1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Mangler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetAsmInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/StringExtras.h"
39 static cl::opt
<cl::boolOrDefault
>
40 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
41 cl::init(cl::BOU_UNSET
));
43 char AsmPrinter::ID
= 0;
44 AsmPrinter::AsmPrinter(raw_ostream
&o
, TargetMachine
&tm
,
45 const TargetAsmInfo
*T
, unsigned OL
, bool VDef
)
46 : MachineFunctionPass(&ID
), FunctionNumber(0), OptLevel(OL
), O(o
),
47 TM(tm
), TAI(T
), TRI(tm
.getRegisterInfo()),
48 IsInTextSection(false)
51 case cl::BOU_UNSET
: VerboseAsm
= VDef
; break;
52 case cl::BOU_TRUE
: VerboseAsm
= true; break;
53 case cl::BOU_FALSE
: VerboseAsm
= false; break;
57 AsmPrinter::~AsmPrinter() {
58 for (gcp_iterator I
= GCMetadataPrinters
.begin(),
59 E
= GCMetadataPrinters
.end(); I
!= E
; ++I
)
63 /// SwitchToTextSection - Switch to the specified text section of the executable
64 /// if we are not already in it!
66 void AsmPrinter::SwitchToTextSection(const char *NewSection
,
67 const GlobalValue
*GV
) {
69 if (GV
&& GV
->hasSection())
70 NS
= TAI
->getSwitchToSectionDirective() + GV
->getSection();
74 // If we're already in this section, we're done.
75 if (CurrentSection
== NS
) return;
77 // Close the current section, if applicable.
78 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
79 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
83 if (!CurrentSection
.empty())
84 O
<< CurrentSection
<< TAI
->getTextSectionStartSuffix() << '\n';
86 IsInTextSection
= true;
89 /// SwitchToDataSection - Switch to the specified data section of the executable
90 /// if we are not already in it!
92 void AsmPrinter::SwitchToDataSection(const char *NewSection
,
93 const GlobalValue
*GV
) {
95 if (GV
&& GV
->hasSection())
96 NS
= TAI
->getSwitchToSectionDirective() + GV
->getSection();
100 // If we're already in this section, we're done.
101 if (CurrentSection
== NS
) return;
103 // Close the current section, if applicable.
104 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
105 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
109 if (!CurrentSection
.empty())
110 O
<< CurrentSection
<< TAI
->getDataSectionStartSuffix() << '\n';
112 IsInTextSection
= false;
115 /// SwitchToSection - Switch to the specified section of the executable if we
116 /// are not already in it!
117 void AsmPrinter::SwitchToSection(const Section
* NS
) {
118 const std::string
& NewSection
= NS
->getName();
120 // If we're already in this section, we're done.
121 if (CurrentSection
== NewSection
) return;
123 // Close the current section, if applicable.
124 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
125 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
127 // FIXME: Make CurrentSection a Section* in the future
128 CurrentSection
= NewSection
;
129 CurrentSection_
= NS
;
131 if (!CurrentSection
.empty()) {
132 // If section is named we need to switch into it via special '.section'
133 // directive and also append funky flags. Otherwise - section name is just
134 // some magic assembler directive.
136 O
<< TAI
->getSwitchToSectionDirective()
138 << TAI
->getSectionFlags(NS
->getFlags());
141 O
<< TAI
->getDataSectionStartSuffix() << '\n';
144 IsInTextSection
= (NS
->getFlags() & SectionFlags::Code
);
147 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
148 MachineFunctionPass::getAnalysisUsage(AU
);
149 AU
.addRequired
<GCModuleInfo
>();
152 bool AsmPrinter::doInitialization(Module
&M
) {
153 Mang
= new Mangler(M
, TAI
->getGlobalPrefix(), TAI
->getPrivateGlobalPrefix());
155 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
156 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
158 if (TAI
->hasSingleParameterDotFile()) {
159 /* Very minimal debug info. It is ignored if we emit actual
160 debug info. If we don't, this at helps the user find where
161 a function came from. */
162 O
<< "\t.file\t\"" << M
.getModuleIdentifier() << "\"\n";
165 for (GCModuleInfo::iterator I
= MI
->begin(), E
= MI
->end(); I
!= E
; ++I
)
166 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
167 MP
->beginAssembly(O
, *this, *TAI
);
169 if (!M
.getModuleInlineAsm().empty())
170 O
<< TAI
->getCommentString() << " Start of file scope inline assembly\n"
171 << M
.getModuleInlineAsm()
172 << '\n' << TAI
->getCommentString()
173 << " End of file scope inline assembly\n";
175 SwitchToDataSection(""); // Reset back to no section.
177 MachineModuleInfo
*MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
178 if (MMI
) MMI
->AnalyzeModule(M
);
179 DW
= getAnalysisIfAvailable
<DwarfWriter
>();
183 bool AsmPrinter::doFinalization(Module
&M
) {
184 if (TAI
->getWeakRefDirective()) {
185 if (!ExtWeakSymbols
.empty())
186 SwitchToDataSection("");
188 for (std::set
<const GlobalValue
*>::iterator i
= ExtWeakSymbols
.begin(),
189 e
= ExtWeakSymbols
.end(); i
!= e
; ++i
)
190 O
<< TAI
->getWeakRefDirective() << Mang
->getValueName(*i
) << '\n';
193 if (TAI
->getSetDirective()) {
194 if (!M
.alias_empty())
195 SwitchToSection(TAI
->getTextSection());
198 for (Module::const_alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
200 std::string Name
= Mang
->getValueName(I
);
203 const GlobalValue
*GV
= cast
<GlobalValue
>(I
->getAliasedGlobal());
204 Target
= Mang
->getValueName(GV
);
206 if (I
->hasExternalLinkage() || !TAI
->getWeakRefDirective())
207 O
<< "\t.globl\t" << Name
<< '\n';
208 else if (I
->hasWeakLinkage())
209 O
<< TAI
->getWeakRefDirective() << Name
<< '\n';
210 else if (!I
->hasLocalLinkage())
211 assert(0 && "Invalid alias linkage");
213 printVisibility(Name
, I
->getVisibility());
215 O
<< TAI
->getSetDirective() << ' ' << Name
<< ", " << Target
<< '\n';
219 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
220 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
221 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
222 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*--I
))
223 MP
->finishAssembly(O
, *this, *TAI
);
225 // If we don't have any trampolines, then we don't require stack memory
226 // to be executable. Some targets have a directive to declare this.
