Implement bswap
[llvm/msp430.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blob1937c7e26f151040ea54a20041cba9faecee9cb5
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Program.h"
29 using namespace llvm;
31 /// These are manifest constants used by the bitcode writer. They do not need to
32 /// be kept in sync with the reader, but need to be consistent within this file.
33 enum {
34 CurVersion = 0,
36 // VALUE_SYMTAB_BLOCK abbrev id's.
37 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
38 VST_ENTRY_7_ABBREV,
39 VST_ENTRY_6_ABBREV,
40 VST_BBENTRY_6_ABBREV,
42 // CONSTANTS_BLOCK abbrev id's.
43 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
44 CONSTANTS_INTEGER_ABBREV,
45 CONSTANTS_CE_CAST_Abbrev,
46 CONSTANTS_NULL_Abbrev,
48 // FUNCTION_BLOCK abbrev id's.
49 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50 FUNCTION_INST_BINOP_ABBREV,
51 FUNCTION_INST_CAST_ABBREV,
52 FUNCTION_INST_RET_VOID_ABBREV,
53 FUNCTION_INST_RET_VAL_ABBREV,
54 FUNCTION_INST_UNREACHABLE_ABBREV
58 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
59 switch (Opcode) {
60 default: assert(0 && "Unknown cast instruction!");
61 case Instruction::Trunc : return bitc::CAST_TRUNC;
62 case Instruction::ZExt : return bitc::CAST_ZEXT;
63 case Instruction::SExt : return bitc::CAST_SEXT;
64 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
65 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
66 case Instruction::UIToFP : return bitc::CAST_UITOFP;
67 case Instruction::SIToFP : return bitc::CAST_SITOFP;
68 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
69 case Instruction::FPExt : return bitc::CAST_FPEXT;
70 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
71 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
72 case Instruction::BitCast : return bitc::CAST_BITCAST;
76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
77 switch (Opcode) {
78 default: assert(0 && "Unknown binary instruction!");
79 case Instruction::Add: return bitc::BINOP_ADD;
80 case Instruction::Sub: return bitc::BINOP_SUB;
81 case Instruction::Mul: return bitc::BINOP_MUL;
82 case Instruction::UDiv: return bitc::BINOP_UDIV;
83 case Instruction::FDiv:
84 case Instruction::SDiv: return bitc::BINOP_SDIV;
85 case Instruction::URem: return bitc::BINOP_UREM;
86 case Instruction::FRem:
87 case Instruction::SRem: return bitc::BINOP_SREM;
88 case Instruction::Shl: return bitc::BINOP_SHL;
89 case Instruction::LShr: return bitc::BINOP_LSHR;
90 case Instruction::AShr: return bitc::BINOP_ASHR;
91 case Instruction::And: return bitc::BINOP_AND;
92 case Instruction::Or: return bitc::BINOP_OR;
93 case Instruction::Xor: return bitc::BINOP_XOR;
99 static void WriteStringRecord(unsigned Code, const std::string &Str,
100 unsigned AbbrevToUse, BitstreamWriter &Stream) {
101 SmallVector<unsigned, 64> Vals;
103 // Code: [strchar x N]
104 for (unsigned i = 0, e = Str.size(); i != e; ++i)
105 Vals.push_back(Str[i]);
107 // Emit the finished record.
108 Stream.EmitRecord(Code, Vals, AbbrevToUse);
111 // Emit information about parameter attributes.
112 static void WriteAttributeTable(const ValueEnumerator &VE,
113 BitstreamWriter &Stream) {
114 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
115 if (Attrs.empty()) return;
117 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
119 SmallVector<uint64_t, 64> Record;
120 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
121 const AttrListPtr &A = Attrs[i];
122 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
123 const AttributeWithIndex &PAWI = A.getSlot(i);
124 Record.push_back(PAWI.Index);
126 // FIXME: remove in LLVM 3.0
127 // Store the alignment in the bitcode as a 16-bit raw value instead of a
128 // 5-bit log2 encoded value. Shift the bits above the alignment up by
129 // 11 bits.
130 uint64_t FauxAttr = PAWI.Attrs & 0xffff;
131 if (PAWI.Attrs & Attribute::Alignment)
132 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
133 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
135 Record.push_back(FauxAttr);
138 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
139 Record.clear();
142 Stream.ExitBlock();
145 /// WriteTypeTable - Write out the type table for a module.
