, MI
, DL
, get(Opc
)).addReg(SrcReg
);
1795 // Not yet supported!
1799 static unsigned getStoreRegOpcode(unsigned SrcReg
,
1800 const TargetRegisterClass
*RC
,
1801 bool isStackAligned
,
1802 TargetMachine
&TM
) {
1804 if (RC
== &X86::GR64RegClass
) {
1806 } else if (RC
== &X86::GR32RegClass
) {
1808 } else if (RC
== &X86::GR16RegClass
) {
1810 } else if (RC
== &X86::GR8RegClass
) {
1811 // Copying to or from a physical H register on x86-64 requires a NOREX
1812 // move. Otherwise use a normal move.
1813 if (isHReg(SrcReg
) &&
1814 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1815 Opc
= X86::MOV8mr_NOREX
;
1818 } else if (RC
== &X86::GR64_ABCDRegClass
) {
1820 } else if (RC
== &X86::GR32_ABCDRegClass
) {
1822 } else if (RC
== &X86::GR16_ABCDRegClass
) {
1824 } else if (RC
== &X86::GR8_ABCD_LRegClass
) {
1826 } else if (RC
== &X86::GR8_ABCD_HRegClass
) {
1827 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1828 Opc
= X86::MOV8mr_NOREX
;
1831 } else if (RC
== &X86::GR64_NOREXRegClass
) {
1833 } else if (RC
== &X86::GR32_NOREXRegClass
) {
1835 } else if (RC
== &X86::GR16_NOREXRegClass
) {
1837 } else if (RC
== &X86::GR8_NOREXRegClass
) {
1839 } else if (RC
== &X86::RFP80RegClass
) {
1840 Opc
= X86::ST_FpP80m
; // pops
1841 } else if (RC
== &X86::RFP64RegClass
) {
1842 Opc
= X86::ST_Fp64m
;
1843 } else if (RC
== &X86::RFP32RegClass
) {
1844 Opc
= X86::ST_Fp32m
;
1845 } else if (RC
== &X86::FR32RegClass
) {
1847 } else if (RC
== &X86::FR64RegClass
) {
1849 } else if (RC
== &X86::VR128RegClass
) {
1850 // If stack is realigned we can use aligned stores.
1851 Opc
= isStackAligned
? X86::MOVAPSmr
: X86::MOVUPSmr
;
1852 } else if (RC
== &X86::VR64RegClass
) {
1853 Opc
= X86::MMX_MOVQ64mr
;
1855 assert(0 && "Unknown regclass");
1862 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1863 MachineBasicBlock::iterator MI
,
1864 unsigned SrcReg
, bool isKill
, int FrameIdx
,
1865 const TargetRegisterClass
*RC
) const {
1866 const MachineFunction
&MF
= *MBB
.getParent();
1867 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1868 RI
.needsStackRealignment(MF
);
1869 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
1870 DebugLoc DL
= DebugLoc::getUnknownLoc();
1871 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1872 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
)), FrameIdx
)
1873 .addReg(SrcReg
, false, false, isKill
);
1876 void X86InstrInfo::storeRegToAddr(MachineFunction
&MF
, unsigned SrcReg
,
1878 SmallVectorImpl
<MachineOperand
> &Addr
,
1879 const TargetRegisterClass
*RC
,
1880 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1881 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1882 RI
.needsStackRealignment(MF
);
1883 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
1884 DebugLoc DL
= DebugLoc::getUnknownLoc();
1885 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
1886 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
1887 MIB
.addOperand(Addr
[i
]);
1888 MIB
.addReg(SrcReg
, false, false, isKill
);
1889 NewMIs
.push_back(MIB
);
1892 static unsigned getLoadRegOpcode(unsigned DestReg
,
1893 const TargetRegisterClass
*RC
,
1894 bool isStackAligned
,
1895 const TargetMachine
&TM
) {
1897 if (RC
== &X86::GR64RegClass
) {
1899 } else if (RC
== &X86::GR32RegClass
) {
1901 } else if (RC
== &X86::GR16RegClass
) {
1903 } else if (RC
== &X86::GR8RegClass
) {
1904 // Copying to or from a physical H register on x86-64 requires a NOREX
1905 // move. Otherwise use a normal move.
1906 if (isHReg(DestReg
) &&
1907 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1908 Opc
= X86::MOV8rm_NOREX
;
1911 } else if (RC
== &X86::GR64_ABCDRegClass
) {
1913 } else if (RC
== &X86::GR32_ABCDRegClass
) {
1915 } else if (RC
== &X86::GR16_ABCDRegClass
) {
1917 } else if (RC
== &X86::GR8_ABCD_LRegClass
) {
1919 } else if (RC
== &X86::GR8_ABCD_HRegClass
) {
1920 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1921 Opc
= X86::MOV8rm_NOREX
;
1924 } else if (RC
== &X86::GR64_NOREXRegClass
) {
1926 } else if (RC
== &X86::GR32_NOREXRegClass
) {
1928 } else if (RC
== &X86::GR16_NOREXRegClass
) {
1930 } else if (RC
== &X86::GR8_NOREXRegClass
) {
1932 } else if (RC
== &X86::RFP80RegClass
) {
1933 Opc
= X86::LD_Fp80m
;
1934 } else if (RC
== &X86::RFP64RegClass
) {
1935 Opc
= X86::LD_Fp64m
;
1936 } else if (RC
== &X86::RFP32RegClass
) {
1937 Opc
= X86::LD_Fp32m
;
1938 } else if (RC
== &X86::FR32RegClass
) {
1940 } else if (RC
== &X86::FR64RegClass
) {
1942 } else if (RC
== &X86::VR128RegClass
) {
1943 // If stack is realigned we can use aligned loads.
