1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
24 class X86RegisterInfo
;
25 class X86TargetMachine
;
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
59 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC
);
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode
GetOppositeBranchCondition(X86::CondCode CC
);
68 /// X86II - This namespace holds all of the target specific flags that
69 /// instruction info tracks.
73 //===------------------------------------------------------------------===//
74 // Instruction types. These are the standard/most common forms for X86
78 // PseudoFrm - This represents an instruction that is a pseudo instruction
79 // or one that has not been implemented yet. It is illegal to code generate
80 // it, but tolerated for intermediate implementation stages.
83 /// Raw - This form is for instructions that don't have any operands, so
84 /// they are just a fixed opcode value, like 'leave'.
87 /// AddRegFrm - This form is used for instructions like 'push r32' that have
88 /// their one register operand added to their opcode.
91 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
92 /// to specify a destination, which in this case is a register.
96 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
97 /// to specify a destination, which in this case is memory.
101 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
102 /// to specify a source, which in this case is a register.
106 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
107 /// to specify a source, which in this case is memory.
111 /// MRM[0-7][rm] - These forms are used to represent instructions that use
112 /// a Mod/RM byte, and use the middle field to hold extended opcode
113 /// information. In the intel manual these are represented as /0, /1, ...
116 // First, instructions that operate on a register r/m operand...
117 MRM0r
= 16, MRM1r
= 17, MRM2r
= 18, MRM3r
= 19, // Format /0 /1 /2 /3
118 MRM4r
= 20, MRM5r
= 21, MRM6r
= 22, MRM7r
= 23, // Format /4 /5 /6 /7
120 // Next, instructions that operate on a memory r/m operand...
121 MRM0m
= 24, MRM1m
= 25, MRM2m
= 26, MRM3m
= 27, // Format /0 /1 /2 /3
122 MRM4m
= 28, MRM5m
= 29, MRM6m
= 30, MRM7m
= 31, // Format /4 /5 /6 /7
124 // MRMInitReg - This form is used for instructions whose source and
125 // destinations are the same register.
130 //===------------------------------------------------------------------===//
133 // OpSize - Set if this instruction requires an operand size prefix (0x66),
134 // which most often indicates that the instruction operates on 16 bit data
135 // instead of 32 bit data.
138 // AsSize - Set if this instruction requires an operand size prefix (0x67),
139 // which most often indicates that the instruction address 16 bit address
140 // instead of 32 bit address (or 32 bit address in 64 bit mode).
143 //===------------------------------------------------------------------===//
144 // Op0Mask - There are several prefix bytes that are used to form two byte
145 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
146 // used to obtain the setting of this field. If no bits in this field is
147 // set, there is no prefix byte for obtaining a multibyte opcode.
150 Op0Mask
= 0xF << Op0Shift
,
152 // TB - TwoByte - Set if this instruction has a two byte opcode, which
153 // starts with a 0x0F byte before the real opcode.
156 // REP - The 0xF3 prefix byte indicating repetition of the following
160 // D8-DF - These escape opcodes are used by the floating point unit. These
161 // values must remain sequential.
162 D8
= 3 << Op0Shift
, D9
= 4 << Op0Shift
,
163 DA
= 5 << Op0Shift
, DB
= 6 << Op0Shift
,
164 DC
= 7 << Op0Shift
, DD
= 8 << Op0Shift
,
165 DE
= 9 << Op0Shift
, DF
= 10 << Op0Shift
,
167 // XS, XD - These prefix codes are for single and double precision scalar
168 // floating point operations performed in the SSE registers.
169 XD
= 11 << Op0Shift
, XS
= 12 << Op0Shift
,
171 // T8, TA - Prefix after the 0x0F prefix.
172 T8
= 13 << Op0Shift
, TA
= 14 << Op0Shift
,
174 //===------------------------------------------------------------------===//
175 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
176 // They are used to specify GPRs and SSE registers, 64-bit operand size,
177 // etc. We only cares about REX.W and REX.R bits and only the former is
178 // statically determined.
181 REX_W
= 1 << REXShift
,
183 //===------------------------------------------------------------------===//
184 // This three-bit field describes the size of an immediate operand. Zero is
185 // unused so that we can tell if we forgot to set a value.
187 ImmMask
= 7 << ImmShift
,
188 Imm8
= 1 << ImmShift
,
189 Imm16
= 2 << ImmShift
,
190 Imm32
= 3 << ImmShift
,
191 Imm64
= 4 << ImmShift
,
193 //===------------------------------------------------------------------===//
194 // FP Instruction Classification... Zero is non-fp instruction.
196 // FPTypeMask - Mask for all of the FP types...
198 FPTypeMask
= 7 << FPTypeShift
,
200 // NotFP - The default, set for instructions that do not use FP registers.
201 NotFP
= 0 << FPTypeShift
,
203 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
204 ZeroArgFP
= 1 << FPTypeShift
,
206 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
207 OneArgFP
= 2 << FPTypeShift
,
209 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
210 // result back to ST(0). For example, fcos, fsqrt, etc.
