spillPhysRegAroundRegDefsUses() may have invalidated iterators stored in fixed_ Inter...
[llvm/msp430.git] / lib / CodeGen / IntrinsicLowering.cpp
blob56b1736b4156f4e4e40ea04acfca5f10d74895f7
1 //===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the IntrinsicLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/Module.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Type.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/Streams.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace llvm;
26 template <class ArgIt>
27 static void EnsureFunctionExists(Module &M, const char *Name,
28 ArgIt ArgBegin, ArgIt ArgEnd,
29 const Type *RetTy) {
30 // Insert a correctly-typed definition now.
31 std::vector<const Type *> ParamTys;
32 for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
33 ParamTys.push_back(I->getType());
34 M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
37 static void EnsureFPIntrinsicsExist(Module &M, Function *Fn,
38 const char *FName,
39 const char *DName, const char *LDName) {
40 // Insert definitions for all the floating point types.
41 switch((int)Fn->arg_begin()->getType()->getTypeID()) {
42 case Type::FloatTyID:
43 EnsureFunctionExists(M, FName, Fn->arg_begin(), Fn->arg_end(),
44 Type::FloatTy);
45 break;
46 case Type::DoubleTyID:
47 EnsureFunctionExists(M, DName, Fn->arg_begin(), Fn->arg_end(),
48 Type::DoubleTy);
49 break;
50 case Type::X86_FP80TyID:
51 case Type::FP128TyID:
52 case Type::PPC_FP128TyID:
53 EnsureFunctionExists(M, LDName, Fn->arg_begin(), Fn->arg_end(),
54 Fn->arg_begin()->getType());
55 break;
59 /// ReplaceCallWith - This function is used when we want to lower an intrinsic
60 /// call to a call of an external function. This handles hard cases such as
61 /// when there was already a prototype for the external function, and if that
62 /// prototype doesn't match the arguments we expect to pass in.
63 template <class ArgIt>
64 static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
65 ArgIt ArgBegin, ArgIt ArgEnd,
66 const Type *RetTy, Constant *&FCache) {
67 if (!FCache) {
68 // If we haven't already looked up this function, check to see if the
69 // program already contains a function with this name.
70 Module *M = CI->getParent()->getParent()->getParent();
71 // Get or insert the definition now.
72 std::vector<const Type *> ParamTys;
73 for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
74 ParamTys.push_back((*I)->getType());
75 FCache = M->getOrInsertFunction(NewFn,
76 FunctionType::get(RetTy, ParamTys, false));
79 SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
80 CallInst *NewCI = CallInst::Create(FCache, Args.begin(), Args.end(),
81 CI->getName(), CI);
82 if (!CI->use_empty())
83 CI->replaceAllUsesWith(NewCI);
84 return NewCI;
87 void IntrinsicLowering::AddPrototypes(Module &M) {
88 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
89 if (I->isDeclaration() && !I->use_empty())
90 switch (I->getIntrinsicID()) {
91 default: break;
92 case Intrinsic::setjmp:
93 EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
94 Type::Int32Ty);
95 break;
96 case Intrinsic::longjmp:
97 EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
98 Type::VoidTy);
99 break;
100 case Intrinsic::siglongjmp:
101 EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
102 Type::VoidTy);
103 break;
104 case Intrinsic::memcpy:
105 M.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty),
106 PointerType::getUnqual(Type::Int8Ty),
107 PointerType::getUnqual(Type::Int8Ty),
108 TD.getIntPtrType(), (Type *)0);
109 break;
110 case Intrinsic::memmove:
111 M.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty),
112 PointerType::getUnqual(Type::Int8Ty),
113 PointerType::getUnqual(Type::Int8Ty),
114 TD.getIntPtrType(), (Type *)0);
115 break;
116 case Intrinsic::memset:
117 M.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty),
118 PointerType::getUnqual(Type::Int8Ty),
119 Type::Int32Ty,
120 TD.getIntPtrType(), (Type *)0);
121 break;
122 case Intrinsic::sqrt:
123 EnsureFPIntrinsicsExist(M, I, "sqrtf", "sqrt", "sqrtl");
124 break;
125 case Intrinsic::sin:
126 EnsureFPIntrinsicsExist(M, I, "sinf", "sin", "sinl");
127 break;
128 case Intrinsic::cos:
129 EnsureFPIntrinsicsExist(M, I, "cosf", "cos", "cosl");
130 break;
131 case Intrinsic::pow:
132 EnsureFPIntrinsicsExist(M, I, "powf", "pow", "powl");
133 break;
134 case Intrinsic::log:
135 EnsureFPIntrinsicsExist(M, I, "logf", "log", "logl");
136 break;
137 case Intrinsic::log2:
138 EnsureFPIntrinsicsExist(M, I, "log2f", "log2", "log2l");
139 break;
140 case Intrinsic::log10:
141 EnsureFPIntrinsicsExist(M, I, "log10f", "log10", "log10l");
142 break;
143 case Intrinsic::exp:
144 EnsureFPIntrinsicsExist(M, I, "expf", "exp", "expl");
145 break;
146 case Intrinsic::exp2:
147 EnsureFPIntrinsicsExist(M, I, "exp2f", "exp2", "exp2l");
148 break;
152 /// LowerBSWAP - Emit the code to lower bswap of V before the specified
153 /// instruction IP.