146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
147 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
149 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
150 SmallVector<uint64_t, 64> TypeVals;
152 // Abbrev for TYPE_CODE_POINTER.
153 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
154 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
156 Log2_32_Ceil(VE.getTypes().size()+1)));
157 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
158 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
160 // Abbrev for TYPE_CODE_FUNCTION.
161 Abbv = new BitCodeAbbrev();
162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
164 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
167 Log2_32_Ceil(VE.getTypes().size()+1)));
168 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
170 // Abbrev for TYPE_CODE_STRUCT.
171 Abbv = new BitCodeAbbrev();
172 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
176 Log2_32_Ceil(VE.getTypes().size()+1)));
177 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
179 // Abbrev for TYPE_CODE_ARRAY.
180 Abbv = new BitCodeAbbrev();
181 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184 Log2_32_Ceil(VE.getTypes().size()+1)));
185 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
187 // Emit an entry count so the reader can reserve space.
188 TypeVals.push_back(TypeList.size());
189 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
190 TypeVals.clear();
192 // Loop over all of the types, emitting each in turn.
193 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
194 const Type *T = TypeList[i].first;
195 int AbbrevToUse = 0;
196 unsigned Code = 0;
198 switch (T->getTypeID()) {
199 default: assert(0 && "Unknown type!");
200 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
201 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
202 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
203 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
204 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
205 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
206 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
207 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
208 case Type::IntegerTyID:
209 // INTEGER: [width]
210 Code = bitc::TYPE_CODE_INTEGER;
211 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
212 break;
213 case Type::PointerTyID: {
214 const PointerType *PTy = cast<PointerType>(T);
215 // POINTER: [pointee type, address space]
216 Code = bitc::TYPE_CODE_POINTER;
217 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
218 unsigned AddressSpace = PTy->getAddressSpace();
219 TypeVals.push_back(AddressSpace);
220 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
221 break;
223 case Type::FunctionTyID: {
224 const FunctionType *FT = cast<FunctionType>(T);
225 // FUNCTION: [isvararg, attrid, retty, paramty x N]
226 Code = bitc::TYPE_CODE_FUNCTION;
227 TypeVals.push_back(FT->isVarArg());
228 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
229 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
230 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
231 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
232 AbbrevToUse = FunctionAbbrev;
233 break;
235 case Type::StructTyID: {
236 const StructType *ST = cast<StructType>(T);
237 // STRUCT: [ispacked, eltty x N]
238 Code = bitc::TYPE_CODE_STRUCT;
239 TypeVals.push_back(ST->isPacked());
240 // Output all of the element types.
241 for (StructType::element_iterator I = ST->element_begin(),
242 E = ST->element_end(); I != E; ++I)
243 TypeVals.push_back(VE.getTypeID(*I));
244 AbbrevToUse = StructAbbrev;
245 break;
247 case Type::ArrayTyID: {
248 const ArrayType *AT = cast<ArrayType>(T);
249 // ARRAY: [numelts, eltty]
250 Code = bitc::TYPE_CODE_ARRAY;
251 TypeVals.push_back(AT->getNumElements());
252 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
253 AbbrevToUse = ArrayAbbrev;
254 break;
256 case Type::VectorTyID: {
257 const VectorType *VT = cast<VectorType>(T);
258 // VECTOR [numelts, eltty]
259 Code = bitc::TYPE_CODE_VECTOR;
260 TypeVals.push_back(VT->getNumElements());
261 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
262 break;
266 // Emit the finished record.