212 OneArgFPRW
= 3 << FPTypeShift
,
214 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
215 // explicit argument, storing the result to either ST(0) or the implicit
216 // argument. For example: fadd, fsub, fmul, etc...
217 TwoArgFP
= 4 << FPTypeShift
,
219 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
220 // explicit argument, but have no destination. Example: fucom, fucomi, ...
221 CompareFP
= 5 << FPTypeShift
,
223 // CondMovFP - "2 operand" floating point conditional move instructions.
224 CondMovFP
= 6 << FPTypeShift
,
226 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
227 SpecialFP
= 7 << FPTypeShift
,
231 LOCK
= 1 << LOCKShift
,
233 // Segment override prefixes. Currently we just need ability to address
234 // stuff in gs and fs segments.
236 SegOvrMask
= 3 << SegOvrShift
,
237 FS
= 1 << SegOvrShift
,
238 GS
= 2 << SegOvrShift
,
240 // Bits 22 -> 23 are unused
242 OpcodeMask
= 0xFF << OpcodeShift
246 const int X86AddrNumOperands
= 5;
248 inline static bool isScale(const MachineOperand
&MO
) {
250 (MO
.getImm() == 1 || MO
.getImm() == 2 ||
251 MO
.getImm() == 4 || MO
.getImm() == 8);
254 inline static bool isLeaMem(const MachineInstr
*MI
, unsigned Op
) {
255 if (MI
->getOperand(Op
).isFI()) return true;
256 return Op
+4 <= MI
->getNumOperands() &&
257 MI
->getOperand(Op
).isReg() && isScale(MI
->getOperand(Op
+1)) &&
258 MI
->getOperand(Op
+2).isReg() &&
259 (MI
->getOperand(Op
+3).isImm() ||
260 MI
->getOperand(Op
+3).isGlobal() ||
261 MI
->getOperand(Op
+3).isCPI() ||
262 MI
->getOperand(Op
+3).isJTI());
265 inline static bool isMem(const MachineInstr
*MI
, unsigned Op
) {
266 if (MI
->getOperand(Op
).isFI()) return true;
267 return Op
+5 <= MI
->getNumOperands() &&
268 MI
->getOperand(Op
+4).isReg() &&
272 class X86InstrInfo
: public TargetInstrInfoImpl
{
273 X86TargetMachine
&TM
;
274 const X86RegisterInfo RI
;
276 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
277 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
279 DenseMap
<unsigned*, unsigned> RegOp2MemOpTable2Addr
;
280 DenseMap
<unsigned*, unsigned> RegOp2MemOpTable0
;
281 DenseMap
<unsigned*, unsigned> RegOp2MemOpTable1
;
282 DenseMap
<unsigned*, unsigned> RegOp2MemOpTable2
;
284 /// MemOp2RegOpTable - Load / store unfolding opcode map.
286 DenseMap
<unsigned*, std::pair
<unsigned, unsigned> > MemOp2RegOpTable
;
289 explicit X86InstrInfo(X86TargetMachine
&tm
);
291 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
292 /// such, whenever a client has an instance of instruction info, it should
293 /// always be able to get register info as well (through this method).
295 virtual const X86RegisterInfo
&getRegisterInfo() const { return RI
; }
297 /// Return true if the instruction is a register to register move and return
298 /// the source and dest operands and their sub-register indices by reference.
299 virtual bool isMoveInstr(const MachineInstr
&MI
,
300 unsigned &SrcReg
, unsigned &DstReg
,
301 unsigned &SrcSubIdx
, unsigned &DstSubIdx
) const;
303 unsigned isLoadFromStackSlot(const MachineInstr
*MI
, int &FrameIndex
) const;
304 unsigned isStoreToStackSlot(const MachineInstr
*MI
, int &FrameIndex
) const;
306 bool isReallyTriviallyReMaterializable(const MachineInstr
*MI
) const;
307 void reMaterialize(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
308 unsigned DestReg
, const MachineInstr
*Orig
) const;
310 bool isInvariantLoad(const MachineInstr
*MI
) const;
312 /// convertToThreeAddress - This method must be implemented by targets that
313 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
314 /// may be able to convert a two-address instruction into a true
315 /// three-address instruction on demand. This allows the X86 target (for
316 /// example) to convert ADD and SHL instructions into LEA instructions if they
317 /// would require register copies due to two-addressness.
319 /// This method returns a null pointer if the transformation cannot be
320 /// performed, otherwise it returns the new instruction.