154 static Value *LowerBSWAP(Value *V, Instruction *IP) {
155 assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
157 unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
159 switch(BitSize) {
160 default: assert(0 && "Unhandled type size of value to byteswap!");
161 case 16: {
162 Value *Tmp1 = BinaryOperator::CreateShl(V,
163 ConstantInt::get(V->getType(),8),"bswap.2",IP);
164 Value *Tmp2 = BinaryOperator::CreateLShr(V,
165 ConstantInt::get(V->getType(),8),"bswap.1",IP);
166 V = BinaryOperator::CreateOr(Tmp1, Tmp2, "bswap.i16", IP);
167 break;
169 case 32: {
170 Value *Tmp4 = BinaryOperator::CreateShl(V,
171 ConstantInt::get(V->getType(),24),"bswap.4", IP);
172 Value *Tmp3 = BinaryOperator::CreateShl(V,
173 ConstantInt::get(V->getType(),8),"bswap.3",IP);
174 Value *Tmp2 = BinaryOperator::CreateLShr(V,
175 ConstantInt::get(V->getType(),8),"bswap.2",IP);
176 Value *Tmp1 = BinaryOperator::CreateLShr(V,
177 ConstantInt::get(V->getType(),24),"bswap.1", IP);
178 Tmp3 = BinaryOperator::CreateAnd(Tmp3,
179 ConstantInt::get(Type::Int32Ty, 0xFF0000),
180 "bswap.and3", IP);
181 Tmp2 = BinaryOperator::CreateAnd(Tmp2,
182 ConstantInt::get(Type::Int32Ty, 0xFF00),
183 "bswap.and2", IP);
184 Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or1", IP);
185 Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or2", IP);
186 V = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.i32", IP);
187 break;
189 case 64: {
190 Value *Tmp8 = BinaryOperator::CreateShl(V,
191 ConstantInt::get(V->getType(),56),"bswap.8", IP);
192 Value *Tmp7 = BinaryOperator::CreateShl(V,
193 ConstantInt::get(V->getType(),40),"bswap.7", IP);
194 Value *Tmp6 = BinaryOperator::CreateShl(V,
195 ConstantInt::get(V->getType(),24),"bswap.6", IP);
196 Value *Tmp5 = BinaryOperator::CreateShl(V,
197 ConstantInt::get(V->getType(),8),"bswap.5", IP);
198 Value* Tmp4 = BinaryOperator::CreateLShr(V,
199 ConstantInt::get(V->getType(),8),"bswap.4", IP);
200 Value* Tmp3 = BinaryOperator::CreateLShr(V,
201 ConstantInt::get(V->getType(),24),"bswap.3", IP);
202 Value* Tmp2 = BinaryOperator::CreateLShr(V,
203 ConstantInt::get(V->getType(),40),"bswap.2", IP);
204 Value* Tmp1 = BinaryOperator::CreateLShr(V,
205 ConstantInt::get(V->getType(),56),"bswap.1", IP);
206 Tmp7 = BinaryOperator::CreateAnd(Tmp7,
207 ConstantInt::get(Type::Int64Ty,
208 0xFF000000000000ULL),
209 "bswap.and7", IP);
210 Tmp6 = BinaryOperator::CreateAnd(Tmp6,
211 ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
212 "bswap.and6", IP);
213 Tmp5 = BinaryOperator::CreateAnd(Tmp5,
214 ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
215 "bswap.and5", IP);
216 Tmp4 = BinaryOperator::CreateAnd(Tmp4,
217 ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
218 "bswap.and4", IP);
219 Tmp3 = BinaryOperator::CreateAnd(Tmp3,
220 ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
221 "bswap.and3", IP);
222 Tmp2 = BinaryOperator::CreateAnd(Tmp2,
223 ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
224 "bswap.and2", IP);
225 Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp7, "bswap.or1", IP);
226 Tmp6 = BinaryOperator::CreateOr(Tmp6, Tmp5, "bswap.or2", IP);
227 Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or3", IP);
228 Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or4", IP);
229 Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp6, "bswap.or5", IP);
230 Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.or6", IP);
231 V = BinaryOperator::CreateOr(Tmp8, Tmp4, "bswap.i64", IP);
232 break;
235 return V;
238 /// LowerCTPOP - Emit the code to lower ctpop of V before the specified
239 /// instruction IP.
