1 //===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the IntrinsicLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/Module.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Type.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/Streams.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/STLExtras.h"
26 template <class ArgIt
>
27 static void EnsureFunctionExists(Module
&M
, const char *Name
,
28 ArgIt ArgBegin
, ArgIt ArgEnd
,
30 // Insert a correctly-typed definition now.
31 std::vector
<const Type
*> ParamTys
;
32 for (ArgIt I
= ArgBegin
; I
!= ArgEnd
; ++I
)
33 ParamTys
.push_back(I
->getType());
34 M
.getOrInsertFunction(Name
, FunctionType::get(RetTy
, ParamTys
, false));
37 static void EnsureFPIntrinsicsExist(Module
&M
, Function
*Fn
,
39 const char *DName
, const char *LDName
) {
40 // Insert definitions for all the floating point types.
41 switch((int)Fn
->arg_begin()->getType()->getTypeID()) {
43 EnsureFunctionExists(M
, FName
, Fn
->arg_begin(), Fn
->arg_end(),
46 case Type::DoubleTyID
:
47 EnsureFunctionExists(M
, DName
, Fn
->arg_begin(), Fn
->arg_end(),
50 case Type::X86_FP80TyID
:
52 case Type::PPC_FP128TyID
:
53 EnsureFunctionExists(M
, LDName
, Fn
->arg_begin(), Fn
->arg_end(),
54 Fn
->arg_begin()->getType());
59 /// ReplaceCallWith - This function is used when we want to lower an intrinsic
60 /// call to a call of an external function. This handles hard cases such as
61 /// when there was already a prototype for the external function, and if that
62 /// prototype doesn't match the arguments we expect to pass in.
63 template <class ArgIt
>
64 static CallInst
*ReplaceCallWith(const char *NewFn
, CallInst
*CI
,
65 ArgIt ArgBegin
, ArgIt ArgEnd
,
66 const Type
*RetTy
, Constant
*&FCache
) {
68 // If we haven't already looked up this function, check to see if the
69 // program already contains a function with this name.
70 Module
*M
= CI
->getParent()->getParent()->getParent();
71 // Get or insert the definition now.
72 std::vector
<const Type
*> ParamTys
;
73 for (ArgIt I
= ArgBegin
; I
!= ArgEnd
; ++I
)
74 ParamTys
.push_back((*I
)->getType());
75 FCache
= M
->getOrInsertFunction(NewFn
,
76 FunctionType::get(RetTy
, ParamTys
, false));
79 SmallVector
<Value
*, 8> Args(ArgBegin
, ArgEnd
);
80 CallInst
*NewCI
= CallInst::Create(FCache
, Args
.begin(), Args
.end(),
83 CI
->replaceAllUsesWith(NewCI
);
87 void IntrinsicLowering::AddPrototypes(Module
&M
) {
88 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
)
89 if (I
->isDeclaration() && !I
->use_empty())
90 switch (I
->getIntrinsicID()) {
92 case Intrinsic::setjmp
:
93 EnsureFunctionExists(M
, "setjmp", I
->arg_begin(), I
->arg_end(),
96 case Intrinsic::longjmp
:
97 EnsureFunctionExists(M
, "longjmp", I
->arg_begin(), I
->arg_end(),
100 case Intrinsic::siglongjmp
:
101 EnsureFunctionExists(M
, "abort", I
->arg_end(), I
->arg_end(),
104 case Intrinsic::memcpy
:
105 M
.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty
),
106 PointerType::getUnqual(Type::Int8Ty
),
107 PointerType::getUnqual(Type::Int8Ty
),
108 TD
.getIntPtrType(), (Type
*)0);
110 case Intrinsic::memmove
:
111 M
.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty
),
112 PointerType::getUnqual(Type::Int8Ty
),
113 PointerType::getUnqual(Type::Int8Ty
),
114 TD
.getIntPtrType(), (Type
*)0);
116 case Intrinsic::memset
:
117 M
.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty
),
118 PointerType::getUnqual(Type::Int8Ty
),
120 TD
.getIntPtrType(), (Type
*)0);
122 case Intrinsic::sqrt
:
123 EnsureFPIntrinsicsExist(M
, I
, "sqrtf", "sqrt", "sqrtl");
126 EnsureFPIntrinsicsExist(M
, I
, "sinf", "sin", "sinl");
129 EnsureFPIntrinsicsExist(M
, I
, "cosf", "cos", "cosl");
132 EnsureFPIntrinsicsExist(M
, I
, "powf", "pow", "powl");
135 EnsureFPIntrinsicsExist(M
, I
, "logf", "log", "logl");
137 case Intrinsic::log2
:
138 EnsureFPIntrinsicsExist(M
, I
, "log2f", "log2", "log2l");
140 case Intrinsic::log10
:
141 EnsureFPIntrinsicsExist(M
, I
, "log10f", "log10", "log10l");
144 EnsureFPIntrinsicsExist(M
, I
, "expf", "exp", "expl");
146 case Intrinsic::exp2
:
147 EnsureFPIntrinsicsExist(M
