1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
25 ScheduleDAG::ScheduleDAG(MachineFunction
&mf
)
27 TII(TM
.getInstrInfo()),
28 TRI(TM
.getRegisterInfo()),
29 TLI(TM
.getTargetLowering()),
30 MF(mf
), MRI(mf
.getRegInfo()),
31 ConstPool(MF
.getConstantPool()),
35 ScheduleDAG::~ScheduleDAG() {}
37 /// dump - dump the schedule.
38 void ScheduleDAG::dumpSchedule() const {
39 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
40 if (SUnit
*SU
= Sequence
[i
])
43 cerr
<< "**** NOOP ****\n";
48 /// Run - perform scheduling.
50 void ScheduleDAG::Run(MachineBasicBlock
*bb
,
51 MachineBasicBlock::iterator insertPos
) {
53 InsertPos
= insertPos
;
62 DOUT
<< "*** Final schedule ***\n";
63 DEBUG(dumpSchedule());
67 /// addPred - This adds the specified edge as a pred of the current node if
68 /// not already. It also adds the current node as a successor of the
70 void SUnit::addPred(const SDep
&D
) {
71 // If this node already has this depenence, don't add a redundant one.
72 for (SmallVector
<SDep
, 4>::const_iterator I
= Preds
.begin(), E
= Preds
.end();
76 // Now add a corresponding succ to N.
79 SUnit
*N
= D
.getSUnit();
80 // Update the bookkeeping.
81 if (D
.getKind() == SDep::Data
) {
90 N
->Succs
.push_back(P
);
91 if (P
.getLatency() != 0) {
92 this->setDepthDirty();
97 /// removePred - This removes the specified edge as a pred of the current
98 /// node if it exists. It also removes the current node as a successor of
99 /// the specified node.
100 void SUnit::removePred(const SDep
&D
) {
101 // Find the matching predecessor.
102 for (SmallVector
<SDep
, 4>::iterator I
= Preds
.begin(), E
= Preds
.end();
105 bool FoundSucc
= false;
106 // Find the corresponding successor in N.
109 SUnit
*N
= D
.getSUnit();
110 for (SmallVector
<SDep
, 4>::iterator II
= N
->Succs
.begin(),
111 EE
= N
->Succs
.end(); II
!= EE
; ++II
)
117 assert(FoundSucc
&& "Mismatching preds / succs lists!");
119 // Update the bookkeeping.
120 if (P
.getKind() == SDep::Data
) {
128 if (P
.getLatency() != 0) {
129 this->setDepthDirty();
136 void SUnit::setDepthDirty() {
137 if (!isDepthCurrent
) return;
138 SmallVector
<SUnit
*, 8> WorkList
;
139 WorkList
.push_back(this);
141 SUnit
*SU
= WorkList
.pop_back_val();
142 SU
->isDepthCurrent
= false;
143 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(),
144 E
= SU
->Succs
.end(); I
!= E
; ++I
) {
145 SUnit
*SuccSU
= I
->getSUnit();
146 if (SuccSU
->isDepthCurrent
)
147 WorkList
.push_back(SuccSU
);
149 } while (!WorkList
.empty());
152 void SUnit::setHeightDirty() {
153 if (!isHeightCurrent
) return;
154 SmallVector
<SUnit
*, 8> WorkList
;
155 WorkList
.push_back(this);
157 SUnit
*SU
= WorkList
.pop_back_val();
158 SU
->isHeightCurrent
= false;
159 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(),
160 E
= SU
->Preds
.end(); I
!= E
; ++I
) {
161 SUnit
*PredSU
= I
->getSUnit();
162 if (PredSU
->isHeightCurrent
)
163 WorkList
.push_back(PredSU
);
165 } while (!WorkList
.empty());
168 /// setDepthToAtLeast - Update this node's successors to reflect the
169 /// fact that this node's depth just increased.
171 void SUnit::setDepthToAtLeast(unsigned NewDepth
) {
172 if (NewDepth
<= getDepth())
176 isDepthCurrent
= true;
179 /// setHeightToAtLeast - Update this node's predecessors to reflect the
180 /// fact that this node's height just increased.