240 static Value *LowerCTPOP(Value *V, Instruction *IP) {
241 assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
243 static const uint64_t MaskValues[6] = {
244 0x5555555555555555ULL, 0x3333333333333333ULL,
245 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
246 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
249 unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
250 unsigned WordSize = (BitSize + 63) / 64;
251 Value *Count = ConstantInt::get(V->getType(), 0);
253 for (unsigned n = 0; n < WordSize; ++n) {
254 Value *PartValue = V;
255 for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
256 i <<= 1, ++ct) {
257 Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
258 Value *LHS = BinaryOperator::CreateAnd(
259 PartValue, MaskCst, "cppop.and1", IP);
260 Value *VShift = BinaryOperator::CreateLShr(PartValue,
261 ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
262 Value *RHS = BinaryOperator::CreateAnd(VShift, MaskCst, "cppop.and2", IP);
263 PartValue = BinaryOperator::CreateAdd(LHS, RHS, "ctpop.step", IP);
265 Count = BinaryOperator::CreateAdd(PartValue, Count, "ctpop.part", IP);
266 if (BitSize > 64) {
267 V = BinaryOperator::CreateLShr(V, ConstantInt::get(V->getType(), 64),
268 "ctpop.part.sh", IP);
269 BitSize -= 64;
273 return Count;
276 /// LowerCTLZ - Emit the code to lower ctlz of V before the specified
277 /// instruction IP.
278 static Value *LowerCTLZ(Value *V, Instruction *IP) {
280 unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
281 for (unsigned i = 1; i < BitSize; i <<= 1) {
282 Value *ShVal = ConstantInt::get(V->getType(), i);
283 ShVal = BinaryOperator::CreateLShr(V, ShVal, "ctlz.sh", IP);
284 V = BinaryOperator::CreateOr(V, ShVal, "ctlz.step", IP);
287 V = BinaryOperator::CreateNot(V, "", IP);
288 return LowerCTPOP(V, IP);
291 /// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
292 /// three integer arguments. The first argument is the Value from which the
293 /// bits will be selected. It may be of any bit width. The second and third
294 /// arguments specify a range of bits to select with the second argument
295 /// specifying the low bit and the third argument specifying the high bit. Both
296 /// must be type i32. The result is the corresponding selected bits from the
297 /// Value in the same width as the Value (first argument). If the low bit index
298 /// is higher than the high bit index then the inverse selection is done and
299 /// the bits are returned in inverse order.
300 /// @brief Lowering of llvm.part.select intrinsic.
301 static Instruction *LowerPartSelect(CallInst *CI) {
302 // Make sure we're dealing with a part select intrinsic here
303 Function *F = CI->getCalledFunction();
304 const FunctionType *FT = F->getFunctionType();
305 if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
306 FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
307 !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
308 return CI;
310 // Get the intrinsic implementation function by converting all the . to _
311 // in the intrinsic's function name and then reconstructing the function
312 // declaration.
313 std::string Name(F->getName());
314 for (unsigned i = 4; i < Name.length(); ++i)
315 if (Name[i] == '.')
316 Name[i] = '_';
317 Module* M = F->getParent();
318 F = cast<Function>(M->getOrInsertFunction(Name, FT));
319 F->setLinkage(GlobalValue::WeakAnyLinkage);
321 // If we haven't defined the impl function yet, do so now
322 if (F->isDeclaration()) {
324 // Get the arguments to the function
325 Function::arg_iterator args = F->arg_begin();
326 Value* Val = args++; Val->setName("Val");
327 Value* Lo = args++; Lo->setName("Lo");
328 Value* Hi = args++; Hi->setName("High");
330 // We want to select a range of bits here such that [Hi, Lo] is shifted
331 // down to the low bits. However, it is quite possible that Hi is smaller
332 // than Lo in which case the bits have to be reversed.
334 // Create the blocks we will need for the two cases (forward, reverse)
335 BasicBlock* CurBB = BasicBlock::Create("entry", F);
336 BasicBlock *RevSize = BasicBlock::Create("revsize", CurBB->getParent());
337 BasicBlock *FwdSize = BasicBlock::Create("fwdsize", CurBB->getParent());
338 BasicBlock *Compute = BasicBlock::Create("compute", CurBB->getParent());
339 BasicBlock *Reverse = BasicBlock::Create("reverse", CurBB->getParent());
340 BasicBlock *RsltBlk = BasicBlock::Create("result", CurBB->getParent());
342 // Cast Hi and Lo to the size of Val so the widths are all the same
343 if (Hi->getType() != Val->getType())
344 Hi = CastInst::CreateIntegerCast(Hi, Val->getType(), false,
345 "tmp", CurBB);
346 if (Lo->getType() != Val->getType())
347 Lo = CastInst::CreateIntegerCast(Lo, Val->getType(), false,
348 "tmp", CurBB);
350 // Compute a few things that both cases will need, up front.
