1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "PhysRegTracker.h"
16 #include "VirtRegMap.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Compiler.h"
45 STATISTIC(NumIters
, "Number of iterations performed");
46 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
47 STATISTIC(NumCoalesce
, "Number of copies coalesced");
48 STATISTIC(NumDowngrade
, "Number of registers downgraded");
51 NewHeuristic("new-spilling-heuristic",
52 cl::desc("Use new spilling heuristic"),
53 cl::init(false), cl::Hidden
);
56 PreSplitIntervals("pre-alloc-split",
57 cl::desc("Pre-register allocation live interval splitting"),
58 cl::init(false), cl::Hidden
);
60 static RegisterRegAlloc
61 linearscanRegAlloc("linearscan", "linear scan register allocator",
62 createLinearScanRegisterAllocator
);
65 struct VISIBILITY_HIDDEN RALinScan
: public MachineFunctionPass
{
67 RALinScan() : MachineFunctionPass(&ID
) {}
69 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
70 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
72 /// RelatedRegClasses - This structure is built the first time a function is
73 /// compiled, and keeps track of which register classes have registers that
74 /// belong to multiple classes or have aliases that are in other classes.
75 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
76 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
78 // NextReloadMap - For each register in the map, it maps to the another
79 // register which is defined by a reload from the same stack slot and
80 // both reloads are in the same basic block.
81 DenseMap
<unsigned, unsigned> NextReloadMap
;
83 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
84 // un-favored for allocation.
85 SmallSet
<unsigned, 8> DowngradedRegs
;
87 // DowngradeMap - A map from virtual registers to physical registers being
88 // downgraded for the virtual registers.
89 DenseMap
<unsigned, unsigned> DowngradeMap
;
92 MachineRegisterInfo
* mri_
;
93 const TargetMachine
* tm_
;
94 const TargetRegisterInfo
* tri_
;
95 const TargetInstrInfo
* tii_
;
96 BitVector allocatableRegs_
;
99 const MachineLoopInfo
*loopInfo
;
101 /// handled_ - Intervals are added to the handled_ set in the order of their
102 /// start value. This is uses for backtracking.
103 std::vector
<LiveInterval
*> handled_
;
105 /// fixed_ - Intervals that correspond to machine registers.
109 /// active_ - Intervals that are currently being processed, and which have a
110 /// live range active for the current point.
111 IntervalPtrs active_
;
113 /// inactive_ - Intervals that are currently being processed, but which have
114 /// a hold at the current point.
115 IntervalPtrs inactive_
;
117 typedef std::priority_queue
<LiveInterval
*,
118 SmallVector
<LiveInterval
*, 64>,
119 greater_ptr
<LiveInterval
> > IntervalHeap
;
120 IntervalHeap unhandled_
;
121 std::auto_ptr
<PhysRegTracker
> prt_
;
123 std::auto_ptr
<Spiller
> spiller_
;
126 virtual const char* getPassName() const {
127 return "Linear Scan Register Allocator";
130 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
131 AU
.addRequired
<LiveIntervals
>();
133 AU
.addRequiredID(StrongPHIEliminationID
);
134 // Make sure PassManager knows which analyses to make available
135 // to coalescing and which analyses coalescing invalidates.
136 AU
.addRequiredTransitive
<RegisterCoalescer
>();
137 if (PreSplitIntervals
)
138 AU
.addRequiredID(PreAllocSplittingID
);
139 AU
.addRequired
<LiveStacks
>();
140 AU
.addPreserved
<LiveStacks
>();
141 AU
.addRequired
<MachineLoopInfo
>();
142 AU
.addPreserved
<MachineLoopInfo
>();
143 AU
.addRequired
<VirtRegMap
>();
144 AU
.addPreserved
<VirtRegMap
>();
145 AU
.addPreservedID(MachineDominatorsID
);
146 MachineFunctionPass::getAnalysisUsage(AU
);
149 /// runOnMachineFunction - register allocate the whole function
150 bool runOnMachineFunction(MachineFunction
&);
153 /// linearScan - the linear scan algorithm
156 /// initIntervalSets - initialize the interval sets.
158 void initIntervalSets();
160 /// processActiveIntervals - expire old intervals and move non-overlapping
161 /// ones to the inactive list.
162 void processActiveIntervals(unsigned CurPoint
);
164 /// processInactiveIntervals - expire old intervals and move overlapping
165 /// ones to the active list.
166 void processInactiveIntervals(unsigned CurPoint
);
168 /// hasNextReloadInterval - Return the next liveinterval that's being
169 /// defined by a reload from the same SS as the specified one.
170 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
172 /// DowngradeRegister - Downgrade a register for allocation.
173 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
175 /// UpgradeRegister - Upgrade a register for allocation.