227 Function
* InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
228 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
229 if (TAI
->getNonexecutableStackDirective())
230 O
<< TAI
->getNonexecutableStackDirective() << '\n';
232 delete Mang
; Mang
= 0;
237 AsmPrinter::getCurrentFunctionEHName(const MachineFunction
*MF
,
238 std::string
&Name
) const {
239 assert(MF
&& "No machine function?");
240 Name
= MF
->getFunction()->getName();
242 Name
= Mang
->getValueName(MF
->getFunction());
243 Name
= Mang
->makeNameProper(TAI
->getEHGlobalPrefix() +
244 Name
+ ".eh", TAI
->getGlobalPrefix());
248 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
249 // What's my mangled name?
250 CurrentFnName
= Mang
->getValueName(MF
.getFunction());
251 IncrementFunctionNumber();
255 // SectionCPs - Keep track the alignment, constpool entries per Section.
259 SmallVector
<unsigned, 4> CPEs
;
260 SectionCPs(const Section
*s
, unsigned a
) : S(s
), Alignment(a
) {};
264 /// EmitConstantPool - Print to the current output stream assembly
265 /// representations of the constants in the constant pool MCP. This is
266 /// used to print out constants which have been "spilled to memory" by
267 /// the code generator.
269 void AsmPrinter::EmitConstantPool(MachineConstantPool
*MCP
) {
270 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
271 if (CP
.empty()) return;
273 // Calculate sections for constant pool entries. We collect entries to go into
274 // the same section together to reduce amount of section switch statements.
275 SmallVector
<SectionCPs
, 4> CPSections
;
276 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
277 MachineConstantPoolEntry CPE
= CP
[i
];
278 unsigned Align
= CPE
.getAlignment();
279 const Section
* S
= TAI
->SelectSectionForMachineConst(CPE
.getType());
280 // The number of sections are small, just do a linear search from the
281 // last section to the first.
283 unsigned SecIdx
= CPSections
.size();
284 while (SecIdx
!= 0) {
285 if (CPSections
[--SecIdx
].S
== S
) {
291 SecIdx
= CPSections
.size();
292 CPSections
.push_back(SectionCPs(S
, Align
));
295 if (Align
> CPSections
[SecIdx
].Alignment
)
296 CPSections
[SecIdx
].Alignment
= Align
;
297 CPSections
[SecIdx
].CPEs
.push_back(i
);
300 // Now print stuff into the calculated sections.
301 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
302 SwitchToSection(CPSections
[i
].S
);
303 EmitAlignment(Log2_32(CPSections
[i
].Alignment
));
306 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
307 unsigned CPI
= CPSections
[i
].CPEs
[j
];
308 MachineConstantPoolEntry CPE
= CP
[CPI
];
310 // Emit inter-object padding for alignment.
311 unsigned AlignMask
= CPE
.getAlignment() - 1;
312 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
313 EmitZeros(NewOffset
- Offset
);
315 const Type
*Ty
= CPE
.getType();
316 Offset
= NewOffset
+ TM
.getTargetData()->getTypePaddedSize(Ty
);
318 O
<< TAI
->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
319 << CPI
<< ":\t\t\t\t\t";
321 O
<< TAI
->getCommentString() << ' ';
322 WriteTypeSymbolic(O
, CPE
.getType(), 0);
325 if (CPE
.isMachineConstantPoolEntry())
326 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
328 EmitGlobalConstant(CPE
.Val
.ConstVal
);
333 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
334 /// by the current function to the current output stream.
336 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo
*MJTI
,
337 MachineFunction
&MF
) {
338 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
339 if (JT
.empty()) return;
341 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
343 // Pick the directive to use to print the jump table entries, and switch to
344 // the appropriate section.
345 TargetLowering
*LoweringInfo
= TM
.getTargetLowering();
347 const char* JumpTableDataSection
= TAI
->getJumpTableDataSection();
348 const Function
*F
= MF
.getFunction();
349 unsigned SectionFlags
= TAI
->SectionFlagsForGlobal(F
);
350 if ((IsPic
&& !(LoweringInfo
&& LoweringInfo
->usesGlobalOffsetTable())) ||
351 !JumpTableDataSection
||
352 SectionFlags
& SectionFlags::Linkonce
) {
353 // In PIC mode, we need to emit the jump table to the same section as the
354 // function body itself, otherwise the label differences won't make sense.
355 // We should also do if the section name is NULL or function is declared in
356 // discardable section.
357 SwitchToSection(TAI
->SectionForGlobal(F
));
359 SwitchToDataSection(JumpTableDataSection
);
362 EmitAlignment(Log2_32(MJTI
->getAlignment()));
364 for (unsigned i
= 0, e
= JT
.size(); i
!= e
; ++i
) {
365 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[i
].MBBs
;
367 // If this jump table was deleted, ignore it.
368 if (JTBBs
.empty()) continue;
370 // For PIC codegen, if possible we want to use the SetDirective to reduce
371 // the number of relocations the assembler will generate for the jump table.
372 // Set directives are all printed before the jump table itself.
373 SmallPtrSet
<MachineBasicBlock
*, 16> EmittedSets
;
374 if (TAI
->getSetDirective() && IsPic
)
375 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
376 if (EmittedSets
.insert(JTBBs
[ii
]))
377 printPICJumpTableSetLabel(i
, JTBBs
[ii
]);
379 // On some targets (e.g. darwin) we want to emit two consequtive labels
380 // before each jump table. The first label is never referenced, but tells
381 // the assembler and linker the extents of the jump table object. The
382 // second label is actually referenced by the code.
383 if (const char *JTLabelPrefix
= TAI
->getJumpTableSpecialLabelPrefix())
384 O
<< JTLabelPrefix
<< "JTI" << getFunctionNumber() << '_' << i
<< ":\n";
386 O
<< TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
387 << '_' << i
<< ":\n";
389 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
390 printPICJumpTableEntry(MJTI
, JTBBs
[ii
], i
);
396 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
397 const MachineBasicBlock
*MBB
,
398 unsigned uid
) const {
399 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
401 // Use JumpTableDirective otherwise honor the entry size from the jump table
403 const char *JTEntryDirective
= TAI
->getJumpTableDirective();
404 bool HadJTEntryDirective
= JTEntryDirective
!= NULL
;
405 if (!HadJTEntryDirective
) {
406 JTEntryDirective
= MJTI
->getEntrySize() == 4 ?