351 Constant* Zero = ConstantInt::get(Val->getType(), 0);
352 Constant* One = ConstantInt::get(Val->getType(), 1);
353 Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
355 // Compare the Hi and Lo bit positions. This is used to determine
356 // which case we have (forward or reverse)
357 ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
358 BranchInst::Create(RevSize, FwdSize, Cmp, CurBB);
360 // First, copmute the number of bits in the forward case.
361 Instruction* FBitSize =
362 BinaryOperator::CreateSub(Hi, Lo,"fbits", FwdSize);
363 BranchInst::Create(Compute, FwdSize);
365 // Second, compute the number of bits in the reverse case.
366 Instruction* RBitSize =
367 BinaryOperator::CreateSub(Lo, Hi, "rbits", RevSize);
368 BranchInst::Create(Compute, RevSize);
370 // Now, compute the bit range. Start by getting the bitsize and the shift
371 // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
372 // the number of bits we want in the range. We shift the bits down to the
373 // least significant bits, apply the mask to zero out unwanted high bits,
374 // and we have computed the "forward" result. It may still need to be
375 // reversed.
377 // Get the BitSize from one of the two subtractions
378 PHINode *BitSize = PHINode::Create(Val->getType(), "bits", Compute);
379 BitSize->reserveOperandSpace(2);
380 BitSize->addIncoming(FBitSize, FwdSize);
381 BitSize->addIncoming(RBitSize, RevSize);
383 // Get the ShiftAmount as the smaller of Hi/Lo
384 PHINode *ShiftAmt = PHINode::Create(Val->getType(), "shiftamt", Compute);
385 ShiftAmt->reserveOperandSpace(2);
386 ShiftAmt->addIncoming(Lo, FwdSize);
387 ShiftAmt->addIncoming(Hi, RevSize);
389 // Increment the bit size
390 Instruction *BitSizePlusOne =
391 BinaryOperator::CreateAdd(BitSize, One, "bits", Compute);
393 // Create a Mask to zero out the high order bits.
394 Instruction* Mask =
395 BinaryOperator::CreateShl(AllOnes, BitSizePlusOne, "mask", Compute);
396 Mask = BinaryOperator::CreateNot(Mask, "mask", Compute);
398 // Shift the bits down and apply the mask
399 Instruction* FRes =
400 BinaryOperator::CreateLShr(Val, ShiftAmt, "fres", Compute);
401 FRes = BinaryOperator::CreateAnd(FRes, Mask, "fres", Compute);
402 BranchInst::Create(Reverse, RsltBlk, Cmp, Compute);
404 // In the Reverse block we have the mask already in FRes but we must reverse
405 // it by shifting FRes bits right and putting them in RRes by shifting them
406 // in from left.
408 // First set up our loop counters
409 PHINode *Count = PHINode::Create(Val->getType(), "count", Reverse);
410 Count->reserveOperandSpace(2);
411 Count->addIncoming(BitSizePlusOne, Compute);
413 // Next, get the value that we are shifting.
414 PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", Reverse);
415 BitsToShift->reserveOperandSpace(2);
416 BitsToShift->addIncoming(FRes, Compute);
418 // Finally, get the result of the last computation
419 PHINode *RRes = PHINode::Create(Val->getType(), "rres", Reverse);
420 RRes->reserveOperandSpace(2);
421 RRes->addIncoming(Zero, Compute);
423 // Decrement the counter
424 Instruction *Decr = BinaryOperator::CreateSub(Count, One, "decr", Reverse);
425 Count->addIncoming(Decr, Reverse);
427 // Compute the Bit that we want to move
428 Instruction *Bit =
429 BinaryOperator::CreateAnd(BitsToShift, One, "bit", Reverse);
431 // Compute the new value for next iteration.
432 Instruction *NewVal =
433 BinaryOperator::CreateLShr(BitsToShift, One, "rshift", Reverse);
434 BitsToShift->addIncoming(NewVal, Reverse);
436 // Shift the bit into the low bits of the result.
437 Instruction *NewRes =
438 BinaryOperator::CreateShl(RRes, One, "lshift", Reverse);
439 NewRes = BinaryOperator::CreateOr(NewRes, Bit, "addbit", Reverse);
440 RRes->addIncoming(NewRes, Reverse);
442 // Terminate loop if we've moved all the bits.