176 void UpgradeRegister(unsigned Reg
);
178 /// assignRegOrStackSlotAtInterval - assign a register if one
179 /// is available, or spill.
180 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
182 void updateSpillWeights(std::vector
<float> &Weights
,
183 unsigned reg
, float weight
,
184 const TargetRegisterClass
*RC
);
186 /// findIntervalsToSpill - Determine the intervals to spill for the
187 /// specified interval. It's passed the physical registers whose spill
188 /// weight is the lowest among all the registers whose live intervals
189 /// conflict with the interval.
190 void findIntervalsToSpill(LiveInterval
*cur
,
191 std::vector
<std::pair
<unsigned,float> > &Candidates
,
193 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
195 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
196 /// try allocate the definition the same register as the source register
197 /// if the register is not defined during live time of the interval. This
198 /// eliminate a copy. This is used to coalesce copies which were not
199 /// coalesced away before allocation either due to dest and src being in
200 /// different register classes or because the coalescer was overly
202 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
205 /// register handling helpers
208 /// getFreePhysReg - return a free physical register for this virtual
209 /// register interval if we have one, otherwise return 0.
210 unsigned getFreePhysReg(LiveInterval
* cur
);
211 unsigned getFreePhysReg(const TargetRegisterClass
*RC
,
212 unsigned MaxInactiveCount
,
213 SmallVector
<unsigned, 256> &inactiveCounts
,
216 /// assignVirt2StackSlot - assigns this virtual register to a
217 /// stack slot. returns the stack slot
218 int assignVirt2StackSlot(unsigned virtReg
);
220 void ComputeRelatedRegClasses();
222 template <typename ItTy
>
223 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
224 if (str
) DOUT
<< str
<< " intervals:\n";
225 for (; i
!= e
; ++i
) {
226 DOUT
<< "\t" << *i
->first
<< " -> ";
227 unsigned reg
= i
->first
->reg
;
228 if (TargetRegisterInfo::isVirtualRegister(reg
)) {
229 reg
= vrm_
->getPhys(reg
);
231 DOUT
<< tri_
->getName(reg
) << '\n';
235 char RALinScan::ID
= 0;
238 static RegisterPass
<RALinScan
>
239 X("linearscan-regalloc", "Linear Scan Register Allocator");
241 void RALinScan::ComputeRelatedRegClasses() {
242 // First pass, add all reg classes to the union, and determine at least one
243 // reg class that each register is in.
244 bool HasAliases
= false;
245 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
246 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
247 RelatedRegClasses
.insert(*RCI
);
248 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
250 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
252 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
254 // Already processed this register. Just make sure we know that
255 // multiple register classes share a register.
256 RelatedRegClasses
.unionSets(PRC
, *RCI
);
263 // Second pass, now that we know conservatively what register classes each reg
264 // belongs to, add info about aliases. We don't need to do this for targets
265 // without register aliases.
267 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
268 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
270 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
)
271 RelatedRegClasses
.unionSets(I
->second
, OneClassForEachPhysReg
[*AS
]);
274 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
275 /// try allocate the definition the same register as the source register
276 /// if the register is not defined during live time of the interval. This
277 /// eliminate a copy. This is used to coalesce copies which were not
278 /// coalesced away before allocation either due to dest and src being in
279 /// different register classes or because the coalescer was overly
281 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
282 if ((cur
.preference
&& cur
.preference
== Reg
) || !cur
.containsOneValue())
285 VNInfo
*vni
= cur
.begin()->valno
;
286 if (!vni
->def
|| vni
->def
== ~1U || vni
->def
== ~0U)
288 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
289 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
291 !tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
293 if (TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
294 if (!vrm_
->isAssignedReg(SrcReg
))
297 SrcReg
= vrm_
->getPhys(SrcReg
);
302 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
303 if (!RC
->contains(SrcReg
))
307 if (!li_
->conflictsWithPhysRegDef(cur
, *vrm_
, SrcReg
)) {
308 DOUT
<< "Coalescing: " << cur
<< " -> " << tri_
->getName(SrcReg
)
310 vrm_
->clearVirt(cur
.reg
);
311 vrm_
->assignVirt2Phys(cur
.reg
, SrcReg
);
319 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
321 mri_
= &fn
.getRegInfo();
322 tm_
= &fn
.getTarget();
323 tri_
= tm_
->getRegisterInfo();
324 tii_
= tm_
->getInstrInfo();
325 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
326 li_
= &getAnalysis
<LiveIntervals
>();
327 ls_
= &getAnalysis
<LiveStacks
>();
328 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
330 // We don't run the coalescer here because we have no reason to
331 // interact with it. If the coalescer requires interaction, it
332 // won't do anything. If it doesn't require interaction, we assume
333 // it was run as a separate pass.