, I
, "exp2f", "exp2", "exp2l");
152 /// LowerBSWAP - Emit the code to lower bswap of V before the specified
154 static Value
*LowerBSWAP(Value
*V
, Instruction
*IP
) {
155 assert(V
->getType()->isInteger() && "Can't bswap a non-integer type!");
157 unsigned BitSize
= V
->getType()->getPrimitiveSizeInBits();
160 default: assert(0 && "Unhandled type size of value to byteswap!");
162 Value
*Tmp1
= BinaryOperator::CreateShl(V
,
163 ConstantInt::get(V
->getType(),8),"bswap.2",IP
);
164 Value
*Tmp2
= BinaryOperator::CreateLShr(V
,
165 ConstantInt::get(V
->getType(),8),"bswap.1",IP
);
166 V
= BinaryOperator::CreateOr(Tmp1
, Tmp2
, "bswap.i16", IP
);
170 Value
*Tmp4
= BinaryOperator::CreateShl(V
,
171 ConstantInt::get(V
->getType(),24),"bswap.4", IP
);
172 Value
*Tmp3
= BinaryOperator::CreateShl(V
,
173 ConstantInt::get(V
->getType(),8),"bswap.3",IP
);
174 Value
*Tmp2
= BinaryOperator::CreateLShr(V
,
175 ConstantInt::get(V
->getType(),8),"bswap.2",IP
);
176 Value
*Tmp1
= BinaryOperator::CreateLShr(V
,
177 ConstantInt::get(V
->getType(),24),"bswap.1", IP
);
178 Tmp3
= BinaryOperator::CreateAnd(Tmp3
,
179 ConstantInt::get(Type::Int32Ty
, 0xFF0000),
181 Tmp2
= BinaryOperator::CreateAnd(Tmp2
,
182 ConstantInt::get(Type::Int32Ty
, 0xFF00),
184 Tmp4
= BinaryOperator::CreateOr(Tmp4
, Tmp3
, "bswap.or1", IP
);
185 Tmp2
= BinaryOperator::CreateOr(Tmp2
, Tmp1
, "bswap.or2", IP
);
186 V
= BinaryOperator::CreateOr(Tmp4
, Tmp2
, "bswap.i32", IP
);
190 Value
*Tmp8
= BinaryOperator::CreateShl(V
,
191 ConstantInt::get(V
->getType(),56),"bswap.8", IP
);
192 Value
*Tmp7
= BinaryOperator::CreateShl(V
,
193 ConstantInt::get(V
->getType(),40),"bswap.7", IP
);
194 Value
*Tmp6
= BinaryOperator::CreateShl(V
,
195 ConstantInt::get(V
->getType(),24),"bswap.6", IP
);
196 Value
*Tmp5
= BinaryOperator::CreateShl(V
,
197 ConstantInt::get(V
->getType(),8),"bswap.5", IP
);
198 Value
* Tmp4
= BinaryOperator::CreateLShr(V
,
199 ConstantInt::get(V
->getType(),8),"bswap.4", IP
);
200 Value
* Tmp3
= BinaryOperator::CreateLShr(V
,
201 ConstantInt::get(V
->getType(),24),"bswap.3", IP
);
202 Value
* Tmp2
= BinaryOperator::CreateLShr(V
,
203 ConstantInt::get(V
->getType(),40),"bswap.2", IP
);
204 Value
* Tmp1
= BinaryOperator::CreateLShr(V
,
205 ConstantInt::get(V
->getType(),56),"bswap.1", IP
);
206 Tmp7
= BinaryOperator::CreateAnd(Tmp7
,
207 ConstantInt::get(Type::Int64Ty
,
208 0xFF000000000000ULL
),
210 Tmp6
= BinaryOperator::CreateAnd(Tmp6
,
211 ConstantInt::get(Type::Int64Ty
, 0xFF0000000000ULL
),
213 Tmp5
= BinaryOperator::CreateAnd(Tmp5
,
214 ConstantInt::get(Type::Int64Ty
, 0xFF00000000ULL
),
216 Tmp4
= BinaryOperator::CreateAnd(Tmp4
,
217 ConstantInt::get(Type::Int64Ty
, 0xFF000000ULL
),
219 Tmp3
= BinaryOperator::CreateAnd(Tmp3
,
220 ConstantInt::get(Type::Int64Ty
, 0xFF0000ULL
),
222 Tmp2
= BinaryOperator::CreateAnd(Tmp2
,
223 ConstantInt::get(Type::Int64Ty
, 0xFF00ULL
),
225 Tmp8
= BinaryOperator::CreateOr(Tmp8
, Tmp7
, "bswap.or1", IP
);
226 Tmp6
= BinaryOperator::CreateOr(Tmp6
, Tmp5
, "bswap.or2", IP
);
227 Tmp4
= BinaryOperator::CreateOr(Tmp4
, Tmp3
, "bswap.or3", IP
);
228 Tmp2
= BinaryOperator::CreateOr(Tmp2
, Tmp1
, "bswap.or4", IP
);
229 Tmp8
= BinaryOperator::CreateOr(Tmp8
, Tmp6
, "bswap.or5", IP
);
230 Tmp4
= BinaryOperator::CreateOr(Tmp4
, Tmp2
, "bswap.or6", IP
);
231 V
= BinaryOperator::CreateOr(Tmp8
, Tmp4
, "bswap.i64", IP
);
238 /// LowerCTPOP - Emit the code to lower ctpop of V before the specified
240 static Value
*LowerCTPOP(Value
*V
, Instruction
*IP
) {
241 assert(V
->getType()->isInteger() && "Can't ctpop a non-integer type!");
243 static const uint64_t MaskValues
[6] = {
244 0x5555555555555555ULL
, 0x3333333333333333ULL
,
245 0x0F0F0F0F0F0F0F0FULL
, 0x00FF00FF00FF00FFULL
,
246 0x0000FFFF0000FFFFULL
, 0x00000000FFFFFFFFULL
249 unsigned BitSize
= V
->getType()->getPrimitiveSizeInBits();
250 unsigned WordSize
= (BitSize
+ 63) / 64;
251 Value
*Count
= ConstantInt::get(V
->getType(), 0);
253 for (unsigned n
= 0; n
< WordSize
; ++n
) {
254 Value
*PartValue
= V
;
255 for (unsigned i
= 1, ct
= 0; i
< (BitSize
>64 ? 64 : BitSize
);