267 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
268 TypeVals.clear();
271 Stream.ExitBlock();
274 static unsigned getEncodedLinkage(const GlobalValue *GV) {
275 switch (GV->getLinkage()) {
276 default: assert(0 && "Invalid linkage!");
277 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
278 case GlobalValue::ExternalLinkage: return 0;
279 case GlobalValue::WeakAnyLinkage: return 1;
280 case GlobalValue::AppendingLinkage: return 2;
281 case GlobalValue::InternalLinkage: return 3;
282 case GlobalValue::LinkOnceAnyLinkage: return 4;
283 case GlobalValue::DLLImportLinkage: return 5;
284 case GlobalValue::DLLExportLinkage: return 6;
285 case GlobalValue::ExternalWeakLinkage: return 7;
286 case GlobalValue::CommonLinkage: return 8;
287 case GlobalValue::PrivateLinkage: return 9;
288 case GlobalValue::WeakODRLinkage: return 10;
289 case GlobalValue::LinkOnceODRLinkage: return 11;
290 case GlobalValue::AvailableExternallyLinkage: return 12;
294 static unsigned getEncodedVisibility(const GlobalValue *GV) {
295 switch (GV->getVisibility()) {
296 default: assert(0 && "Invalid visibility!");
297 case GlobalValue::DefaultVisibility: return 0;
298 case GlobalValue::HiddenVisibility: return 1;
299 case GlobalValue::ProtectedVisibility: return 2;
303 // Emit top-level description of module, including target triple, inline asm,
304 // descriptors for global variables, and function prototype info.
305 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
306 BitstreamWriter &Stream) {
307 // Emit the list of dependent libraries for the Module.
308 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
309 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
311 // Emit various pieces of data attached to a module.
312 if (!M->getTargetTriple().empty())
313 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
314 0/*TODO*/, Stream);
315 if (!M->getDataLayout().empty())
316 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
317 0/*TODO*/, Stream);
318 if (!M->getModuleInlineAsm().empty())
319 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
320 0/*TODO*/, Stream);
322 // Emit information about sections and GC, computing how many there are. Also
323 // compute the maximum alignment value.
324 std::map<std::string, unsigned> SectionMap;
325 std::map<std::string, unsigned> GCMap;
326 unsigned MaxAlignment = 0;
327 unsigned MaxGlobalType = 0;
328 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
329 GV != E; ++GV) {
330 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
331 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
333 if (!GV->hasSection()) continue;
334 // Give section names unique ID's.
335 unsigned &Entry = SectionMap[GV->getSection()];
336 if (Entry != 0) continue;
337 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
338 0/*TODO*/, Stream);
339 Entry = SectionMap.size();
341 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
342 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
343 if (F->hasSection()) {
344 // Give section names unique ID's.
345 unsigned &Entry = SectionMap[F->getSection()];
346 if (!Entry) {
347 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
348 0/*TODO*/, Stream);
349 Entry = SectionMap.size();
352 if (F->hasGC()) {
353 // Same for GC names.
354 unsigned &Entry = GCMap[F->getGC()];
355 if (!Entry) {
356 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
357 0/*TODO*/, Stream);
358 Entry = GCMap.size();
363 // Emit abbrev for globals, now that we know # sections and max alignment.
364 unsigned SimpleGVarAbbrev = 0;
365 if (!M->global_empty()) {
366 // Add an abbrev for common globals with no visibility or thread localness.
367 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
368 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
370 Log2_32_Ceil(MaxGlobalType+1)));
371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
374 if (MaxAlignment == 0) // Alignment.
375 Abbv->Add(BitCodeAbbrevOp(0));
376 else {
377 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379 Log2_32_Ceil(MaxEncAlignment+1)));
381 if (SectionMap.empty()) // Section.
382 Abbv->Add(BitCodeAbbrevOp(0));
383 else
384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
385 Log2_32_Ceil(SectionMap.size()+1)));
386 // Don't bother emitting vis + thread local.
387 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
390 // Emit the global variable information.
391 SmallVector<unsigned, 64> Vals;
392 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
393 GV != E; ++GV) {
394 unsigned AbbrevToUse = 0;
396 // GLOBALVAR: [type, isconst, initid,
397 // linkage, alignment, section, visibility, threadlocal]
398 Vals.push_back(VE.getTypeID(GV->getType()));
399 Vals.push_back(GV->isConstant());
400 Vals.push_back(GV->isDeclaration() ? 0 :
401 (VE.getValueID(GV->getInitializer()) + 1));
402 Vals.push_back(getEncodedLinkage(GV));
403 Vals.push_back(Log2_32(GV->getAlignment())+1);
404 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
405 if (GV->isThreadLocal() ||
406 GV->getVisibility() != GlobalValue::DefaultVisibility) {
407 Vals.push_back(getEncodedVisibility(GV));
408 Vals.push_back(GV->isThreadLocal());
409 } else {
410 AbbrevToUse = SimpleGVarAbbrev;
413 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
414 Vals.clear();
417 // Emit the function proto information.