335 // If this is the first function compiled, compute the related reg classes.
336 if (RelatedRegClasses
.empty())
337 ComputeRelatedRegClasses();
339 if (!prt_
.get()) prt_
.reset(new PhysRegTracker(*tri_
));
340 vrm_
= &getAnalysis
<VirtRegMap
>();
341 if (!spiller_
.get()) spiller_
.reset(createSpiller());
347 // Rewrite spill code and update the PhysRegsUsed set.
348 spiller_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
350 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
355 NextReloadMap
.clear();
356 DowngradedRegs
.clear();
357 DowngradeMap
.clear();
362 /// initIntervalSets - initialize the interval sets.
364 void RALinScan::initIntervalSets()
366 assert(unhandled_
.empty() && fixed_
.empty() &&
367 active_
.empty() && inactive_
.empty() &&
368 "interval sets should be empty on initialization");
370 handled_
.reserve(li_
->getNumIntervals());
372 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
373 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
374 mri_
->setPhysRegUsed(i
->second
->reg
);
375 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
377 unhandled_
.push(i
->second
);
381 void RALinScan::linearScan()
383 // linear scan algorithm
384 DOUT
<< "********** LINEAR SCAN **********\n";
385 DOUT
<< "********** Function: " << mf_
->getFunction()->getName() << '\n';
387 DEBUG(printIntervals("fixed", fixed_
.begin(), fixed_
.end()));
389 while (!unhandled_
.empty()) {
390 // pick the interval with the earliest start point
391 LiveInterval
* cur
= unhandled_
.top();
394 DOUT
<< "\n*** CURRENT ***: " << *cur
<< '\n';
397 processActiveIntervals(cur
->beginNumber());
398 processInactiveIntervals(cur
->beginNumber());
400 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
401 "Can only allocate virtual registers!");
404 // Allocating a virtual register. try to find a free
405 // physical register or spill an interval (possibly this one) in order to
407 assignRegOrStackSlotAtInterval(cur
);
409 DEBUG(printIntervals("active", active_
.begin(), active_
.end()));
410 DEBUG(printIntervals("inactive", inactive_
.begin(), inactive_
.end()));
413 // expire any remaining active intervals
414 while (!active_
.empty()) {
415 IntervalPtr
&IP
= active_
.back();
416 unsigned reg
= IP
.first
->reg
;
417 DOUT
<< "\tinterval " << *IP
.first
<< " expired\n";
418 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
419 "Can only allocate virtual registers!");
420 reg
= vrm_
->getPhys(reg
);
421 prt_
->delRegUse(reg
);
425 // expire any remaining inactive intervals
426 DEBUG(for (IntervalPtrs::reverse_iterator
427 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
428 DOUT
<< "\tinterval " << *i
->first
<< " expired\n");
431 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
432 MachineFunction::iterator EntryMBB
= mf_
->begin();
433 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
434 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
435 LiveInterval
&cur
= *i
->second
;
437 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
440 else if (vrm_
->isAssignedReg(cur
.reg
))
441 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
444 // Ignore splited live intervals.
445 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
447 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
449 const LiveRange
&LR
= *I
;
450 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
451 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
452 if (LiveInMBBs
[i
] != EntryMBB
)
453 LiveInMBBs
[i
]->addLiveIn(Reg
);
462 /// processActiveIntervals - expire old intervals and move non-overlapping ones
463 /// to the inactive list.
464 void RALinScan::processActiveIntervals(unsigned CurPoint
)
466 DOUT
<< "\tprocessing active intervals:\n";
468 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
469 LiveInterval
*Interval
= active_
[i
].first
;
470 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
471 unsigned reg
= Interval
->reg
;
473 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
475 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
476 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
477 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
478 "Can only allocate virtual registers!");
479 reg
= vrm_
->getPhys(reg
);
480 prt_
->delRegUse(reg
);
482 // Pop off the end of the list.
483 active_
[i
] = active_
.back();
487 } else if (IntervalPos
->start
> CurPoint
) {
488 // Move inactive intervals to inactive list.
489 DOUT
<< "\t\tinterval " << *Interval
<< " inactive\n";
490 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
491 "Can only allocate virtual registers!");
492 reg
= vrm_
->getPhys(reg
);
493 prt_
->delRegUse(reg
);
495 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
497 // Pop off the end of the list.
498 active_
[i
] = active_
.back();
502 // Otherwise, just update the iterator position.
503 active_
[i
].second
= IntervalPos
;
508 /// processInactiveIntervals - expire old intervals and move overlapping
509 /// ones to the active list.