257 Value
*MaskCst
= ConstantInt::get(V
->getType(), MaskValues
[ct
]);
258 Value
*LHS
= BinaryOperator::CreateAnd(
259 PartValue
, MaskCst
, "cppop.and1", IP
);
260 Value
*VShift
= BinaryOperator::CreateLShr(PartValue
,
261 ConstantInt::get(V
->getType(), i
), "ctpop.sh", IP
);
262 Value
*RHS
= BinaryOperator::CreateAnd(VShift
, MaskCst
, "cppop.and2", IP
);
263 PartValue
= BinaryOperator::CreateAdd(LHS
, RHS
, "ctpop.step", IP
);
265 Count
= BinaryOperator::CreateAdd(PartValue
, Count
, "ctpop.part", IP
);
267 V
= BinaryOperator::CreateLShr(V
, ConstantInt::get(V
->getType(), 64),
268 "ctpop.part.sh", IP
);
276 /// LowerCTLZ - Emit the code to lower ctlz of V before the specified
278 static Value
*LowerCTLZ(Value
*V
, Instruction
*IP
) {
280 unsigned BitSize
= V
->getType()->getPrimitiveSizeInBits();
281 for (unsigned i
= 1; i
< BitSize
; i
<<= 1) {
282 Value
*ShVal
= ConstantInt::get(V
->getType(), i
);
283 ShVal
= BinaryOperator::CreateLShr(V
, ShVal
, "ctlz.sh", IP
);
284 V
= BinaryOperator::CreateOr(V
, ShVal
, "ctlz.step", IP
);
287 V
= BinaryOperator::CreateNot(V
, "", IP
);
288 return LowerCTPOP(V
, IP
);
291 /// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
292 /// three integer arguments. The first argument is the Value from which the
293 /// bits will be selected. It may be of any bit width. The second and third
294 /// arguments specify a range of bits to select with the second argument
295 /// specifying the low bit and the third argument specifying the high bit. Both
296 /// must be type i32. The result is the corresponding selected bits from the
297 /// Value in the same width as the Value (first argument). If the low bit index
298 /// is higher than the high bit index then the inverse selection is done and
299 /// the bits are returned in inverse order.
300 /// @brief Lowering of llvm.part.select intrinsic.
301 static Instruction
*LowerPartSelect(CallInst
*CI
) {
302 // Make sure we're dealing with a part select intrinsic here
303 Function
*F
= CI
->getCalledFunction();
304 const FunctionType
*FT
= F
->getFunctionType();
305 if (!F
->isDeclaration() || !FT
->getReturnType()->isInteger() ||
306 FT
->getNumParams() != 3 || !FT
->getParamType(0)->isInteger() ||
307 !FT
->getParamType(1)->isInteger() || !FT
->getParamType(2)->isInteger())
310 // Get the intrinsic implementation function by converting all the . to _
311 // in the intrinsic's function name and then reconstructing the function
313 std::string
Name(F
->getName());
314 for (unsigned i
= 4; i
< Name
.length(); ++i
)
317 Module
* M
= F
->getParent();
318 F
= cast
<Function
>(M
->getOrInsertFunction(Name
, FT
));
319 F
->setLinkage(GlobalValue::WeakAnyLinkage
);
321 // If we haven't defined the impl function yet, do so now
322 if (F
->isDeclaration()) {
324 // Get the arguments to the function
325 Function::arg_iterator args
= F
->arg_begin();
326 Value
* Val
= args
++; Val
->setName("Val");
327 Value
* Lo
= args
++; Lo
->setName("Lo");
328 Value
* Hi
= args
++; Hi
->setName("High");
330 // We want to select a range of bits here such that [Hi, Lo] is shifted
331 // down to the low bits. However, it is quite possible that Hi is smaller
332 // than Lo in which case the bits have to be reversed.
334 // Create the blocks we will need for the two cases (forward, reverse)
335 BasicBlock
* CurBB
= BasicBlock::Create("entry", F
);
336 BasicBlock
*RevSize
= BasicBlock::Create("revsize", CurBB
->getParent());
337 BasicBlock
*FwdSize
= BasicBlock::Create("fwdsize", CurBB
->getParent());
338 BasicBlock
*Compute
= BasicBlock::Create("compute", CurBB
->getParent());
339 BasicBlock
*Reverse
= BasicBlock::Create("reverse", CurBB
->getParent());
340 BasicBlock
*RsltBlk
= BasicBlock::Create("result", CurBB
->getParent());
342 // Cast Hi and Lo to the size of Val so the widths are all the same
343 if (Hi
->getType() != Val
->getType())
344 Hi
= CastInst::CreateIntegerCast(Hi
, Val
->getType(), false,
346 if (Lo
->getType() != Val
->getType())
347 Lo
= CastInst::CreateIntegerCast(Lo
, Val
->getType(), false,
350 // Compute a few things that both cases will need, up front.