418 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
419 // FUNCTION: [type, callingconv, isproto, paramattr,
420 // linkage, alignment, section, visibility, gc]
421 Vals.push_back(VE.getTypeID(F->getType()));
422 Vals.push_back(F->getCallingConv());
423 Vals.push_back(F->isDeclaration());
424 Vals.push_back(getEncodedLinkage(F));
425 Vals.push_back(VE.getAttributeID(F->getAttributes()));
426 Vals.push_back(Log2_32(F->getAlignment())+1);
427 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
428 Vals.push_back(getEncodedVisibility(F));
429 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
431 unsigned AbbrevToUse = 0;
432 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
433 Vals.clear();
437 // Emit the alias information.
438 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
439 AI != E; ++AI) {
440 Vals.push_back(VE.getTypeID(AI->getType()));
441 Vals.push_back(VE.getValueID(AI->getAliasee()));
442 Vals.push_back(getEncodedLinkage(AI));
443 Vals.push_back(getEncodedVisibility(AI));
444 unsigned AbbrevToUse = 0;
445 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
446 Vals.clear();
451 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
452 const ValueEnumerator &VE,
453 BitstreamWriter &Stream, bool isGlobal) {
454 if (FirstVal == LastVal) return;
456 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
458 unsigned AggregateAbbrev = 0;
459 unsigned String8Abbrev = 0;
460 unsigned CString7Abbrev = 0;
461 unsigned CString6Abbrev = 0;
462 unsigned MDString8Abbrev = 0;
463 unsigned MDString6Abbrev = 0;
464 // If this is a constant pool for the module, emit module-specific abbrevs.
465 if (isGlobal) {
466 // Abbrev for CST_CODE_AGGREGATE.
467 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
471 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
473 // Abbrev for CST_CODE_STRING.
474 Abbv = new BitCodeAbbrev();
475 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
478 String8Abbrev = Stream.EmitAbbrev(Abbv);
479 // Abbrev for CST_CODE_CSTRING.
480 Abbv = new BitCodeAbbrev();
481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
484 CString7Abbrev = Stream.EmitAbbrev(Abbv);
485 // Abbrev for CST_CODE_CSTRING.
486 Abbv = new BitCodeAbbrev();
487 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
490 CString6Abbrev = Stream.EmitAbbrev(Abbv);
492 // Abbrev for CST_CODE_MDSTRING.
493 Abbv = new BitCodeAbbrev();
494 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
497 MDString8Abbrev = Stream.EmitAbbrev(Abbv);
498 // Abbrev for CST_CODE_MDSTRING.
499 Abbv = new BitCodeAbbrev();
500 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
503 MDString6Abbrev = Stream.EmitAbbrev(Abbv);
506 SmallVector<uint64_t, 64> Record;
508 const ValueEnumerator::ValueList &Vals = VE.getValues();
509 const Type *LastTy = 0;
510 for (unsigned i = FirstVal; i != LastVal; ++i) {
511 const Value *V = Vals[i].first;
512 // If we need to switch types, do so now.
513 if (V->getType() != LastTy) {
514 LastTy = V->getType();
515 Record.push_back(VE.getTypeID(LastTy));
516 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
517 CONSTANTS_SETTYPE_ABBREV);
518 Record.clear();
521 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
522 Record.push_back(unsigned(IA->hasSideEffects()));
524 // Add the asm string.
525 const std::string &AsmStr = IA->getAsmString();
526 Record.push_back(AsmStr.size());
527 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
528 Record.push_back(AsmStr[i]);
530 // Add the constraint string.
531 const std::string &ConstraintStr = IA->getConstraintString();
532 Record.push_back(ConstraintStr.size());
533 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
534 Record.push_back(ConstraintStr[i]);
535 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
536 Record.clear();
537 continue;
539 const Constant *C = cast<Constant>(V);
540 unsigned Code = -1U;
541 unsigned AbbrevToUse = 0;
542 if (C->isNullValue()) {
543 Code = bitc::CST_CODE_NULL;
544 } else if (isa<UndefValue>(C)) {
545 Code = bitc::CST_CODE_UNDEF;
546 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
547 if (IV->getBitWidth() <= 64) {
548 int64_t V = IV->getSExtValue();
549 if (V >= 0)
550 Record.push_back(V << 1);
551 else
552 Record.push_back((-V << 1) | 1);
553 Code = bitc::CST_CODE_INTEGER;
554 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
555 } else { // Wide integers, > 64 bits in size.
