1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Support/ValueHandle.h"
30 /// DeleteDeadBlock - Delete the specified block, which must have no
32 void llvm::DeleteDeadBlock(BasicBlock
*BB
) {
33 assert((pred_begin(BB
) == pred_end(BB
) ||
34 // Can delete self loop.
35 BB
->getSinglePredecessor() == BB
) && "Block is not dead!");
36 TerminatorInst
*BBTerm
= BB
->getTerminator();
38 // Loop through all of our successors and make sure they know that one
39 // of their predecessors is going away.
40 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
)
41 BBTerm
->getSuccessor(i
)->removePredecessor(BB
);
43 // Zap all the instructions in the block.
44 while (!BB
->empty()) {
45 Instruction
&I
= BB
->back();
46 // If this instruction is used, replace uses with an arbitrary value.
47 // Because control flow can't get here, we don't care what we replace the
48 // value with. Note that since this block is unreachable, and all values
49 // contained within it must dominate their uses, that all uses will
50 // eventually be removed (they are themselves dead).
52 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
53 BB
->getInstList().pop_back();
57 BB
->eraseFromParent();
60 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
61 /// any single-entry PHI nodes in it, fold them away. This handles the case
62 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
63 /// when the block has exactly one predecessor.
64 void llvm::FoldSingleEntryPHINodes(BasicBlock
*BB
) {
65 if (!isa
<PHINode
>(BB
->begin()))
68 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
69 if (PN
->getIncomingValue(0) != PN
)
70 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
72 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
73 PN
->eraseFromParent();
78 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
79 /// is dead. Also recursively delete any operands that become dead as
80 /// a result. This includes tracing the def-use list from the PHI to see if
81 /// it is ultimately unused or if it reaches an unused cycle. If a
82 /// ValueDeletionListener is specified, it is notified of the deletions.
83 void llvm::DeleteDeadPHIs(BasicBlock
*BB
, ValueDeletionListener
*VDL
) {
84 // Recursively deleting a PHI may cause multiple PHIs to be deleted
85 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
86 SmallVector
<WeakVH
, 8> PHIs
;
87 for (BasicBlock::iterator I
= BB
->begin();
88 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
91 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
92 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(PHIs
[i
].operator Value
*()))
93 RecursivelyDeleteDeadPHINode(PN
, VDL
);
96 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
97 /// if possible. The return value indicates success or failure.
98 bool llvm::MergeBlockIntoPredecessor(BasicBlock
* BB
, Pass
* P
) {
99 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
100 // Can't merge the entry block.
101 if (pred_begin(BB
) == pred_end(BB
)) return false;
103 BasicBlock
*PredBB
= *PI
++;
104 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
106 PredBB
= 0; // There are multiple different predecessors...
110 // Can't merge if there are multiple predecessors.
111 if (!PredBB
) return false;
112 // Don't break self-loops.
113 if (PredBB
== BB
) return false;
114 // Don't break invokes.
115 if (isa
<InvokeInst
>(PredBB
->getTerminator())) return false;
117 succ_iterator
SI(succ_begin(PredBB
)), SE(succ_end(PredBB
));
118 BasicBlock
* OnlySucc
= BB
;
119 for (; SI
!= SE
; ++SI
)
120 if (*SI
!= OnlySucc
) {
121 OnlySucc
= 0; // There are multiple distinct successors!
125 // Can't merge if there are multiple successors.
126 if (!OnlySucc
) return false;
128 // Can't merge if there is PHI loop.
129 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
; ++BI
) {
130 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
131 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
132 if (PN
->getIncomingValue(i
) == PN
)
138 // Begin by getting rid of unneeded PHIs.
139 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
140 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
141 BB
->getInstList().pop_front(); // Delete the phi node...
144 // Delete the unconditional branch from the predecessor...
145 PredBB
->getInstList().pop_back();
147 // Move all definitions in the successor to the predecessor...
148 PredBB
->getInstList().splice(PredBB
->end(), BB
->getInstList());
150 // Make all PHI nodes that referred to BB now refer to Pred as their
152 BB
->replaceAllUsesWith(PredBB
);
154 // Inherit predecessors name if it exists.
155 if (!PredBB
->hasName())
156 PredBB
->takeName(BB
);
158 // Finally, erase the old block and update dominator info.
