spillPhysRegAroundRegDefsUses() may have invalidated iterators stored in fixed_ Inter...
[llvm/msp430.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blobe0a526c37234daf08c6864349e49029f2fb0eba5
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Mangler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetAsmInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include <cerrno>
37 using namespace llvm;
39 static cl::opt<cl::boolOrDefault>
40 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
41 cl::init(cl::BOU_UNSET));
43 char AsmPrinter::ID = 0;
44 AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
45 const TargetAsmInfo *T, unsigned OL, bool VDef)
46 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o),
47 TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
48 IsInTextSection(false)
50 switch (AsmVerbose) {
51 case cl::BOU_UNSET: VerboseAsm = VDef; break;
52 case cl::BOU_TRUE: VerboseAsm = true; break;
53 case cl::BOU_FALSE: VerboseAsm = false; break;
57 AsmPrinter::~AsmPrinter() {
58 for (gcp_iterator I = GCMetadataPrinters.begin(),
59 E = GCMetadataPrinters.end(); I != E; ++I)
60 delete I->second;
63 /// SwitchToTextSection - Switch to the specified text section of the executable
64 /// if we are not already in it!
65 ///
66 void AsmPrinter::SwitchToTextSection(const char *NewSection,
67 const GlobalValue *GV) {
68 std::string NS;
69 if (GV && GV->hasSection())
70 NS = TAI->getSwitchToSectionDirective() + GV->getSection();
71 else
72 NS = NewSection;
74 // If we're already in this section, we're done.
75 if (CurrentSection == NS) return;
77 // Close the current section, if applicable.
78 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
79 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
81 CurrentSection = NS;
83 if (!CurrentSection.empty())
84 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
86 IsInTextSection = true;
89 /// SwitchToDataSection - Switch to the specified data section of the executable
90 /// if we are not already in it!
91 ///
92 void AsmPrinter::SwitchToDataSection(const char *NewSection,
93 const GlobalValue *GV) {
94 std::string NS;
95 if (GV && GV->hasSection())
96 NS = TAI->getSwitchToSectionDirective() + GV->getSection();
97 else
98 NS = NewSection;
100 // If we're already in this section, we're done.
101 if (CurrentSection == NS) return;
103 // Close the current section, if applicable.
104 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
105 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
107 CurrentSection = NS;
109 if (!CurrentSection.empty())
110 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
112 IsInTextSection = false;
115 /// SwitchToSection - Switch to the specified section of the executable if we
116 /// are not already in it!
117 void AsmPrinter::SwitchToSection(const Section* NS) {
118 const std::string& NewSection = NS->getName();
120 // If we're already in this section, we're done.
121 if (CurrentSection == NewSection) return;
123 // Close the current section, if applicable.
124 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
125 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
127 // FIXME: Make CurrentSection a Section* in the future
128 CurrentSection = NewSection;
129 CurrentSection_ = NS;
131 if (!CurrentSection.empty()) {
132 // If section is named we need to switch into it via special '.section'
133 // directive and also append funky flags. Otherwise - section name is just
134 // some magic assembler directive.
135 if (NS->isNamed())
136 O << TAI->getSwitchToSectionDirective()
137 << CurrentSection
138 << TAI->getSectionFlags(NS->getFlags());
139 else
140 O << CurrentSection;
141 O << TAI->getDataSectionStartSuffix() << '\n';
144 IsInTextSection = (NS->getFlags() & SectionFlags::Code);
147 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
148 MachineFunctionPass::getAnalysisUsage(AU);
149 AU.addRequired<GCModuleInfo>();
152 bool AsmPrinter::doInitialization(Module &M) {
153 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
155 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
156 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
158 if (TAI->hasSingleParameterDotFile()) {
159 /* Very minimal debug info. It is ignored if we emit actual
160 debug info. If we don't, this at helps the user find where
161 a function came from. */
162 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
165 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
166 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
167 MP->beginAssembly(O, *this, *TAI);
169 if (!M.getModuleInlineAsm().empty())
170 O << TAI->getCommentString() << " Start of file scope inline assembly\n"
171 << M.getModuleInlineAsm()
172 << '\n' << TAI->getCommentString()
173 << " End of file scope inline assembly\n";
175 SwitchToDataSection(""); // Reset back to no section.
177 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
178 if (MMI) MMI->AnalyzeModule(M);
179 DW = getAnalysisIfAvailable<DwarfWriter>();
180 return false;
183 bool AsmPrinter::doFinalization(Module &M) {
184 if (TAI->getWeakRefDirective()) {
185 if (!ExtWeakSymbols.empty())
186 SwitchToDataSection("");
188 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
189 e = ExtWeakSymbols.end(); i != e; ++i)
190 O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n';
193 if (TAI->getSetDirective()) {
194 if (!M.alias_empty())
195 SwitchToSection(TAI->getTextSection());
197 O << '\n';
198 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
199 I!=E; ++I) {
200 std::string Name = Mang->getValueName(I);
201 std::string Target;
203 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204 Target = Mang->getValueName(GV);
206 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207 O << "\t.globl\t" << Name << '\n';
208 else if (I->hasWeakLinkage())
209 O << TAI->getWeakRefDirective() << Name << '\n';
210 else if (!I->hasLocalLinkage())
211 assert(0 && "Invalid alias linkage");
213 printVisibility(Name, I->getVisibility());
215 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
219 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223 MP->finishAssembly(O, *this, *TAI);
225 // If we don't have any trampolines, then we don't require stack memory
226 // to be executable. Some targets have a directive to declare this.
227 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229 if (TAI->getNonexecutableStackDirective())
230 O << TAI->getNonexecutableStackDirective() << '\n';
232 delete Mang; Mang = 0;
233 return false;
236 const std::string &
237 AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF,
238 std::string &Name) const {
239 assert(MF && "No machine function?");
240 Name = MF->getFunction()->getName();
241 if (Name.empty())
242 Name = Mang->getValueName(MF->getFunction());
243 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() +
244 Name + ".eh", TAI->getGlobalPrefix());
245 return Name;
248 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
249 // What's my mangled name?
250 CurrentFnName = Mang->getValueName(MF.getFunction());
251 IncrementFunctionNumber();
254 namespace {
255 // SectionCPs - Keep track the alignment, constpool entries per Section.