443 ICmpInst *Cond =
444 new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
445 BranchInst::Create(RsltBlk, Reverse, Cond, Reverse);
447 // Finally, in the result block, select one of the two results with a PHI
448 // node and return the result;
449 CurBB = RsltBlk;
450 PHINode *BitSelect = PHINode::Create(Val->getType(), "part_select", CurBB);
451 BitSelect->reserveOperandSpace(2);
452 BitSelect->addIncoming(FRes, Compute);
453 BitSelect->addIncoming(NewRes, Reverse);
454 ReturnInst::Create(BitSelect, CurBB);
457 // Return a call to the implementation function
458 Value *Args[] = {
459 CI->getOperand(1),
460 CI->getOperand(2),
461 CI->getOperand(3)
463 return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
466 /// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
467 /// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
468 /// The first two arguments can be any bit width. The result is the same width
469 /// as %Value. The operation replaces bits between %Low and %High with the value
470 /// in %Replacement. If %Replacement is not the same width, it is truncated or
471 /// zero extended as appropriate to fit the bits being replaced. If %Low is
472 /// greater than %High then the inverse set of bits are replaced.
473 /// @brief Lowering of llvm.bit.part.set intrinsic.
474 static Instruction *LowerPartSet(CallInst *CI) {
475 // Make sure we're dealing with a part select intrinsic here
476 Function *F = CI->getCalledFunction();
477 const FunctionType *FT = F->getFunctionType();
478 if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
479 FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
480 !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
481 !FT->getParamType(3)->isInteger())
482 return CI;
484 // Get the intrinsic implementation function by converting all the . to _
485 // in the intrinsic's function name and then reconstructing the function
486 // declaration.
487 std::string Name(F->getName());
488 for (unsigned i = 4; i < Name.length(); ++i)
489 if (Name[i] == '.')
490 Name[i] = '_';
491 Module* M = F->getParent();
492 F = cast<Function>(M->getOrInsertFunction(Name, FT));
493 F->setLinkage(GlobalValue::WeakAnyLinkage);
495 // If we haven't defined the impl function yet, do so now
496 if (F->isDeclaration()) {
497 // Get the arguments for the function.
498 Function::arg_iterator args = F->arg_begin();
499 Value* Val = args++; Val->setName("Val");
500 Value* Rep = args++; Rep->setName("Rep");
501 Value* Lo = args++; Lo->setName("Lo");
502 Value* Hi = args++; Hi->setName("Hi");
504 // Get some types we need
505 const IntegerType* ValTy = cast<IntegerType>(Val->getType());
506 const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
507 uint32_t ValBits = ValTy->getBitWidth();
508 uint32_t RepBits = RepTy->getBitWidth();
510 // Constant Definitions
511 ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
512 ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
513 ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
514 ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
515 ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
516 ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
517 ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
519 // Basic blocks we fill in below.
520 BasicBlock* entry = BasicBlock::Create("entry", F, 0);
521 BasicBlock* large = BasicBlock::Create("large", F, 0);
522 BasicBlock* small = BasicBlock::Create("small", F, 0);
523 BasicBlock* reverse = BasicBlock::Create("reverse", F, 0);
524 BasicBlock* result = BasicBlock::Create("result", F, 0);
526 // BASIC BLOCK: entry
527 // First, get the number of bits that we're placing as an i32
528 ICmpInst* is_forward =
529 new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
530 SelectInst* Hi_pn = SelectInst::Create(is_forward, Hi, Lo, "", entry);
531 SelectInst* Lo_pn = SelectInst::Create(is_forward, Lo, Hi, "", entry);
532 BinaryOperator* NumBits = BinaryOperator::CreateSub(Hi_pn, Lo_pn, "",entry);
533 NumBits = BinaryOperator::CreateAdd(NumBits, One, "", entry);
534 // Now, convert Lo and Hi to ValTy bit width
535 if (ValBits > 32) {
536 Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
537 } else if (ValBits < 32) {
538 Lo = new TruncInst(Lo_pn, ValTy, "", entry);
539 } else {
540 Lo = Lo_pn;
542 // Determine if the replacement bits are larger than the number of bits we
543 // are replacing and deal with it.
544 ICmpInst* is_large =
545 new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
546 BranchInst::Create(large, small, is_large, entry);
548 // BASIC BLOCK: large
549 Instruction* MaskBits =
550 BinaryOperator::CreateSub(RepBitWidth, NumBits, "", large);
551 MaskBits = CastInst::CreateIntegerCast(MaskBits, RepMask->getType(),
552 false, "", large);
553 BinaryOperator* Mask1 =
554 BinaryOperator::CreateLShr(RepMask, MaskBits, "", large);
555 BinaryOperator* Rep2 = BinaryOperator::CreateAnd(Mask1, Rep, "", large);
556 BranchInst::Create(small, large);
558 // BASIC BLOCK: small
559 PHINode* Rep3 = PHINode::Create(RepTy, "", small);
560 Rep3->reserveOperandSpace(2);
561 Rep3->addIncoming(Rep2, large);
562 Rep3->addIncoming(Rep, entry);
563 Value* Rep4 = Rep3;
564 if (ValBits > RepBits)
565 Rep4 = new ZExtInst(Rep3, ValTy, "", small);
566 else if (ValBits < RepBits)
567 Rep4 = new TruncInst(Rep3, ValTy, "", small);
568 BranchInst::Create(result, reverse, is_forward, small);
570 // BASIC BLOCK: reverse (reverses the bits of the replacement)
571 // Set up our loop counter as a PHI so we can decrement on each iteration.