182 void SUnit::setHeightToAtLeast(unsigned NewHeight
) {
183 if (NewHeight
<= getHeight())
187 isHeightCurrent
= true;
190 /// ComputeDepth - Calculate the maximal path from the node to the exit.
192 void SUnit::ComputeDepth() {
193 SmallVector
<SUnit
*, 8> WorkList
;
194 WorkList
.push_back(this);
196 SUnit
*Cur
= WorkList
.back();
199 unsigned MaxPredDepth
= 0;
200 for (SUnit::const_pred_iterator I
= Cur
->Preds
.begin(),
201 E
= Cur
->Preds
.end(); I
!= E
; ++I
) {
202 SUnit
*PredSU
= I
->getSUnit();
203 if (PredSU
->isDepthCurrent
)
204 MaxPredDepth
= std::max(MaxPredDepth
,
205 PredSU
->Depth
+ I
->getLatency());
208 WorkList
.push_back(PredSU
);
214 if (MaxPredDepth
!= Cur
->Depth
) {
215 Cur
->setDepthDirty();
216 Cur
->Depth
= MaxPredDepth
;
218 Cur
->isDepthCurrent
= true;
220 } while (!WorkList
.empty());
223 /// ComputeHeight - Calculate the maximal path from the node to the entry.
225 void SUnit::ComputeHeight() {
226 SmallVector
<SUnit
*, 8> WorkList
;
227 WorkList
.push_back(this);
229 SUnit
*Cur
= WorkList
.back();
232 unsigned MaxSuccHeight
= 0;
233 for (SUnit::const_succ_iterator I
= Cur
->Succs
.begin(),
234 E
= Cur
->Succs
.end(); I
!= E
; ++I
) {
235 SUnit
*SuccSU
= I
->getSUnit();
236 if (SuccSU
->isHeightCurrent
)
237 MaxSuccHeight
= std::max(MaxSuccHeight
,
238 SuccSU
->Height
+ I
->getLatency());
241 WorkList
.push_back(SuccSU
);
247 if (MaxSuccHeight
!= Cur
->Height
) {
248 Cur
->setHeightDirty();
249 Cur
->Height
= MaxSuccHeight
;
251 Cur
->isHeightCurrent
= true;
253 } while (!WorkList
.empty());
256 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
257 /// a group of nodes flagged together.
258 void SUnit::dump(const ScheduleDAG
*G
) const {
259 cerr
<< "SU(" << NodeNum
<< "): ";
263 void SUnit::dumpAll(const ScheduleDAG
*G
) const {
266 cerr
<< " # preds left : " << NumPredsLeft
<< "\n";
267 cerr
<< " # succs left : " << NumSuccsLeft
<< "\n";
268 cerr
<< " Latency : " << Latency
<< "\n";
269 cerr
<< " Depth : " << Depth
<< "\n";
270 cerr
<< " Height : " << Height
<< "\n";
272 if (Preds
.size() != 0) {
273 cerr
<< " Predecessors:\n";
274 for (SUnit::const_succ_iterator I
= Preds
.begin(), E
= Preds
.end();
277 switch (I
->getKind()) {
278 case SDep::Data
: cerr
<< "val "; break;
279 case SDep::Anti
: cerr
<< "anti"; break;
280 case SDep::Output
: cerr
<< "out "; break;
281 case SDep::Order
: cerr
<< "ch "; break;
284 cerr
<< I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
285 if (I
->isArtificial())
290 if (Succs
.size() != 0) {
291 cerr
<< " Successors:\n";
292 for (SUnit::const_succ_iterator I
= Succs
.begin(), E
= Succs
.end();
295 switch (I
->getKind()) {
296 case SDep::Data
: cerr
<< "val "; break;
297 case SDep::Anti
: cerr
<< "anti"; break;
298 case SDep::Output
: cerr
<< "out "; break;
299 case SDep::Order
: cerr
<< "ch "; break;
302 cerr
<< I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
303 if (I
->isArtificial())
312 /// VerifySchedule - Verify that all SUnits were scheduled and that
313 /// their state is consistent.