256 struct SectionCPs {
257 const Section *S;
258 unsigned Alignment;
259 SmallVector<unsigned, 4> CPEs;
260 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
264 /// EmitConstantPool - Print to the current output stream assembly
265 /// representations of the constants in the constant pool MCP. This is
266 /// used to print out constants which have been "spilled to memory" by
267 /// the code generator.
269 void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
270 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
271 if (CP.empty()) return;
273 // Calculate sections for constant pool entries. We collect entries to go into
274 // the same section together to reduce amount of section switch statements.
275 SmallVector<SectionCPs, 4> CPSections;
276 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
277 MachineConstantPoolEntry CPE = CP[i];
278 unsigned Align = CPE.getAlignment();
279 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
280 // The number of sections are small, just do a linear search from the
281 // last section to the first.
282 bool Found = false;
283 unsigned SecIdx = CPSections.size();
284 while (SecIdx != 0) {
285 if (CPSections[--SecIdx].S == S) {
286 Found = true;
287 break;
290 if (!Found) {
291 SecIdx = CPSections.size();
292 CPSections.push_back(SectionCPs(S, Align));
295 if (Align > CPSections[SecIdx].Alignment)
296 CPSections[SecIdx].Alignment = Align;
297 CPSections[SecIdx].CPEs.push_back(i);
300 // Now print stuff into the calculated sections.
301 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
302 SwitchToSection(CPSections[i].S);
303 EmitAlignment(Log2_32(CPSections[i].Alignment));
305 unsigned Offset = 0;
306 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
307 unsigned CPI = CPSections[i].CPEs[j];
308 MachineConstantPoolEntry CPE = CP[CPI];
310 // Emit inter-object padding for alignment.
311 unsigned AlignMask = CPE.getAlignment() - 1;
312 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
313 EmitZeros(NewOffset - Offset);
315 const Type *Ty = CPE.getType();
316 Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
318 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
319 << CPI << ":\t\t\t\t\t";
320 if (VerboseAsm) {
321 O << TAI->getCommentString() << ' ';
322 WriteTypeSymbolic(O, CPE.getType(), 0);
324 O << '\n';
325 if (CPE.isMachineConstantPoolEntry())
326 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
327 else
328 EmitGlobalConstant(CPE.Val.ConstVal);
333 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
334 /// by the current function to the current output stream.
336 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
337 MachineFunction &MF) {
338 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
339 if (JT.empty()) return;
341 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
343 // Pick the directive to use to print the jump table entries, and switch to
344 // the appropriate section.
345 TargetLowering *LoweringInfo = TM.getTargetLowering();
347 const char* JumpTableDataSection = TAI->getJumpTableDataSection();
348 const Function *F = MF.getFunction();
349 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
350 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
351 !JumpTableDataSection ||
352 SectionFlags & SectionFlags::Linkonce) {
353 // In PIC mode, we need to emit the jump table to the same section as the
354 // function body itself, otherwise the label differences won't make sense.
355 // We should also do if the section name is NULL or function is declared in
356 // discardable section.
357 SwitchToSection(TAI->SectionForGlobal(F));
358 } else {
359 SwitchToDataSection(JumpTableDataSection);
362 EmitAlignment(Log2_32(MJTI->getAlignment()));
364 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
365 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
367 // If this jump table was deleted, ignore it.
368 if (JTBBs.empty()) continue;
370 // For PIC codegen, if possible we want to use the SetDirective to reduce
371 // the number of relocations the assembler will generate for the jump table.
372 // Set directives are all printed before the jump table itself.
373 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
374 if (TAI->getSetDirective() && IsPic)
375 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
376 if (EmittedSets.insert(JTBBs[ii]))
377 printPICJumpTableSetLabel(i, JTBBs[ii]);
379 // On some targets (e.g. darwin) we want to emit two consequtive labels
380 // before each jump table. The first label is never referenced, but tells
381 // the assembler and linker the extents of the jump table object. The
382 // second label is actually referenced by the code.
383 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
384 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
386 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
387 << '_' << i << ":\n";
389 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
390 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
391 O << '\n';
396 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
397 const MachineBasicBlock *MBB,
398 unsigned uid) const {
399 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
401 // Use JumpTableDirective otherwise honor the entry size from the jump table
402 // info.
403 const char *JTEntryDirective = TAI->getJumpTableDirective();
404 bool HadJTEntryDirective = JTEntryDirective != NULL;
405 if (!HadJTEntryDirective) {
406 JTEntryDirective = MJTI->getEntrySize() == 4 ?
407 TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
410 O << JTEntryDirective << ' ';
412 // If we have emitted set directives for the jump table entries, print
413 // them rather than the entries themselves. If we're emitting PIC, then
414 // emit the table entries as differences between two text section labels.
415 // If we're emitting non-PIC code, then emit the entries as direct
416 // references to the target basic blocks.
417 if (IsPic) {
418 if (TAI->getSetDirective()) {
419 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
420 << '_' << uid << "_set_" << MBB->getNumber();
421 } else {
422 printBasicBlockLabel(MBB, false, false, false);
423 // If the arch uses custom Jump Table directives, don't calc relative to
424 // JT
425 if (!HadJTEntryDirective)
426 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
427 << getFunctionNumber() << '_' << uid;
429 } else {
430 printBasicBlockLabel(MBB, false, false, false);
435 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
436 /// special global used by LLVM. If so, emit it and return true, otherwise
437 /// do nothing and return false.
438 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
439 if (GV->getName() == "llvm.used") {
440 if (TAI->getUsedDirective() != 0) // No need to emit this at all.
441 EmitLLVMUsedList(GV->getInitializer());
442 return true;
445 // Ignore debug and non-emitted data.
446 if (GV->getSection() == "llvm.metadata" ||
447 GV->hasAvailableExternallyLinkage())
448 return true;
450 if (!GV->hasAppendingLinkage()) return false;
452 assert(GV->hasInitializer() && "Not a special LLVM global!");
454 const TargetData *TD = TM.getTargetData();
455 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
456 if (GV->getName() == "llvm.global_ctors") {
457 SwitchToDataSection(TAI->getStaticCtorsSection());
458 EmitAlignment(Align, 0);
459 EmitXXStructorList(GV->getInitializer());
460 return true;
463 if (GV->getName() == "llvm.global_dtors") {
464 SwitchToDataSection(TAI->getStaticDtorsSection());
465 EmitAlignment(Align, 0);
466 EmitXXStructorList(GV->getInitializer());
467 return true;
470 return false;
473 /// findGlobalValue - if CV is an expression equivalent to a single
474 /// global value, return that value.