1944 Opc
= isStackAligned
? X86::MOVAPSrm
: X86::MOVUPSrm
;
1945 } else if (RC
== &X86::VR64RegClass
) {
1946 Opc
= X86::MMX_MOVQ64rm
;
1948 assert(0 && "Unknown regclass");
1955 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1956 MachineBasicBlock::iterator MI
,
1957 unsigned DestReg
, int FrameIdx
,
1958 const TargetRegisterClass
*RC
) const{
1959 const MachineFunction
&MF
= *MBB
.getParent();
1960 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1961 RI
.needsStackRealignment(MF
);
1962 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
1963 DebugLoc DL
= DebugLoc::getUnknownLoc();
1964 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1965 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
), FrameIdx
);
1968 void X86InstrInfo::loadRegFromAddr(MachineFunction
&MF
, unsigned DestReg
,
1969 SmallVectorImpl
<MachineOperand
> &Addr
,
1970 const TargetRegisterClass
*RC
,
1971 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1972 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1973 RI
.needsStackRealignment(MF
);
1974 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
1975 DebugLoc DL
= DebugLoc::getUnknownLoc();
1976 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
1977 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
1978 MIB
.addOperand(Addr
[i
]);
1979 NewMIs
.push_back(MIB
);
1982 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock
&MBB
,
1983 MachineBasicBlock::iterator MI
,
1984 const std::vector
<CalleeSavedInfo
> &CSI
) const {
1988 DebugLoc DL
= DebugLoc::getUnknownLoc();
1989 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1991 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
1992 unsigned SlotSize
= is64Bit
? 8 : 4;
1994 MachineFunction
&MF
= *MBB
.getParent();
1995 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1996 X86FI
->setCalleeSavedFrameSize(CSI
.size() * SlotSize
);
1998 unsigned Opc
= is64Bit
? X86::PUSH64r
: X86::PUSH32r
;
1999 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2000 unsigned Reg
= CSI
[i
-1].getReg();
2001 // Add the callee-saved register as live-in. It's killed at the spill.
2003 BuildMI(MBB
, MI
, DL
, get(Opc
))
2004 .addReg(Reg
, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
2009 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2010 MachineBasicBlock::iterator MI
,
2011 const std::vector
<CalleeSavedInfo
> &CSI
) const {
2015 DebugLoc DL
= DebugLoc::getUnknownLoc();
2016 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
2018 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
2020 unsigned Opc
= is64Bit
? X86::POP64r
: X86::POP32r
;
2021 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2022 unsigned Reg
= CSI
[i
].getReg();
2023 BuildMI(MBB
, MI
, DL
, get(Opc
), Reg
);
2028 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
2029 const SmallVectorImpl
<MachineOperand
> &MOs
,
2031 const TargetInstrInfo
&TII
) {
2032 // Create the base instruction with the memory operand as the first part.
2033 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2034 MI
->getDebugLoc(), true);
2035 MachineInstrBuilder
MIB(NewMI
);
2036 unsigned NumAddrOps
= MOs
.size();
2037 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2038 MIB
.addOperand(MOs
[i
]);
2039 if (NumAddrOps
< 4) // FrameIndex only
2042 // Loop over the rest of the ri operands, converting them over.
2043 unsigned NumOps
= MI
->getDesc().getNumOperands()-2;
2044 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2045 MachineOperand
&MO
= MI
->getOperand(i
+2);
2048 for (unsigned i
= NumOps
+2, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2049 MachineOperand
&MO
= MI
->getOperand(i
);
2055 static MachineInstr
*FuseInst(MachineFunction
&MF
,
2056 unsigned Opcode
, unsigned OpNo
,
2057 const SmallVectorImpl
<MachineOperand
> &MOs
,
2058 MachineInstr
*MI
, const TargetInstrInfo
&TII
) {
2059 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2060 MI
->getDebugLoc(), true);
2061 MachineInstrBuilder
MIB(NewMI
);
2063 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2064 MachineOperand
&MO
= MI
->getOperand(i
);
2066 assert(MO
.isReg() && "Expected to fold into reg operand!");
2067 unsigned NumAddrOps
= MOs
.size();
2068 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2069 MIB
.addOperand(MOs
[i
]);
2070 if (NumAddrOps
< 4) // FrameIndex only
2079 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
2080 const SmallVectorImpl
<MachineOperand
> &MOs
,
2082 MachineFunction
&MF
= *MI
->getParent()->getParent();
2083 MachineInstrBuilder MIB
= BuildMI(MF
, MI
->getDebugLoc(), TII
.get(Opcode
));
2085 unsigned NumAddrOps
= MOs
.size();
2086 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2087 MIB
.addOperand(MOs
[i
]);
2088 if (NumAddrOps
< 4) // FrameIndex only
2090 return MIB
.addImm(0);
2094 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2095 MachineInstr
*MI
, unsigned i
,
2096 const SmallVectorImpl
<MachineOperand
> &MOs
) const{
2097 const DenseMap
<unsigned*, unsigned> *OpcodeTablePtr
= NULL
;
2098 bool isTwoAddrFold
= false;
2099 unsigned NumOps
= MI
->getDesc().getNumOperands();
2100 bool isTwoAddr
= NumOps
> 1 &&
2101 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2103 MachineInstr
*NewMI
= NULL
;
2104 // Folding a memory location into the two-address part of a two-address
2105 // instruction is different than folding it other places. It requires
2106 // replacing the *two* registers with the memory location.