315 void ScheduleDAG::VerifySchedule(bool isBottomUp
) {
316 bool AnyNotSched
= false;
317 unsigned DeadNodes
= 0;
319 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
320 if (!SUnits
[i
].isScheduled
) {
321 if (SUnits
[i
].NumPreds
== 0 && SUnits
[i
].NumSuccs
== 0) {
326 cerr
<< "*** Scheduling failed! ***\n";
327 SUnits
[i
].dump(this);
328 cerr
<< "has not been scheduled!\n";
331 if (SUnits
[i
].isScheduled
&&
332 (isBottomUp
? SUnits
[i
].getHeight() : SUnits
[i
].getHeight()) >
335 cerr
<< "*** Scheduling failed! ***\n";
336 SUnits
[i
].dump(this);
337 cerr
<< "has an unexpected "
338 << (isBottomUp
? "Height" : "Depth") << " value!\n";
342 if (SUnits
[i
].NumSuccsLeft
!= 0) {
344 cerr
<< "*** Scheduling failed! ***\n";
345 SUnits
[i
].dump(this);
346 cerr
<< "has successors left!\n";
350 if (SUnits
[i
].NumPredsLeft
!= 0) {
352 cerr
<< "*** Scheduling failed! ***\n";
353 SUnits
[i
].dump(this);
354 cerr
<< "has predecessors left!\n";
359 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; ++i
)
362 assert(!AnyNotSched
);
363 assert(Sequence
.size() + DeadNodes
- Noops
== SUnits
.size() &&
364 "The number of nodes scheduled doesn't match the expected number!");
368 /// InitDAGTopologicalSorting - create the initial topological
369 /// ordering from the DAG to be scheduled.
371 /// The idea of the algorithm is taken from
372 /// "Online algorithms for managing the topological order of
373 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
374 /// This is the MNR algorithm, which was first introduced by
375 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
376 /// "Maintaining a topological order under edge insertions".
378 /// Short description of the algorithm:
380 /// Topological ordering, ord, of a DAG maps each node to a topological
381 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
383 /// This means that if there is a path from the node X to the node Z,
384 /// then ord(X) < ord(Z).
386 /// This property can be used to check for reachability of nodes:
387 /// if Z is reachable from X, then an insertion of the edge Z->X would
390 /// The algorithm first computes a topological ordering for the DAG by
391 /// initializing the Index2Node and Node2Index arrays and then tries to keep
392 /// the ordering up-to-date after edge insertions by reordering the DAG.
394 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
395 /// the nodes reachable from Y, and then shifts them using Shift to lie
396 /// immediately after X in Index2Node.
397 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
398 unsigned DAGSize
= SUnits
.size();
399 std::vector
<SUnit
*> WorkList
;
400 WorkList
.reserve(DAGSize
);
402 Index2Node
.resize(DAGSize
);
403 Node2Index
.resize(DAGSize
);
405 // Initialize the data structures.
406 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
407 SUnit
*SU
= &SUnits
[i
];
408 int NodeNum
= SU
->NodeNum
;
409 unsigned Degree
= SU
->Succs
.size();
410 // Temporarily use the Node2Index array as scratch space for degree counts.
411 Node2Index
[NodeNum
] = Degree
;
413 // Is it a node without dependencies?
415 assert(SU
->Succs
.empty() && "SUnit should have no successors");
416 // Collect leaf nodes.
417 WorkList
.push_back(SU
);
422 while (!WorkList
.empty()) {
423 SUnit
*SU
= WorkList
.back();
425 Allocate(SU
->NodeNum
, --Id
);
426 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
428 SUnit
*SU
= I
->getSUnit();
429 if (!--Node2Index
[SU
->NodeNum
])
430 // If all dependencies of the node are processed already,
431 // then the node can be computed now.