351 Constant
* Zero
= ConstantInt::get(Val
->getType(), 0);
352 Constant
* One
= ConstantInt::get(Val
->getType(), 1);
353 Constant
* AllOnes
= ConstantInt::getAllOnesValue(Val
->getType());
355 // Compare the Hi and Lo bit positions. This is used to determine
356 // which case we have (forward or reverse)
357 ICmpInst
*Cmp
= new ICmpInst(ICmpInst::ICMP_ULT
, Hi
, Lo
, "less",CurBB
);
358 BranchInst::Create(RevSize
, FwdSize
, Cmp
, CurBB
);
360 // First, copmute the number of bits in the forward case.
361 Instruction
* FBitSize
=
362 BinaryOperator::CreateSub(Hi
, Lo
,"fbits", FwdSize
);
363 BranchInst::Create(Compute
, FwdSize
);
365 // Second, compute the number of bits in the reverse case.
366 Instruction
* RBitSize
=
367 BinaryOperator::CreateSub(Lo
, Hi
, "rbits", RevSize
);
368 BranchInst::Create(Compute
, RevSize
);
370 // Now, compute the bit range. Start by getting the bitsize and the shift
371 // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
372 // the number of bits we want in the range. We shift the bits down to the
373 // least significant bits, apply the mask to zero out unwanted high bits,
374 // and we have computed the "forward" result. It may still need to be
377 // Get the BitSize from one of the two subtractions
378 PHINode
*BitSize
= PHINode::Create(Val
->getType(), "bits", Compute
);
379 BitSize
->reserveOperandSpace(2);
380 BitSize
->addIncoming(FBitSize
, FwdSize
);
381 BitSize
->addIncoming(RBitSize
, RevSize
);
383 // Get the ShiftAmount as the smaller of Hi/Lo
384 PHINode
*ShiftAmt
= PHINode::Create(Val
->getType(), "shiftamt", Compute
);
385 ShiftAmt
->reserveOperandSpace(2);
386 ShiftAmt
->addIncoming(Lo
, FwdSize
);
387 ShiftAmt
->addIncoming(Hi
, RevSize
);
389 // Increment the bit size
390 Instruction
*BitSizePlusOne
=
391 BinaryOperator::CreateAdd(BitSize
, One
, "bits", Compute
);
393 // Create a Mask to zero out the high order bits.
395 BinaryOperator::CreateShl(AllOnes
, BitSizePlusOne
, "mask", Compute
);
396 Mask
= BinaryOperator::CreateNot(Mask
, "mask", Compute
);
398 // Shift the bits down and apply the mask
400 BinaryOperator::CreateLShr(Val
, ShiftAmt
, "fres", Compute
);
401 FRes
= BinaryOperator::CreateAnd(FRes
, Mask
, "fres", Compute
);
402 BranchInst::Create(Reverse
, RsltBlk
, Cmp
, Compute
);
404 // In the Reverse block we have the mask already in FRes but we must reverse
405 // it by shifting FRes bits right and putting them in RRes by shifting them
408 // First set up our loop counters
409 PHINode
*Count
= PHINode::Create(Val
->getType(), "count", Reverse
);
410 Count
->reserveOperandSpace(2);
411 Count
->addIncoming(BitSizePlusOne
, Compute
);
413 // Next, get the value that we are shifting.
414 PHINode
*BitsToShift
= PHINode::Create(Val
->getType(), "val", Reverse
);
415 BitsToShift
->reserveOperandSpace(2);
416 BitsToShift
->addIncoming(FRes
, Compute
);
418 // Finally, get the result of the last computation
419 PHINode
*RRes
= PHINode::Create(Val
->getType(), "rres", Reverse
);
420 RRes
->reserveOperandSpace(2);
421 RRes
->addIncoming(Zero
, Compute
);
423 // Decrement the counter
424 Instruction
*Decr
= BinaryOperator::CreateSub(Count
, One
, "decr", Reverse
);
425 Count
->addIncoming(Decr
, Reverse
);
427 // Compute the Bit that we want to move
429 BinaryOperator::CreateAnd(BitsToShift
, One
, "bit", Reverse
);
431 // Compute the new value for next iteration.
432 Instruction
*NewVal
=
433 BinaryOperator::CreateLShr(BitsToShift
, One
, "rshift", Reverse
);
434 BitsToShift
->addIncoming(NewVal
, Reverse
);
436 // Shift the bit into the low bits of the result.
437 Instruction
*NewRes
=
438 BinaryOperator::CreateShl(RRes
, One
, "lshift", Reverse
);
439 NewRes
= BinaryOperator::CreateOr(NewRes
, Bit
, "addbit", Reverse
);
440 RRes
->addIncoming(NewRes
, Reverse
);
442 // Terminate loop if we've moved all the bits.