407 TAI
->getData32bitsDirective() : TAI
->getData64bitsDirective();
410 O
<< JTEntryDirective
<< ' ';
412 // If we have emitted set directives for the jump table entries, print
413 // them rather than the entries themselves. If we're emitting PIC, then
414 // emit the table entries as differences between two text section labels.
415 // If we're emitting non-PIC code, then emit the entries as direct
416 // references to the target basic blocks.
418 if (TAI
->getSetDirective()) {
419 O
<< TAI
->getPrivateGlobalPrefix() << getFunctionNumber()
420 << '_' << uid
<< "_set_" << MBB
->getNumber();
422 printBasicBlockLabel(MBB
, false, false, false);
423 // If the arch uses custom Jump Table directives, don't calc relative to
425 if (!HadJTEntryDirective
)
426 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI"
427 << getFunctionNumber() << '_' << uid
;
430 printBasicBlockLabel(MBB
, false, false, false);
435 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
436 /// special global used by LLVM. If so, emit it and return true, otherwise
437 /// do nothing and return false.
438 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
439 if (GV
->getName() == "llvm.used") {
440 if (TAI
->getUsedDirective() != 0) // No need to emit this at all.
441 EmitLLVMUsedList(GV
->getInitializer());
445 // Ignore debug and non-emitted data.
446 if (GV
->getSection() == "llvm.metadata" ||
447 GV
->hasAvailableExternallyLinkage())
450 if (!GV
->hasAppendingLinkage()) return false;
452 assert(GV
->hasInitializer() && "Not a special LLVM global!");
454 const TargetData
*TD
= TM
.getTargetData();
455 unsigned Align
= Log2_32(TD
->getPointerPrefAlignment());
456 if (GV
->getName() == "llvm.global_ctors") {
457 SwitchToDataSection(TAI
->getStaticCtorsSection());
458 EmitAlignment(Align
, 0);
459 EmitXXStructorList(GV
->getInitializer());
463 if (GV
->getName() == "llvm.global_dtors") {
464 SwitchToDataSection(TAI
->getStaticDtorsSection());
465 EmitAlignment(Align
, 0);
466 EmitXXStructorList(GV
->getInitializer());
473 /// findGlobalValue - if CV is an expression equivalent to a single
474 /// global value, return that value.
475 const GlobalValue
* AsmPrinter::findGlobalValue(const Constant
*CV
) {
476 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
478 else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
479 const TargetData
*TD
= TM
.getTargetData();
480 unsigned Opcode
= CE
->getOpcode();
482 case Instruction::GetElementPtr
: {
483 const Constant
*ptrVal
= CE
->getOperand(0);
484 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
485 if (TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0], idxVec
.size()))
487 return findGlobalValue(ptrVal
);
489 case Instruction::BitCast
:
490 return findGlobalValue(CE
->getOperand(0));
498 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
499 /// global in the specified llvm.used list for which emitUsedDirectiveFor
500 /// is true, as being used with this directive.
502 void AsmPrinter::EmitLLVMUsedList(Constant
*List
) {
503 const char *Directive
= TAI
->getUsedDirective();
505 // Should be an array of 'sbyte*'.
506 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
507 if (InitList
== 0) return;
509 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
510 const GlobalValue
*GV
= findGlobalValue(InitList
->getOperand(i
));
511 if (TAI
->emitUsedDirectiveFor(GV
, Mang
)) {
513 EmitConstantValueOnly(InitList
->getOperand(i
));
519 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
520 /// function pointers, ignoring the init priority.
521 void AsmPrinter::EmitXXStructorList(Constant
*List
) {
522 // Should be an array of '{ int, void ()* }' structs. The first value is the
523 // init priority, which we ignore.
524 if (!isa
<ConstantArray
>(List
)) return;
525 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
526 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
527 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
528 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
530 if (CS
->getOperand(1)->isNullValue())
531 return; // Found a null terminator, exit printing.
532 // Emit the function pointer.
533 EmitGlobalConstant(CS
->getOperand(1));
537 /// getGlobalLinkName - Returns the asm/link name of of the specified
538 /// global variable. Should be overridden by each target asm printer to
539 /// generate the appropriate value.
540 const std::string
&AsmPrinter::getGlobalLinkName(const GlobalVariable
*GV
,
541 std::string
&LinkName
) const {
542 if (isa
<Function
>(GV
)) {
543 LinkName
+= TAI
->getFunctionAddrPrefix();
544 LinkName
+= Mang
->getValueName(GV
);
545 LinkName
+= TAI
->getFunctionAddrSuffix();
547 LinkName
+= TAI
->getGlobalVarAddrPrefix();
548 LinkName
+= Mang
->getValueName(GV
);
549 LinkName
+= TAI
->getGlobalVarAddrSuffix();
555 /// EmitExternalGlobal - Emit the external reference to a global variable.
556 /// Should be overridden if an indirect reference should be used.
557 void AsmPrinter::EmitExternalGlobal(const GlobalVariable
*GV
) {
559 O
<< getGlobalLinkName(GV
, GLN
);
564 //===----------------------------------------------------------------------===//
565 /// LEB 128 number encoding.
567 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
568 /// representing an unsigned leb128 value.
569 void AsmPrinter::PrintULEB128(unsigned Value
) const {
572 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
574 if (Value
) Byte
|= 0x80;
575 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
576 if (Value
) O
<< ", ";
580 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
581 /// representing a signed leb128 value.
582 void AsmPrinter::PrintSLEB128(int Value
) const {
583 int Sign
= Value
>> (8 * sizeof(Value
) - 1);
588 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
590 IsMore
= Value
!= Sign
|| ((Byte
^ Sign
) & 0x40) != 0;
591 if (IsMore
) Byte
|= 0x80;
592 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
593 if (IsMore
) O
<< ", ";
597 //===--------------------------------------------------------------------===//
598 // Emission and print routines
601 /// PrintHex - Print a value as a hexidecimal value.
603 void AsmPrinter::PrintHex(int Value
) const {
605 O
<< "0x" << utohex_buffer(static_cast<unsigned>(Value
), Buffer
+20);
608 /// EOL - Print a newline character to asm stream. If a comment is present
609 /// then it will be printed first. Comments should not contain '\n'.
610 void AsmPrinter::EOL() const {
614 void AsmPrinter::EOL(const std::string
&Comment
) const {
615 if (VerboseAsm
&& !Comment
.empty()) {
617 << TAI
->getCommentString()
624 void AsmPrinter::EOL(const char* Comment
) const {
625 if (VerboseAsm
&& *Comment
) {
627 << TAI
->getCommentString()
634 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635 /// unsigned leb128 value.