572 // We will loop for the number of bits in the replacement value.
573 PHINode *Count = PHINode::Create(Type::Int32Ty, "count", reverse);
574 Count->reserveOperandSpace(2);
575 Count->addIncoming(NumBits, small);
577 // Get the value that we are shifting bits out of as a PHI because
578 // we'll change this with each iteration.
579 PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", reverse);
580 BitsToShift->reserveOperandSpace(2);
581 BitsToShift->addIncoming(Rep4, small);
583 // Get the result of the last computation or zero on first iteration
584 PHINode *RRes = PHINode::Create(Val->getType(), "rres", reverse);
585 RRes->reserveOperandSpace(2);
586 RRes->addIncoming(ValZero, small);
588 // Decrement the loop counter by one
589 Instruction *Decr = BinaryOperator::CreateSub(Count, One, "", reverse);
590 Count->addIncoming(Decr, reverse);
592 // Get the bit that we want to move into the result
593 Value *Bit = BinaryOperator::CreateAnd(BitsToShift, ValOne, "", reverse);
595 // Compute the new value of the bits to shift for the next iteration.
596 Value *NewVal = BinaryOperator::CreateLShr(BitsToShift, ValOne,"", reverse);
597 BitsToShift->addIncoming(NewVal, reverse);
599 // Shift the bit we extracted into the low bit of the result.
600 Instruction *NewRes = BinaryOperator::CreateShl(RRes, ValOne, "", reverse);
601 NewRes = BinaryOperator::CreateOr(NewRes, Bit, "", reverse);
602 RRes->addIncoming(NewRes, reverse);
604 // Terminate loop if we've moved all the bits.
605 ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
606 BranchInst::Create(result, reverse, Cond, reverse);
608 // BASIC BLOCK: result
609 PHINode *Rplcmnt = PHINode::Create(Val->getType(), "", result);
610 Rplcmnt->reserveOperandSpace(2);
611 Rplcmnt->addIncoming(NewRes, reverse);
612 Rplcmnt->addIncoming(Rep4, small);
613 Value* t0 = CastInst::CreateIntegerCast(NumBits,ValTy,false,"",result);
614 Value* t1 = BinaryOperator::CreateShl(ValMask, Lo, "", result);
615 Value* t2 = BinaryOperator::CreateNot(t1, "", result);
616 Value* t3 = BinaryOperator::CreateShl(t1, t0, "", result);
617 Value* t4 = BinaryOperator::CreateOr(t2, t3, "", result);
618 Value* t5 = BinaryOperator::CreateAnd(t4, Val, "", result);
619 Value* t6 = BinaryOperator::CreateShl(Rplcmnt, Lo, "", result);
620 Value* Rslt = BinaryOperator::CreateOr(t5, t6, "part_set", result);
621 ReturnInst::Create(Rslt, result);
624 // Return a call to the implementation function
625 Value *Args[] = {
626 CI->getOperand(1),
627 CI->getOperand(2),
628 CI->getOperand(3),
629 CI->getOperand(4)
631 return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
634 static void ReplaceFPIntrinsicWithCall(CallInst *CI, Constant *FCache,
635 Constant *DCache, Constant *LDCache,
636 const char *Fname, const char *Dname,
637 const char *LDname) {
638 switch (CI->getOperand(1)->getType()->getTypeID()) {
639 default: assert(0 && "Invalid type in intrinsic"); abort();
640 case Type::FloatTyID:
641 ReplaceCallWith(Fname, CI, CI->op_begin()+1, CI->op_end(),
642 Type::FloatTy, FCache);
643 break;
644 case Type::DoubleTyID:
645 ReplaceCallWith(Dname, CI, CI->op_begin()+1, CI->op_end(),
646 Type::DoubleTy, DCache);
647 break;
648 case Type::X86_FP80TyID:
649 case Type::FP128TyID:
650 case Type::PPC_FP128TyID:
651 ReplaceCallWith(LDname, CI, CI->op_begin()+1, CI->op_end(),
652 CI->getOperand(1)->getType(), LDCache);
653 break;
657 void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
658 Function *Callee = CI->getCalledFunction();
659 assert(Callee && "Cannot lower an indirect call!");
661 switch (Callee->getIntrinsicID()) {
662 case Intrinsic::not_intrinsic:
663 cerr << "Cannot lower a call to a non-intrinsic function '"
664 << Callee->getName() << "'!\n";
665 abort();
666 default:
667 cerr << "Error: Code generator does not support intrinsic function '"
668 << Callee->getName() << "'!\n";
669 abort();
671 // The setjmp/longjmp intrinsics should only exist in the code if it was
672 // never optimized (ie, right out of the CFE), or if it has been hacked on
673 // by the lowerinvoke pass. In both cases, the right thing to do is to
674 // convert the call to an explicit setjmp or longjmp call.