2107 if (isTwoAddr
&& NumOps
>= 2 && i
< 2 &&
2108 MI
->getOperand(0).isReg() &&
2109 MI
->getOperand(1).isReg() &&
2110 MI
->getOperand(0).getReg() == MI
->getOperand(1).getReg()) {
2111 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2112 isTwoAddrFold
= true;
2113 } else if (i
== 0) { // If operand 0
2114 if (MI
->getOpcode() == X86::MOV16r0
)
2115 NewMI
= MakeM0Inst(*this, X86::MOV16mi
, MOs
, MI
);
2116 else if (MI
->getOpcode() == X86::MOV32r0
)
2117 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, MI
);
2118 else if (MI
->getOpcode() == X86::MOV64r0
)
2119 NewMI
= MakeM0Inst(*this, X86::MOV64mi32
, MOs
, MI
);
2120 else if (MI
->getOpcode() == X86::MOV8r0
)
2121 NewMI
= MakeM0Inst(*this, X86::MOV8mi
, MOs
, MI
);
2125 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2126 } else if (i
== 1) {
2127 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2128 } else if (i
== 2) {
2129 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2132 // If table selected...
2133 if (OpcodeTablePtr
) {
2134 // Find the Opcode to fuse
2135 DenseMap
<unsigned*, unsigned>::iterator I
=
2136 OpcodeTablePtr
->find((unsigned*)MI
->getOpcode());
2137 if (I
!= OpcodeTablePtr
->end()) {
2139 NewMI
= FuseTwoAddrInst(MF
, I
->second
, MOs
, MI
, *this);
2141 NewMI
= FuseInst(MF
, I
->second
, i
, MOs
, MI
, *this);
2147 if (PrintFailedFusing
)
2148 cerr
<< "We failed to fuse operand " << i
<< " in " << *MI
;
2153 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2155 const SmallVectorImpl
<unsigned> &Ops
,
2156 int FrameIndex
) const {
2157 // Check switch flag
2158 if (NoFusing
) return NULL
;
2160 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
2161 unsigned Alignment
= MFI
->getObjectAlignment(FrameIndex
);
2162 // FIXME: Move alignment requirement into tables?
2163 if (Alignment
< 16) {
2164 switch (MI
->getOpcode()) {
2166 // Not always safe to fold movsd into these instructions since their load
2167 // folding variants expects the address to be 16 byte aligned.
2168 case X86::FsANDNPDrr
:
2169 case X86::FsANDNPSrr
:
2170 case X86::FsANDPDrr
:
2171 case X86::FsANDPSrr
:
2174 case X86::FsXORPDrr
:
2175 case X86::FsXORPSrr
:
2180 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2181 unsigned NewOpc
= 0;
2182 switch (MI
->getOpcode()) {
2183 default: return NULL
;
2184 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
2185 case X86::TEST16rr
: NewOpc
= X86::CMP16ri
; break;
2186 case X86::TEST32rr
: NewOpc
= X86::CMP32ri
; break;
2187 case X86::TEST64rr
: NewOpc
= X86::CMP64ri32
; break;
2189 // Change to CMPXXri r, 0 first.
2190 MI
->setDesc(get(NewOpc
));
2191 MI
->getOperand(1).ChangeToImmediate(0);
2192 } else if (Ops
.size() != 1)
2195 SmallVector
<MachineOperand
,4> MOs
;
2196 MOs
.push_back(MachineOperand::CreateFI(FrameIndex
));
2197 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
);
2200 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2202 const SmallVectorImpl
<unsigned> &Ops
,
2203 MachineInstr
*LoadMI
) const {
2204 // Check switch flag
2205 if (NoFusing
) return NULL
;
2207 // Determine the alignment of the load.
2208 unsigned Alignment
= 0;
2209 if (LoadMI
->hasOneMemOperand())
2210 Alignment
= LoadMI
->memoperands_begin()->getAlignment();
2212 // FIXME: Move alignment requirement into tables?
2213 if (Alignment
< 16) {
2214 switch (MI
->getOpcode()) {
2216 // Not always safe to fold movsd into these instructions since their load
2217 // folding variants expects the address to be 16 byte aligned.
2218 case X86::FsANDNPDrr
:
2219 case X86::FsANDNPSrr
:
2220 case X86::FsANDPDrr
:
2221 case X86::FsANDPSrr
:
2224 case X86::FsXORPDrr
:
2225 case X86::FsXORPSrr
:
2230 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2231 unsigned NewOpc
= 0;
2232 switch (MI
->getOpcode()) {
2233 default: return NULL
;
2234 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
2235 case X86::TEST16rr
: NewOpc
= X86::CMP16ri
; break;
2236 case X86::TEST32rr
: NewOpc
= X86::CMP32ri
; break;
2237 case X86::TEST64rr
: NewOpc
= X86::CMP64ri32
; break;
2239 // Change to CMPXXri r, 0 first.
2240 MI
->setDesc(get(NewOpc
));
2241 MI
->getOperand(1).ChangeToImmediate(0);
2242 } else if (Ops
.size() != 1)
2245 SmallVector
<MachineOperand
,X86AddrNumOperands
> MOs
;
2246 if (LoadMI
->getOpcode() == X86::V_SET0
||
2247 LoadMI
->getOpcode() == X86::V_SETALLONES
) {
2248 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2249 // Create a constant-pool entry and operands to load from it.
2251 // x86-32 PIC requires a PIC base register for constant pools.
2252 unsigned PICBase
= 0;
2253 if (TM
.getRelocationModel() == Reloc::PIC_
&&
2254 !TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2255 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2256 // This doesn't work for several reasons.
2257 // 1. GlobalBaseReg may have been spilled.
2258 // 2. It may not be live at MI.