636 void AsmPrinter::EmitULEB128Bytes(unsigned Value
) const {
637 if (TAI
->hasLEB128()) {
641 O
<< TAI
->getData8bitsDirective();
646 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647 /// signed leb128 value.
648 void AsmPrinter::EmitSLEB128Bytes(int Value
) const {
649 if (TAI
->hasLEB128()) {
653 O
<< TAI
->getData8bitsDirective();
658 /// EmitInt8 - Emit a byte directive and value.
660 void AsmPrinter::EmitInt8(int Value
) const {
661 O
<< TAI
->getData8bitsDirective();
662 PrintHex(Value
& 0xFF);
665 /// EmitInt16 - Emit a short directive and value.
667 void AsmPrinter::EmitInt16(int Value
) const {
668 O
<< TAI
->getData16bitsDirective();
669 PrintHex(Value
& 0xFFFF);
672 /// EmitInt32 - Emit a long directive and value.
674 void AsmPrinter::EmitInt32(int Value
) const {
675 O
<< TAI
->getData32bitsDirective();
679 /// EmitInt64 - Emit a long long directive and value.
681 void AsmPrinter::EmitInt64(uint64_t Value
) const {
682 if (TAI
->getData64bitsDirective()) {
683 O
<< TAI
->getData64bitsDirective();
686 if (TM
.getTargetData()->isBigEndian()) {
687 EmitInt32(unsigned(Value
>> 32)); O
<< '\n';
688 EmitInt32(unsigned(Value
));
690 EmitInt32(unsigned(Value
)); O
<< '\n';
691 EmitInt32(unsigned(Value
>> 32));
696 /// toOctal - Convert the low order bits of X into an octal digit.
698 static inline char toOctal(int X
) {
702 /// printStringChar - Print a char, escaped if necessary.
704 static void printStringChar(raw_ostream
&O
, unsigned char C
) {
707 } else if (C
== '\\') {
709 } else if (isprint((unsigned char)C
)) {
713 case '\b': O
<< "\\b"; break;
714 case '\f': O
<< "\\f"; break;
715 case '\n': O
<< "\\n"; break;
716 case '\r': O
<< "\\r"; break;
717 case '\t': O
<< "\\t"; break;
720 O
<< toOctal(C
>> 6);
721 O
<< toOctal(C
>> 3);
722 O
<< toOctal(C
>> 0);
728 /// EmitString - Emit a string with quotes and a null terminator.
729 /// Special characters are emitted properly.
730 /// \literal (Eg. '\t') \endliteral
731 void AsmPrinter::EmitString(const std::string
&String
) const {
732 EmitString(String
.c_str(), String
.size());
735 void AsmPrinter::EmitString(const char *String
, unsigned Size
) const {
736 const char* AscizDirective
= TAI
->getAscizDirective();
740 O
<< TAI
->getAsciiDirective();
742 for (unsigned i
= 0; i
< Size
; ++i
)
743 printStringChar(O
, String
[i
]);
751 /// EmitFile - Emit a .file directive.
752 void AsmPrinter::EmitFile(unsigned Number
, const std::string
&Name
) const {
753 O
<< "\t.file\t" << Number
<< " \"";
754 for (unsigned i
= 0, N
= Name
.size(); i
< N
; ++i
)
755 printStringChar(O
, Name
[i
]);
760 //===----------------------------------------------------------------------===//
762 // EmitAlignment - Emit an alignment directive to the specified power of
763 // two boundary. For example, if you pass in 3 here, you will get an 8
764 // byte alignment. If a global value is specified, and if that global has
765 // an explicit alignment requested, it will unconditionally override the
766 // alignment request. However, if ForcedAlignBits is specified, this value
767 // has final say: the ultimate alignment will be the max of ForcedAlignBits
768 // and the alignment computed with NumBits and the global.
772 // if (GV && GV->hasalignment) Align = GV->getalignment();
773 // Align = std::max(Align, ForcedAlignBits);
775 void AsmPrinter::EmitAlignment(unsigned NumBits
, const GlobalValue
*GV
,
776 unsigned ForcedAlignBits
,
777 bool UseFillExpr
) const {
778 if (GV
&& GV
->getAlignment())
779 NumBits
= Log2_32(GV
->getAlignment());
780 NumBits
= std::max(NumBits
, ForcedAlignBits
);
782 if (NumBits
== 0) return; // No need to emit alignment.
783 if (TAI
->getAlignmentIsInBytes()) NumBits
= 1 << NumBits
;
784 O
<< TAI
->getAlignDirective() << NumBits
;
786 unsigned FillValue
= TAI
->getTextAlignFillValue();
787 UseFillExpr
&= IsInTextSection
&& FillValue
;
796 /// EmitZeros - Emit a block of zeros.
798 void AsmPrinter::EmitZeros(uint64_t NumZeros
, unsigned AddrSpace
) const {
800 if (TAI
->getZeroDirective()) {
801 O
<< TAI
->getZeroDirective() << NumZeros
;
802 if (TAI
->getZeroDirectiveSuffix())
803 O
<< TAI
->getZeroDirectiveSuffix();
806 for (; NumZeros
; --NumZeros
)
807 O
<< TAI
->getData8bitsDirective(AddrSpace
) << "0\n";
812 // Print out the specified constant, without a storage class. Only the
813 // constants valid in constant expressions can occur here.
814 void AsmPrinter::EmitConstantValueOnly(const Constant
*CV
) {
815 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
817 else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
818 O
<< CI
->getZExtValue();
819 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
820 // This is a constant address for a global variable or function. Use the
821 // name of the variable or function as the address value, possibly
822 // decorating it with GlobalVarAddrPrefix/Suffix or
823 // FunctionAddrPrefix/Suffix (these all default to "" )
824 if (isa
<Function
>(GV
)) {
825 O
<< TAI
->getFunctionAddrPrefix()
826 << Mang
->getValueName(GV
)
827 << TAI
->getFunctionAddrSuffix();
829 O
<< TAI
->getGlobalVarAddrPrefix()
830 << Mang
->getValueName(GV
)
831 << TAI
->getGlobalVarAddrSuffix();
833 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
834 const TargetData
*TD
= TM
.getTargetData();
835 unsigned Opcode
= CE
->getOpcode();
837 case Instruction::GetElementPtr
: {
838 // generate a symbolic expression for the byte address
839 const Constant
*ptrVal
= CE
->getOperand(0);
840 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
841 if (int64_t Offset
= TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0],
843 // Truncate/sext the offset to the pointer size.