475 const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
476 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
477 return GV;
478 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
479 const TargetData *TD = TM.getTargetData();
480 unsigned Opcode = CE->getOpcode();
481 switch (Opcode) {
482 case Instruction::GetElementPtr: {
483 const Constant *ptrVal = CE->getOperand(0);
484 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
485 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
486 return 0;
487 return findGlobalValue(ptrVal);
489 case Instruction::BitCast:
490 return findGlobalValue(CE->getOperand(0));
491 default:
492 return 0;
495 return 0;
498 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
499 /// global in the specified llvm.used list for which emitUsedDirectiveFor
500 /// is true, as being used with this directive.
502 void AsmPrinter::EmitLLVMUsedList(Constant *List) {
503 const char *Directive = TAI->getUsedDirective();
505 // Should be an array of 'sbyte*'.
506 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
507 if (InitList == 0) return;
509 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
510 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
511 if (TAI->emitUsedDirectiveFor(GV, Mang)) {
512 O << Directive;
513 EmitConstantValueOnly(InitList->getOperand(i));
514 O << '\n';
519 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
520 /// function pointers, ignoring the init priority.
521 void AsmPrinter::EmitXXStructorList(Constant *List) {
522 // Should be an array of '{ int, void ()* }' structs. The first value is the
523 // init priority, which we ignore.
524 if (!isa<ConstantArray>(List)) return;
525 ConstantArray *InitList = cast<ConstantArray>(List);
526 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
527 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
528 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
530 if (CS->getOperand(1)->isNullValue())
531 return; // Found a null terminator, exit printing.
532 // Emit the function pointer.
533 EmitGlobalConstant(CS->getOperand(1));
537 /// getGlobalLinkName - Returns the asm/link name of of the specified
538 /// global variable. Should be overridden by each target asm printer to
539 /// generate the appropriate value.
540 const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
541 std::string &LinkName) const {
542 if (isa<Function>(GV)) {
543 LinkName += TAI->getFunctionAddrPrefix();
544 LinkName += Mang->getValueName(GV);
545 LinkName += TAI->getFunctionAddrSuffix();
546 } else {
547 LinkName += TAI->getGlobalVarAddrPrefix();
548 LinkName += Mang->getValueName(GV);
549 LinkName += TAI->getGlobalVarAddrSuffix();
552 return LinkName;
555 /// EmitExternalGlobal - Emit the external reference to a global variable.
556 /// Should be overridden if an indirect reference should be used.
557 void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
558 std::string GLN;
559 O << getGlobalLinkName(GV, GLN);
564 //===----------------------------------------------------------------------===//
565 /// LEB 128 number encoding.
567 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
568 /// representing an unsigned leb128 value.
569 void AsmPrinter::PrintULEB128(unsigned Value) const {
570 char Buffer[20];
571 do {
572 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
573 Value >>= 7;
574 if (Value) Byte |= 0x80;
575 O << "0x" << utohex_buffer(Byte, Buffer+20);
576 if (Value) O << ", ";
577 } while (Value);
580 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
581 /// representing a signed leb128 value.
582 void AsmPrinter::PrintSLEB128(int Value) const {
583 int Sign = Value >> (8 * sizeof(Value) - 1);
584 bool IsMore;
585 char Buffer[20];
587 do {
588 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
589 Value >>= 7;
590 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
591 if (IsMore) Byte |= 0x80;
592 O << "0x" << utohex_buffer(Byte, Buffer+20);
593 if (IsMore) O << ", ";
594 } while (IsMore);
597 //===--------------------------------------------------------------------===//
598 // Emission and print routines
601 /// PrintHex - Print a value as a hexidecimal value.
603 void AsmPrinter::PrintHex(int Value) const {
604 char Buffer[20];
605 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
608 /// EOL - Print a newline character to asm stream. If a comment is present
609 /// then it will be printed first. Comments should not contain '\n'.
610 void AsmPrinter::EOL() const {
611 O << '\n';
614 void AsmPrinter::EOL(const std::string &Comment) const {
615 if (VerboseAsm && !Comment.empty()) {
616 O << '\t'
617 << TAI->getCommentString()
618 << ' '
619 << Comment;
621 O << '\n';
624 void AsmPrinter::EOL(const char* Comment) const {
625 if (VerboseAsm && *Comment) {
626 O << '\t'
627 << TAI->getCommentString()
628 << ' '
629 << Comment;
631 O << '\n';
634 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
635 /// unsigned leb128 value.
636 void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
637 if (TAI->hasLEB128()) {
638 O << "\t.uleb128\t"
639 << Value;
640 } else {
641 O << TAI->getData8bitsDirective();
642 PrintULEB128(Value);
646 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
647 /// signed leb128 value.
648 void AsmPrinter::EmitSLEB128Bytes(int Value) const {
649 if (TAI->hasLEB128()) {
650 O << "\t.sleb128\t"
651 << Value;
652 } else {
653 O << TAI->getData8bitsDirective();
654 PrintSLEB128(Value);
658 /// EmitInt8 - Emit a byte directive and value.
660 void AsmPrinter::EmitInt8(int Value) const {
661 O << TAI->getData8bitsDirective();
662 PrintHex(Value & 0xFF);
665 /// EmitInt16 - Emit a short directive and value.
667 void AsmPrinter::EmitInt16(int Value) const {
668 O << TAI->getData16bitsDirective();
669 PrintHex(Value & 0xFFFF);
672 /// EmitInt32 - Emit a long directive and value.
674 void AsmPrinter::EmitInt32(int Value) const {
675 O << TAI->getData32bitsDirective();
676 PrintHex(Value);
679 /// EmitInt64 - Emit a long long directive and value.
681 void AsmPrinter::EmitInt64(uint64_t Value) const {
682 if (TAI->getData64bitsDirective()) {
683 O << TAI->getData64bitsDirective();
684 PrintHex(Value);
685 } else {
686 if (TM.getTargetData()->isBigEndian()) {
687 EmitInt32(unsigned(Value >> 32)); O << '\n';
688 EmitInt32(unsigned(Value));
689 } else {
690 EmitInt32(unsigned(Value)); O << '\n';
691 EmitInt32(unsigned(Value >> 32));
696 /// toOctal - Convert the low order bits of X into an octal digit.