444 new ICmpInst(ICmpInst::ICMP_EQ
, Decr
, Zero
, "cond", Reverse
);
445 BranchInst::Create(RsltBlk
, Reverse
, Cond
, Reverse
);
447 // Finally, in the result block, select one of the two results with a PHI
448 // node and return the result;
450 PHINode
*BitSelect
= PHINode::Create(Val
->getType(), "part_select", CurBB
);
451 BitSelect
->reserveOperandSpace(2);
452 BitSelect
->addIncoming(FRes
, Compute
);
453 BitSelect
->addIncoming(NewRes
, Reverse
);
454 ReturnInst::Create(BitSelect
, CurBB
);
457 // Return a call to the implementation function
463 return CallInst::Create(F
, Args
, array_endof(Args
), CI
->getName(), CI
);
466 /// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
467 /// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
468 /// The first two arguments can be any bit width. The result is the same width
469 /// as %Value. The operation replaces bits between %Low and %High with the value
470 /// in %Replacement. If %Replacement is not the same width, it is truncated or
471 /// zero extended as appropriate to fit the bits being replaced. If %Low is
472 /// greater than %High then the inverse set of bits are replaced.
473 /// @brief Lowering of llvm.bit.part.set intrinsic.
474 static Instruction
*LowerPartSet(CallInst
*CI
) {
475 // Make sure we're dealing with a part select intrinsic here
476 Function
*F
= CI
->getCalledFunction();
477 const FunctionType
*FT
= F
->getFunctionType();
478 if (!F
->isDeclaration() || !FT
->getReturnType()->isInteger() ||
479 FT
->getNumParams() != 4 || !FT
->getParamType(0)->isInteger() ||
480 !FT
->getParamType(1)->isInteger() || !FT
->getParamType(2)->isInteger() ||
481 !FT
->getParamType(3)->isInteger())
484 // Get the intrinsic implementation function by converting all the . to _
485 // in the intrinsic's function name and then reconstructing the function
487 std::string
Name(F
->getName());
488 for (unsigned i
= 4; i
< Name
.length(); ++i
)
491 Module
* M
= F
->getParent();
492 F
= cast
<Function
>(M
->getOrInsertFunction(Name
, FT
));
493 F
->setLinkage(GlobalValue::WeakAnyLinkage
);
495 // If we haven't defined the impl function yet, do so now
496 if (F
->isDeclaration()) {
497 // Get the arguments for the function.
498 Function::arg_iterator args
= F
->arg_begin();
499 Value
* Val
= args
++; Val
->setName("Val");
500 Value
* Rep
= args
++; Rep
->setName("Rep");
501 Value
* Lo
= args
++; Lo
->setName("Lo");
502 Value
* Hi
= args
++; Hi
->setName("Hi");
504 // Get some types we need
505 const IntegerType
* ValTy
= cast
<IntegerType
>(Val
->getType());
506 const IntegerType
* RepTy
= cast
<IntegerType
>(Rep
->getType());
507 uint32_t ValBits
= ValTy
->getBitWidth();
508 uint32_t RepBits
= RepTy
->getBitWidth();
510 // Constant Definitions
511 ConstantInt
* RepBitWidth
= ConstantInt::get(Type::Int32Ty
, RepBits
);
512 ConstantInt
* RepMask
= ConstantInt::getAllOnesValue(RepTy
);
513 ConstantInt
* ValMask
= ConstantInt::getAllOnesValue(ValTy
);
514 ConstantInt
* One
= ConstantInt::get(Type::Int32Ty
, 1);
515 ConstantInt
* ValOne
= ConstantInt::get(ValTy
, 1);
516 ConstantInt
* Zero
= ConstantInt::get(Type::Int32Ty
, 0);
517 ConstantInt
* ValZero
= ConstantInt::get(ValTy
, 0);
519 // Basic blocks we fill in below.
520 BasicBlock
* entry
= BasicBlock::Create("entry", F
, 0);
521 BasicBlock
* large
= BasicBlock::Create("large", F
, 0);
522 BasicBlock
* small
= BasicBlock::Create("small", F
, 0);
523 BasicBlock
* reverse
= BasicBlock::Create("reverse", F
, 0);
524 BasicBlock
* result
= BasicBlock::Create("result", F
, 0);
526 // BASIC BLOCK: entry
527 // First, get the number of bits that we're placing as an i32
528 ICmpInst
* is_forward
=
529 new ICmpInst(ICmpInst::ICMP_ULT
, Lo
, Hi
, "", entry
);
530 SelectInst
* Hi_pn
= SelectInst::Create(is_forward
, Hi
, Lo
, "", entry
);
531 SelectInst
* Lo_pn
= SelectInst::Create(is_forward
, Lo
, Hi
, "", entry
);
532 BinaryOperator
* NumBits
= BinaryOperator::CreateSub(Hi_pn
, Lo_pn
, "",entry
);
533 NumBits
= BinaryOperator::CreateAdd(NumBits
, One
, "", entry
);
534 // Now, convert Lo and Hi to ValTy bit width
536 Lo
= new ZExtInst(Lo_pn
, ValTy
, "", entry
);
537 } else if (ValBits
< 32) {
538 Lo
= new TruncInst(Lo_pn
, ValTy
, "", entry
);
542 // Determine if the replacement bits are larger than the number of bits we
543 // are replacing and deal with it.