675 case Intrinsic::setjmp: {
676 static Constant *SetjmpFCache = 0;
677 Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
678 Type::Int32Ty, SetjmpFCache);
679 if (CI->getType() != Type::VoidTy)
680 CI->replaceAllUsesWith(V);
681 break;
683 case Intrinsic::sigsetjmp:
684 if (CI->getType() != Type::VoidTy)
685 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
686 break;
688 case Intrinsic::longjmp: {
689 static Constant *LongjmpFCache = 0;
690 ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
691 Type::VoidTy, LongjmpFCache);
692 break;
695 case Intrinsic::siglongjmp: {
696 // Insert the call to abort
697 static Constant *AbortFCache = 0;
698 ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
699 Type::VoidTy, AbortFCache);
700 break;
702 case Intrinsic::ctpop:
703 CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
704 break;
706 case Intrinsic::bswap:
707 CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
708 break;
710 case Intrinsic::ctlz:
711 CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
712 break;
714 case Intrinsic::cttz: {
715 // cttz(x) -> ctpop(~X & (X-1))
716 Value *Src = CI->getOperand(1);
717 Value *NotSrc = BinaryOperator::CreateNot(Src, Src->getName()+".not", CI);
718 Value *SrcM1 = ConstantInt::get(Src->getType(), 1);
719 SrcM1 = BinaryOperator::CreateSub(Src, SrcM1, "", CI);
720 Src = LowerCTPOP(BinaryOperator::CreateAnd(NotSrc, SrcM1, "", CI), CI);
721 CI->replaceAllUsesWith(Src);
722 break;
725 case Intrinsic::part_select:
726 CI->replaceAllUsesWith(LowerPartSelect(CI));
727 break;
729 case Intrinsic::part_set:
730 CI->replaceAllUsesWith(LowerPartSet(CI));
731 break;
733 case Intrinsic::stacksave:
734 case Intrinsic::stackrestore: {
735 static bool Warned = false;
736 if (!Warned)
737 cerr << "WARNING: this target does not support the llvm.stack"
738 << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
739 "save" : "restore") << " intrinsic.\n";
740 Warned = true;
741 if (Callee->getIntrinsicID() == Intrinsic::stacksave)
742 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
743 break;
746 case Intrinsic::returnaddress:
747 case Intrinsic::frameaddress:
748 cerr << "WARNING: this target does not support the llvm."
749 << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
750 "return" : "frame") << "address intrinsic.\n";
751 CI->replaceAllUsesWith(ConstantPointerNull::get(
752 cast<PointerType>(CI->getType())));
753 break;
755 case Intrinsic::prefetch:
756 break; // Simply strip out prefetches on unsupported architectures
758 case Intrinsic::pcmarker:
759 break; // Simply strip out pcmarker on unsupported architectures
760 case Intrinsic::readcyclecounter: {
761 cerr << "WARNING: this target does not support the llvm.readcyclecoun"
762 << "ter intrinsic. It is being lowered to a constant 0\n";
763 CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
764 break;
767 case Intrinsic::dbg_stoppoint:
768 case Intrinsic::dbg_region_start:
769 case Intrinsic::dbg_region_end:
770 case Intrinsic::dbg_func_start:
771 case Intrinsic::dbg_declare:
772 break; // Simply strip out debugging intrinsics
774 case Intrinsic::eh_exception:
775 case Intrinsic::eh_selector_i32:
776 case Intrinsic::eh_selector_i64:
777 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
778 break;
780 case Intrinsic::eh_typeid_for_i32:
781 case Intrinsic::eh_typeid_for_i64:
782 // Return something different to eh_selector.