698 static inline char toOctal(int X) {
699 return (X&7)+'0';
702 /// printStringChar - Print a char, escaped if necessary.
704 static void printStringChar(raw_ostream &O, unsigned char C) {
705 if (C == '"') {
706 O << "\\\"";
707 } else if (C == '\\') {
708 O << "\\\\";
709 } else if (isprint((unsigned char)C)) {
710 O << C;
711 } else {
712 switch(C) {
713 case '\b': O << "\\b"; break;
714 case '\f': O << "\\f"; break;
715 case '\n': O << "\\n"; break;
716 case '\r': O << "\\r"; break;
717 case '\t': O << "\\t"; break;
718 default:
719 O << '\\';
720 O << toOctal(C >> 6);
721 O << toOctal(C >> 3);
722 O << toOctal(C >> 0);
723 break;
728 /// EmitString - Emit a string with quotes and a null terminator.
729 /// Special characters are emitted properly.
730 /// \literal (Eg. '\t') \endliteral
731 void AsmPrinter::EmitString(const std::string &String) const {
732 EmitString(String.c_str(), String.size());
735 void AsmPrinter::EmitString(const char *String, unsigned Size) const {
736 const char* AscizDirective = TAI->getAscizDirective();
737 if (AscizDirective)
738 O << AscizDirective;
739 else
740 O << TAI->getAsciiDirective();
741 O << '\"';
742 for (unsigned i = 0; i < Size; ++i)
743 printStringChar(O, String[i]);
744 if (AscizDirective)
745 O << '\"';
746 else
747 O << "\\0\"";
751 /// EmitFile - Emit a .file directive.
752 void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
753 O << "\t.file\t" << Number << " \"";
754 for (unsigned i = 0, N = Name.size(); i < N; ++i)
755 printStringChar(O, Name[i]);
756 O << '\"';
760 //===----------------------------------------------------------------------===//
762 // EmitAlignment - Emit an alignment directive to the specified power of
763 // two boundary. For example, if you pass in 3 here, you will get an 8
764 // byte alignment. If a global value is specified, and if that global has
765 // an explicit alignment requested, it will unconditionally override the
766 // alignment request. However, if ForcedAlignBits is specified, this value
767 // has final say: the ultimate alignment will be the max of ForcedAlignBits
768 // and the alignment computed with NumBits and the global.
770 // The algorithm is:
771 // Align = NumBits;
772 // if (GV && GV->hasalignment) Align = GV->getalignment();
773 // Align = std::max(Align, ForcedAlignBits);
775 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
776 unsigned ForcedAlignBits,
777 bool UseFillExpr) const {
778 if (GV && GV->getAlignment())
779 NumBits = Log2_32(GV->getAlignment());
780 NumBits = std::max(NumBits, ForcedAlignBits);
782 if (NumBits == 0) return; // No need to emit alignment.
783 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
784 O << TAI->getAlignDirective() << NumBits;
786 unsigned FillValue = TAI->getTextAlignFillValue();
787 UseFillExpr &= IsInTextSection && FillValue;
788 if (UseFillExpr) {
789 O << ',';
790 PrintHex(FillValue);
792 O << '\n';
796 /// EmitZeros - Emit a block of zeros.
798 void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
799 if (NumZeros) {
800 if (TAI->getZeroDirective()) {
801 O << TAI->getZeroDirective() << NumZeros;
802 if (TAI->getZeroDirectiveSuffix())
803 O << TAI->getZeroDirectiveSuffix();
804 O << '\n';
805 } else {
806 for (; NumZeros; --NumZeros)
807 O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
812 // Print out the specified constant, without a storage class. Only the
813 // constants valid in constant expressions can occur here.
814 void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
815 if (CV->isNullValue() || isa<UndefValue>(CV))
816 O << '0';
817 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
818 O << CI->getZExtValue();
819 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
820 // This is a constant address for a global variable or function. Use the
821 // name of the variable or function as the address value, possibly
822 // decorating it with GlobalVarAddrPrefix/Suffix or
823 // FunctionAddrPrefix/Suffix (these all default to "" )
824 if (isa<Function>(GV)) {
825 O << TAI->getFunctionAddrPrefix()
826 << Mang->getValueName(GV)
827 << TAI->getFunctionAddrSuffix();
828 } else {
829 O << TAI->getGlobalVarAddrPrefix()
830 << Mang->getValueName(GV)
831 << TAI->getGlobalVarAddrSuffix();
833 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
834 const TargetData *TD = TM.getTargetData();
835 unsigned Opcode = CE->getOpcode();
836 switch (Opcode) {
837 case Instruction::GetElementPtr: {
838 // generate a symbolic expression for the byte address
839 const Constant *ptrVal = CE->getOperand(0);
840 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
841 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
842 idxVec.size())) {
843 // Truncate/sext the offset to the pointer size.
844 if (TD->getPointerSizeInBits() != 64) {
845 int SExtAmount = 64-TD->getPointerSizeInBits();
846 Offset = (Offset << SExtAmount) >> SExtAmount;
849 if (Offset)
850 O << '(';
851 EmitConstantValueOnly(ptrVal);
852 if (Offset > 0)
853 O << ") + " << Offset;
854 else if (Offset < 0)
855 O << ") - " << -Offset;
856 } else {
857 EmitConstantValueOnly(ptrVal);
859 break;
861 case Instruction::Trunc:
862 case Instruction::ZExt:
863 case Instruction::SExt:
864 case Instruction::FPTrunc:
865 case Instruction::FPExt:
866 case Instruction::UIToFP:
867 case Instruction::SIToFP:
868 case Instruction::FPToUI:
869 case Instruction::FPToSI:
870 assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
871 break;
872 case Instruction::BitCast:
873 return EmitConstantValueOnly(CE->getOperand(0));
875 case Instruction::IntToPtr: {
876 // Handle casts to pointers by changing them into casts to the appropriate
877 // integer type. This promotes constant folding and simplifies this code.