2261 // Create a v4i32 constant-pool entry.
2262 MachineConstantPool
&MCP
= *MF
.getConstantPool();
2263 const VectorType
*Ty
= VectorType::get(Type::Int32Ty
, 4);
2264 Constant
*C
= LoadMI
->getOpcode() == X86::V_SET0
?
2265 ConstantVector::getNullValue(Ty
) :
2266 ConstantVector::getAllOnesValue(Ty
);
2267 unsigned CPI
= MCP
.getConstantPoolIndex(C
, 16);
2269 // Create operands to load from the constant pool entry.
2270 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
2271 MOs
.push_back(MachineOperand::CreateImm(1));
2272 MOs
.push_back(MachineOperand::CreateReg(0, false));
2273 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
2274 MOs
.push_back(MachineOperand::CreateReg(0, false));
2276 // Folding a normal load. Just copy the load's address operands.
2277 unsigned NumOps
= LoadMI
->getDesc().getNumOperands();
2278 for (unsigned i
= NumOps
- X86AddrNumOperands
; i
!= NumOps
; ++i
)
2279 MOs
.push_back(LoadMI
->getOperand(i
));
2281 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
);
2285 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr
*MI
,
2286 const SmallVectorImpl
<unsigned> &Ops
) const {
2287 // Check switch flag
2288 if (NoFusing
) return 0;
2290 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2291 switch (MI
->getOpcode()) {
2292 default: return false;
2301 if (Ops
.size() != 1)
2304 unsigned OpNum
= Ops
[0];
2305 unsigned Opc
= MI
->getOpcode();
2306 unsigned NumOps
= MI
->getDesc().getNumOperands();
2307 bool isTwoAddr
= NumOps
> 1 &&
2308 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2310 // Folding a memory location into the two-address part of a two-address
2311 // instruction is different than folding it other places. It requires
2312 // replacing the *two* registers with the memory location.
2313 const DenseMap
<unsigned*, unsigned> *OpcodeTablePtr
= NULL
;
2314 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2) {
2315 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2316 } else if (OpNum
== 0) { // If operand 0
2325 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2326 } else if (OpNum
== 1) {
2327 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2328 } else if (OpNum
== 2) {
2329 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2332 if (OpcodeTablePtr
) {
2333 // Find the Opcode to fuse
2334 DenseMap
<unsigned*, unsigned>::iterator I
=
2335 OpcodeTablePtr
->find((unsigned*)Opc
);
2336 if (I
!= OpcodeTablePtr
->end())
2342 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
*MI
,
2343 unsigned Reg
, bool UnfoldLoad
, bool UnfoldStore
,
2344 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2345 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2346 MemOp2RegOpTable
.find((unsigned*)MI
->getOpcode());
2347 if (I
== MemOp2RegOpTable
.end())
2349 DebugLoc dl
= MI
->getDebugLoc();
2350 unsigned Opc
= I
->second
.first
;
2351 unsigned Index
= I
->second
.second
& 0xf;
2352 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2353 bool FoldedStore
= I
->second
.second
& (1 << 5);
2354 if (UnfoldLoad
&& !FoldedLoad
)
2356 UnfoldLoad
&= FoldedLoad
;
2357 if (UnfoldStore
&& !FoldedStore
)
2359 UnfoldStore
&= FoldedStore
;
2361 const TargetInstrDesc
&TID
= get(Opc
);
2362 const TargetOperandInfo
&TOI
= TID
.OpInfo
[Index
];
2363 const TargetRegisterClass
*RC
= TOI
.isLookupPtrRegClass()
2364 ? RI
.getPointerRegClass() : RI
.getRegClass(TOI
.RegClass
);
2365 SmallVector
<MachineOperand
, X86AddrNumOperands
> AddrOps
;
2366 SmallVector
<MachineOperand
,2> BeforeOps
;
2367 SmallVector
<MachineOperand
,2> AfterOps
;
2368 SmallVector
<MachineOperand
,4> ImpOps
;
2369 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2370 MachineOperand
&Op
= MI
->getOperand(i
);
2371 if (i
>= Index
&& i
< Index
+ X86AddrNumOperands
)
2372 AddrOps
.push_back(Op
);
2373 else if (Op
.isReg() && Op
.isImplicit())
2374 ImpOps
.push_back(Op
);
2376 BeforeOps
.push_back(Op
);
2378 AfterOps
.push_back(Op
);
2381 // Emit the load instruction.
2383 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, NewMIs
);
2385 // Address operands cannot be marked isKill.
2386 for (unsigned i
= 1; i
!= 1 + X86AddrNumOperands
; ++i
) {
2387 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
2389 MO
.setIsKill(false);
2394 // Emit the data processing instruction.
2395 MachineInstr
*DataMI
= MF
.CreateMachineInstr(TID
, MI
->getDebugLoc(), true);
2396 MachineInstrBuilder
MIB(DataMI
);
2399 MIB
.addReg(Reg
, true);
2400 for (unsigned i
= 0, e
= BeforeOps
.size(); i
!= e
; ++i
)
2401 MIB
.addOperand(BeforeOps
[i
]);
2404 for (unsigned i
= 0, e
= AfterOps
.size(); i
!= e
; ++i
)
2405 MIB
.addOperand(AfterOps
[i
]);
2406 for (unsigned i
= 0, e
= ImpOps
.size(); i
!= e
; ++i
) {
2407 MachineOperand
&MO
= ImpOps
[i
];
2408 MIB
.addReg(MO
.getReg(), MO
.isDef(), true, MO
.isKill(), MO
.isDead());
2410 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2411 unsigned NewOpc
= 0;
2412 switch (DataMI
->getOpcode()) {
2414 case X86::CMP64ri32
:
2418 MachineOperand
&MO0
= DataMI
->getOperand(0);
2419 MachineOperand
&MO1
= DataMI
->getOperand(1);
2420 if (MO1
.getImm() == 0) {
2421 switch (DataMI
->getOpcode()) {
2423 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
2424 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
2425 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
2426 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
2428 DataMI
->setDesc(get(NewOpc
));
2429 MO1
.ChangeToRegister(MO0
.getReg(), false);
2433 NewMIs
.push_back(DataMI
);
2435 // Emit the store instruction.