510 void RALinScan::processInactiveIntervals(unsigned CurPoint
)
512 DOUT
<< "\tprocessing inactive intervals:\n";
514 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
515 LiveInterval
*Interval
= inactive_
[i
].first
;
516 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
517 unsigned reg
= Interval
->reg
;
519 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
521 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
522 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
524 // Pop off the end of the list.
525 inactive_
[i
] = inactive_
.back();
526 inactive_
.pop_back();
528 } else if (IntervalPos
->start
<= CurPoint
) {
529 // move re-activated intervals in active list
530 DOUT
<< "\t\tinterval " << *Interval
<< " active\n";
531 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
532 "Can only allocate virtual registers!");
533 reg
= vrm_
->getPhys(reg
);
534 prt_
->addRegUse(reg
);
536 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
538 // Pop off the end of the list.
539 inactive_
[i
] = inactive_
.back();
540 inactive_
.pop_back();
543 // Otherwise, just update the iterator position.
544 inactive_
[i
].second
= IntervalPos
;
549 /// updateSpillWeights - updates the spill weights of the specifed physical
550 /// register and its weight.
551 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
552 unsigned reg
, float weight
,
553 const TargetRegisterClass
*RC
) {
554 SmallSet
<unsigned, 4> Processed
;
555 SmallSet
<unsigned, 4> SuperAdded
;
556 SmallVector
<unsigned, 4> Supers
;
557 Weights
[reg
] += weight
;
558 Processed
.insert(reg
);
559 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
560 Weights
[*as
] += weight
;
561 Processed
.insert(*as
);
562 if (tri_
->isSubRegister(*as
, reg
) &&
563 SuperAdded
.insert(*as
) &&
565 Supers
.push_back(*as
);
569 // If the alias is a super-register, and the super-register is in the
570 // register class we are trying to allocate. Then add the weight to all
571 // sub-registers of the super-register even if they are not aliases.
572 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
573 // bl should get the same spill weight otherwise it will be choosen
574 // as a spill candidate since spilling bh doesn't make ebx available.
575 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
576 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
577 if (!Processed
.count(*sr
))
578 Weights
[*sr
] += weight
;
583 RALinScan::IntervalPtrs::iterator
584 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
585 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
587 if (I
->first
== LI
) return I
;
591 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
, unsigned Point
){
592 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
593 RALinScan::IntervalPtr
&IP
= V
[i
];
594 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
596 if (I
!= IP
.first
->begin()) --I
;
601 /// addStackInterval - Create a LiveInterval for stack if the specified live
602 /// interval has been spilled.
603 static void addStackInterval(LiveInterval
*cur
, LiveStacks
*ls_
,
604 LiveIntervals
*li_
, float &Weight
,
606 int SS
= vrm_
.getStackSlot(cur
->reg
);
607 if (SS
== VirtRegMap::NO_STACK_SLOT
)
609 LiveInterval
&SI
= ls_
->getOrCreateInterval(SS
);
613 if (SI
.hasAtLeastOneValue())
614 VNI
= SI
.getValNumInfo(0);
616 VNI
= SI
.getNextValue(~0U, 0, ls_
->getVNInfoAllocator());
618 LiveInterval
&RI
= li_
->getInterval(cur
->reg
);
619 // FIXME: This may be overly conservative.
620 SI
.MergeRangesInAsValue(RI
, VNI
);
623 /// getConflictWeight - Return the number of conflicts between cur
624 /// live interval and defs and uses of Reg weighted by loop depthes.
625 static float getConflictWeight(LiveInterval
*cur
, unsigned Reg
,
627 MachineRegisterInfo
*mri_
,
628 const MachineLoopInfo
*loopInfo
) {
630 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
631 E
= mri_
->reg_end(); I
!= E
; ++I
) {
632 MachineInstr
*MI
= &*I
;
633 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
634 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
635 Conflicts
+= powf(10.0f
, (float)loopDepth
);
641 /// findIntervalsToSpill - Determine the intervals to spill for the
642 /// specified interval. It's passed the physical registers whose spill
643 /// weight is the lowest among all the registers whose live intervals
644 /// conflict with the interval.
645 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
646 std::vector
<std::pair
<unsigned,float> > &Candidates
,
648 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
649 // We have figured out the *best* register to spill. But there are other
650 // registers that are pretty good as well (spill weight within 3%). Spill
651 // the one that has fewest defs and uses that conflict with cur.
652 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
653 SmallVector
<LiveInterval
*, 8> SLIs
[3];
655 DOUT
<< "\tConsidering " << NumCands
<< " candidates: ";
656 DEBUG(for (unsigned i
= 0; i
!= NumCands
; ++i
)
657 DOUT
<< tri_
->getName(Candidates
[i
].first
) << " ";
660 // Calculate the number of conflicts of each candidate.