556 // We have an arbitrary precision integer value to write whose
557 // bit width is > 64. However, in canonical unsigned integer
558 // format it is likely that the high bits are going to be zero.
559 // So, we only write the number of active words.
560 unsigned NWords = IV->getValue().getActiveWords();
561 const uint64_t *RawWords = IV->getValue().getRawData();
562 for (unsigned i = 0; i != NWords; ++i) {
563 int64_t V = RawWords[i];
564 if (V >= 0)
565 Record.push_back(V << 1);
566 else
567 Record.push_back((-V << 1) | 1);
569 Code = bitc::CST_CODE_WIDE_INTEGER;
571 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
572 Code = bitc::CST_CODE_FLOAT;
573 const Type *Ty = CFP->getType();
574 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
575 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
576 } else if (Ty == Type::X86_FP80Ty) {
577 // api needed to prevent premature destruction
578 // bits are not in the same order as a normal i80 APInt, compensate.
579 APInt api = CFP->getValueAPF().bitcastToAPInt();
580 const uint64_t *p = api.getRawData();
581 Record.push_back((p[1] << 48) | (p[0] >> 16));
582 Record.push_back(p[0] & 0xffffLL);
583 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
584 APInt api = CFP->getValueAPF().bitcastToAPInt();
585 const uint64_t *p = api.getRawData();
586 Record.push_back(p[0]);
587 Record.push_back(p[1]);
588 } else {
589 assert (0 && "Unknown FP type!");
591 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
592 // Emit constant strings specially.
593 unsigned NumOps = C->getNumOperands();
594 // If this is a null-terminated string, use the denser CSTRING encoding.
595 if (C->getOperand(NumOps-1)->isNullValue()) {
596 Code = bitc::CST_CODE_CSTRING;
597 --NumOps; // Don't encode the null, which isn't allowed by char6.
598 } else {
599 Code = bitc::CST_CODE_STRING;
600 AbbrevToUse = String8Abbrev;
602 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
603 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
604 for (unsigned i = 0; i != NumOps; ++i) {
605 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
606 Record.push_back(V);
607 isCStr7 &= (V & 128) == 0;
608 if (isCStrChar6)
609 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
612 if (isCStrChar6)
613 AbbrevToUse = CString6Abbrev;
614 else if (isCStr7)
615 AbbrevToUse = CString7Abbrev;
616 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
617 isa<ConstantVector>(V)) {
618 Code = bitc::CST_CODE_AGGREGATE;
619 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
620 Record.push_back(VE.getValueID(C->getOperand(i)));
621 AbbrevToUse = AggregateAbbrev;
622 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
623 switch (CE->getOpcode()) {
624 default:
625 if (Instruction::isCast(CE->getOpcode())) {
626 Code = bitc::CST_CODE_CE_CAST;
627 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
628 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
629 Record.push_back(VE.getValueID(C->getOperand(0)));
630 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
631 } else {
632 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
633 Code = bitc::CST_CODE_CE_BINOP;
634 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
635 Record.push_back(VE.getValueID(C->getOperand(0)));
636 Record.push_back(VE.getValueID(C->getOperand(1)));
638 break;
639 case Instruction::GetElementPtr:
640 Code = bitc::CST_CODE_CE_GEP;
641 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
642 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
643 Record.push_back(VE.getValueID(C->getOperand(i)));
645 break;
646 case Instruction::Select:
647 Code = bitc::CST_CODE_CE_SELECT;
648 Record.push_back(VE.getValueID(C->getOperand(0)));
649 Record.push_back(VE.getValueID(C->getOperand(1)));
650 Record.push_back(VE.getValueID(C->getOperand(2)));
651 break;
652 case Instruction::ExtractElement:
653 Code = bitc::CST_CODE_CE_EXTRACTELT;
654 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
655 Record.push_back(VE.getValueID(C->getOperand(0)));
656 Record.push_back(VE.getValueID(C->getOperand(1)));
657 break;
658 case Instruction::InsertElement:
659 Code = bitc::CST_CODE_CE_INSERTELT;
660 Record.push_back(VE.getValueID(C->getOperand(0)));
661 Record.push_back(VE.getValueID(C->getOperand(1)));
662 Record.push_back(VE.getValueID(C->getOperand(2)));
663 break;
664 case Instruction::ShuffleVector:
665 // If the return type and argument types are the same, this is a
666 // standard shufflevector instruction. If the types are different,
667 // then the shuffle is widening or truncating the input vectors, and
668 // the argument type must also be encoded.