2437 const TargetOperandInfo
&DstTOI
= TID
.OpInfo
[0];
2438 const TargetRegisterClass
*DstRC
= DstTOI
.isLookupPtrRegClass()
2439 ? RI
.getPointerRegClass() : RI
.getRegClass(DstTOI
.RegClass
);
2440 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, NewMIs
);
2447 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
2448 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
2449 if (!N
->isMachineOpcode())
2452 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2453 MemOp2RegOpTable
.find((unsigned*)N
->getMachineOpcode());
2454 if (I
== MemOp2RegOpTable
.end())
2456 unsigned Opc
= I
->second
.first
;
2457 unsigned Index
= I
->second
.second
& 0xf;
2458 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2459 bool FoldedStore
= I
->second
.second
& (1 << 5);
2460 const TargetInstrDesc
&TID
= get(Opc
);
2461 const TargetOperandInfo
&TOI
= TID
.OpInfo
[Index
];
2462 const TargetRegisterClass
*RC
= TOI
.isLookupPtrRegClass()
2463 ? RI
.getPointerRegClass() : RI
.getRegClass(TOI
.RegClass
);
2464 unsigned NumDefs
= TID
.NumDefs
;
2465 std::vector
<SDValue
> AddrOps
;
2466 std::vector
<SDValue
> BeforeOps
;
2467 std::vector
<SDValue
> AfterOps
;
2468 DebugLoc dl
= N
->getDebugLoc();
2469 unsigned NumOps
= N
->getNumOperands();
2470 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
2471 SDValue Op
= N
->getOperand(i
);
2472 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86AddrNumOperands
)
2473 AddrOps
.push_back(Op
);
2474 else if (i
< Index
-NumDefs
)
2475 BeforeOps
.push_back(Op
);
2476 else if (i
> Index
-NumDefs
)
2477 AfterOps
.push_back(Op
);
2479 SDValue Chain
= N
->getOperand(NumOps
-1);
2480 AddrOps
.push_back(Chain
);
2482 // Emit the load instruction.
2484 const MachineFunction
&MF
= DAG
.getMachineFunction();
2486 MVT VT
= *RC
->vt_begin();
2487 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2488 RI
.needsStackRealignment(MF
);
2489 Load
= DAG
.getTargetNode(getLoadRegOpcode(0, RC
, isAligned
, TM
), dl
,
2490 VT
, MVT::Other
, &AddrOps
[0], AddrOps
.size());
2491 NewNodes
.push_back(Load
);
2494 // Emit the data processing instruction.
2495 std::vector
<MVT
> VTs
;
2496 const TargetRegisterClass
*DstRC
= 0;
2497 if (TID
.getNumDefs() > 0) {
2498 const TargetOperandInfo
&DstTOI
= TID
.OpInfo
[0];
2499 DstRC
= DstTOI
.isLookupPtrRegClass()
2500 ? RI
.getPointerRegClass() : RI
.getRegClass(DstTOI
.RegClass
);
2501 VTs
.push_back(*DstRC
->vt_begin());
2503 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
2504 MVT VT
= N
->getValueType(i
);
2505 if (VT
!= MVT::Other
&& i
>= (unsigned)TID
.getNumDefs())
2509 BeforeOps
.push_back(SDValue(Load
, 0));
2510 std::copy(AfterOps
.begin(), AfterOps
.end(), std::back_inserter(BeforeOps
));
2511 SDNode
*NewNode
= DAG
.getTargetNode(Opc
, dl
, VTs
, &BeforeOps
[0],
2513 NewNodes
.push_back(NewNode
);
2515 // Emit the store instruction.
2518 AddrOps
.push_back(SDValue(NewNode
, 0));
2519 AddrOps
.push_back(Chain
);
2520 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2521 RI
.needsStackRealignment(MF
);
2522 SDNode
*Store
= DAG
.getTargetNode(getStoreRegOpcode(0, DstRC
,
2525 &AddrOps
[0], AddrOps
.size());
2526 NewNodes
.push_back(Store
);
2532 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
2533 bool UnfoldLoad
, bool UnfoldStore
) const {
2534 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2535 MemOp2RegOpTable
.find((unsigned*)Opc
);
2536 if (I
== MemOp2RegOpTable
.end())
2538 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2539 bool FoldedStore
= I
->second
.second
& (1 << 5);
2540 if (UnfoldLoad
&& !FoldedLoad
)
2542 if (UnfoldStore
&& !FoldedStore
)
2544 return I
->second
.first
;
2547 bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock
&MBB
) const {
2548 if (MBB
.empty()) return false;
2550 switch (MBB
.back().getOpcode()) {
2551 case X86::TCRETURNri
:
2552 case X86::TCRETURNdi
:
2553 case X86::RET
: // Return.
2558 case X86::JMP
: // Uncond branch.
2559 case X86::JMP32r
: // Indirect branch.
2560 case X86::JMP64r
: // Indirect branch (64-bit).
2561 case X86::JMP32m
: // Indirect branch through mem.
2562 case X86::JMP64m
: // Indirect branch through mem (64-bit).