844 if (TD
->getPointerSizeInBits() != 64) {
845 int SExtAmount
= 64-TD
->getPointerSizeInBits();
846 Offset
= (Offset
<< SExtAmount
) >> SExtAmount
;
851 EmitConstantValueOnly(ptrVal
);
853 O
<< ") + " << Offset
;
855 O
<< ") - " << -Offset
;
857 EmitConstantValueOnly(ptrVal
);
861 case Instruction::Trunc
:
862 case Instruction::ZExt
:
863 case Instruction::SExt
:
864 case Instruction::FPTrunc
:
865 case Instruction::FPExt
:
866 case Instruction::UIToFP
:
867 case Instruction::SIToFP
:
868 case Instruction::FPToUI
:
869 case Instruction::FPToSI
:
870 assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
872 case Instruction::BitCast
:
873 return EmitConstantValueOnly(CE
->getOperand(0));
875 case Instruction::IntToPtr
: {
876 // Handle casts to pointers by changing them into casts to the appropriate
877 // integer type. This promotes constant folding and simplifies this code.
878 Constant
*Op
= CE
->getOperand(0);
879 Op
= ConstantExpr::getIntegerCast(Op
, TD
->getIntPtrType(), false/*ZExt*/);
880 return EmitConstantValueOnly(Op
);
884 case Instruction::PtrToInt
: {
885 // Support only foldable casts to/from pointers that can be eliminated by
886 // changing the pointer to the appropriately sized integer type.
887 Constant
*Op
= CE
->getOperand(0);
888 const Type
*Ty
= CE
->getType();
890 // We can emit the pointer value into this slot if the slot is an
891 // integer slot greater or equal to the size of the pointer.
892 if (TD
->getTypePaddedSize(Ty
) >= TD
->getTypePaddedSize(Op
->getType()))
893 return EmitConstantValueOnly(Op
);
896 EmitConstantValueOnly(Op
);
897 APInt ptrMask
= APInt::getAllOnesValue(TD
->getTypePaddedSizeInBits(Ty
));
900 ptrMask
.toStringUnsigned(S
);
901 O
<< ") & " << S
.c_str() << ')';
904 case Instruction::Add
:
905 case Instruction::Sub
:
906 case Instruction::And
:
907 case Instruction::Or
:
908 case Instruction::Xor
:
910 EmitConstantValueOnly(CE
->getOperand(0));
913 case Instruction::Add
:
916 case Instruction::Sub
:
919 case Instruction::And
:
922 case Instruction::Or
:
925 case Instruction::Xor
:
932 EmitConstantValueOnly(CE
->getOperand(1));
936 assert(0 && "Unsupported operator!");
939 assert(0 && "Unknown constant value!");
943 /// printAsCString - Print the specified array as a C compatible string, only if
944 /// the predicate isString is true.
946 static void printAsCString(raw_ostream
&O
, const ConstantArray
*CVA
,
948 assert(CVA
->isString() && "Array is not string compatible!");
951 for (unsigned i
= 0; i
!= LastElt
; ++i
) {
953 (unsigned char)cast
<ConstantInt
>(CVA
->getOperand(i
))->getZExtValue();
954 printStringChar(O
, C
);
959 /// EmitString - Emit a zero-byte-terminated string constant.
961 void AsmPrinter::EmitString(const ConstantArray
*CVA
) const {
962 unsigned NumElts
= CVA
->getNumOperands();
963 if (TAI
->getAscizDirective() && NumElts
&&
964 cast
<ConstantInt
>(CVA
->getOperand(NumElts
-1))->getZExtValue() == 0) {
965 O
<< TAI
->getAscizDirective();
966 printAsCString(O
, CVA
, NumElts
-1);
968 O
<< TAI
->getAsciiDirective();
969 printAsCString(O
, CVA
, NumElts
);
974 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray
*CVA
,
975 unsigned AddrSpace
) {
976 if (CVA
->isString()) {
978 } else { // Not a string. Print the values in successive locations
979 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
980 EmitGlobalConstant(CVA
->getOperand(i
), AddrSpace
);
984 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector
*CP
) {
985 const VectorType
*PTy
= CP
->getType();
987 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
988 EmitGlobalConstant(CP
->getOperand(I
));
991 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
992 unsigned AddrSpace
) {
993 // Print the fields in successive locations. Pad to align if needed!
994 const TargetData
*TD
= TM
.getTargetData();
995 unsigned Size
= TD
->getTypePaddedSize(CVS
->getType());
996 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
997 uint64_t sizeSoFar
= 0;
998 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
999 const Constant
* field
= CVS
->getOperand(i
);
1001 // Check if padding is needed and insert one or more 0s.
1002 uint64_t fieldSize
= TD
->getTypePaddedSize(field
->getType());
1003 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
1004 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
1005 sizeSoFar
+= fieldSize
+ padSize
;
1007 // Now print the actual field value.
1008 EmitGlobalConstant(field
, AddrSpace
);
1010 // Insert padding - this may include padding to increase the size of the
1011 // current field up to the ABI size (if the struct is not packed) as well
1012 // as padding to ensure that the next field starts at the right offset.
1013 EmitZeros(padSize
, AddrSpace
);
1015 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
1016 "Layout of constant struct may be incorrect!");
1019 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP
*CFP
,
1020 unsigned AddrSpace
) {
1021 // FP Constants are printed as integer constants to avoid losing
1023 const TargetData
*TD
= TM
.getTargetData();
1024 if (CFP
->getType() == Type::DoubleTy
) {
1025 double Val
= CFP
->getValueAPF().convertToDouble(); // for comment only
1026 uint64_t i
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1027 if (TAI
->getData64bitsDirective(AddrSpace
)) {
1028 O
<< TAI
->getData64bitsDirective(AddrSpace
) << i
;
1030 O
<< '\t' << TAI
->getCommentString() << " double value: " << Val
;
1032 } else if (TD
->isBigEndian()) {
1033 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1035 O
<< '\t' << TAI
->getCommentString()
1036 << " double most significant word " << Val
;
1038 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1040 O
<< '\t' << TAI
->getCommentString()
1041 << " double least significant word " << Val
;
1044 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1046 O
<< '\t' << TAI
->getCommentString()
1047 << " double least significant word " << Val
;
1049 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1051 O
<< '\t' << TAI
->getCommentString()
1052 << " double most significant word " << Val
;
1056 } else if (CFP
->getType() == Type::FloatTy
) {
1057 float Val
= CFP
->getValueAPF().convertToFloat(); // for comment only
1058 O
<< TAI
->getData32bitsDirective(AddrSpace
)
1059 << CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1061 O
<< '\t' << TAI
->getCommentString() << " float " << Val
;
1064 } else if (CFP
->getType() == Type::X86_FP80Ty
) {
1065 // all long double variants are printed as hex
1066 // api needed to prevent premature destruction
1067 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1068 const uint64_t *p
= api
.getRawData();
1069 // Convert to double so we can print the approximate val as a comment.