669 if (C->getType() == C->getOperand(0)->getType()) {
670 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
671 } else {
672 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
673 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
675 Record.push_back(VE.getValueID(C->getOperand(0)));
676 Record.push_back(VE.getValueID(C->getOperand(1)));
677 Record.push_back(VE.getValueID(C->getOperand(2)));
678 break;
679 case Instruction::ICmp:
680 case Instruction::FCmp:
681 case Instruction::VICmp:
682 case Instruction::VFCmp:
683 if (isa<VectorType>(C->getOperand(0)->getType())
684 && (CE->getOpcode() == Instruction::ICmp
685 || CE->getOpcode() == Instruction::FCmp)) {
686 // compare returning vector of Int1Ty
687 assert(0 && "Unsupported constant!");
688 } else {
689 Code = bitc::CST_CODE_CE_CMP;
691 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
692 Record.push_back(VE.getValueID(C->getOperand(0)));
693 Record.push_back(VE.getValueID(C->getOperand(1)));
694 Record.push_back(CE->getPredicate());
695 break;
697 } else if (const MDString *S = dyn_cast<MDString>(C)) {
698 Code = bitc::CST_CODE_MDSTRING;
699 AbbrevToUse = MDString6Abbrev;
700 for (unsigned i = 0, e = S->size(); i != e; ++i) {
701 char V = S->begin()[i];
702 Record.push_back(V);
704 if (!BitCodeAbbrevOp::isChar6(V))
705 AbbrevToUse = MDString8Abbrev;
707 } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
708 Code = bitc::CST_CODE_MDNODE;
709 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
710 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
711 Record.push_back(VE.getValueID(N->getOperand(i)));
713 } else {
714 assert(0 && "Unknown constant!");
716 Stream.EmitRecord(Code, Record, AbbrevToUse);
717 Record.clear();
720 Stream.ExitBlock();
723 static void WriteModuleConstants(const ValueEnumerator &VE,
724 BitstreamWriter &Stream) {
725 const ValueEnumerator::ValueList &Vals = VE.getValues();
727 // Find the first constant to emit, which is the first non-globalvalue value.
728 // We know globalvalues have been emitted by WriteModuleInfo.
729 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
730 if (!isa<GlobalValue>(Vals[i].first)) {
731 WriteConstants(i, Vals.size(), VE, Stream, true);
732 return;
737 /// PushValueAndType - The file has to encode both the value and type id for
738 /// many values, because we need to know what type to create for forward
739 /// references. However, most operands are not forward references, so this type
740 /// field is not needed.
742 /// This function adds V's value ID to Vals. If the value ID is higher than the
743 /// instruction ID, then it is a forward reference, and it also includes the
744 /// type ID.
745 static bool PushValueAndType(const Value *V, unsigned InstID,
746 SmallVector<unsigned, 64> &Vals,
747 ValueEnumerator &VE) {
748 unsigned ValID = VE.getValueID(V);
749 Vals.push_back(ValID);
750 if (ValID >= InstID) {
751 Vals.push_back(VE.getTypeID(V->getType()));
752 return true;
754 return false;
757 /// WriteInstruction - Emit an instruction to the specified stream.
