Hanle i8 returns
[llvm/msp430.git] / lib / VMCore / Instruction.cpp
blobf33c1a23f2389c2c9e97844b00c6da88717114b2
1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Type.h"
15 #include "llvm/Instructions.h"
16 #include "llvm/Function.h"
17 #include "llvm/Support/CallSite.h"
18 #include "llvm/Support/LeakDetector.h"
19 using namespace llvm;
21 Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps,
22 Instruction *InsertBefore)
23 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
24 // Make sure that we get added to a basicblock
25 LeakDetector::addGarbageObject(this);
27 // If requested, insert this instruction into a basic block...
28 if (InsertBefore) {
29 assert(InsertBefore->getParent() &&
30 "Instruction to insert before is not in a basic block!");
31 InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
35 Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps,
36 BasicBlock *InsertAtEnd)
37 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
38 // Make sure that we get added to a basicblock
39 LeakDetector::addGarbageObject(this);
41 // append this instruction into the basic block
42 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
43 InsertAtEnd->getInstList().push_back(this);
47 // Out of line virtual method, so the vtable, etc has a home.
48 Instruction::~Instruction() {
49 assert(Parent == 0 && "Instruction still linked in the program!");
53 void Instruction::setParent(BasicBlock *P) {
54 if (getParent()) {
55 if (!P) LeakDetector::addGarbageObject(this);
56 } else {
57 if (P) LeakDetector::removeGarbageObject(this);
60 Parent = P;
63 void Instruction::removeFromParent() {
64 getParent()->getInstList().remove(this);
67 void Instruction::eraseFromParent() {
68 getParent()->getInstList().erase(this);
71 /// insertBefore - Insert an unlinked instructions into a basic block
72 /// immediately before the specified instruction.
73 void Instruction::insertBefore(Instruction *InsertPos) {
74 InsertPos->getParent()->getInstList().insert(InsertPos, this);
77 /// insertAfter - Insert an unlinked instructions into a basic block
78 /// immediately after the specified instruction.
79 void Instruction::insertAfter(Instruction *InsertPos) {
80 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
83 /// moveBefore - Unlink this instruction from its current basic block and
84 /// insert it into the basic block that MovePos lives in, right before
85 /// MovePos.
86 void Instruction::moveBefore(Instruction *MovePos) {
87 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
88 this);
92 const char *Instruction::getOpcodeName(unsigned OpCode) {
93 switch (OpCode) {
94 // Terminators
95 case Ret: return "ret";
96 case Br: return "br";
97 case Switch: return "switch";
98 case Invoke: return "invoke";
99 case Unwind: return "unwind";
100 case Unreachable: return "unreachable";
102 // Standard binary operators...
103 case Add: return "add";
104 case Sub: return "sub";
105 case Mul: return "mul";
106 case UDiv: return "udiv";
107 case SDiv: return "sdiv";
108 case FDiv: return "fdiv";
109 case URem: return "urem";
110 case SRem: return "srem";
111 case FRem: return "frem";
113 // Logical operators...
114 case And: return "and";
115 case Or : return "or";
116 case Xor: return "xor";
118 // Memory instructions...
119 case Malloc: return "malloc";
120 case Free: return "free";
121 case Alloca: return "alloca";
122 case Load: return "load";
123 case Store: return "store";
124 case GetElementPtr: return "getelementptr";
126 // Convert instructions...
127 case Trunc: return "trunc";
128 case ZExt: return "zext";
129 case SExt: return "sext";
130 case FPTrunc: return "fptrunc";
131 case FPExt: return "fpext";
132 case FPToUI: return "fptoui";
133 case FPToSI: return "fptosi";
134 case UIToFP: return "uitofp";
135 case SIToFP: return "sitofp";
136 case IntToPtr: return "inttoptr";
137 case PtrToInt: return "ptrtoint";
138 case BitCast: return "bitcast";
140 // Other instructions...
141 case ICmp: return "icmp";
142 case FCmp: return "fcmp";
143 case VICmp: return "vicmp";
144 case VFCmp: return "vfcmp";
145 case PHI: return "phi";
146 case Select: return "select";
147 case Call: return "call";
148 case Shl: return "shl";
149 case LShr: return "lshr";
150 case AShr: return "ashr";
151 case VAArg: return "va_arg";
152 case ExtractElement: return "extractelement";
153 case InsertElement: return "insertelement";
154 case ShuffleVector: return "shufflevector";
155 case ExtractValue: return "extractvalue";
156 case InsertValue: return "insertvalue";
158 default: return "<Invalid operator> ";
161 return 0;
164 /// isIdenticalTo - Return true if the specified instruction is exactly
165 /// identical to the current one. This means that all operands match and any
166 /// extra information (e.g. load is volatile) agree.
167 bool Instruction::isIdenticalTo(const Instruction *I) const {
168 if (getOpcode() != I->getOpcode() ||
169 getNumOperands() != I->getNumOperands() ||
170 getType() != I->getType())
171 return false;
173 // We have two instructions of identical opcode and #operands. Check to see
174 // if all operands are the same.
175 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
176 if (getOperand(i) != I->getOperand(i))
177 return false;
179 // Check special state that is a part of some instructions.