661 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
662 unsigned Reg
= i
->first
->reg
;
663 unsigned PhysReg
= vrm_
->getPhys(Reg
);
664 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
666 for (unsigned j
= 0; j
< NumCands
; ++j
) {
667 unsigned Candidate
= Candidates
[j
].first
;
668 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
670 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
671 SLIs
[j
].push_back(i
->first
);
676 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
677 unsigned Reg
= i
->first
->reg
;
678 unsigned PhysReg
= vrm_
->getPhys(Reg
);
679 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
681 for (unsigned j
= 0; j
< NumCands
; ++j
) {
682 unsigned Candidate
= Candidates
[j
].first
;
683 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
685 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
686 SLIs
[j
].push_back(i
->first
);
691 // Which is the best candidate?
692 unsigned BestCandidate
= 0;
693 float MinConflicts
= Conflicts
[0];
694 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
695 if (Conflicts
[i
] < MinConflicts
) {
697 MinConflicts
= Conflicts
[i
];
701 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
702 std::back_inserter(SpillIntervals
));
706 struct WeightCompare
{
707 typedef std::pair
<unsigned, float> RegWeightPair
;
708 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
709 return LHS
.second
< RHS
.second
;
714 static bool weightsAreClose(float w1
, float w2
) {
718 float diff
= w1
- w2
;
719 if (diff
<= 0.02f
) // Within 0.02f
721 return (diff
/ w2
) <= 0.05f
; // Within 5%.
724 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
725 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
726 if (I
== NextReloadMap
.end())
728 return &li_
->getInterval(I
->second
);
731 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
732 bool isNew
= DowngradedRegs
.insert(Reg
);
733 isNew
= isNew
; // Silence compiler warning.
734 assert(isNew
&& "Multiple reloads holding the same register?");
735 DowngradeMap
.insert(std::make_pair(li
->reg
, Reg
));
736 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
) {
737 isNew
= DowngradedRegs
.insert(*AS
);
738 isNew
= isNew
; // Silence compiler warning.
739 assert(isNew
&& "Multiple reloads holding the same register?");
740 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
745 void RALinScan::UpgradeRegister(unsigned Reg
) {
747 DowngradedRegs
.erase(Reg
);
748 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
749 DowngradedRegs
.erase(*AS
);
755 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
756 return A
->beginNumber() < B
->beginNumber();
761 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
763 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
)
765 DOUT
<< "\tallocating current interval: ";
767 // This is an implicitly defined live interval, just assign any register.
768 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
770 unsigned physReg
= cur
->preference
;
772 physReg
= *RC
->allocation_order_begin(*mf_
);
773 DOUT
<< tri_
->getName(physReg
) << '\n';
774 // Note the register is not really in use.
775 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
779 PhysRegTracker backupPrt
= *prt_
;
781 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
782 unsigned StartPosition
= cur
->beginNumber();
783 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
785 // If start of this live interval is defined by a move instruction and its
786 // source is assigned a physical register that is compatible with the target
787 // register class, then we should try to assign it the same register.
788 // This can happen when the move is from a larger register class to a smaller
789 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
790 if (!cur
->preference
&& cur
->hasAtLeastOneValue()) {
791 VNInfo
*vni
= cur
->begin()->valno
;
792 if (vni
->def
&& vni
->def
!= ~1U && vni
->def
!= ~0U) {
793 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
794 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
796 tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
)) {
798 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
800 else if (vrm_
->isAssignedReg(SrcReg
))
801 Reg
= vrm_
->getPhys(SrcReg
);
804 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
806 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
807 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
808 cur
->preference
= Reg
;
814 // for every interval in inactive we overlap with, mark the
815 // register as not free and update spill weights.
816 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
817 e
= inactive_
.end(); i
!= e
; ++i
) {
818 unsigned Reg
= i
->first
->reg
;
819 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
820 "Can only allocate virtual registers!");
821 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
822 // If this is not in a related reg class to the register we're allocating,
824 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
825 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
826 Reg
= vrm_
->getPhys(Reg
);
827 prt_
->addRegUse(Reg
);
828 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
832 // Speculatively check to see if we can get a register right now. If not,
833 // we know we won't be able to by adding more constraints. If so, we can
834 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
835 // is very bad (it contains all callee clobbered registers for any functions
836 // with a call), so we want to avoid doing that if possible.