1070 APFloat DoubleVal
= CFP
->getValueAPF();
1072 DoubleVal
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
1074 if (TD
->isBigEndian()) {
1075 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1077 O
<< '\t' << TAI
->getCommentString()
1078 << " long double most significant halfword of ~"
1079 << DoubleVal
.convertToDouble();
1081 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1083 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1085 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1087 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1089 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1091 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1093 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1095 O
<< '\t' << TAI
->getCommentString()
1096 << " long double least significant halfword";
1099 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1101 O
<< '\t' << TAI
->getCommentString()
1102 << " long double least significant halfword of ~"
1103 << DoubleVal
.convertToDouble();
1105 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1107 O
<< '\t' << TAI
->getCommentString()
1108 << " long double next halfword";
1110 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1112 O
<< '\t' << TAI
->getCommentString()
1113 << " long double next halfword";
1115 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1117 O
<< '\t' << TAI
->getCommentString()
1118 << " long double next halfword";
1120 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1122 O
<< '\t' << TAI
->getCommentString()
1123 << " long double most significant halfword";
1126 EmitZeros(TD
->getTypePaddedSize(Type::X86_FP80Ty
) -
1127 TD
->getTypeStoreSize(Type::X86_FP80Ty
), AddrSpace
);
1129 } else if (CFP
->getType() == Type::PPC_FP128Ty
) {
1130 // all long double variants are printed as hex
1131 // api needed to prevent premature destruction
1132 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1133 const uint64_t *p
= api
.getRawData();
1134 if (TD
->isBigEndian()) {
1135 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1137 O
<< '\t' << TAI
->getCommentString()
1138 << " long double most significant word";
1140 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1142 O
<< '\t' << TAI
->getCommentString()
1143 << " long double next word";
1145 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1147 O
<< '\t' << TAI
->getCommentString()
1148 << " long double next word";
1150 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1152 O
<< '\t' << TAI
->getCommentString()
1153 << " long double least significant word";
1156 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1158 O
<< '\t' << TAI
->getCommentString()
1159 << " long double least significant word";
1161 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1163 O
<< '\t' << TAI
->getCommentString()
1164 << " long double next word";
1166 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1168 O
<< '\t' << TAI
->getCommentString()
1169 << " long double next word";
1171 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1173 O
<< '\t' << TAI
->getCommentString()
1174 << " long double most significant word";
1178 } else assert(0 && "Floating point constant type not handled");
1181 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt
*CI
,
1182 unsigned AddrSpace
) {
1183 const TargetData
*TD
= TM
.getTargetData();
1184 unsigned BitWidth
= CI
->getBitWidth();
1185 assert(isPowerOf2_32(BitWidth
) &&
1186 "Non-power-of-2-sized integers not handled!");
1188 // We don't expect assemblers to support integer data directives
1189 // for more than 64 bits, so we emit the data in at most 64-bit
1190 // quantities at a time.
1191 const uint64_t *RawData
= CI
->getValue().getRawData();
1192 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
1194 if (TD
->isBigEndian())
1195 Val
= RawData
[e
- i
- 1];
1199 if (TAI
->getData64bitsDirective(AddrSpace
))
1200 O
<< TAI
->getData64bitsDirective(AddrSpace
) << Val
<< '\n';
1201 else if (TD
->isBigEndian()) {
1202 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1204 O
<< '\t' << TAI
->getCommentString()
1205 << " Double-word most significant word " << Val
;
1207 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1209 O
<< '\t' << TAI
->getCommentString()
1210 << " Double-word least significant word " << Val
;
1213 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1215 O
<< '\t' << TAI
->getCommentString()
1216 << " Double-word least significant word " << Val
;
1218 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1220 O
<< '\t' << TAI
->getCommentString()
1221 << " Double-word most significant word " << Val
;
1227 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1228 void AsmPrinter::EmitGlobalConstant(const Constant
*CV
, unsigned AddrSpace
) {
1229 const TargetData
*TD
= TM
.getTargetData();
1230 const Type
*type
= CV
->getType();
1231 unsigned Size
= TD
->getTypePaddedSize(type
);
1233 if (CV
->isNullValue() || isa
<UndefValue
>(CV
)) {
1234 EmitZeros(Size
, AddrSpace
);
1236 } else if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
1237 EmitGlobalConstantArray(CVA
, AddrSpace
);
1239 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
1240 EmitGlobalConstantStruct(CVS
, AddrSpace
);
1242 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1243 EmitGlobalConstantFP(CFP
, AddrSpace
);
1245 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1246 // Small integers are handled below; large integers are handled here.
1248 EmitGlobalConstantLargeInt(CI
, AddrSpace
);
1251 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
1252 EmitGlobalConstantVector(CP
);
1256 printDataDirective(type
, AddrSpace
);
1257 EmitConstantValueOnly(CV
);
1259 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1261 CI
->getValue().toStringUnsigned(S
, 16);
1262 O
<< "\t\t\t" << TAI
->getCommentString() << " 0x" << S
.c_str();
1268 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
1269 // Target doesn't support this yet!
1273 /// PrintSpecial - Print information related to the specified machine instr
1274 /// that is independent of the operand, and may be independent of the instr
1275 /// itself. This can be useful for portably encoding the comment character
1276 /// or other bits of target-specific knowledge into the asmstrings. The
1277 /// syntax used is ${:comment}. Targets can override this to add support
1278 /// for their own strange codes.
1279 void AsmPrinter::PrintSpecial(const MachineInstr
*MI
, const char *Code
) const {
1280 if (!strcmp(Code
, "private")) {
1281 O
<< TAI
->getPrivateGlobalPrefix();
1282 } else if (!strcmp(Code
, "comment")) {
1284 O
<< TAI
->getCommentString();
1285 } else if (!strcmp(Code
, "uid")) {
1286 // Assign a unique ID to this machine instruction.