545 new ICmpInst(ICmpInst::ICMP_ULT
, NumBits
, RepBitWidth
, "", entry
);
546 BranchInst::Create(large
, small
, is_large
, entry
);
548 // BASIC BLOCK: large
549 Instruction
* MaskBits
=
550 BinaryOperator::CreateSub(RepBitWidth
, NumBits
, "", large
);
551 MaskBits
= CastInst::CreateIntegerCast(MaskBits
, RepMask
->getType(),
553 BinaryOperator
* Mask1
=
554 BinaryOperator::CreateLShr(RepMask
, MaskBits
, "", large
);
555 BinaryOperator
* Rep2
= BinaryOperator::CreateAnd(Mask1
, Rep
, "", large
);
556 BranchInst::Create(small
, large
);
558 // BASIC BLOCK: small
559 PHINode
* Rep3
= PHINode::Create(RepTy
, "", small
);
560 Rep3
->reserveOperandSpace(2);
561 Rep3
->addIncoming(Rep2
, large
);
562 Rep3
->addIncoming(Rep
, entry
);
564 if (ValBits
> RepBits
)
565 Rep4
= new ZExtInst(Rep3
, ValTy
, "", small
);
566 else if (ValBits
< RepBits
)
567 Rep4
= new TruncInst(Rep3
, ValTy
, "", small
);
568 BranchInst::Create(result
, reverse
, is_forward
, small
);
570 // BASIC BLOCK: reverse (reverses the bits of the replacement)
571 // Set up our loop counter as a PHI so we can decrement on each iteration.
572 // We will loop for the number of bits in the replacement value.
573 PHINode
*Count
= PHINode::Create(Type::Int32Ty
, "count", reverse
);
574 Count
->reserveOperandSpace(2);
575 Count
->addIncoming(NumBits
, small
);
577 // Get the value that we are shifting bits out of as a PHI because
578 // we'll change this with each iteration.
579 PHINode
*BitsToShift
= PHINode::Create(Val
->getType(), "val", reverse
);
580 BitsToShift
->reserveOperandSpace(2);
581 BitsToShift
->addIncoming(Rep4
, small
);
583 // Get the result of the last computation or zero on first iteration
584 PHINode
*RRes
= PHINode::Create(Val
->getType(), "rres", reverse
);
585 RRes
->reserveOperandSpace(2);
586 RRes
->addIncoming(ValZero
, small
);
588 // Decrement the loop counter by one
589 Instruction
*Decr
= BinaryOperator::CreateSub(Count
, One
, "", reverse
);
590 Count
->addIncoming(Decr
, reverse
);
592 // Get the bit that we want to move into the result
593 Value
*Bit
= BinaryOperator::CreateAnd(BitsToShift
, ValOne
, "", reverse
);
595 // Compute the new value of the bits to shift for the next iteration.
596 Value
*NewVal
= BinaryOperator::CreateLShr(BitsToShift
, ValOne
,"", reverse
);
597 BitsToShift
->addIncoming(NewVal
, reverse
);
599 // Shift the bit we extracted into the low bit of the result.
600 Instruction
*NewRes
= BinaryOperator::CreateShl(RRes
, ValOne
, "", reverse
);
601 NewRes
= BinaryOperator::CreateOr(NewRes
, Bit
, "", reverse
);
602 RRes
->addIncoming(NewRes
, reverse
);
604 // Terminate loop if we've moved all the bits.
605 ICmpInst
*Cond
= new ICmpInst(ICmpInst::ICMP_EQ
, Decr
, Zero
, "", reverse
);
606 BranchInst::Create(result
, reverse
, Cond
, reverse
);
608 // BASIC BLOCK: result
609 PHINode
*Rplcmnt
= PHINode::Create(Val
->getType(), "", result
);
610 Rplcmnt
->reserveOperandSpace(2);
611 Rplcmnt
->addIncoming(NewRes
, reverse
);
612 Rplcmnt
->addIncoming(Rep4
, small
);
613 Value
* t0
= CastInst::CreateIntegerCast(NumBits
,ValTy
,false,"",result
);
614 Value
* t1
= BinaryOperator::CreateShl(ValMask
, Lo
, "", result
);
615 Value
* t2
= BinaryOperator::CreateNot(t1
, "", result
);
616 Value
* t3
= BinaryOperator::CreateShl(t1
, t0
, "", result
);
617 Value
* t4
= BinaryOperator::CreateOr(t2
, t3
, "", result
);
618 Value
* t5
= BinaryOperator::CreateAnd(t4
, Val
, "", result
);
619 Value
* t6
= BinaryOperator::CreateShl(Rplcmnt
, Lo
, "", result
);
620 Value
* Rslt
= BinaryOperator::CreateOr(t5
, t6
, "part_set", result
);
621 ReturnInst::Create(Rslt
, result
);
624 // Return a call to the implementation function
631 return CallInst::Create(F
, Args
, array_endof(Args
), CI
->getName(), CI
);
634 static void ReplaceFPIntrinsicWithCall(CallInst
*CI
, Constant
*FCache
,
635 Constant
*DCache
, Constant
*LDCache
,
636 const char *Fname
, const char *Dname
,
637 const char *LDname
) {
638 switch (CI
->getOperand(1)->getType()->getTypeID()) {
639 default: assert(0 && "Invalid type in intrinsic"); abort();
640 case Type::FloatTyID
:
641 ReplaceCallWith(Fname
, CI
, CI
->op_begin()+1, CI
->op_end(),
642 Type::FloatTy
, FCache
);
644 case Type::DoubleTyID
:
645 ReplaceCallWith(Dname
, CI
, CI
->op_begin()+1, CI
->op_end(),
646 Type::DoubleTy
, DCache
);
648 case Type::X86_FP80TyID
:
649 case Type::FP128TyID
:
650 case Type::PPC_FP128TyID
:
651 ReplaceCallWith(LDname
, CI
, CI
->op_begin()+1, CI
->op_end(),
652 CI
->getOperand(1)->getType(), LDCache
);
657 void IntrinsicLowering::LowerIntrinsicCall(CallInst
*CI
) {
658 Function
*Callee
= CI
->getCalledFunction();
659 assert(Callee
&& "Cannot lower an indirect call!");
661 switch (Callee
->getIntrinsicID()) {
662 case Intrinsic::not_intrinsic
:
663 cerr
<< "Cannot lower a call to a non-intrinsic function '"
664 << Callee
->getName() << "'!\n";
667 cerr
<< "Error: Code generator does not support intrinsic function '"
668 << Callee
->getName() << "'!\n";
671 // The setjmp/longjmp intrinsics should only exist in the code if it was
672 // never optimized (ie, right out of the CFE), or if it has been hacked on
673 // by the lowerinvoke pass. In both cases, the right thing to do is to
674 // convert the call to an explicit setjmp or longjmp call.