783 CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
784 break;
786 case Intrinsic::var_annotation:
787 break; // Strip out annotate intrinsic
789 case Intrinsic::memcpy: {
790 static Constant *MemcpyFCache = 0;
791 Value *Size = CI->getOperand(3);
792 const Type *IntPtr = TD.getIntPtrType();
793 if (Size->getType()->getPrimitiveSizeInBits() <
794 IntPtr->getPrimitiveSizeInBits())
795 Size = new ZExtInst(Size, IntPtr, "", CI);
796 else if (Size->getType()->getPrimitiveSizeInBits() >
797 IntPtr->getPrimitiveSizeInBits())
798 Size = new TruncInst(Size, IntPtr, "", CI);
799 Value *Ops[3];
800 Ops[0] = CI->getOperand(1);
801 Ops[1] = CI->getOperand(2);
802 Ops[2] = Size;
803 ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
804 MemcpyFCache);
805 break;
807 case Intrinsic::memmove: {
808 static Constant *MemmoveFCache = 0;
809 Value *Size = CI->getOperand(3);
810 const Type *IntPtr = TD.getIntPtrType();
811 if (Size->getType()->getPrimitiveSizeInBits() <
812 IntPtr->getPrimitiveSizeInBits())
813 Size = new ZExtInst(Size, IntPtr, "", CI);
814 else if (Size->getType()->getPrimitiveSizeInBits() >
815 IntPtr->getPrimitiveSizeInBits())
816 Size = new TruncInst(Size, IntPtr, "", CI);
817 Value *Ops[3];
818 Ops[0] = CI->getOperand(1);
819 Ops[1] = CI->getOperand(2);
820 Ops[2] = Size;
821 ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
822 MemmoveFCache);
823 break;
825 case Intrinsic::memset: {
826 static Constant *MemsetFCache = 0;
827 Value *Size = CI->getOperand(3);
828 const Type *IntPtr = TD.getIntPtrType();
829 if (Size->getType()->getPrimitiveSizeInBits() <
830 IntPtr->getPrimitiveSizeInBits())
831 Size = new ZExtInst(Size, IntPtr, "", CI);
832 else if (Size->getType()->getPrimitiveSizeInBits() >
833 IntPtr->getPrimitiveSizeInBits())
834 Size = new TruncInst(Size, IntPtr, "", CI);
835 Value *Ops[3];
836 Ops[0] = CI->getOperand(1);
837 // Extend the amount to i32.
838 Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
839 Ops[2] = Size;
840 ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
841 MemsetFCache);
842 break;
844 case Intrinsic::sqrt: {
845 static Constant *sqrtFCache = 0;
846 static Constant *sqrtDCache = 0;
847 static Constant *sqrtLDCache = 0;
848 ReplaceFPIntrinsicWithCall(CI, sqrtFCache, sqrtDCache, sqrtLDCache,
849 "sqrtf", "sqrt", "sqrtl");
850 break;
852 case Intrinsic::log: {
853 static Constant *logFCache = 0;
854 static Constant *logDCache = 0;
855 static Constant *logLDCache = 0;
856 ReplaceFPIntrinsicWithCall(CI, logFCache, logDCache, logLDCache,
857 "logf", "log", "logl");
858 break;
860 case Intrinsic::log2: {
861 static Constant *log2FCache = 0;
862 static Constant *log2DCache = 0;
863 static Constant *log2LDCache = 0;
864 ReplaceFPIntrinsicWithCall(CI, log2FCache, log2DCache, log2LDCache,
865 "log2f", "log2", "log2l");
866 break;
868 case Intrinsic::log10: {
869 static Constant *log10FCache = 0;
870 static Constant *log10DCache = 0;
871 static Constant *log10LDCache = 0;
872 ReplaceFPIntrinsicWithCall(CI, log10FCache, log10DCache, log10LDCache,
873 "log10f", "log10", "log10l");
874 break;
876 case Intrinsic::exp: {
877 static Constant *expFCache = 0;
878 static Constant *expDCache = 0;
879 static Constant *expLDCache = 0;
880 ReplaceFPIntrinsicWithCall(CI, expFCache, expDCache, expLDCache,
881 "expf", "exp", "expl");
882 break;
884 case Intrinsic::exp2: {
885 static Constant *exp2FCache = 0;
886 static Constant *exp2DCache = 0;
887 static Constant *exp2LDCache = 0;
888 ReplaceFPIntrinsicWithCall(CI, exp2FCache, exp2DCache, exp2LDCache,
889 "exp2f", "exp2", "exp2l");
890 break;
892 case Intrinsic::pow: {
893 static Constant *powFCache = 0;
894 static Constant *powDCache = 0;
895 static Constant *powLDCache = 0;
896 ReplaceFPIntrinsicWithCall(CI, powFCache, powDCache, powLDCache,
897 "powf", "pow", "powl");
898 break;
900 case Intrinsic::flt_rounds:
901 // Lower to "round to the nearest"
902 if (CI->getType() != Type::VoidTy)
903 CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
904 break;
907 assert(CI->use_empty() &&
908 "Lowering should have eliminated any uses of the intrinsic call!");
909 CI->eraseFromParent();