878 Constant *Op = CE->getOperand(0);
879 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
880 return EmitConstantValueOnly(Op);
884 case Instruction::PtrToInt: {
885 // Support only foldable casts to/from pointers that can be eliminated by
886 // changing the pointer to the appropriately sized integer type.
887 Constant *Op = CE->getOperand(0);
888 const Type *Ty = CE->getType();
890 // We can emit the pointer value into this slot if the slot is an
891 // integer slot greater or equal to the size of the pointer.
892 if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
893 return EmitConstantValueOnly(Op);
895 O << "((";
896 EmitConstantValueOnly(Op);
897 APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
899 SmallString<40> S;
900 ptrMask.toStringUnsigned(S);
901 O << ") & " << S.c_str() << ')';
902 break;
904 case Instruction::Add:
905 case Instruction::Sub:
906 case Instruction::And:
907 case Instruction::Or:
908 case Instruction::Xor:
909 O << '(';
910 EmitConstantValueOnly(CE->getOperand(0));
911 O << ')';
912 switch (Opcode) {
913 case Instruction::Add:
914 O << " + ";
915 break;
916 case Instruction::Sub:
917 O << " - ";
918 break;
919 case Instruction::And:
920 O << " & ";
921 break;
922 case Instruction::Or:
923 O << " | ";
924 break;
925 case Instruction::Xor:
926 O << " ^ ";
927 break;
928 default:
929 break;
931 O << '(';
932 EmitConstantValueOnly(CE->getOperand(1));
933 O << ')';
934 break;
935 default:
936 assert(0 && "Unsupported operator!");
938 } else {
939 assert(0 && "Unknown constant value!");
943 /// printAsCString - Print the specified array as a C compatible string, only if
944 /// the predicate isString is true.
946 static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
947 unsigned LastElt) {
948 assert(CVA->isString() && "Array is not string compatible!");
950 O << '\"';
951 for (unsigned i = 0; i != LastElt; ++i) {
952 unsigned char C =
953 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
954 printStringChar(O, C);
956 O << '\"';
959 /// EmitString - Emit a zero-byte-terminated string constant.
961 void AsmPrinter::EmitString(const ConstantArray *CVA) const {
962 unsigned NumElts = CVA->getNumOperands();
963 if (TAI->getAscizDirective() && NumElts &&
964 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
965 O << TAI->getAscizDirective();
966 printAsCString(O, CVA, NumElts-1);
967 } else {
968 O << TAI->getAsciiDirective();
969 printAsCString(O, CVA, NumElts);
971 O << '\n';
974 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
975 unsigned AddrSpace) {
976 if (CVA->isString()) {
977 EmitString(CVA);
978 } else { // Not a string. Print the values in successive locations
979 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
980 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
984 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
985 const VectorType *PTy = CP->getType();
987 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
988 EmitGlobalConstant(CP->getOperand(I));
991 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
992 unsigned AddrSpace) {
993 // Print the fields in successive locations. Pad to align if needed!
994 const TargetData *TD = TM.getTargetData();
995 unsigned Size = TD->getTypePaddedSize(CVS->getType());
996 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
997 uint64_t sizeSoFar = 0;
998 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
999 const Constant* field = CVS->getOperand(i);
1001 // Check if padding is needed and insert one or more 0s.
1002 uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
1003 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1004 - cvsLayout->getElementOffset(i)) - fieldSize;
1005 sizeSoFar += fieldSize + padSize;
1007 // Now print the actual field value.
1008 EmitGlobalConstant(field, AddrSpace);
1010 // Insert padding - this may include padding to increase the size of the
1011 // current field up to the ABI size (if the struct is not packed) as well
1012 // as padding to ensure that the next field starts at the right offset.
1013 EmitZeros(padSize, AddrSpace);
1015 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1016 "Layout of constant struct may be incorrect!");
1019 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1020 unsigned AddrSpace) {
1021 // FP Constants are printed as integer constants to avoid losing
1022 // precision...
1023 const TargetData *TD = TM.getTargetData();
1024 if (CFP->getType() == Type::DoubleTy) {
1025 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1026 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1027 if (TAI->getData64bitsDirective(AddrSpace)) {
1028 O << TAI->getData64bitsDirective(AddrSpace) << i;
1029 if (VerboseAsm)
1030 O << '\t' << TAI->getCommentString() << " double value: " << Val;
1031 O << '\n';
1032 } else if (TD->isBigEndian()) {
1033 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1034 if (VerboseAsm)
1035 O << '\t' << TAI->getCommentString()
1036 << " double most significant word " << Val;
1037 O << '\n';
1038 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1039 if (VerboseAsm)
1040 O << '\t' << TAI->getCommentString()
1041 << " double least significant word " << Val;
1042 O << '\n';
1043 } else {
1044 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1045 if (VerboseAsm)
1046 O << '\t' << TAI->getCommentString()
1047 << " double least significant word " << Val;
1048 O << '\n';
1049 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1050 if (VerboseAsm)
1051 O << '\t' << TAI->getCommentString()
1052 << " double most significant word " << Val;
1053 O << '\n';
1055 return;
1056 } else if (CFP->getType() == Type::FloatTy) {
1057 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1058 O << TAI->getData32bitsDirective(AddrSpace)
1059 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1060 if (VerboseAsm)
1061 O << '\t' << TAI->getCommentString() << " float " << Val;
1062 O << '\n';
1063 return;
1064 } else if (CFP->getType() == Type::X86_FP80Ty) {
1065 // all long double variants are printed as hex
1066 // api needed to prevent premature destruction
1067 APInt api = CFP->getValueAPF().bitcastToAPInt();
1068 const uint64_t *p = api.getRawData();
1069 // Convert to double so we can print the approximate val as a comment.