160 if (DominatorTree
* DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
161 DomTreeNode
* DTN
= DT
->getNode(BB
);
162 DomTreeNode
* PredDTN
= DT
->getNode(PredBB
);
165 SmallPtrSet
<DomTreeNode
*, 8> Children(DTN
->begin(), DTN
->end());
166 for (SmallPtrSet
<DomTreeNode
*, 8>::iterator DI
= Children
.begin(),
167 DE
= Children
.end(); DI
!= DE
; ++DI
)
168 DT
->changeImmediateDominator(*DI
, PredDTN
);
175 BB
->eraseFromParent();
181 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
182 /// with a value, then remove and delete the original instruction.
184 void llvm::ReplaceInstWithValue(BasicBlock::InstListType
&BIL
,
185 BasicBlock::iterator
&BI
, Value
*V
) {
186 Instruction
&I
= *BI
;
187 // Replaces all of the uses of the instruction with uses of the value
188 I
.replaceAllUsesWith(V
);
190 // Make sure to propagate a name if there is one already.
191 if (I
.hasName() && !V
->hasName())
194 // Delete the unnecessary instruction now...
199 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
200 /// instruction specified by I. The original instruction is deleted and BI is
201 /// updated to point to the new instruction.
203 void llvm::ReplaceInstWithInst(BasicBlock::InstListType
&BIL
,
204 BasicBlock::iterator
&BI
, Instruction
*I
) {
205 assert(I
->getParent() == 0 &&
206 "ReplaceInstWithInst: Instruction already inserted into basic block!");
208 // Insert the new instruction into the basic block...
209 BasicBlock::iterator New
= BIL
.insert(BI
, I
);
211 // Replace all uses of the old instruction, and delete it.
212 ReplaceInstWithValue(BIL
, BI
, I
);
214 // Move BI back to point to the newly inserted instruction
218 /// ReplaceInstWithInst - Replace the instruction specified by From with the
219 /// instruction specified by To.
221 void llvm::ReplaceInstWithInst(Instruction
*From
, Instruction
*To
) {
222 BasicBlock::iterator
BI(From
);
223 ReplaceInstWithInst(From
->getParent()->getInstList(), BI
, To
);
226 /// RemoveSuccessor - Change the specified terminator instruction such that its
227 /// successor SuccNum no longer exists. Because this reduces the outgoing
228 /// degree of the current basic block, the actual terminator instruction itself
229 /// may have to be changed. In the case where the last successor of the block
230 /// is deleted, a return instruction is inserted in its place which can cause a
231 /// surprising change in program behavior if it is not expected.
233 void llvm::RemoveSuccessor(TerminatorInst
*TI
, unsigned SuccNum
) {
234 assert(SuccNum
< TI
->getNumSuccessors() &&
235 "Trying to remove a nonexistant successor!");
237 // If our old successor block contains any PHI nodes, remove the entry in the
238 // PHI nodes that comes from this branch...
240 BasicBlock
*BB
= TI
->getParent();
241 TI
->getSuccessor(SuccNum
)->removePredecessor(BB
);
243 TerminatorInst
*NewTI
= 0;
244 switch (TI
->getOpcode()) {
245 case Instruction::Br
:
246 // If this is a conditional branch... convert to unconditional branch.
247 if (TI
->getNumSuccessors() == 2) {
248 cast
<BranchInst
>(TI
)->setUnconditionalDest(TI
->getSuccessor(1-SuccNum
));
249 } else { // Otherwise convert to a return instruction...
252 // Create a value to return... if the function doesn't return null...
253 if (BB
->getParent()->getReturnType() != Type::VoidTy
)
254 RetVal
= Constant::getNullValue(BB
->getParent()->getReturnType());
256 // Create the return...
257 NewTI
= ReturnInst::Create(RetVal
);
261 case Instruction::Invoke
: // Should convert to call
262 case Instruction::Switch
: // Should remove entry
264 case Instruction::Ret
: // Cannot happen, has no successors!
265 assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
269 if (NewTI
) // If it's a different instruction, replace.
270 ReplaceInstWithInst(TI
, NewTI
);
273 /// SplitEdge - Split the edge connecting specified block. Pass P must
275 BasicBlock
*llvm::SplitEdge(BasicBlock
*BB
, BasicBlock
*Succ
, Pass
*P
) {
276 TerminatorInst
*LatchTerm
= BB
->getTerminator();
277 unsigned SuccNum
= 0;
279 unsigned e
= LatchTerm
->getNumSuccessors();
281 for (unsigned i
= 0; ; ++i
) {
282 assert(i
!= e
&& "Didn't find edge?");
283 if (LatchTerm
->getSuccessor(i
) == Succ
) {
289 // If this is a critical edge, let SplitCriticalEdge do it.