432 WorkList
.push_back(SU
);
436 Visited
.resize(DAGSize
);
439 // Check correctness of the ordering
440 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
441 SUnit
*SU
= &SUnits
[i
];
442 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
444 assert(Node2Index
[SU
->NodeNum
] > Node2Index
[I
->getSUnit()->NodeNum
] &&
445 "Wrong topological sorting");
451 /// AddPred - Updates the topological ordering to accomodate an edge
452 /// to be added from SUnit X to SUnit Y.
453 void ScheduleDAGTopologicalSort::AddPred(SUnit
*Y
, SUnit
*X
) {
454 int UpperBound
, LowerBound
;
455 LowerBound
= Node2Index
[Y
->NodeNum
];
456 UpperBound
= Node2Index
[X
->NodeNum
];
457 bool HasLoop
= false;
458 // Is Ord(X) < Ord(Y) ?
459 if (LowerBound
< UpperBound
) {
460 // Update the topological order.
462 DFS(Y
, UpperBound
, HasLoop
);
463 assert(!HasLoop
&& "Inserted edge creates a loop!");
464 // Recompute topological indexes.
465 Shift(Visited
, LowerBound
, UpperBound
);
469 /// RemovePred - Updates the topological ordering to accomodate an
470 /// an edge to be removed from the specified node N from the predecessors
471 /// of the current node M.
472 void ScheduleDAGTopologicalSort::RemovePred(SUnit
*M
, SUnit
*N
) {
473 // InitDAGTopologicalSorting();
476 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
477 /// all nodes affected by the edge insertion. These nodes will later get new
478 /// topological indexes by means of the Shift method.
479 void ScheduleDAGTopologicalSort::DFS(const SUnit
*SU
, int UpperBound
,
481 std::vector
<const SUnit
*> WorkList
;
482 WorkList
.reserve(SUnits
.size());
484 WorkList
.push_back(SU
);
486 SU
= WorkList
.back();
488 Visited
.set(SU
->NodeNum
);
489 for (int I
= SU
->Succs
.size()-1; I
>= 0; --I
) {
490 int s
= SU
->Succs
[I
].getSUnit()->NodeNum
;
491 if (Node2Index
[s
] == UpperBound
) {
495 // Visit successors if not already and in affected region.
496 if (!Visited
.test(s
) && Node2Index
[s
] < UpperBound
) {
497 WorkList
.push_back(SU
->Succs
[I
].getSUnit());
500 } while (!WorkList
.empty());
503 /// Shift - Renumber the nodes so that the topological ordering is
505 void ScheduleDAGTopologicalSort::Shift(BitVector
& Visited
, int LowerBound
,
511 for (i
= LowerBound
; i
<= UpperBound
; ++i
) {
512 // w is node at topological index i.
513 int w
= Index2Node
[i
];
514 if (Visited
.test(w
)) {
520 Allocate(w
, i
- shift
);
524 for (unsigned j
= 0; j
< L
.size(); ++j
) {
525 Allocate(L
[j
], i
- shift
);
531 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
533 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
534 if (IsReachable(TargetSU
, SU
))
536 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
538 if (I
->isAssignedRegDep() &&
539 IsReachable(TargetSU
, I
->getSUnit()))
544 /// IsReachable - Checks if SU is reachable from TargetSU.
545 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit
*SU
,
546 const SUnit
*TargetSU
) {
547 // If insertion of the edge SU->TargetSU would create a cycle
548 // then there is a path from TargetSU to SU.
549 int UpperBound
, LowerBound
;
550 LowerBound
= Node2Index
[TargetSU
->NodeNum
];
551 UpperBound
= Node2Index
[SU
->NodeNum
];
552 bool HasLoop
= false;
553 // Is Ord(TargetSU) < Ord(SU) ?
554 if (LowerBound
< UpperBound
) {
556 // There may be a path from TargetSU to SU. Check for it.
557 DFS(TargetSU
, UpperBound
, HasLoop
);
562 /// Allocate - assign the topological index to the node n.
563 void ScheduleDAGTopologicalSort::Allocate(int n
, int index
) {
564 Node2Index
[n
] = index
;
565 Index2Node
[index
] = n
;
568 ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
569 std::vector
<SUnit
> &sunits
)
572 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}