1287 static const MachineInstr
*LastMI
= 0;
1288 static const Function
*F
= 0;
1289 static unsigned Counter
= 0U-1;
1291 // Comparing the address of MI isn't sufficient, because machineinstrs may
1292 // be allocated to the same address across functions.
1293 const Function
*ThisF
= MI
->getParent()->getParent()->getFunction();
1295 // If this is a new machine instruction, bump the counter.
1296 if (LastMI
!= MI
|| F
!= ThisF
) {
1303 cerr
<< "Unknown special formatter '" << Code
1304 << "' for machine instr: " << *MI
;
1310 /// printInlineAsm - This method formats and prints the specified machine
1311 /// instruction that is an inline asm.
1312 void AsmPrinter::printInlineAsm(const MachineInstr
*MI
) const {
1313 unsigned NumOperands
= MI
->getNumOperands();
1315 // Count the number of register definitions.
1316 unsigned NumDefs
= 0;
1317 for (; MI
->getOperand(NumDefs
).isReg() && MI
->getOperand(NumDefs
).isDef();
1319 assert(NumDefs
!= NumOperands
-1 && "No asm string?");
1321 assert(MI
->getOperand(NumDefs
).isSymbol() && "No asm string?");
1323 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1324 const char *AsmStr
= MI
->getOperand(NumDefs
).getSymbolName();
1326 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1327 // These are useful to see where empty asm's wound up.
1328 if (AsmStr
[0] == 0) {
1329 O
<< TAI
->getInlineAsmStart() << "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1333 O
<< TAI
->getInlineAsmStart() << "\n\t";
1335 // The variant of the current asmprinter.
1336 int AsmPrinterVariant
= TAI
->getAssemblerDialect();
1338 int CurVariant
= -1; // The number of the {.|.|.} region we are in.
1339 const char *LastEmitted
= AsmStr
; // One past the last character emitted.
1341 while (*LastEmitted
) {
1342 switch (*LastEmitted
) {
1344 // Not a special case, emit the string section literally.
1345 const char *LiteralEnd
= LastEmitted
+1;
1346 while (*LiteralEnd
&& *LiteralEnd
!= '{' && *LiteralEnd
!= '|' &&
1347 *LiteralEnd
!= '}' && *LiteralEnd
!= '$' && *LiteralEnd
!= '\n')
1349 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1350 O
.write(LastEmitted
, LiteralEnd
-LastEmitted
);
1351 LastEmitted
= LiteralEnd
;
1355 ++LastEmitted
; // Consume newline character.
1356 O
<< '\n'; // Indent code with newline.
1359 ++LastEmitted
; // Consume '$' character.
1363 switch (*LastEmitted
) {
1364 default: Done
= false; break;
1365 case '$': // $$ -> $
1366 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1368 ++LastEmitted
; // Consume second '$' character.
1370 case '(': // $( -> same as GCC's { character.
1371 ++LastEmitted
; // Consume '(' character.
1372 if (CurVariant
!= -1) {
1373 cerr
<< "Nested variants found in inline asm string: '"
1377 CurVariant
= 0; // We're in the first variant now.
1380 ++LastEmitted
; // consume '|' character.
1381 if (CurVariant
== -1)
1382 O
<< '|'; // this is gcc's behavior for | outside a variant
1384 ++CurVariant
; // We're in the next variant.
1386 case ')': // $) -> same as GCC's } char.
1387 ++LastEmitted
; // consume ')' character.
1388 if (CurVariant
== -1)
1389 O
<< '}'; // this is gcc's behavior for } outside a variant
1396 bool HasCurlyBraces
= false;
1397 if (*LastEmitted
== '{') { // ${variable}
1398 ++LastEmitted
; // Consume '{' character.
1399 HasCurlyBraces
= true;
1402 // If we have ${:foo}, then this is not a real operand reference, it is a
1403 // "magic" string reference, just like in .td files. Arrange to call
1405 if (HasCurlyBraces
&& *LastEmitted
== ':') {
1407 const char *StrStart
= LastEmitted
;
1408 const char *StrEnd
= strchr(StrStart
, '}');
1410 cerr
<< "Unterminated ${:foo} operand in inline asm string: '"
1415 std::string
Val(StrStart
, StrEnd
);
1416 PrintSpecial(MI
, Val
.c_str());
1417 LastEmitted
= StrEnd
+1;
1421 const char *IDStart
= LastEmitted
;
1424 long Val
= strtol(IDStart
, &IDEnd
, 10); // We only accept numbers for IDs.
1425 if (!isdigit(*IDStart
) || (Val
== 0 && errno
== EINVAL
)) {
1426 cerr
<< "Bad $ operand number in inline asm string: '"
1430 LastEmitted
= IDEnd
;
1432 char Modifier
[2] = { 0, 0 };
1434 if (HasCurlyBraces
) {
1435 // If we have curly braces, check for a modifier character. This
1436 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1437 if (*LastEmitted
== ':') {
1438 ++LastEmitted
; // Consume ':' character.
1439 if (*LastEmitted
== 0) {
1440 cerr
<< "Bad ${:} expression in inline asm string: '"
1445 Modifier
[0] = *LastEmitted
;
1446 ++LastEmitted
; // Consume modifier character.
1449 if (*LastEmitted
!= '}') {
1450 cerr
<< "Bad ${} expression in inline asm string: '"
1454 ++LastEmitted
; // Consume '}' character.
1457 if ((unsigned)Val
>= NumOperands
-1) {
1458 cerr
<< "Invalid $ operand number in inline asm string: '"
1463 // Okay, we finally have a value number. Ask the target to print this
1465 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
) {
1470 // Scan to find the machine operand number for the operand.
1471 for (; Val
; --Val
) {
1472 if (OpNo
>= MI
->getNumOperands()) break;
1473 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1474 OpNo
+= InlineAsm::getNumOperandRegisters(OpFlags
) + 1;
1477 if (OpNo
>= MI
->getNumOperands()) {
1480 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1481 ++OpNo
; // Skip over the ID number.
1483 if (Modifier
[0]=='l') // labels are target independent
1484 printBasicBlockLabel(MI
->getOperand(OpNo
).getMBB(),
1485 false, false, false);
1487 AsmPrinter
*AP
= const_cast<AsmPrinter
*>(this);
1488 if ((OpFlags
& 7) == 4) {
1489 Error
= AP
->PrintAsmMemoryOperand(MI
, OpNo
, AsmPrinterVariant
,
1490 Modifier
[0] ? Modifier
: 0);
1492 Error
= AP
->PrintAsmOperand(MI
, OpNo
, AsmPrinterVariant
,
1493 Modifier
[0] ? Modifier
: 0);
1498 cerr
<< "Invalid operand found in inline asm: '"
1508 O
<< "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1511 /// printImplicitDef - This method prints the specified machine instruction
1512 /// that is an implicit def.