675 case Intrinsic::setjmp
: {
676 static Constant
*SetjmpFCache
= 0;
677 Value
*V
= ReplaceCallWith("setjmp", CI
, CI
->op_begin()+1, CI
->op_end(),
678 Type::Int32Ty
, SetjmpFCache
);
679 if (CI
->getType() != Type::VoidTy
)
680 CI
->replaceAllUsesWith(V
);
683 case Intrinsic::sigsetjmp
:
684 if (CI
->getType() != Type::VoidTy
)
685 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
688 case Intrinsic::longjmp
: {
689 static Constant
*LongjmpFCache
= 0;
690 ReplaceCallWith("longjmp", CI
, CI
->op_begin()+1, CI
->op_end(),
691 Type::VoidTy
, LongjmpFCache
);
695 case Intrinsic::siglongjmp
: {
696 // Insert the call to abort
697 static Constant
*AbortFCache
= 0;
698 ReplaceCallWith("abort", CI
, CI
->op_end(), CI
->op_end(),
699 Type::VoidTy
, AbortFCache
);
702 case Intrinsic::ctpop
:
703 CI
->replaceAllUsesWith(LowerCTPOP(CI
->getOperand(1), CI
));
706 case Intrinsic::bswap
:
707 CI
->replaceAllUsesWith(LowerBSWAP(CI
->getOperand(1), CI
));
710 case Intrinsic::ctlz
:
711 CI
->replaceAllUsesWith(LowerCTLZ(CI
->getOperand(1), CI
));
714 case Intrinsic::cttz
: {
715 // cttz(x) -> ctpop(~X & (X-1))
716 Value
*Src
= CI
->getOperand(1);
717 Value
*NotSrc
= BinaryOperator::CreateNot(Src
, Src
->getName()+".not", CI
);
718 Value
*SrcM1
= ConstantInt::get(Src
->getType(), 1);
719 SrcM1
= BinaryOperator::CreateSub(Src
, SrcM1
, "", CI
);
720 Src
= LowerCTPOP(BinaryOperator::CreateAnd(NotSrc
, SrcM1
, "", CI
), CI
);
721 CI
->replaceAllUsesWith(Src
);
725 case Intrinsic::part_select
:
726 CI
->replaceAllUsesWith(LowerPartSelect(CI
));
729 case Intrinsic::part_set
:
730 CI
->replaceAllUsesWith(LowerPartSet(CI
));
733 case Intrinsic::stacksave
:
734 case Intrinsic::stackrestore
: {
735 static bool Warned
= false;
737 cerr
<< "WARNING: this target does not support the llvm.stack"
738 << (Callee
->getIntrinsicID() == Intrinsic::stacksave
?
739 "save" : "restore") << " intrinsic.\n";
741 if (Callee
->getIntrinsicID() == Intrinsic::stacksave
)
742 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
746 case Intrinsic::returnaddress
:
747 case Intrinsic::frameaddress
:
748 cerr
<< "WARNING: this target does not support the llvm."
749 << (Callee
->getIntrinsicID() == Intrinsic::returnaddress
?
750 "return" : "frame") << "address intrinsic.\n";
751 CI
->replaceAllUsesWith(ConstantPointerNull::get(
752 cast
<PointerType
>(CI
->getType())));
755 case Intrinsic::prefetch
:
756 break; // Simply strip out prefetches on unsupported architectures
758 case Intrinsic::pcmarker
:
759 break; // Simply strip out pcmarker on unsupported architectures
760 case Intrinsic::readcyclecounter
: {
761 cerr
<< "WARNING: this target does not support the llvm.readcyclecoun"
762 << "ter intrinsic. It is being lowered to a constant 0\n";
763 CI
->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty
, 0));
767 case Intrinsic::dbg_stoppoint
:
768 case Intrinsic::dbg_region_start
:
769 case Intrinsic::dbg_region_end
:
770 case Intrinsic::dbg_func_start
:
771 case Intrinsic::dbg_declare
:
772 break; // Simply strip out debugging intrinsics
774 case Intrinsic::eh_exception
:
775 case Intrinsic::eh_selector_i32
:
776 case Intrinsic::eh_selector_i64
:
777 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
780 case Intrinsic::eh_typeid_for_i32
:
781 case Intrinsic::eh_typeid_for_i64
:
782 // Return something different to eh_selector.
