Factor loop backedge finding out of CodeGenPrepare into a new
[llvm/msp430.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
blob0a6d7ef5dbfe4ee5b6ed3a0bfce28b0a0f876924
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include <algorithm>
28 using namespace llvm;
30 /// DeleteDeadBlock - Delete the specified block, which must have no
31 /// predecessors.
32 void llvm::DeleteDeadBlock(BasicBlock *BB) {
33 assert((pred_begin(BB) == pred_end(BB) ||
34 // Can delete self loop.
35 BB->getSinglePredecessor() == BB) && "Block is not dead!");
36 TerminatorInst *BBTerm = BB->getTerminator();
38 // Loop through all of our successors and make sure they know that one
39 // of their predecessors is going away.
40 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
41 BBTerm->getSuccessor(i)->removePredecessor(BB);
43 // Zap all the instructions in the block.
44 while (!BB->empty()) {
45 Instruction &I = BB->back();
46 // If this instruction is used, replace uses with an arbitrary value.
47 // Because control flow can't get here, we don't care what we replace the
48 // value with. Note that since this block is unreachable, and all values
49 // contained within it must dominate their uses, that all uses will
50 // eventually be removed (they are themselves dead).
51 if (!I.use_empty())
52 I.replaceAllUsesWith(UndefValue::get(I.getType()));
53 BB->getInstList().pop_back();
56 // Zap the block!
57 BB->eraseFromParent();
60 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
61 /// any single-entry PHI nodes in it, fold them away. This handles the case
62 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
63 /// when the block has exactly one predecessor.
64 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
65 if (!isa<PHINode>(BB->begin()))
66 return;
68 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
69 if (PN->getIncomingValue(0) != PN)
70 PN->replaceAllUsesWith(PN->getIncomingValue(0));
71 else
72 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
73 PN->eraseFromParent();
78 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
79 /// is dead. Also recursively delete any operands that become dead as
80 /// a result. This includes tracing the def-use list from the PHI to see if
81 /// it is ultimately unused or if it reaches an unused cycle. If a
82 /// ValueDeletionListener is specified, it is notified of the deletions.
83 void llvm::DeleteDeadPHIs(BasicBlock *BB, ValueDeletionListener *VDL) {
84 // Recursively deleting a PHI may cause multiple PHIs to be deleted
85 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
86 SmallVector<WeakVH, 8> PHIs;
87 for (BasicBlock::iterator I = BB->begin();
88 PHINode *PN = dyn_cast<PHINode>(I); ++I)
89 PHIs.push_back(PN);
91 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
92 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
93 RecursivelyDeleteDeadPHINode(PN, VDL);
96 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
97 /// if possible. The return value indicates success or failure.
98 bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
99 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
100 // Can't merge the entry block.
101 if (pred_begin(BB) == pred_end(BB)) return false;
103 BasicBlock *PredBB = *PI++;
104 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
105 if (*PI != PredBB) {
106 PredBB = 0; // There are multiple different predecessors...
107 break;
110 // Can't merge if there are multiple predecessors.
111 if (!PredBB) return false;
112 // Don't break self-loops.
113 if (PredBB == BB) return false;
114 // Don't break invokes.
115 if (isa<InvokeInst>(PredBB->getTerminator())) return false;
117 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
118 BasicBlock* OnlySucc = BB;
119 for (; SI != SE; ++SI)
120 if (*SI != OnlySucc) {
121 OnlySucc = 0; // There are multiple distinct successors!
122 break;
125 // Can't merge if there are multiple successors.
126 if (!OnlySucc) return false;
128 // Can't merge if there is PHI loop.
129 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
130 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
131 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
132 if (PN->getIncomingValue(i) == PN)
133 return false;
134 } else
135 break;
138 // Begin by getting rid of unneeded PHIs.
139 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
140 PN->replaceAllUsesWith(PN->getIncomingValue(0));
141 BB->getInstList().pop_front(); // Delete the phi node...
144 // Delete the unconditional branch from the predecessor...
145 PredBB->getInstList().pop_back();
147 // Move all definitions in the successor to the predecessor...
148 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
150 // Make all PHI nodes that referred to BB now refer to Pred as their
151 // source...
152 BB->replaceAllUsesWith(PredBB);
154 // Inherit predecessors name if it exists.
155 if (!PredBB->hasName())
156 PredBB->takeName(BB);
158 // Finally, erase the old block and update dominator info.