290 if (SplitCriticalEdge(BB
->getTerminator(), SuccNum
, P
))
291 return LatchTerm
->getSuccessor(SuccNum
);
293 // If the edge isn't critical, then BB has a single successor or Succ has a
294 // single pred. Split the block.
295 BasicBlock::iterator SplitPoint
;
296 if (BasicBlock
*SP
= Succ
->getSinglePredecessor()) {
297 // If the successor only has a single pred, split the top of the successor
299 assert(SP
== BB
&& "CFG broken");
301 return SplitBlock(Succ
, Succ
->begin(), P
);
303 // Otherwise, if BB has a single successor, split it at the bottom of the
305 assert(BB
->getTerminator()->getNumSuccessors() == 1 &&
306 "Should have a single succ!");
307 return SplitBlock(BB
, BB
->getTerminator(), P
);
311 /// SplitBlock - Split the specified block at the specified instruction - every
312 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
313 /// to a new block. The two blocks are joined by an unconditional branch and
314 /// the loop info is updated.
316 BasicBlock
*llvm::SplitBlock(BasicBlock
*Old
, Instruction
*SplitPt
, Pass
*P
) {
317 BasicBlock::iterator SplitIt
= SplitPt
;
318 while (isa
<PHINode
>(SplitIt
))
320 BasicBlock
*New
= Old
->splitBasicBlock(SplitIt
, Old
->getName()+".split");
322 // The new block lives in whichever loop the old one did.
323 if (LoopInfo
* LI
= P
->getAnalysisIfAvailable
<LoopInfo
>())
324 if (Loop
*L
= LI
->getLoopFor(Old
))
325 L
->addBasicBlockToLoop(New
, LI
->getBase());
327 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>())
329 // Old dominates New. New node domiantes all other nodes dominated by Old.
330 DomTreeNode
*OldNode
= DT
->getNode(Old
);
331 std::vector
<DomTreeNode
*> Children
;
332 for (DomTreeNode::iterator I
= OldNode
->begin(), E
= OldNode
->end();
334 Children
.push_back(*I
);
336 DomTreeNode
*NewNode
= DT
->addNewBlock(New
,Old
);
338 for (std::vector
<DomTreeNode
*>::iterator I
= Children
.begin(),
339 E
= Children
.end(); I
!= E
; ++I
)
340 DT
->changeImmediateDominator(*I
, NewNode
);
343 if (DominanceFrontier
*DF
= P
->getAnalysisIfAvailable
<DominanceFrontier
>())
350 /// SplitBlockPredecessors - This method transforms BB by introducing a new
351 /// basic block into the function, and moving some of the predecessors of BB to
352 /// be predecessors of the new block. The new predecessors are indicated by the
353 /// Preds array, which has NumPreds elements in it. The new block is given a
354 /// suffix of 'Suffix'.
356 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
357 /// DominanceFrontier, but no other analyses.
358 BasicBlock
*llvm::SplitBlockPredecessors(BasicBlock
*BB
,
359 BasicBlock
*const *Preds
,
360 unsigned NumPreds
, const char *Suffix
,
362 // Create new basic block, insert right before the original block.
364 BasicBlock::Create(BB
->getName()+Suffix
, BB
->getParent(), BB
);
366 // The new block unconditionally branches to the old block.
367 BranchInst
*BI
= BranchInst::Create(BB
, NewBB
);
369 // Move the edges from Preds to point to NewBB instead of BB.
370 for (unsigned i
= 0; i
!= NumPreds
; ++i
)
371 Preds
[i
]->getTerminator()->replaceUsesOfWith(BB
, NewBB
);
373 // Update dominator tree and dominator frontier if available.
374 DominatorTree
*DT
= P
? P
->getAnalysisIfAvailable
<DominatorTree
>() : 0;
376 DT
->splitBlock(NewBB
);
377 if (DominanceFrontier
*DF
= P
? P
->getAnalysisIfAvailable
<DominanceFrontier
>():0)
378 DF
->splitBlock(NewBB
);
379 AliasAnalysis
*AA
= P
? P
->getAnalysisIfAvailable
<AliasAnalysis
>() : 0;
382 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
383 // node becomes an incoming value for BB's phi node. However, if the Preds
384 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
385 // account for the newly created predecessor.