180 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
181 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
182 LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
183 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
184 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
185 SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
186 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
187 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
188 if (const CallInst *CI = dyn_cast<CallInst>(this))
189 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
190 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
191 CI->getAttributes().getRawPointer() ==
192 cast<CallInst>(I)->getAttributes().getRawPointer();
193 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
194 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
195 CI->getAttributes().getRawPointer() ==
196 cast<InvokeInst>(I)->getAttributes().getRawPointer();
197 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) {
198 if (IVI->getNumIndices() != cast<InsertValueInst>(I)->getNumIndices())
199 return false;
200 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
201 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I)->idx_begin()[i])
202 return false;
203 return true;
205 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) {
206 if (EVI->getNumIndices() != cast<ExtractValueInst>(I)->getNumIndices())
207 return false;
208 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
209 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I)->idx_begin()[i])
210 return false;
211 return true;
214 return true;
217 // isSameOperationAs
218 bool Instruction::isSameOperationAs(const Instruction *I) const {
219 if (getOpcode() != I->getOpcode() || getType() != I->getType() ||
220 getNumOperands() != I->getNumOperands())
221 return false;
223 // We have two instructions of identical opcode and #operands. Check to see
224 // if all operands are the same type
225 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
226 if (getOperand(i)->getType() != I->getOperand(i)->getType())
227 return false;
229 // Check special state that is a part of some instructions.
230 if (const LoadInst *LI = dyn_cast<LoadInst>(this))
231 return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
232 LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
233 if (const StoreInst *SI = dyn_cast<StoreInst>(this))
234 return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
235 SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
236 if (const CmpInst *CI = dyn_cast<CmpInst>(this))
237 return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
238 if (const CallInst *CI = dyn_cast<CallInst>(this))
239 return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
240 CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
241 CI->getAttributes().getRawPointer() ==
242 cast<CallInst>(I)->getAttributes().getRawPointer();
243 if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
244 return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
245 CI->getAttributes().getRawPointer() ==
246 cast<InvokeInst>(I)->getAttributes().getRawPointer();
247 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) {
248 if (IVI->getNumIndices() != cast<InsertValueInst>(I)->getNumIndices())
249 return false;
250 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
251 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I)->idx_begin()[i])
252 return false;
253 return true;
255 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) {
256 if (EVI->getNumIndices() != cast<ExtractValueInst>(I)->getNumIndices())
257 return false;
258 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
259 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I)->idx_begin()[i])
260 return false;
261 return true;
264 return true;
267 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
268 /// specified block. Note that PHI nodes are considered to evaluate their
269 /// operands in the corresponding predecessor block.
270 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
271 for (use_const_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
272 // PHI nodes uses values in the corresponding predecessor block. For other
273 // instructions, just check to see whether the parent of the use matches up.
274 const PHINode *PN = dyn_cast<PHINode>(*UI);
275 if (PN == 0) {
276 if (cast<Instruction>(*UI)->getParent() != BB)
277 return true;
278 continue;
281 if (PN->getIncomingBlock(UI) != BB)
282 return true;
284 return false;
287 /// mayReadFromMemory - Return true if this instruction may read memory.
289 bool Instruction::mayReadFromMemory() const {
290 switch (getOpcode()) {
291 default: return false;
292 case Instruction::Free:
293 case Instruction::VAArg:
294 case Instruction::Load:
295 return true;
296 case Instruction::Call:
297 return !cast<CallInst>(this)->doesNotAccessMemory();
298 case Instruction::Invoke:
299 return !cast<InvokeInst>(this)->doesNotAccessMemory();
300 case Instruction::Store:
301 return cast<StoreInst>(this)->isVolatile();
305 /// mayWriteToMemory - Return true if this instruction may modify memory.
307 bool Instruction::mayWriteToMemory() const {
308 switch (getOpcode()) {
309 default: return false;
310 case Instruction::Free:
311 case Instruction::Store:
312 case Instruction::VAArg:
313 return true;
314 case Instruction::Call:
315 return !cast<CallInst>(this)->onlyReadsMemory();
316 case Instruction::Invoke:
317 return !cast<InvokeInst>(this)->onlyReadsMemory();
318 case Instruction::Load:
319 return cast<LoadInst>(this)->isVolatile();
323 /// isAssociative - Return true if the instruction is associative:
325 /// Associative operators satisfy: x op (y op z) === (x op y) op z)
327 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when not
328 /// applied to floating point types.
330 bool Instruction::isAssociative(unsigned Opcode, const Type *Ty) {
331 if (Opcode == And || Opcode == Or || Opcode == Xor)
332 return true;
334 // Add/Mul reassociate unless they are FP or FP vectors.
335 if (Opcode == Add || Opcode == Mul)
336 return !Ty->isFPOrFPVector();
337 return 0;
340 /// isCommutative - Return true if the instruction is commutative:
342 /// Commutative operators satisfy: (x op y) === (y op x)
344 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
345 /// applied to any type.
347 bool Instruction::isCommutative(unsigned op) {
348 switch (op) {
349 case Add:
350 case Mul:
351 case And:
352 case Or:
353 case Xor:
354 return true;
355 default:
356 return false;
360 /// isTrapping - Return true if the instruction may trap.
362 bool Instruction::isTrapping(unsigned op) {
363 switch(op) {
364 case UDiv:
365 case SDiv:
366 case FDiv:
367 case URem:
368 case SRem:
369 case FRem:
370 case Load:
371 case Store:
372 case Call:
373 case Invoke:
374 case VAArg:
375 return true;
376 default:
377 return false;