159 if (P) {
160 if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
161 DomTreeNode* DTN = DT->getNode(BB);
162 DomTreeNode* PredDTN = DT->getNode(PredBB);
164 if (DTN) {
165 SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
166 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
167 DE = Children.end(); DI != DE; ++DI)
168 DT->changeImmediateDominator(*DI, PredDTN);
170 DT->eraseNode(BB);
175 BB->eraseFromParent();
178 return true;
181 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
182 /// with a value, then remove and delete the original instruction.
184 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
185 BasicBlock::iterator &BI, Value *V) {
186 Instruction &I = *BI;
187 // Replaces all of the uses of the instruction with uses of the value
188 I.replaceAllUsesWith(V);
190 // Make sure to propagate a name if there is one already.
191 if (I.hasName() && !V->hasName())
192 V->takeName(&I);
194 // Delete the unnecessary instruction now...
195 BI = BIL.erase(BI);
199 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
200 /// instruction specified by I. The original instruction is deleted and BI is
201 /// updated to point to the new instruction.
203 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
204 BasicBlock::iterator &BI, Instruction *I) {
205 assert(I->getParent() == 0 &&
206 "ReplaceInstWithInst: Instruction already inserted into basic block!");
208 // Insert the new instruction into the basic block...
209 BasicBlock::iterator New = BIL.insert(BI, I);
211 // Replace all uses of the old instruction, and delete it.
212 ReplaceInstWithValue(BIL, BI, I);
214 // Move BI back to point to the newly inserted instruction
215 BI = New;
218 /// ReplaceInstWithInst - Replace the instruction specified by From with the
219 /// instruction specified by To.
221 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
222 BasicBlock::iterator BI(From);
223 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
226 /// RemoveSuccessor - Change the specified terminator instruction such that its
227 /// successor SuccNum no longer exists. Because this reduces the outgoing
228 /// degree of the current basic block, the actual terminator instruction itself
229 /// may have to be changed. In the case where the last successor of the block
230 /// is deleted, a return instruction is inserted in its place which can cause a
231 /// surprising change in program behavior if it is not expected.
233 void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
234 assert(SuccNum < TI->getNumSuccessors() &&
235 "Trying to remove a nonexistant successor!");
237 // If our old successor block contains any PHI nodes, remove the entry in the
238 // PHI nodes that comes from this branch...
240 BasicBlock *BB = TI->getParent();
241 TI->getSuccessor(SuccNum)->removePredecessor(BB);
243 TerminatorInst *NewTI = 0;
244 switch (TI->getOpcode()) {
245 case Instruction::Br:
246 // If this is a conditional branch... convert to unconditional branch.
247 if (TI->getNumSuccessors() == 2) {
248 cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
249 } else { // Otherwise convert to a return instruction...
250 Value *RetVal = 0;
252 // Create a value to return... if the function doesn't return null...
253 if (BB->getParent()->getReturnType() != Type::VoidTy)
254 RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
256 // Create the return...
257 NewTI = ReturnInst::Create(RetVal);
259 break;
261 case Instruction::Invoke: // Should convert to call
262 case Instruction::Switch: // Should remove entry
263 default:
264 case Instruction::Ret: // Cannot happen, has no successors!
265 assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
266 abort();
269 if (NewTI) // If it's a different instruction, replace.
270 ReplaceInstWithInst(TI, NewTI);
273 /// SplitEdge - Split the edge connecting specified block. Pass P must
274 /// not be NULL.
275 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
276 TerminatorInst *LatchTerm = BB->getTerminator();
277 unsigned SuccNum = 0;
278 #ifndef NDEBUG
279 unsigned e = LatchTerm->getNumSuccessors();
280 #endif
281 for (unsigned i = 0; ; ++i) {
282 assert(i != e && "Didn't find edge?");
283 if (LatchTerm->getSuccessor(i) == Succ) {
284 SuccNum = i;
285 break;
289 // If this is a critical edge, let SplitCriticalEdge do it.
290 if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
291 return LatchTerm->getSuccessor(SuccNum);
293 // If the edge isn't critical, then BB has a single successor or Succ has a
294 // single pred. Split the block.
295 BasicBlock::iterator SplitPoint;
296 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
297 // If the successor only has a single pred, split the top of the successor
298 // block.
299 assert(SP == BB && "CFG broken");
300 SP = NULL;
301 return SplitBlock(Succ, Succ->begin(), P);
302 } else {
303 // Otherwise, if BB has a single successor, split it at the bottom of the
304 // block.
305 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
306 "Should have a single succ!");
307 return SplitBlock(BB, BB->getTerminator(), P);
311 /// SplitBlock - Split the specified block at the specified instruction - every
312 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
313 /// to a new block. The two blocks are joined by an unconditional branch and
314 /// the loop info is updated.