387 // Insert dummy values as the incoming value.
388 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++I
)
389 cast
<PHINode
>(I
)->addIncoming(UndefValue::get(I
->getType()), NewBB
);
393 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
394 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ) {
395 PHINode
*PN
= cast
<PHINode
>(I
++);
397 // Check to see if all of the values coming in are the same. If so, we
398 // don't need to create a new PHI node.
399 Value
*InVal
= PN
->getIncomingValueForBlock(Preds
[0]);
400 for (unsigned i
= 1; i
!= NumPreds
; ++i
)
401 if (InVal
!= PN
->getIncomingValueForBlock(Preds
[i
])) {
407 // If all incoming values for the new PHI would be the same, just don't
408 // make a new PHI. Instead, just remove the incoming values from the old
410 for (unsigned i
= 0; i
!= NumPreds
; ++i
)
411 PN
->removeIncomingValue(Preds
[i
], false);
413 // If the values coming into the block are not the same, we need a PHI.
414 // Create the new PHI node, insert it into NewBB at the end of the block
416 PHINode::Create(PN
->getType(), PN
->getName()+".ph", BI
);
417 if (AA
) AA
->copyValue(PN
, NewPHI
);
419 // Move all of the PHI values for 'Preds' to the new PHI.
420 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
421 Value
*V
= PN
->removeIncomingValue(Preds
[i
], false);
422 NewPHI
->addIncoming(V
, Preds
[i
]);
427 // Add an incoming value to the PHI node in the loop for the preheader
429 PN
->addIncoming(InVal
, NewBB
);
431 // Check to see if we can eliminate this phi node.
432 if (Value
*V
= PN
->hasConstantValue(DT
!= 0)) {
433 Instruction
*I
= dyn_cast
<Instruction
>(V
);
434 if (!I
|| DT
== 0 || DT
->dominates(I
, PN
)) {
435 PN
->replaceAllUsesWith(V
);
436 if (AA
) AA
->deleteValue(PN
);
437 PN
->eraseFromParent();
445 /// FindFunctionBackedges - Analyze the specified function to find all of the
446 /// loop backedges in the function and return them. This is a relatively cheap
447 /// (compared to computing dominators and loop info) analysis.
449 /// The output is added to Result, as pairs of <from,to> edge info.
450 void llvm::FindFunctionBackedges(const Function
&F
,
451 SmallVectorImpl
<std::pair
<const BasicBlock
*,const BasicBlock
*> > &Result
) {
452 const BasicBlock
*BB
= &F
.getEntryBlock();
453 if (succ_begin(BB
) == succ_end(BB
))
456 SmallPtrSet
<const BasicBlock
*, 8> Visited
;
457 SmallVector
<std::pair
<const BasicBlock
*, succ_const_iterator
>, 8> VisitStack
;
458 SmallPtrSet
<const BasicBlock
*, 8> InStack
;
461 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
464 std::pair
<const BasicBlock
*, succ_const_iterator
> &Top
= VisitStack
.back();
465 const BasicBlock
*ParentBB
= Top
.first
;
466 succ_const_iterator
&I
= Top
.second
;
468 bool FoundNew
= false;
469 while (I
!= succ_end(ParentBB
)) {
471 if (Visited
.insert(BB
)) {
475 // Successor is in VisitStack, it's a back edge.
476 if (InStack
.count(BB
))
477 Result
.push_back(std::make_pair(ParentBB
, BB
));
481 // Go down one level if there is a unvisited successor.
483 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
486 InStack
.erase(VisitStack
.pop_back_val().first
);
488 } while (!VisitStack
.empty());
495 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
496 /// value. This includes recognizing that %t0 and %t1 will have the same
497 /// value in code like this:
498 /// %t0 = getelementptr \@a, 0, 3
499 /// store i32 0, i32* %t0
500 /// %t1 = getelementptr \@a, 0, 3
501 /// %t2 = load i32* %t1
503 static bool AreEquivalentAddressValues(const Value
*A
, const Value
*B
) {
504 // Test if the values are trivially equivalent.
505 if (A
== B
) return true;
507 // Test if the values come form identical arithmetic instructions.