2564 default: return false;
2569 ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
2570 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
2571 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
2572 if (CC
== X86::COND_NE_OR_P
|| CC
== X86::COND_NP_OR_E
)
2574 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
2579 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
2580 // FIXME: Return false for x87 stack register classes for now. We can't
2581 // allow any loads of these registers before FpGet_ST0_80.
2582 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::RFP32RegClass
||
2583 RC
== &X86::RFP64RegClass
|| RC
== &X86::RFP80RegClass
);
2586 unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc
*Desc
) {
2587 switch (Desc
->TSFlags
& X86II::ImmMask
) {
2588 case X86II::Imm8
: return 1;
2589 case X86II::Imm16
: return 2;
2590 case X86II::Imm32
: return 4;
2591 case X86II::Imm64
: return 8;
2592 default: assert(0 && "Immediate size not set!");
2597 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2598 /// e.g. r8, xmm8, etc.
2599 bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand
&MO
) {
2600 if (!MO
.isReg()) return false;
2601 switch (MO
.getReg()) {
2603 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
2604 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
2605 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
2606 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
2607 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
2608 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
2609 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
2610 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
2611 case X86::XMM8
: case X86::XMM9
: case X86::XMM10
: case X86::XMM11
:
2612 case X86::XMM12
: case X86::XMM13
: case X86::XMM14
: case X86::XMM15
:
2619 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2620 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2621 /// size, and 3) use of X86-64 extended registers.
2622 unsigned X86InstrInfo::determineREX(const MachineInstr
&MI
) {
2624 const TargetInstrDesc
&Desc
= MI
.getDesc();
2626 // Pseudo instructions do not need REX prefix byte.
2627 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::Pseudo
)
2629 if (Desc
.TSFlags
& X86II::REX_W
)
2632 unsigned NumOps
= Desc
.getNumOperands();
2634 bool isTwoAddr
= NumOps
> 1 &&
2635 Desc
.getOperandConstraint(1, TOI::TIED_TO
) != -1;
2637 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2638 unsigned i
= isTwoAddr
? 1 : 0;
2639 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2640 const MachineOperand
& MO
= MI
.getOperand(i
);
2642 unsigned Reg
= MO
.getReg();
2643 if (isX86_64NonExtLowByteReg(Reg
))
2648 switch (Desc
.TSFlags
& X86II::FormMask
) {
2649 case X86II::MRMInitReg
:
2650 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2651 REX
|= (1 << 0) | (1 << 2);
2653 case X86II::MRMSrcReg
: {
2654 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2656 i
= isTwoAddr
? 2 : 1;
2657 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2658 const MachineOperand
& MO
= MI
.getOperand(i
);
2659 if (isX86_64ExtendedReg(MO
))
2664 case X86II::MRMSrcMem
: {
2665 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2668 i
= isTwoAddr
? 2 : 1;
2669 for (; i
!= NumOps
; ++i
) {
2670 const MachineOperand
& MO
= MI
.getOperand(i
);
2672 if (isX86_64ExtendedReg(MO
))
2679 case X86II::MRM0m
: case X86II::MRM1m
:
2680 case X86II::MRM2m
: case X86II::MRM3m
:
2681 case X86II::MRM4m
: case X86II::MRM5m
:
2682 case X86II::MRM6m
: case X86II::MRM7m
:
2683 case X86II::MRMDestMem
: {
2684 unsigned e
= (isTwoAddr
? X86AddrNumOperands
+1 : X86AddrNumOperands
);
2685 i
= isTwoAddr
? 1 : 0;
2686 if (NumOps
> e
&& isX86_64ExtendedReg(MI
.getOperand(e
)))
2689 for (; i
!= e
; ++i
) {
2690 const MachineOperand
& MO
= MI
.getOperand(i
);
2692 if (isX86_64ExtendedReg(MO
))
2700 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2702 i
= isTwoAddr
? 2 : 1;
2703 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2704 const MachineOperand
& MO
= MI
.getOperand(i
);
2705 if (isX86_64ExtendedReg(MO
))
2715 /// sizePCRelativeBlockAddress - This method returns the size of a PC
2716 /// relative block address instruction
2718 static unsigned sizePCRelativeBlockAddress() {
2722 /// sizeGlobalAddress - Give the size of the emission of this global address
2724 static unsigned sizeGlobalAddress(bool dword
) {
2725 return dword
? 8 : 4;
2728 /// sizeConstPoolAddress - Give the size of the emission of this constant
2731 static unsigned sizeConstPoolAddress(bool dword
) {
2732 return dword
? 8 : 4;
2735 /// sizeExternalSymbolAddress - Give the size of the emission of this external
2738 static unsigned sizeExternalSymbolAddress(bool dword
) {
2739 return dword
? 8 : 4;
2742 /// sizeJumpTableAddress - Give the size of the emission of this jump
2745 static unsigned sizeJumpTableAddress(bool dword
) {
2746 return dword
? 8 : 4;
2749 static unsigned sizeConstant(unsigned Size
) {
2753 static unsigned sizeRegModRMByte(){
2757 static unsigned sizeSIBByte(){
2761 static unsigned getDisplacementFieldSize(const MachineOperand
*RelocOp
) {
2762 unsigned FinalSize
= 0;
2763 // If this is a simple integer displacement that doesn't require a relocation.
2765 FinalSize
+= sizeConstant(4);
2769 // Otherwise, this is something that requires a relocation.