322 virtual MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
323 MachineBasicBlock::iterator
&MBBI
,
324 LiveVariables
*LV
) const;
326 /// commuteInstruction - We have a few instructions that must be hacked on to
329 virtual MachineInstr
*commuteInstruction(MachineInstr
*MI
, bool NewMI
) const;
332 virtual bool isUnpredicatedTerminator(const MachineInstr
* MI
) const;
333 virtual bool AnalyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
334 MachineBasicBlock
*&FBB
,
335 SmallVectorImpl
<MachineOperand
> &Cond
,
336 bool AllowModify
) const;
337 virtual unsigned RemoveBranch(MachineBasicBlock
&MBB
) const;
338 virtual unsigned InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
339 MachineBasicBlock
*FBB
,
340 const SmallVectorImpl
<MachineOperand
> &Cond
) const;
341 virtual bool copyRegToReg(MachineBasicBlock
&MBB
,
342 MachineBasicBlock::iterator MI
,
343 unsigned DestReg
, unsigned SrcReg
,
344 const TargetRegisterClass
*DestRC
,
345 const TargetRegisterClass
*SrcRC
) const;
346 virtual void storeRegToStackSlot(MachineBasicBlock
&MBB
,
347 MachineBasicBlock::iterator MI
,
348 unsigned SrcReg
, bool isKill
, int FrameIndex
,
349 const TargetRegisterClass
*RC
) const;
351 virtual void storeRegToAddr(MachineFunction
&MF
, unsigned SrcReg
, bool isKill
,
352 SmallVectorImpl
<MachineOperand
> &Addr
,
353 const TargetRegisterClass
*RC
,
354 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const;
356 virtual void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
357 MachineBasicBlock::iterator MI
,
358 unsigned DestReg
, int FrameIndex
,
359 const TargetRegisterClass
*RC
) const;
361 virtual void loadRegFromAddr(MachineFunction
&MF
, unsigned DestReg
,
362 SmallVectorImpl
<MachineOperand
> &Addr
,
363 const TargetRegisterClass
*RC
,
364 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const;
366 virtual bool spillCalleeSavedRegisters(MachineBasicBlock
&MBB
,
367 MachineBasicBlock::iterator MI
,
368 const std::vector
<CalleeSavedInfo
> &CSI
) const;
370 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
371 MachineBasicBlock::iterator MI
,
372 const std::vector
<CalleeSavedInfo
> &CSI
) const;
374 /// foldMemoryOperand - If this target supports it, fold a load or store of
375 /// the specified stack slot into the specified machine instruction for the
376 /// specified operand(s). If this is possible, the target should perform the
377 /// folding and return true, otherwise it should return false. If it folds
378 /// the instruction, it is likely that the MachineInstruction the iterator
379 /// references has been changed.
380 virtual MachineInstr
* foldMemoryOperandImpl(MachineFunction
&MF
,
382 const SmallVectorImpl
<unsigned> &Ops
,
383 int FrameIndex
) const;
385 /// foldMemoryOperand - Same as the previous version except it allows folding
386 /// of any load and store from / to any address, not just from a specific
388 virtual MachineInstr
* foldMemoryOperandImpl(MachineFunction
&MF
,
390 const SmallVectorImpl
<unsigned> &Ops
,
391 MachineInstr
* LoadMI
) const;
393 /// canFoldMemoryOperand - Returns true if the specified load / store is
394 /// folding is possible.
395 virtual bool canFoldMemoryOperand(const MachineInstr
*,
396 const SmallVectorImpl
<unsigned> &) const;
398 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
399 /// a store or a load and a store into two or more instruction. If this is
400 /// possible, returns true as well as the new instructions by reference.
401 virtual bool unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
*MI
,
402 unsigned Reg
, bool UnfoldLoad
, bool UnfoldStore
,
403 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const;
405 virtual bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
406 SmallVectorImpl
<SDNode
*> &NewNodes
) const;
408 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
409 /// instruction after load / store are unfolded from an instruction of the
410 /// specified opcode. It returns zero if the specified unfolding is not
412 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc
,
413 bool UnfoldLoad
, bool UnfoldStore
) const;
415 virtual bool BlockHasNoFallThrough(const MachineBasicBlock
&MBB
) const;
417 bool ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const;
419 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
420 /// instruction that defines the specified register class.
421 bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const;
423 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
424 // specified machine instruction.
426 unsigned char getBaseOpcodeFor(const TargetInstrDesc
*TID
) const {
427 return TID
->TSFlags
>> X86II::OpcodeShift
;
429 unsigned char getBaseOpcodeFor(unsigned Opcode
) const {
430 return getBaseOpcodeFor(&get(Opcode
));
433 static bool isX86_64NonExtLowByteReg(unsigned reg
) {
434 return (reg
== X86::SPL
|| reg
== X86::BPL
||
435 reg
== X86::SIL
|| reg
== X86::DIL
);
438 static unsigned sizeOfImm(const TargetInstrDesc
*Desc
);
439 static bool isX86_64ExtendedReg(const MachineOperand
&MO
);
440 static unsigned determineREX(const MachineInstr
&MI
);
442 /// GetInstSize - Returns the size of the specified MachineInstr.
444 virtual unsigned GetInstSizeInBytes(const MachineInstr
*MI
) const;
446 /// getGlobalBaseReg - Return a virtual register initialized with the
447 /// the global base register value. Output instructions required to
448 /// initialize the register in the function entry block, if necessary.
450 unsigned getGlobalBaseReg(MachineFunction
*MF
) const;
453 MachineInstr
* foldMemoryOperandImpl(MachineFunction
&MF
,
456 const SmallVectorImpl
<MachineOperand
> &MOs
) const;
459 } // End llvm namespace