508 if (isa
<BinaryOperator
>(A
) || isa
<CastInst
>(A
) ||
509 isa
<PHINode
>(A
) || isa
<GetElementPtrInst
>(A
))
510 if (const Instruction
*BI
= dyn_cast
<Instruction
>(B
))
511 if (cast
<Instruction
>(A
)->isIdenticalTo(BI
))
514 // Otherwise they may not be equivalent.
518 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
519 /// instruction before ScanFrom) checking to see if we have the value at the
520 /// memory address *Ptr locally available within a small number of instructions.
521 /// If the value is available, return it.
523 /// If not, return the iterator for the last validated instruction that the
524 /// value would be live through. If we scanned the entire block and didn't find
525 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
526 /// begin() and this returns null. ScanFrom could also be left
528 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
529 /// it is set to 0, it will scan the whole block. You can also optionally
530 /// specify an alias analysis implementation, which makes this more precise.
531 Value
*llvm::FindAvailableLoadedValue(Value
*Ptr
, BasicBlock
*ScanBB
,
532 BasicBlock::iterator
&ScanFrom
,
533 unsigned MaxInstsToScan
,
535 if (MaxInstsToScan
== 0) MaxInstsToScan
= ~0U;
537 // If we're using alias analysis to disambiguate get the size of *Ptr.
538 unsigned AccessSize
= 0;
540 const Type
*AccessTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
541 AccessSize
= AA
->getTargetData().getTypeStoreSizeInBits(AccessTy
);
544 while (ScanFrom
!= ScanBB
->begin()) {
545 // We must ignore debug info directives when counting (otherwise they
546 // would affect codegen).
547 Instruction
*Inst
= --ScanFrom
;
548 if (isa
<DbgInfoIntrinsic
>(Inst
))
550 // We skip pointer-to-pointer bitcasts, which are NOPs.
551 // It is necessary for correctness to skip those that feed into a
552 // llvm.dbg.declare, as these are not present when debugging is off.
553 if (isa
<BitCastInst
>(Inst
) && isa
<PointerType
>(Inst
->getType()))
556 // Restore ScanFrom to expected value in case next test succeeds
559 // Don't scan huge blocks.
560 if (MaxInstsToScan
-- == 0) return 0;
563 // If this is a load of Ptr, the loaded value is available.
564 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
))
565 if (AreEquivalentAddressValues(LI
->getOperand(0), Ptr
))
568 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
569 // If this is a store through Ptr, the value is available!
570 if (AreEquivalentAddressValues(SI
->getOperand(1), Ptr
))
571 return SI
->getOperand(0);
573 // If Ptr is an alloca and this is a store to a different alloca, ignore
574 // the store. This is a trivial form of alias analysis that is important
575 // for reg2mem'd code.
576 if ((isa
<AllocaInst
>(Ptr
) || isa
<GlobalVariable
>(Ptr
)) &&
577 (isa
<AllocaInst
>(SI
->getOperand(1)) ||
578 isa
<GlobalVariable
>(SI
->getOperand(1))))
581 // If we have alias analysis and it says the store won't modify the loaded
582 // value, ignore the store.
584 (AA
->getModRefInfo(SI
, Ptr
, AccessSize
) & AliasAnalysis::Mod
) == 0)
587 // Otherwise the store that may or may not alias the pointer, bail out.
592 // If this is some other instruction that may clobber Ptr, bail out.
593 if (Inst
->mayWriteToMemory()) {
594 // If alias analysis claims that it really won't modify the load,
597 (AA
->getModRefInfo(Inst
, Ptr
, AccessSize
) & AliasAnalysis::Mod
) == 0)
600 // May modify the pointer, bail out.
606 // Got to the start of the block, we didn't find it, but are done for this
611 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
612 /// make a copy of the stoppoint before InsertPos (presumably before copying
614 void llvm::CopyPrecedingStopPoint(Instruction
*I
,
615 BasicBlock::iterator InsertPos
) {
616 if (I
!= I
->getParent()->begin()) {
617 BasicBlock::iterator BBI
= I
; --BBI
;
618 if (DbgStopPointInst
*DSPI
= dyn_cast
<DbgStopPointInst
>(BBI
)) {
619 CallInst
*newDSPI
= DSPI
->clone();
620 newDSPI
->insertBefore(InsertPos
);