837 unsigned physReg
= getFreePhysReg(cur
);
838 unsigned BestPhysReg
= physReg
;
840 // We got a register. However, if it's in the fixed_ list, we might
841 // conflict with it. Check to see if we conflict with it or any of its
843 SmallSet
<unsigned, 8> RegAliases
;
844 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
845 RegAliases
.insert(*AS
);
847 bool ConflictsWithFixed
= false;
848 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
849 IntervalPtr
&IP
= fixed_
[i
];
850 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
851 // Okay, this reg is on the fixed list. Check to see if we actually
853 LiveInterval
*I
= IP
.first
;
854 if (I
->endNumber() > StartPosition
) {
855 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
857 if (II
!= I
->begin() && II
->start
> StartPosition
)
859 if (cur
->overlapsFrom(*I
, II
)) {
860 ConflictsWithFixed
= true;
867 // Okay, the register picked by our speculative getFreePhysReg call turned
868 // out to be in use. Actually add all of the conflicting fixed registers to
869 // prt so we can do an accurate query.
870 if (ConflictsWithFixed
) {
871 // For every interval in fixed we overlap with, mark the register as not
872 // free and update spill weights.
873 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
874 IntervalPtr
&IP
= fixed_
[i
];
875 LiveInterval
*I
= IP
.first
;
877 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
878 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
879 I
->endNumber() > StartPosition
) {
880 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
882 if (II
!= I
->begin() && II
->start
> StartPosition
)
884 if (cur
->overlapsFrom(*I
, II
)) {
885 unsigned reg
= I
->reg
;
886 prt_
->addRegUse(reg
);
887 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
892 // Using the newly updated prt_ object, which includes conflicts in the
893 // future, see if there are any registers available.
894 physReg
= getFreePhysReg(cur
);
898 // Restore the physical register tracker, removing information about the
902 // if we find a free register, we are done: assign this virtual to
903 // the free physical register and add this interval to the active
906 DOUT
<< tri_
->getName(physReg
) << '\n';
907 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
908 prt_
->addRegUse(physReg
);
909 active_
.push_back(std::make_pair(cur
, cur
->begin()));
910 handled_
.push_back(cur
);
912 // "Upgrade" the physical register since it has been allocated.
913 UpgradeRegister(physReg
);
914 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
915 // "Downgrade" physReg to try to keep physReg from being allocated until
916 // the next reload from the same SS is allocated.
917 NextReloadLI
->preference
= physReg
;
918 DowngradeRegister(cur
, physReg
);
922 DOUT
<< "no free registers\n";
924 // Compile the spill weights into an array that is better for scanning.
925 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
926 for (std::vector
<std::pair
<unsigned, float> >::iterator
927 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
928 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
930 // for each interval in active, update spill weights.
931 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
933 unsigned reg
= i
->first
->reg
;
934 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
935 "Can only allocate virtual registers!");
936 reg
= vrm_
->getPhys(reg
);
937 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
940 DOUT
<< "\tassigning stack slot at interval "<< *cur
<< ":\n";
942 // Find a register to spill.
943 float minWeight
= HUGE_VALF
;
944 unsigned minReg
= 0; /*cur->preference*/; // Try the pref register first.
947 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
948 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
949 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
950 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
952 float regWeight
= SpillWeights
[reg
];
953 if (minWeight
> regWeight
)
955 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
958 // If we didn't find a register that is spillable, try aliases?
960 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
961 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
963 // No need to worry about if the alias register size < regsize of RC.
964 // We are going to spill all registers that alias it anyway.
965 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
966 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
970 // Sort all potential spill candidates by weight.
971 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare());
972 minReg
= RegsWeights
[0].first
;
973 minWeight
= RegsWeights
[0].second
;
974 if (minWeight
== HUGE_VALF
) {
975 // All registers must have inf weight. Just grab one!
976 minReg
= BestPhysReg
? BestPhysReg
: *RC
->allocation_order_begin(*mf_
);
977 if (cur
->weight
== HUGE_VALF
||
978 li_
->getApproximateInstructionCount(*cur
) == 0) {
979 // Spill a physical register around defs and uses.
980 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
981 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
982 // in fixed_. Reset them.
983 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
984 IntervalPtr
&IP
= fixed_
[i
];
985 LiveInterval
*I
= IP
.first
;
986 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
987 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
990 DowngradedRegs
.clear();
991 assignRegOrStackSlotAtInterval(cur
);
993 cerr
<< "Ran out of registers during register allocation!\n";
1000 // Find up to 3 registers to consider as spill candidates.
1001 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1002 while (LastCandidate
> 1) {
1003 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1008 DOUT
<< "\t\tregister(s) with min weight(s): ";
1009 DEBUG(for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1010 DOUT
<< tri_
->getName(RegsWeights
[i
].first
)
1011 << " (" << RegsWeights
[i
].second
<< ")\n");
1013 // If the current has the minimum weight, we need to spill it and
1014 // add any added intervals back to unhandled, and restart
1016 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1017 DOUT
<< "\t\t\tspilling(c): " << *cur
<< '\n';
1019 SmallVector
<LiveInterval
*, 8> spillIs
;
1020 std::vector
<LiveInterval
*> added
=
1021 li_
->addIntervalsForSpills(*cur
, spillIs
, loopInfo
, *vrm_
, SSWeight
);
1022 std::sort(added
.begin(), added
.end(), LISorter());
1023 addStackInterval(cur
, ls_
, li_
, SSWeight
, *vrm_
);
1025 return; // Early exit if all spills were folded.