1070 APFloat DoubleVal = CFP->getValueAPF();
1071 bool ignored;
1072 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1073 &ignored);
1074 if (TD->isBigEndian()) {
1075 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1076 if (VerboseAsm)
1077 O << '\t' << TAI->getCommentString()
1078 << " long double most significant halfword of ~"
1079 << DoubleVal.convertToDouble();
1080 O << '\n';
1081 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1082 if (VerboseAsm)
1083 O << '\t' << TAI->getCommentString() << " long double next halfword";
1084 O << '\n';
1085 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1086 if (VerboseAsm)
1087 O << '\t' << TAI->getCommentString() << " long double next halfword";
1088 O << '\n';
1089 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1090 if (VerboseAsm)
1091 O << '\t' << TAI->getCommentString() << " long double next halfword";
1092 O << '\n';
1093 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1094 if (VerboseAsm)
1095 O << '\t' << TAI->getCommentString()
1096 << " long double least significant halfword";
1097 O << '\n';
1098 } else {
1099 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1100 if (VerboseAsm)
1101 O << '\t' << TAI->getCommentString()
1102 << " long double least significant halfword of ~"
1103 << DoubleVal.convertToDouble();
1104 O << '\n';
1105 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1106 if (VerboseAsm)
1107 O << '\t' << TAI->getCommentString()
1108 << " long double next halfword";
1109 O << '\n';
1110 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1111 if (VerboseAsm)
1112 O << '\t' << TAI->getCommentString()
1113 << " long double next halfword";
1114 O << '\n';
1115 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1116 if (VerboseAsm)
1117 O << '\t' << TAI->getCommentString()
1118 << " long double next halfword";
1119 O << '\n';
1120 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1121 if (VerboseAsm)
1122 O << '\t' << TAI->getCommentString()
1123 << " long double most significant halfword";
1124 O << '\n';
1126 EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1127 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1128 return;
1129 } else if (CFP->getType() == Type::PPC_FP128Ty) {
1130 // all long double variants are printed as hex
1131 // api needed to prevent premature destruction
1132 APInt api = CFP->getValueAPF().bitcastToAPInt();
1133 const uint64_t *p = api.getRawData();
1134 if (TD->isBigEndian()) {
1135 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1136 if (VerboseAsm)
1137 O << '\t' << TAI->getCommentString()
1138 << " long double most significant word";
1139 O << '\n';
1140 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1141 if (VerboseAsm)
1142 O << '\t' << TAI->getCommentString()
1143 << " long double next word";
1144 O << '\n';
1145 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1146 if (VerboseAsm)
1147 O << '\t' << TAI->getCommentString()
1148 << " long double next word";
1149 O << '\n';
1150 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1151 if (VerboseAsm)
1152 O << '\t' << TAI->getCommentString()
1153 << " long double least significant word";
1154 O << '\n';
1155 } else {
1156 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1157 if (VerboseAsm)
1158 O << '\t' << TAI->getCommentString()
1159 << " long double least significant word";
1160 O << '\n';
1161 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1162 if (VerboseAsm)
1163 O << '\t' << TAI->getCommentString()
1164 << " long double next word";
1165 O << '\n';
1166 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1167 if (VerboseAsm)
1168 O << '\t' << TAI->getCommentString()
1169 << " long double next word";
1170 O << '\n';
1171 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1172 if (VerboseAsm)
1173 O << '\t' << TAI->getCommentString()
1174 << " long double most significant word";
1175 O << '\n';
1177 return;
1178 } else assert(0 && "Floating point constant type not handled");
1181 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1182 unsigned AddrSpace) {
1183 const TargetData *TD = TM.getTargetData();
1184 unsigned BitWidth = CI->getBitWidth();
1185 assert(isPowerOf2_32(BitWidth) &&
1186 "Non-power-of-2-sized integers not handled!");
1188 // We don't expect assemblers to support integer data directives
1189 // for more than 64 bits, so we emit the data in at most 64-bit
1190 // quantities at a time.
1191 const uint64_t *RawData = CI->getValue().getRawData();
1192 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1193 uint64_t Val;
1194 if (TD->isBigEndian())
1195 Val = RawData[e - i - 1];
1196 else
1197 Val = RawData[i];
1199 if (TAI->getData64bitsDirective(AddrSpace))
1200 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1201 else if (TD->isBigEndian()) {
1202 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1203 if (VerboseAsm)
1204 O << '\t' << TAI->getCommentString()
1205 << " Double-word most significant word " << Val;
1206 O << '\n';
1207 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1208 if (VerboseAsm)
1209 O << '\t' << TAI->getCommentString()
1210 << " Double-word least significant word " << Val;
1211 O << '\n';
1212 } else {
1213 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1214 if (VerboseAsm)
1215 O << '\t' << TAI->getCommentString()
1216 << " Double-word least significant word " << Val;
1217 O << '\n';
1218 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1219 if (VerboseAsm)
1220 O << '\t' << TAI->getCommentString()
1221 << " Double-word most significant word " << Val;
1222 O << '\n';
1227 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1228 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1229 const TargetData *TD = TM.getTargetData();
1230 const Type *type = CV->getType();
1231 unsigned Size = TD->getTypePaddedSize(type);
1233 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1234 EmitZeros(Size, AddrSpace);
1235 return;
1236 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1237 EmitGlobalConstantArray(CVA , AddrSpace);
1238 return;
1239 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1240 EmitGlobalConstantStruct(CVS, AddrSpace);
1241 return;
1242 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1243 EmitGlobalConstantFP(CFP, AddrSpace);
1244 return;
1245 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1246 // Small integers are handled below; large integers are handled here.
1247 if (Size > 4) {
1248 EmitGlobalConstantLargeInt(CI, AddrSpace);
1249 return;
1251 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1252 EmitGlobalConstantVector(CP);
1253 return;
1256 printDataDirective(type, AddrSpace);
1257 EmitConstantValueOnly(CV);
1258 if (VerboseAsm) {
1259 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1260 SmallString<40> S;
1261 CI->getValue().toStringUnsigned(S, 16);
1262 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1265 O << '\n';
1268 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1269 // Target doesn't support this yet!
1270 abort();
1273 /// PrintSpecial - Print information related to the specified machine instr
1274 /// that is independent of the operand, and may be independent of the instr
1275 /// itself. This can be useful for portably encoding the comment character
1276 /// or other bits of target-specific knowledge into the asmstrings. The
1277 /// syntax used is ${:comment}. Targets can override this to add support
1278 /// for their own strange codes.
1279 void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1280 if (!strcmp(Code, "private")) {
1281 O << TAI->getPrivateGlobalPrefix();
1282 } else if (!strcmp(Code, "comment")) {
1283 if (VerboseAsm)
1284 O << TAI->getCommentString();
1285 } else if (!strcmp(Code, "uid")) {
1286 // Assign a unique ID to this machine instruction.