2770 if (RelocOp
->isGlobal()) {
2771 FinalSize
+= sizeGlobalAddress(false);
2772 } else if (RelocOp
->isCPI()) {
2773 FinalSize
+= sizeConstPoolAddress(false);
2774 } else if (RelocOp
->isJTI()) {
2775 FinalSize
+= sizeJumpTableAddress(false);
2777 assert(0 && "Unknown value to relocate!");
2782 static unsigned getMemModRMByteSize(const MachineInstr
&MI
, unsigned Op
,
2783 bool IsPIC
, bool Is64BitMode
) {
2784 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
2786 const MachineOperand
*DispForReloc
= 0;
2787 unsigned FinalSize
= 0;
2789 // Figure out what sort of displacement we have to handle here.
2790 if (Op3
.isGlobal()) {
2791 DispForReloc
= &Op3
;
2792 } else if (Op3
.isCPI()) {
2793 if (Is64BitMode
|| IsPIC
) {
2794 DispForReloc
= &Op3
;
2798 } else if (Op3
.isJTI()) {
2799 if (Is64BitMode
|| IsPIC
) {
2800 DispForReloc
= &Op3
;
2808 const MachineOperand
&Base
= MI
.getOperand(Op
);
2809 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
2811 unsigned BaseReg
= Base
.getReg();
2813 // Is a SIB byte needed?
2814 if ((!Is64BitMode
|| DispForReloc
) && IndexReg
.getReg() == 0 &&
2815 (BaseReg
== 0 || X86RegisterInfo::getX86RegNum(BaseReg
) != N86::ESP
)) {
2816 if (BaseReg
== 0) { // Just a displacement?
2817 // Emit special case [disp32] encoding
2819 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2821 unsigned BaseRegNo
= X86RegisterInfo::getX86RegNum(BaseReg
);
2822 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
2823 // Emit simple indirect register encoding... [EAX] f.e.
2825 // Be pessimistic and assume it's a disp32, not a disp8
2827 // Emit the most general non-SIB encoding: [REG+disp32]
2829 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2833 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2834 assert(IndexReg
.getReg() != X86::ESP
&&
2835 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
2837 bool ForceDisp32
= false;
2838 if (BaseReg
== 0 || DispForReloc
) {
2839 // Emit the normal disp32 encoding.
2846 FinalSize
+= sizeSIBByte();
2848 // Do we need to output a displacement?
2849 if (DispVal
!= 0 || ForceDisp32
) {
2850 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2857 static unsigned GetInstSizeWithDesc(const MachineInstr
&MI
,
2858 const TargetInstrDesc
*Desc
,
2859 bool IsPIC
, bool Is64BitMode
) {
2861 unsigned Opcode
= Desc
->Opcode
;
2862 unsigned FinalSize
= 0;
2864 // Emit the lock opcode prefix as needed.
2865 if (Desc
->TSFlags
& X86II::LOCK
) ++FinalSize
;
2867 // Emit segment overrid opcode prefix as needed.
2868 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
2873 default: assert(0 && "Invalid segment!");
2874 case 0: break; // No segment override!
2877 // Emit the repeat opcode prefix as needed.
2878 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) ++FinalSize
;
2880 // Emit the operand size opcode prefix as needed.
2881 if (Desc
->TSFlags
& X86II::OpSize
) ++FinalSize
;
2883 // Emit the address size opcode prefix as needed.
2884 if (Desc
->TSFlags
& X86II::AdSize
) ++FinalSize
;
2886 bool Need0FPrefix
= false;
2887 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
2888 case X86II::TB
: // Two-byte opcode prefix
2889 case X86II::T8
: // 0F 38
2890 case X86II::TA
: // 0F 3A
2891 Need0FPrefix
= true;
2893 case X86II::REP
: break; // already handled.
2894 case X86II::XS
: // F3 0F
2896 Need0FPrefix
= true;
2898 case X86II::XD
: // F2 0F
2900 Need0FPrefix
= true;
2902 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
2903 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
2905 break; // Two-byte opcode prefix
2906 default: assert(0 && "Invalid prefix!");
2907 case 0: break; // No prefix!
2912 unsigned REX
= X86InstrInfo::determineREX(MI
);
2917 // 0x0F escape code must be emitted just before the opcode.
2921 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
2922 case X86II::T8
: // 0F 38
2925 case X86II::TA
: // 0F 3A
2930 // If this is a two-address instruction, skip one of the register operands.
2931 unsigned NumOps
= Desc
->getNumOperands();
2933 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
2936 switch (Desc
->TSFlags
& X86II::FormMask
) {
2937 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2939 // Remember the current PC offset, this is the PIC relocation
2944 case TargetInstrInfo::INLINEASM
: {
2945 const MachineFunction
*MF
= MI
.getParent()->getParent();
2946 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
2947 const TargetAsmInfo
* AI
= MF
->getTarget().getTargetAsmInfo();
2948 FinalSize
+= AI
->getInlineAsmLength(AsmStr
);
2951 case TargetInstrInfo::DBG_LABEL
:
2952 case TargetInstrInfo::EH_LABEL
:
2954 case TargetInstrInfo::IMPLICIT_DEF
:
2955 case TargetInstrInfo::DECLARE
:
2956 case X86::DWARF_LOC
:
2957 case X86::FP_REG_KILL
:
2959 case X86::MOVPC32r
: {
2960 // This emits the "call" portion of this pseudo instruction.