316 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
317 BasicBlock::iterator SplitIt = SplitPt;
318 while (isa<PHINode>(SplitIt))
319 ++SplitIt;
320 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
322 // The new block lives in whichever loop the old one did.
323 if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
324 if (Loop *L = LI->getLoopFor(Old))
325 L->addBasicBlockToLoop(New, LI->getBase());
327 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
329 // Old dominates New. New node domiantes all other nodes dominated by Old.
330 DomTreeNode *OldNode = DT->getNode(Old);
331 std::vector<DomTreeNode *> Children;
332 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
333 I != E; ++I)
334 Children.push_back(*I);
336 DomTreeNode *NewNode = DT->addNewBlock(New,Old);
338 for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
339 E = Children.end(); I != E; ++I)
340 DT->changeImmediateDominator(*I, NewNode);
343 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
344 DF->splitBlock(Old);
346 return New;
350 /// SplitBlockPredecessors - This method transforms BB by introducing a new
351 /// basic block into the function, and moving some of the predecessors of BB to
352 /// be predecessors of the new block. The new predecessors are indicated by the
353 /// Preds array, which has NumPreds elements in it. The new block is given a
354 /// suffix of 'Suffix'.
356 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
357 /// DominanceFrontier, but no other analyses.
358 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
359 BasicBlock *const *Preds,
360 unsigned NumPreds, const char *Suffix,
361 Pass *P) {
362 // Create new basic block, insert right before the original block.
363 BasicBlock *NewBB =
364 BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
366 // The new block unconditionally branches to the old block.
367 BranchInst *BI = BranchInst::Create(BB, NewBB);
369 // Move the edges from Preds to point to NewBB instead of BB.
370 for (unsigned i = 0; i != NumPreds; ++i)
371 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
373 // Update dominator tree and dominator frontier if available.
374 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
375 if (DT)
376 DT->splitBlock(NewBB);
377 if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
378 DF->splitBlock(NewBB);
379 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
382 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
383 // node becomes an incoming value for BB's phi node. However, if the Preds
384 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
385 // account for the newly created predecessor.
386 if (NumPreds == 0) {
387 // Insert dummy values as the incoming value.
388 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
389 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
390 return NewBB;
393 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
394 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
395 PHINode *PN = cast<PHINode>(I++);
397 // Check to see if all of the values coming in are the same. If so, we
398 // don't need to create a new PHI node.
399 Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
400 for (unsigned i = 1; i != NumPreds; ++i)
401 if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
402 InVal = 0;
403 break;
406 if (InVal) {
407 // If all incoming values for the new PHI would be the same, just don't
408 // make a new PHI. Instead, just remove the incoming values from the old
409 // PHI.
410 for (unsigned i = 0; i != NumPreds; ++i)
411 PN->removeIncomingValue(Preds[i], false);
412 } else {
413 // If the values coming into the block are not the same, we need a PHI.
414 // Create the new PHI node, insert it into NewBB at the end of the block
415 PHINode *NewPHI =
416 PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
417 if (AA) AA->copyValue(PN, NewPHI);
419 // Move all of the PHI values for 'Preds' to the new PHI.
420 for (unsigned i = 0; i != NumPreds; ++i) {
421 Value *V = PN->removeIncomingValue(Preds[i], false);
422 NewPHI->addIncoming(V, Preds[i]);
424 InVal = NewPHI;
427 // Add an incoming value to the PHI node in the loop for the preheader
428 // edge.
429 PN->addIncoming(InVal, NewBB);
431 // Check to see if we can eliminate this phi node.
432 if (Value *V = PN->hasConstantValue(DT != 0)) {
433 Instruction *I = dyn_cast<Instruction>(V);
434 if (!I || DT == 0 || DT->dominates(I, PN)) {
435 PN->replaceAllUsesWith(V);
436 if (AA) AA->deleteValue(PN);
437 PN->eraseFromParent();
442 return NewBB;
445 /// FindFunctionBackedges - Analyze the specified function to find all of the
446 /// loop backedges in the function and return them. This is a relatively cheap
447 /// (compared to computing dominators and loop info) analysis.
449 /// The output is added to Result, as pairs of <from,to> edge info.
450 void llvm::FindFunctionBackedges(const Function &F,
451 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
452 const BasicBlock *BB = &F.getEntryBlock();
453 if (succ_begin(BB) == succ_end(BB))
454 return;
456 SmallPtrSet<const BasicBlock*, 8> Visited;
457 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
458 SmallPtrSet<const BasicBlock*, 8> InStack;
460 Visited.insert(BB);
461 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
462 InStack.insert(BB);
463 do {
464 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
465 const BasicBlock *ParentBB = Top.first;
466 succ_const_iterator &I = Top.second;
468 bool FoundNew = false;
469 while (I != succ_end(ParentBB)) {
470 BB = *I++;
471 if (Visited.insert(BB)) {
472 FoundNew = true;
473 break;
475 // Successor is in VisitStack, it's a back edge.