1027 // Merge added with unhandled. Note that we have already sorted
1028 // intervals returned by addIntervalsForSpills by their starting
1030 // This also update the NextReloadMap. That is, it adds mapping from a
1031 // register defined by a reload from SS to the next reload from SS in the
1032 // same basic block.
1033 MachineBasicBlock
*LastReloadMBB
= 0;
1034 LiveInterval
*LastReload
= 0;
1035 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1036 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1037 LiveInterval
*ReloadLi
= added
[i
];
1038 if (ReloadLi
->weight
== HUGE_VALF
&&
1039 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1040 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1041 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1042 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1043 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1044 // Last reload of same SS is in the same MBB. We want to try to
1045 // allocate both reloads the same register and make sure the reg
1046 // isn't clobbered in between if at all possible.
1047 assert(LastReload
->beginNumber() < ReloadIdx
);
1048 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1050 LastReloadMBB
= ReloadMBB
;
1051 LastReload
= ReloadLi
;
1052 LastReloadSS
= ReloadSS
;
1054 unhandled_
.push(ReloadLi
);
1061 // Push the current interval back to unhandled since we are going
1062 // to re-run at least this iteration. Since we didn't modify it it
1063 // should go back right in the front of the list
1064 unhandled_
.push(cur
);
1066 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1067 "did not choose a register to spill?");
1069 // We spill all intervals aliasing the register with
1070 // minimum weight, rollback to the interval with the earliest
1071 // start point and let the linear scan algorithm run again
1072 SmallVector
<LiveInterval
*, 8> spillIs
;
1074 // Determine which intervals have to be spilled.
1075 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1077 // Set of spilled vregs (used later to rollback properly)
1078 SmallSet
<unsigned, 8> spilled
;
1080 // The earliest start of a Spilled interval indicates up to where
1081 // in handled we need to roll back
1082 unsigned earliestStart
= cur
->beginNumber();
1084 // Spill live intervals of virtual regs mapped to the physical register we
1085 // want to clear (and its aliases). We only spill those that overlap with the
1086 // current interval as the rest do not affect its allocation. we also keep
1087 // track of the earliest start of all spilled live intervals since this will
1088 // mark our rollback point.
1089 std::vector
<LiveInterval
*> added
;
1090 while (!spillIs
.empty()) {
1091 LiveInterval
*sli
= spillIs
.back();
1093 DOUT
<< "\t\t\tspilling(a): " << *sli
<< '\n';
1094 earliestStart
= std::min(earliestStart
, sli
->beginNumber());
1096 std::vector
<LiveInterval
*> newIs
=
1097 li_
->addIntervalsForSpills(*sli
, spillIs
, loopInfo
, *vrm_
, SSWeight
);
1098 addStackInterval(sli
, ls_
, li_
, SSWeight
, *vrm_
);
1099 std::copy(newIs
.begin(), newIs
.end(), std::back_inserter(added
));
1100 spilled
.insert(sli
->reg
);
1103 DOUT
<< "\t\trolling back to: " << earliestStart
<< '\n';
1105 // Scan handled in reverse order up to the earliest start of a
1106 // spilled live interval and undo each one, restoring the state of
1108 while (!handled_
.empty()) {
1109 LiveInterval
* i
= handled_
.back();
1110 // If this interval starts before t we are done.
1111 if (i
->beginNumber() < earliestStart
)
1113 DOUT
<< "\t\t\tundo changes for: " << *i
<< '\n';
1114 handled_
.pop_back();
1116 // When undoing a live interval allocation we must know if it is active or
1117 // inactive to properly update the PhysRegTracker and the VirtRegMap.
1118 IntervalPtrs::iterator it
;
1119 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1121 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1122 if (!spilled
.count(i
->reg
))
1124 prt_
->delRegUse(vrm_
->getPhys(i
->reg
));
1125 vrm_
->clearVirt(i
->reg
);
1126 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1127 inactive_
.erase(it
);
1128 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1129 if (!spilled
.count(i
->reg
))
1131 vrm_
->clearVirt(i
->reg
);
1133 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1134 "Can only allocate virtual registers!");
1135 vrm_
->clearVirt(i
->reg
);
1139 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1140 if (ii
== DowngradeMap
.end())
1141 // It interval has a preference, it must be defined by a copy. Clear the
1142 // preference now since the source interval allocation may have been
1146 UpgradeRegister(ii
->second
);
1150 // Rewind the iterators in the active, inactive, and fixed lists back to the
1151 // point we reverted to.