758 static void WriteInstruction(const Instruction &I, unsigned InstID,
759 ValueEnumerator &VE, BitstreamWriter &Stream,
760 SmallVector<unsigned, 64> &Vals) {
761 unsigned Code = 0;
762 unsigned AbbrevToUse = 0;
763 switch (I.getOpcode()) {
764 default:
765 if (Instruction::isCast(I.getOpcode())) {
766 Code = bitc::FUNC_CODE_INST_CAST;
767 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
768 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
769 Vals.push_back(VE.getTypeID(I.getType()));
770 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
771 } else {
772 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
773 Code = bitc::FUNC_CODE_INST_BINOP;
774 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
775 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
776 Vals.push_back(VE.getValueID(I.getOperand(1)));
777 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
779 break;
781 case Instruction::GetElementPtr:
782 Code = bitc::FUNC_CODE_INST_GEP;
783 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
784 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
785 break;
786 case Instruction::ExtractValue: {
787 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
788 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
789 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
790 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
791 Vals.push_back(*i);
792 break;
794 case Instruction::InsertValue: {
795 Code = bitc::FUNC_CODE_INST_INSERTVAL;
796 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
797 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
798 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
799 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
800 Vals.push_back(*i);
801 break;
803 case Instruction::Select:
804 Code = bitc::FUNC_CODE_INST_VSELECT;
805 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
806 Vals.push_back(VE.getValueID(I.getOperand(2)));
807 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
808 break;
809 case Instruction::ExtractElement:
810 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
811 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
812 Vals.push_back(VE.getValueID(I.getOperand(1)));
813 break;
814 case Instruction::InsertElement:
815 Code = bitc::FUNC_CODE_INST_INSERTELT;
816 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
817 Vals.push_back(VE.getValueID(I.getOperand(1)));
818 Vals.push_back(VE.getValueID(I.getOperand(2)));
819 break;
820 case Instruction::ShuffleVector:
821 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
822 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
823 Vals.push_back(VE.getValueID(I.getOperand(1)));
824 Vals.push_back(VE.getValueID(I.getOperand(2)));
825 break;
826 case Instruction::ICmp:
827 case Instruction::FCmp:
828 case Instruction::VICmp:
829 case Instruction::VFCmp:
830 if (I.getOpcode() == Instruction::ICmp
831 || I.getOpcode() == Instruction::FCmp) {
832 // compare returning Int1Ty or vector of Int1Ty
833 Code = bitc::FUNC_CODE_INST_CMP2;
834 } else {
835 Code = bitc::FUNC_CODE_INST_CMP;
837 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
838 Vals.push_back(VE.getValueID(I.getOperand(1)));
839 Vals.push_back(cast<CmpInst>(I).getPredicate());
840 break;
842 case Instruction::Ret:
844 Code = bitc::FUNC_CODE_INST_RET;
845 unsigned NumOperands = I.getNumOperands();
846 if (NumOperands == 0)
847 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
848 else if (NumOperands == 1) {
849 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
850 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
851 } else {
852 for (unsigned i = 0, e = NumOperands; i != e; ++i)
853 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
856 break;
857 case Instruction::Br:
859 Code = bitc::FUNC_CODE_INST_BR;
860 BranchInst &II(cast<BranchInst>(I));
861 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
862 if (II.isConditional()) {
863 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
864 Vals.push_back(VE.getValueID(II.getCondition()));
867 break;
868 case Instruction::Switch:
869 Code = bitc::FUNC_CODE_INST_SWITCH;
870 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
871 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
872 Vals.push_back(VE.getValueID(I.getOperand(i)));
873 break;
874 case Instruction::Invoke: {
875 const InvokeInst *II = cast<InvokeInst>(&I);
876 const Value *Callee(II->getCalledValue());
877 const PointerType *PTy = cast<PointerType>(Callee->getType());
878 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
879 Code = bitc::FUNC_CODE_INST_INVOKE;
881 Vals.push_back(VE.getAttributeID(II->getAttributes()));
882 Vals.push_back(II->getCallingConv());
883 Vals.push_back(VE.getValueID(II->getNormalDest()));
884 Vals.push_back(VE.getValueID(II->getUnwindDest()));
885 PushValueAndType(Callee, InstID, Vals, VE);
887 // Emit value #'s for the fixed parameters.
888 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
889 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
891 // Emit type/value pairs for varargs params.