2962 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
2971 if (CurOp
!= NumOps
) {
2972 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
2974 FinalSize
+= sizePCRelativeBlockAddress();
2975 } else if (MO
.isGlobal()) {
2976 FinalSize
+= sizeGlobalAddress(false);
2977 } else if (MO
.isSymbol()) {
2978 FinalSize
+= sizeExternalSymbolAddress(false);
2979 } else if (MO
.isImm()) {
2980 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
2982 assert(0 && "Unknown RawFrm operand!");
2987 case X86II::AddRegFrm
:
2991 if (CurOp
!= NumOps
) {
2992 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
2993 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
2995 FinalSize
+= sizeConstant(Size
);
2998 if (Opcode
== X86::MOV64ri
)
3000 if (MO1
.isGlobal()) {
3001 FinalSize
+= sizeGlobalAddress(dword
);
3002 } else if (MO1
.isSymbol())
3003 FinalSize
+= sizeExternalSymbolAddress(dword
);
3004 else if (MO1
.isCPI())
3005 FinalSize
+= sizeConstPoolAddress(dword
);
3006 else if (MO1
.isJTI())
3007 FinalSize
+= sizeJumpTableAddress(dword
);
3012 case X86II::MRMDestReg
: {
3014 FinalSize
+= sizeRegModRMByte();
3016 if (CurOp
!= NumOps
) {
3018 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3022 case X86II::MRMDestMem
: {
3024 FinalSize
+= getMemModRMByteSize(MI
, CurOp
, IsPIC
, Is64BitMode
);
3026 if (CurOp
!= NumOps
) {
3028 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3033 case X86II::MRMSrcReg
:
3035 FinalSize
+= sizeRegModRMByte();
3037 if (CurOp
!= NumOps
) {
3039 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3043 case X86II::MRMSrcMem
: {
3046 FinalSize
+= getMemModRMByteSize(MI
, CurOp
+1, IsPIC
, Is64BitMode
);
3048 if (CurOp
!= NumOps
) {
3050 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3055 case X86II::MRM0r
: case X86II::MRM1r
:
3056 case X86II::MRM2r
: case X86II::MRM3r
:
3057 case X86II::MRM4r
: case X86II::MRM5r
:
3058 case X86II::MRM6r
: case X86II::MRM7r
:
3061 FinalSize
+= sizeRegModRMByte();
3063 if (CurOp
!= NumOps
) {
3064 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
3065 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
3067 FinalSize
+= sizeConstant(Size
);
3070 if (Opcode
== X86::MOV64ri32
)
3072 if (MO1
.isGlobal()) {
3073 FinalSize
+= sizeGlobalAddress(dword
);
3074 } else if (MO1
.isSymbol())
3075 FinalSize
+= sizeExternalSymbolAddress(dword
);
3076 else if (MO1
.isCPI())
3077 FinalSize
+= sizeConstPoolAddress(dword
);
3078 else if (MO1
.isJTI())
3079 FinalSize
+= sizeJumpTableAddress(dword
);
3084 case X86II::MRM0m
: case X86II::MRM1m
:
3085 case X86II::MRM2m
: case X86II::MRM3m
:
3086 case X86II::MRM4m
: case X86II::MRM5m
:
3087 case X86II::MRM6m
: case X86II::MRM7m
: {
3090 FinalSize
+= getMemModRMByteSize(MI
, CurOp
, IsPIC
, Is64BitMode
);
3093 if (CurOp
!= NumOps
) {
3094 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
3095 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
3097 FinalSize
+= sizeConstant(Size
);
3100 if (Opcode
== X86::MOV64mi32
)
3102 if (MO
.isGlobal()) {
3103 FinalSize
+= sizeGlobalAddress(dword
);
3104 } else if (MO
.isSymbol())
3105 FinalSize
+= sizeExternalSymbolAddress(dword
);
3106 else if (MO
.isCPI())
3107 FinalSize
+= sizeConstPoolAddress(dword
);
3108 else if (MO
.isJTI())
3109 FinalSize
+= sizeJumpTableAddress(dword
);
3115 case X86II::MRMInitReg
:
3117 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3118 FinalSize
+= sizeRegModRMByte();
3123 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
3124 cerr
<< "Cannot determine size: ";
3135 unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr
*MI
) const {
3136 const TargetInstrDesc
&Desc
= MI
->getDesc();
3137 bool IsPIC
= (TM
.getRelocationModel() == Reloc::PIC_
);
3138 bool Is64BitMode
= TM
.getSubtargetImpl()->is64Bit();
3139 unsigned Size
= GetInstSizeWithDesc(*MI
, &Desc
, IsPIC
, Is64BitMode
);
3140 if (Desc
.getOpcode() == X86::MOVPC32r
) {
3141 Size
+= GetInstSizeWithDesc(*MI
, &get(X86::POP32r
), IsPIC
, Is64BitMode
);
3146 /// getGlobalBaseReg - Return a virtual register initialized with the
3147 /// the global base register value. Output instructions required to
3148 /// initialize the register in the function entry block, if necessary.
3150 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
3151 assert(!TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
3152 "X86-64 PIC uses RIP relative addressing");
3154 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
3155 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3156 if (GlobalBaseReg
!= 0)
3157 return GlobalBaseReg
;
3159 // Insert the set of GlobalBaseReg into the first MBB of the function
3160 MachineBasicBlock
&FirstMBB
= MF
->front();
3161 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
3162 DebugLoc DL
= DebugLoc::getUnknownLoc();
3163 if (MBBI
!= FirstMBB
.end()) DL
= MBBI
->getDebugLoc();
3164 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
3165 unsigned PC
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3167 const TargetInstrInfo
*TII
= TM
.getInstrInfo();
3168 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3169 // only used in JIT code emission as displacement to pc.
3170 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
)
3173 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3174 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3175 if (TM
.getRelocationModel() == Reloc::PIC_
&&
3176 TM
.getSubtarget
<X86Subtarget
>().isPICStyleGOT()) {
3178 RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3179 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
3180 .addReg(PC
).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3185 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
3186 return GlobalBaseReg
;