476 if (InStack.count(BB))
477 Result.push_back(std::make_pair(ParentBB, BB));
480 if (FoundNew) {
481 // Go down one level if there is a unvisited successor.
482 InStack.insert(BB);
483 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
484 } else {
485 // Go up one level.
486 InStack.erase(VisitStack.pop_back_val().first);
488 } while (!VisitStack.empty());
495 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
496 /// value. This includes recognizing that %t0 and %t1 will have the same
497 /// value in code like this:
498 /// %t0 = getelementptr \@a, 0, 3
499 /// store i32 0, i32* %t0
500 /// %t1 = getelementptr \@a, 0, 3
501 /// %t2 = load i32* %t1
503 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
504 // Test if the values are trivially equivalent.
505 if (A == B) return true;
507 // Test if the values come form identical arithmetic instructions.
508 if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
509 isa<PHINode>(A) || isa<GetElementPtrInst>(A))
510 if (const Instruction *BI = dyn_cast<Instruction>(B))
511 if (cast<Instruction>(A)->isIdenticalTo(BI))
512 return true;
514 // Otherwise they may not be equivalent.
515 return false;
518 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
519 /// instruction before ScanFrom) checking to see if we have the value at the
520 /// memory address *Ptr locally available within a small number of instructions.
521 /// If the value is available, return it.
523 /// If not, return the iterator for the last validated instruction that the
524 /// value would be live through. If we scanned the entire block and didn't find
525 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
526 /// begin() and this returns null. ScanFrom could also be left
528 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
529 /// it is set to 0, it will scan the whole block. You can also optionally
530 /// specify an alias analysis implementation, which makes this more precise.
531 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
532 BasicBlock::iterator &ScanFrom,
533 unsigned MaxInstsToScan,
534 AliasAnalysis *AA) {
535 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
537 // If we're using alias analysis to disambiguate get the size of *Ptr.
538 unsigned AccessSize = 0;
539 if (AA) {
540 const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
541 AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
544 while (ScanFrom != ScanBB->begin()) {
545 // We must ignore debug info directives when counting (otherwise they
546 // would affect codegen).
547 Instruction *Inst = --ScanFrom;
548 if (isa<DbgInfoIntrinsic>(Inst))
549 continue;
550 // We skip pointer-to-pointer bitcasts, which are NOPs.
551 // It is necessary for correctness to skip those that feed into a
552 // llvm.dbg.declare, as these are not present when debugging is off.
553 if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
554 continue;
556 // Restore ScanFrom to expected value in case next test succeeds
557 ScanFrom++;
559 // Don't scan huge blocks.
560 if (MaxInstsToScan-- == 0) return 0;
562 --ScanFrom;
563 // If this is a load of Ptr, the loaded value is available.
564 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
565 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
566 return LI;
568 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
569 // If this is a store through Ptr, the value is available!
570 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
571 return SI->getOperand(0);
573 // If Ptr is an alloca and this is a store to a different alloca, ignore
574 // the store. This is a trivial form of alias analysis that is important
575 // for reg2mem'd code.
576 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
577 (isa<AllocaInst>(SI->getOperand(1)) ||
578 isa<GlobalVariable>(SI->getOperand(1))))
579 continue;
581 // If we have alias analysis and it says the store won't modify the loaded
582 // value, ignore the store.
583 if (AA &&
584 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
585 continue;
587 // Otherwise the store that may or may not alias the pointer, bail out.
588 ++ScanFrom;
589 return 0;
592 // If this is some other instruction that may clobber Ptr, bail out.
593 if (Inst->mayWriteToMemory()) {
594 // If alias analysis claims that it really won't modify the load,
595 // ignore it.
596 if (AA &&
597 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
598 continue;
600 // May modify the pointer, bail out.
601 ++ScanFrom;
602 return 0;
606 // Got to the start of the block, we didn't find it, but are done for this
607 // block.
608 return 0;
611 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
612 /// make a copy of the stoppoint before InsertPos (presumably before copying
613 /// or moving I).
614 void llvm::CopyPrecedingStopPoint(Instruction *I,
615 BasicBlock::iterator InsertPos) {
616 if (I != I->getParent()->begin()) {
617 BasicBlock::iterator BBI = I; --BBI;
618 if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
619 CallInst *newDSPI = DSPI->clone();
620 newDSPI->insertBefore(InsertPos);