1287 static const MachineInstr *LastMI = 0;
1288 static const Function *F = 0;
1289 static unsigned Counter = 0U-1;
1291 // Comparing the address of MI isn't sufficient, because machineinstrs may
1292 // be allocated to the same address across functions.
1293 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1295 // If this is a new machine instruction, bump the counter.
1296 if (LastMI != MI || F != ThisF) {
1297 ++Counter;
1298 LastMI = MI;
1299 F = ThisF;
1301 O << Counter;
1302 } else {
1303 cerr << "Unknown special formatter '" << Code
1304 << "' for machine instr: " << *MI;
1305 exit(1);
1310 /// printInlineAsm - This method formats and prints the specified machine
1311 /// instruction that is an inline asm.
1312 void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1313 unsigned NumOperands = MI->getNumOperands();
1315 // Count the number of register definitions.
1316 unsigned NumDefs = 0;
1317 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1318 ++NumDefs)
1319 assert(NumDefs != NumOperands-1 && "No asm string?");
1321 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1323 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1324 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1326 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1327 // These are useful to see where empty asm's wound up.
1328 if (AsmStr[0] == 0) {
1329 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1330 return;
1333 O << TAI->getInlineAsmStart() << "\n\t";
1335 // The variant of the current asmprinter.
1336 int AsmPrinterVariant = TAI->getAssemblerDialect();
1338 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1339 const char *LastEmitted = AsmStr; // One past the last character emitted.
1341 while (*LastEmitted) {
1342 switch (*LastEmitted) {
1343 default: {
1344 // Not a special case, emit the string section literally.
1345 const char *LiteralEnd = LastEmitted+1;
1346 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1347 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1348 ++LiteralEnd;
1349 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1350 O.write(LastEmitted, LiteralEnd-LastEmitted);
1351 LastEmitted = LiteralEnd;
1352 break;
1354 case '\n':
1355 ++LastEmitted; // Consume newline character.
1356 O << '\n'; // Indent code with newline.
1357 break;
1358 case '$': {
1359 ++LastEmitted; // Consume '$' character.
1360 bool Done = true;
1362 // Handle escapes.
1363 switch (*LastEmitted) {
1364 default: Done = false; break;
1365 case '$': // $$ -> $
1366 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1367 O << '$';
1368 ++LastEmitted; // Consume second '$' character.
1369 break;
1370 case '(': // $( -> same as GCC's { character.
1371 ++LastEmitted; // Consume '(' character.
1372 if (CurVariant != -1) {
1373 cerr << "Nested variants found in inline asm string: '"
1374 << AsmStr << "'\n";
1375 exit(1);
1377 CurVariant = 0; // We're in the first variant now.
1378 break;
1379 case '|':
1380 ++LastEmitted; // consume '|' character.
1381 if (CurVariant == -1)
1382 O << '|'; // this is gcc's behavior for | outside a variant
1383 else
1384 ++CurVariant; // We're in the next variant.
1385 break;
1386 case ')': // $) -> same as GCC's } char.
1387 ++LastEmitted; // consume ')' character.
1388 if (CurVariant == -1)
1389 O << '}'; // this is gcc's behavior for } outside a variant
1390 else
1391 CurVariant = -1;
1392 break;
1394 if (Done) break;
1396 bool HasCurlyBraces = false;
1397 if (*LastEmitted == '{') { // ${variable}
1398 ++LastEmitted; // Consume '{' character.
1399 HasCurlyBraces = true;
1402 // If we have ${:foo}, then this is not a real operand reference, it is a
1403 // "magic" string reference, just like in .td files. Arrange to call
1404 // PrintSpecial.
1405 if (HasCurlyBraces && *LastEmitted == ':') {
1406 ++LastEmitted;
1407 const char *StrStart = LastEmitted;
1408 const char *StrEnd = strchr(StrStart, '}');
1409 if (StrEnd == 0) {
1410 cerr << "Unterminated ${:foo} operand in inline asm string: '"
1411 << AsmStr << "'\n";
1412 exit(1);
1415 std::string Val(StrStart, StrEnd);
1416 PrintSpecial(MI, Val.c_str());
1417 LastEmitted = StrEnd+1;
1418 break;
1421 const char *IDStart = LastEmitted;
1422 char *IDEnd;
1423 errno = 0;
1424 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1425 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1426 cerr << "Bad $ operand number in inline asm string: '"
1427 << AsmStr << "'\n";
1428 exit(1);
1430 LastEmitted = IDEnd;
1432 char Modifier[2] = { 0, 0 };
1434 if (HasCurlyBraces) {
1435 // If we have curly braces, check for a modifier character. This
1436 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1437 if (*LastEmitted == ':') {
1438 ++LastEmitted; // Consume ':' character.
1439 if (*LastEmitted == 0) {
1440 cerr << "Bad ${:} expression in inline asm string: '"
1441 << AsmStr << "'\n";
1442 exit(1);
1445 Modifier[0] = *LastEmitted;
1446 ++LastEmitted; // Consume modifier character.
1449 if (*LastEmitted != '}') {
1450 cerr << "Bad ${} expression in inline asm string: '"
1451 << AsmStr << "'\n";
1452 exit(1);
1454 ++LastEmitted; // Consume '}' character.
1457 if ((unsigned)Val >= NumOperands-1) {
1458 cerr << "Invalid $ operand number in inline asm string: '"
1459 << AsmStr << "'\n";
1460 exit(1);
1463 // Okay, we finally have a value number. Ask the target to print this
1464 // operand!
1465 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1466 unsigned OpNo = 1;
1468 bool Error = false;
1470 // Scan to find the machine operand number for the operand.
1471 for (; Val; --Val) {
1472 if (OpNo >= MI->getNumOperands()) break;
1473 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1474 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1477 if (OpNo >= MI->getNumOperands()) {
1478 Error = true;
1479 } else {
1480 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1481 ++OpNo; // Skip over the ID number.
1483 if (Modifier[0]=='l') // labels are target independent
1484 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1485 false, false, false);
1486 else {
1487 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1488 if ((OpFlags & 7) == 4) {
1489 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1490 Modifier[0] ? Modifier : 0);
1491 } else {
1492 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1493 Modifier[0] ? Modifier : 0);
1497 if (Error) {
1498 cerr << "Invalid operand found in inline asm: '"
1499 << AsmStr << "'\n";
1500 MI->dump();
1501 exit(1);
1504 break;
1508 O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1511 /// printImplicitDef - This method prints the specified machine instruction
1512 /// that is an implicit def.