783 CI
->replaceAllUsesWith(ConstantInt::get(CI
->getType(), 1));
786 case Intrinsic::var_annotation
:
787 break; // Strip out annotate intrinsic
789 case Intrinsic::memcpy
: {
790 static Constant
*MemcpyFCache
= 0;
791 Value
*Size
= CI
->getOperand(3);
792 const Type
*IntPtr
= TD
.getIntPtrType();
793 if (Size
->getType()->getPrimitiveSizeInBits() <
794 IntPtr
->getPrimitiveSizeInBits())
795 Size
= new ZExtInst(Size
, IntPtr
, "", CI
);
796 else if (Size
->getType()->getPrimitiveSizeInBits() >
797 IntPtr
->getPrimitiveSizeInBits())
798 Size
= new TruncInst(Size
, IntPtr
, "", CI
);
800 Ops
[0] = CI
->getOperand(1);
801 Ops
[1] = CI
->getOperand(2);
803 ReplaceCallWith("memcpy", CI
, Ops
, Ops
+3, CI
->getOperand(1)->getType(),
807 case Intrinsic::memmove
: {
808 static Constant
*MemmoveFCache
= 0;
809 Value
*Size
= CI
->getOperand(3);
810 const Type
*IntPtr
= TD
.getIntPtrType();
811 if (Size
->getType()->getPrimitiveSizeInBits() <
812 IntPtr
->getPrimitiveSizeInBits())
813 Size
= new ZExtInst(Size
, IntPtr
, "", CI
);
814 else if (Size
->getType()->getPrimitiveSizeInBits() >
815 IntPtr
->getPrimitiveSizeInBits())
816 Size
= new TruncInst(Size
, IntPtr
, "", CI
);
818 Ops
[0] = CI
->getOperand(1);
819 Ops
[1] = CI
->getOperand(2);
821 ReplaceCallWith("memmove", CI
, Ops
, Ops
+3, CI
->getOperand(1)->getType(),
825 case Intrinsic::memset
: {
826 static Constant
*MemsetFCache
= 0;
827 Value
*Size
= CI
->getOperand(3);
828 const Type
*IntPtr
= TD
.getIntPtrType();
829 if (Size
->getType()->getPrimitiveSizeInBits() <
830 IntPtr
->getPrimitiveSizeInBits())
831 Size
= new ZExtInst(Size
, IntPtr
, "", CI
);
832 else if (Size
->getType()->getPrimitiveSizeInBits() >
833 IntPtr
->getPrimitiveSizeInBits())
834 Size
= new TruncInst(Size
, IntPtr
, "", CI
);
836 Ops
[0] = CI
->getOperand(1);
837 // Extend the amount to i32.
838 Ops
[1] = new ZExtInst(CI
->getOperand(2), Type::Int32Ty
, "", CI
);
840 ReplaceCallWith("memset", CI
, Ops
, Ops
+3, CI
->getOperand(1)->getType(),
844 case Intrinsic::sqrt
: {
845 static Constant
*sqrtFCache
= 0;
846 static Constant
*sqrtDCache
= 0;
847 static Constant
*sqrtLDCache
= 0;
848 ReplaceFPIntrinsicWithCall(CI
, sqrtFCache
, sqrtDCache
, sqrtLDCache
,
849 "sqrtf", "sqrt", "sqrtl");
852 case Intrinsic::log
: {
853 static Constant
*logFCache
= 0;
854 static Constant
*logDCache
= 0;
855 static Constant
*logLDCache
= 0;
856 ReplaceFPIntrinsicWithCall(CI
, logFCache
, logDCache
, logLDCache
,
857 "logf", "log", "logl");
860 case Intrinsic::log2
: {
861 static Constant
*log2FCache
= 0;
862 static Constant
*log2DCache
= 0;
863 static Constant
*log2LDCache
= 0;
864 ReplaceFPIntrinsicWithCall(CI
, log2FCache
, log2DCache
, log2LDCache
,
865 "log2f", "log2", "log2l");
868 case Intrinsic::log10
: {
869 static Constant
*log10FCache
= 0;
870 static Constant
*log10DCache
= 0;
871 static Constant
*log10LDCache
= 0;
872 ReplaceFPIntrinsicWithCall(CI
, log10FCache
, log10DCache
, log10LDCache
,
873 "log10f", "log10", "log10l");
876 case Intrinsic::exp
: {
877 static Constant
*expFCache
= 0;
878 static Constant
*expDCache
= 0;
879 static Constant
*expLDCache
= 0;
880 ReplaceFPIntrinsicWithCall(CI
, expFCache
, expDCache
, expLDCache
,
881 "expf", "exp", "expl");
884 case Intrinsic::exp2
: {
885 static Constant
*exp2FCache
= 0;
886 static Constant
*exp2DCache
= 0;
887 static Constant
*exp2LDCache
= 0;
888 ReplaceFPIntrinsicWithCall(CI
, exp2FCache
, exp2DCache
, exp2LDCache
,
889 "exp2f", "exp2", "exp2l");
892 case Intrinsic::pow
: {
893 static Constant
*powFCache
= 0;
894 static Constant
*powDCache
= 0;
895 static Constant
*powLDCache
= 0;
896 ReplaceFPIntrinsicWithCall(CI
, powFCache
, powDCache
, powLDCache
,
897 "powf", "pow", "powl");
900 case Intrinsic::flt_rounds
:
901 // Lower to "round to the nearest"
902 if (CI
->getType() != Type::VoidTy
)
903 CI
->replaceAllUsesWith(ConstantInt::get(CI
->getType(), 1));
907 assert(CI
->use_empty() &&
908 "Lowering should have eliminated any uses of the intrinsic call!");
909 CI
->eraseFromParent();