1152 RevertVectorIteratorsTo(active_
, earliestStart
);
1153 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1154 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1156 // Scan the rest and undo each interval that expired after t and
1157 // insert it in active (the next iteration of the algorithm will
1158 // put it in inactive if required)
1159 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1160 LiveInterval
*HI
= handled_
[i
];
1161 if (!HI
->expiredAt(earliestStart
) &&
1162 HI
->expiredAt(cur
->beginNumber())) {
1163 DOUT
<< "\t\t\tundo changes for: " << *HI
<< '\n';
1164 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1165 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1166 prt_
->addRegUse(vrm_
->getPhys(HI
->reg
));
1170 // Merge added with unhandled.
1171 // This also update the NextReloadMap. That is, it adds mapping from a
1172 // register defined by a reload from SS to the next reload from SS in the
1173 // same basic block.
1174 MachineBasicBlock
*LastReloadMBB
= 0;
1175 LiveInterval
*LastReload
= 0;
1176 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1177 std::sort(added
.begin(), added
.end(), LISorter());
1178 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1179 LiveInterval
*ReloadLi
= added
[i
];
1180 if (ReloadLi
->weight
== HUGE_VALF
&&
1181 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1182 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1183 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1184 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1185 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1186 // Last reload of same SS is in the same MBB. We want to try to
1187 // allocate both reloads the same register and make sure the reg
1188 // isn't clobbered in between if at all possible.
1189 assert(LastReload
->beginNumber() < ReloadIdx
);
1190 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1192 LastReloadMBB
= ReloadMBB
;
1193 LastReload
= ReloadLi
;
1194 LastReloadSS
= ReloadSS
;
1196 unhandled_
.push(ReloadLi
);
1200 unsigned RALinScan::getFreePhysReg(const TargetRegisterClass
*RC
,
1201 unsigned MaxInactiveCount
,
1202 SmallVector
<unsigned, 256> &inactiveCounts
,
1204 unsigned FreeReg
= 0;
1205 unsigned FreeRegInactiveCount
= 0;
1207 TargetRegisterClass::iterator I
= RC
->allocation_order_begin(*mf_
);
1208 TargetRegisterClass::iterator E
= RC
->allocation_order_end(*mf_
);
1209 assert(I
!= E
&& "No allocatable register in this register class!");
1211 // Scan for the first available register.
1212 for (; I
!= E
; ++I
) {
1214 // Ignore "downgraded" registers.
1215 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1217 if (prt_
->isRegAvail(Reg
)) {
1219 if (FreeReg
< inactiveCounts
.size())
1220 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1222 FreeRegInactiveCount
= 0;
1227 // If there are no free regs, or if this reg has the max inactive count,
1228 // return this register.
1229 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
)
1232 // Continue scanning the registers, looking for the one with the highest
1233 // inactive count. Alkis found that this reduced register pressure very
1234 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1236 for (; I
!= E
; ++I
) {
1238 // Ignore "downgraded" registers.
1239 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1241 if (prt_
->isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1242 FreeRegInactiveCount
< inactiveCounts
[Reg
]) {
1244 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1245 if (FreeRegInactiveCount
== MaxInactiveCount
)
1246 break; // We found the one with the max inactive count.
1253 /// getFreePhysReg - return a free physical register for this virtual register
1254 /// interval if we have one, otherwise return 0.
1255 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1256 SmallVector
<unsigned, 256> inactiveCounts
;
1257 unsigned MaxInactiveCount
= 0;
1259 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1260 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1262 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1264 unsigned reg
= i
->first
->reg
;
1265 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1266 "Can only allocate virtual registers!");
1268 // If this is not in a related reg class to the register we're allocating,
1270 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1271 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1272 reg
= vrm_
->getPhys(reg
);
1273 if (inactiveCounts
.size() <= reg
)
1274 inactiveCounts
.resize(reg
+1);
1275 ++inactiveCounts
[reg
];
1276 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1280 // If copy coalescer has assigned a "preferred" register, check if it's
1282 if (cur
->preference
) {
1283 DOUT
<< "(preferred: " << tri_
->getName(cur
->preference
) << ") ";
1284 if (prt_
->isRegAvail(cur
->preference
) &&
1285 RC
->contains(cur
->preference
))
1286 return cur
->preference
;
1289 if (!DowngradedRegs
.empty()) {
1290 unsigned FreeReg
= getFreePhysReg(RC
, MaxInactiveCount
, inactiveCounts
,
1295 return getFreePhysReg(RC
, MaxInactiveCount
, inactiveCounts
, false);
1298 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1299 return new RALinScan();