1513 void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1514 if (VerboseAsm)
1515 O << '\t' << TAI->getCommentString() << " implicit-def: "
1516 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1519 /// printLabel - This method prints a local label used by debug and
1520 /// exception handling tables.
1521 void AsmPrinter::printLabel(const MachineInstr *MI) const {
1522 printLabel(MI->getOperand(0).getImm());
1525 void AsmPrinter::printLabel(unsigned Id) const {
1526 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1529 /// printDeclare - This method prints a local variable declaration used by
1530 /// debug tables.
1531 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1532 /// entry into dwarf table.
1533 void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1534 unsigned FI = MI->getOperand(0).getIndex();
1535 GlobalValue *GV = MI->getOperand(1).getGlobal();
1536 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1539 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1540 /// instruction, using the specified assembler variant. Targets should
1541 /// overried this to format as appropriate.
1542 bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1543 unsigned AsmVariant, const char *ExtraCode) {
1544 // Target doesn't support this yet!
1545 return true;
1548 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1549 unsigned AsmVariant,
1550 const char *ExtraCode) {
1551 // Target doesn't support this yet!
1552 return true;
1555 /// printBasicBlockLabel - This method prints the label for the specified
1556 /// MachineBasicBlock
1557 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1558 bool printAlign,
1559 bool printColon,
1560 bool printComment) const {
1561 if (printAlign) {
1562 unsigned Align = MBB->getAlignment();
1563 if (Align)
1564 EmitAlignment(Log2_32(Align));
1567 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1568 << MBB->getNumber();
1569 if (printColon)
1570 O << ':';
1571 if (printComment && MBB->getBasicBlock())
1572 O << '\t' << TAI->getCommentString() << ' '
1573 << MBB->getBasicBlock()->getNameStart();
1576 /// printPICJumpTableSetLabel - This method prints a set label for the
1577 /// specified MachineBasicBlock for a jumptable entry.
1578 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1579 const MachineBasicBlock *MBB) const {
1580 if (!TAI->getSetDirective())
1581 return;
1583 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1584 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1585 printBasicBlockLabel(MBB, false, false, false);
1586 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1587 << '_' << uid << '\n';
1590 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1591 const MachineBasicBlock *MBB) const {
1592 if (!TAI->getSetDirective())
1593 return;
1595 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1596 << getFunctionNumber() << '_' << uid << '_' << uid2
1597 << "_set_" << MBB->getNumber() << ',';
1598 printBasicBlockLabel(MBB, false, false, false);
1599 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1600 << '_' << uid << '_' << uid2 << '\n';
1603 /// printDataDirective - This method prints the asm directive for the
1604 /// specified type.
1605 void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1606 const TargetData *TD = TM.getTargetData();
1607 switch (type->getTypeID()) {
1608 case Type::IntegerTyID: {
1609 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1610 if (BitWidth <= 8)
1611 O << TAI->getData8bitsDirective(AddrSpace);
1612 else if (BitWidth <= 16)
1613 O << TAI->getData16bitsDirective(AddrSpace);
1614 else if (BitWidth <= 32)
1615 O << TAI->getData32bitsDirective(AddrSpace);
1616 else if (BitWidth <= 64) {
1617 assert(TAI->getData64bitsDirective(AddrSpace) &&
1618 "Target cannot handle 64-bit constant exprs!");
1619 O << TAI->getData64bitsDirective(AddrSpace);
1620 } else {
1621 assert(0 && "Target cannot handle given data directive width!");
1623 break;
1625 case Type::PointerTyID:
1626 if (TD->getPointerSize() == 8) {
1627 assert(TAI->getData64bitsDirective(AddrSpace) &&
1628 "Target cannot handle 64-bit pointer exprs!");
1629 O << TAI->getData64bitsDirective(AddrSpace);
1630 } else if (TD->getPointerSize() == 2) {
1631 O << TAI->getData16bitsDirective(AddrSpace);
1632 } else if (TD->getPointerSize() == 1) {
1633 O << TAI->getData8bitsDirective(AddrSpace);
1634 } else {
1635 O << TAI->getData32bitsDirective(AddrSpace);
1637 break;
1638 case Type::FloatTyID: case Type::DoubleTyID:
1639 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1640 assert (0 && "Should have already output floating point constant.");
1641 default:
1642 assert (0 && "Can't handle printing this type of thing");
1643 break;
1647 void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1648 const char *Prefix) {
1649 if (Name[0]=='\"')
1650 O << '\"';
1651 O << TAI->getPrivateGlobalPrefix();
1652 if (Prefix) O << Prefix;
1653 if (Name[0]=='\"')
1654 O << '\"';
1655 if (Name[0]=='\"')
1656 O << Name[1];
1657 else
1658 O << Name;
1659 O << Suffix;
1660 if (Name[0]=='\"')
1661 O << '\"';
1664 void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1665 printSuffixedName(Name.c_str(), Suffix);
1668 void AsmPrinter::printVisibility(const std::string& Name,
1669 unsigned Visibility) const {
1670 if (Visibility == GlobalValue::HiddenVisibility) {
1671 if (const char *Directive = TAI->getHiddenDirective())
1672 O << Directive << Name << '\n';
1673 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1674 if (const char *Directive = TAI->getProtectedDirective())
1675 O << Directive << Name << '\n';
1679 void AsmPrinter::printOffset(int64_t Offset) const {
1680 if (Offset > 0)
1681 O << '+' << Offset;
1682 else if (Offset < 0)
1683 O << Offset;
1686 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1687 if (!S->usesMetadata())
1688 return 0;
1690 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1691 if (GCPI != GCMetadataPrinters.end())
1692 return GCPI->second;
1694 const char *Name = S->getName().c_str();
1696 for (GCMetadataPrinterRegistry::iterator
1697 I = GCMetadataPrinterRegistry::begin(),
1698 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1699 if (strcmp(Name, I->getName()) == 0) {
1700 GCMetadataPrinter *GMP = I->instantiate();
1701 GMP->S = S;
1702 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1703 return GMP;
1706 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1707 abort();