1513 void AsmPrinter::printImplicitDef(const MachineInstr
*MI
) const {
1515 O
<< '\t' << TAI
->getCommentString() << " implicit-def: "
1516 << TRI
->getAsmName(MI
->getOperand(0).getReg()) << '\n';
1519 /// printLabel - This method prints a local label used by debug and
1520 /// exception handling tables.
1521 void AsmPrinter::printLabel(const MachineInstr
*MI
) const {
1522 printLabel(MI
->getOperand(0).getImm());
1525 void AsmPrinter::printLabel(unsigned Id
) const {
1526 O
<< TAI
->getPrivateGlobalPrefix() << "label" << Id
<< ":\n";
1529 /// printDeclare - This method prints a local variable declaration used by
1531 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1532 /// entry into dwarf table.
1533 void AsmPrinter::printDeclare(const MachineInstr
*MI
) const {
1534 unsigned FI
= MI
->getOperand(0).getIndex();
1535 GlobalValue
*GV
= MI
->getOperand(1).getGlobal();
1536 DW
->RecordVariable(cast
<GlobalVariable
>(GV
), FI
, MI
);
1539 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1540 /// instruction, using the specified assembler variant. Targets should
1541 /// overried this to format as appropriate.
1542 bool AsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNo
,
1543 unsigned AsmVariant
, const char *ExtraCode
) {
1544 // Target doesn't support this yet!
1548 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
, unsigned OpNo
,
1549 unsigned AsmVariant
,
1550 const char *ExtraCode
) {
1551 // Target doesn't support this yet!
1555 /// printBasicBlockLabel - This method prints the label for the specified
1556 /// MachineBasicBlock
1557 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock
*MBB
,
1560 bool printComment
) const {
1562 unsigned Align
= MBB
->getAlignment();
1564 EmitAlignment(Log2_32(Align
));
1567 O
<< TAI
->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1568 << MBB
->getNumber();
1571 if (printComment
&& MBB
->getBasicBlock())
1572 O
<< '\t' << TAI
->getCommentString() << ' '
1573 << MBB
->getBasicBlock()->getNameStart();
1576 /// printPICJumpTableSetLabel - This method prints a set label for the
1577 /// specified MachineBasicBlock for a jumptable entry.
1578 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
,
1579 const MachineBasicBlock
*MBB
) const {
1580 if (!TAI
->getSetDirective())
1583 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1584 << getFunctionNumber() << '_' << uid
<< "_set_" << MBB
->getNumber() << ',';
1585 printBasicBlockLabel(MBB
, false, false, false);
1586 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1587 << '_' << uid
<< '\n';
1590 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
, unsigned uid2
,
1591 const MachineBasicBlock
*MBB
) const {
1592 if (!TAI
->getSetDirective())
1595 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1596 << getFunctionNumber() << '_' << uid
<< '_' << uid2
1597 << "_set_" << MBB
->getNumber() << ',';
1598 printBasicBlockLabel(MBB
, false, false, false);
1599 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1600 << '_' << uid
<< '_' << uid2
<< '\n';
1603 /// printDataDirective - This method prints the asm directive for the
1605 void AsmPrinter::printDataDirective(const Type
*type
, unsigned AddrSpace
) {
1606 const TargetData
*TD
= TM
.getTargetData();
1607 switch (type
->getTypeID()) {
1608 case Type::IntegerTyID
: {
1609 unsigned BitWidth
= cast
<IntegerType
>(type
)->getBitWidth();
1611 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1612 else if (BitWidth
<= 16)
1613 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1614 else if (BitWidth
<= 32)
1615 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1616 else if (BitWidth
<= 64) {
1617 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1618 "Target cannot handle 64-bit constant exprs!");
1619 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1621 assert(0 && "Target cannot handle given data directive width!");
1625 case Type::PointerTyID
:
1626 if (TD
->getPointerSize() == 8) {
1627 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1628 "Target cannot handle 64-bit pointer exprs!");
1629 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1630 } else if (TD
->getPointerSize() == 2) {
1631 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1632 } else if (TD
->getPointerSize() == 1) {
1633 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1635 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1638 case Type::FloatTyID
: case Type::DoubleTyID
:
1639 case Type::X86_FP80TyID
: case Type::FP128TyID
: case Type::PPC_FP128TyID
:
1640 assert (0 && "Should have already output floating point constant.");
1642 assert (0 && "Can't handle printing this type of thing");
1647 void AsmPrinter::printSuffixedName(const char *Name
, const char *Suffix
,
1648 const char *Prefix
) {
1651 O
<< TAI
->getPrivateGlobalPrefix();
1652 if (Prefix
) O
<< Prefix
;
1664 void AsmPrinter::printSuffixedName(const std::string
&Name
, const char* Suffix
) {
1665 printSuffixedName(Name
.c_str(), Suffix
);
1668 void AsmPrinter::printVisibility(const std::string
& Name
,
1669 unsigned Visibility
) const {
1670 if (Visibility
== GlobalValue::HiddenVisibility
) {
1671 if (const char *Directive
= TAI
->getHiddenDirective())
1672 O
<< Directive
<< Name
<< '\n';
1673 } else if (Visibility
== GlobalValue::ProtectedVisibility
) {
1674 if (const char *Directive
= TAI
->getProtectedDirective())
1675 O
<< Directive
<< Name
<< '\n';
1679 void AsmPrinter::printOffset(int64_t Offset
) const {
1682 else if (Offset
< 0)
1686 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
*S
) {
1687 if (!S
->usesMetadata())
1690 gcp_iterator GCPI
= GCMetadataPrinters
.find(S
);
1691 if (GCPI
!= GCMetadataPrinters
.end())
1692 return GCPI
->second
;
1694 const char *Name
= S
->getName().c_str();
1696 for (GCMetadataPrinterRegistry::iterator
1697 I
= GCMetadataPrinterRegistry::begin(),
1698 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
1699 if (strcmp(Name
, I
->getName()) == 0) {
1700 GCMetadataPrinter
*GMP
= I
->instantiate();
1702 GCMetadataPrinters
.insert(std::make_pair(S
, GMP
));
1706 cerr
<< "no GCMetadataPrinter registered for GC: " << Name
<< "\n";