892 if (FTy->isVarArg()) {
893 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
894 i != e; ++i)
895 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
897 break;
899 case Instruction::Unwind:
900 Code = bitc::FUNC_CODE_INST_UNWIND;
901 break;
902 case Instruction::Unreachable:
903 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
904 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
905 break;
907 case Instruction::PHI:
908 Code = bitc::FUNC_CODE_INST_PHI;
909 Vals.push_back(VE.getTypeID(I.getType()));
910 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
911 Vals.push_back(VE.getValueID(I.getOperand(i)));
912 break;
914 case Instruction::Malloc:
915 Code = bitc::FUNC_CODE_INST_MALLOC;
916 Vals.push_back(VE.getTypeID(I.getType()));
917 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
918 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
919 break;
921 case Instruction::Free:
922 Code = bitc::FUNC_CODE_INST_FREE;
923 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
924 break;
926 case Instruction::Alloca:
927 Code = bitc::FUNC_CODE_INST_ALLOCA;
928 Vals.push_back(VE.getTypeID(I.getType()));
929 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
930 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
931 break;
933 case Instruction::Load:
934 Code = bitc::FUNC_CODE_INST_LOAD;
935 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
936 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
938 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
939 Vals.push_back(cast<LoadInst>(I).isVolatile());
940 break;
941 case Instruction::Store:
942 Code = bitc::FUNC_CODE_INST_STORE2;
943 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
944 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
945 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
946 Vals.push_back(cast<StoreInst>(I).isVolatile());
947 break;
948 case Instruction::Call: {
949 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
950 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
952 Code = bitc::FUNC_CODE_INST_CALL;
954 const CallInst *CI = cast<CallInst>(&I);
955 Vals.push_back(VE.getAttributeID(CI->getAttributes()));
956 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
957 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
959 // Emit value #'s for the fixed parameters.
960 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
961 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
963 // Emit type/value pairs for varargs params.
964 if (FTy->isVarArg()) {
965 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
966 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
967 i != e; ++i)
968 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
970 break;
972 case Instruction::VAArg:
973 Code = bitc::FUNC_CODE_INST_VAARG;
974 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
975 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
976 Vals.push_back(VE.getTypeID(I.getType())); // restype.
977 break;
980 Stream.EmitRecord(Code, Vals, AbbrevToUse);
981 Vals.clear();
984 // Emit names for globals/functions etc.
985 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
986 const ValueEnumerator &VE,
987 BitstreamWriter &Stream) {
988 if (VST.empty()) return;
989 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
991 // FIXME: Set up the abbrev, we know how many values there are!
992 // FIXME: We know if the type names can use 7-bit ascii.
993 SmallVector<unsigned, 64> NameVals;
995 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
996 SI != SE; ++SI) {
998 const ValueName &Name = *SI;
1000 // Figure out the encoding to use for the name.
1001 bool is7Bit = true;
1002 bool isChar6 = true;
1003 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1004 C != E; ++C) {
1005 if (isChar6)
1006 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1007 if ((unsigned char)*C & 128) {
1008 is7Bit = false;
1009 break; // don't bother scanning the rest.
1013 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1015 // VST_ENTRY: [valueid, namechar x N]
1016 // VST_BBENTRY: [bbid, namechar x N]
1017 unsigned Code;
1018 if (isa<BasicBlock>(SI->getValue())) {
1019 Code = bitc::VST_CODE_BBENTRY;
1020 if (isChar6)
1021 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1022 } else {
1023 Code = bitc::VST_CODE_ENTRY;
1024 if (isChar6)
1025 AbbrevToUse = VST_ENTRY_6_ABBREV;
1026 else if (is7Bit)
1027 AbbrevToUse = VST_ENTRY_7_ABBREV;
1030 NameVals.push_back(VE.getValueID(SI->getValue()));
1031 for (const char *P = Name.getKeyData(),
1032 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1033 NameVals.push_back((unsigned char)*P);
1035 // Emit the finished record.
1036 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1037 NameVals.clear();
1039 Stream.ExitBlock();
1042 /// WriteFunction - Emit a function body to the module stream.
1043 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1044 BitstreamWriter &Stream) {
1045 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1046 VE.incorporateFunction(F);
1048 SmallVector<unsigned, 64> Vals;
1050 // Emit the number of basic blocks, so the reader can create them ahead of
1051 // time.
1052 Vals.push_back(VE.getBasicBlocks().size());
1053 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1054 Vals.clear();
1056 // If there are function-local constants, emit them now.
1057 unsigned CstStart, CstEnd;
1058 VE.getFunctionConstantRange(CstStart, CstEnd);
1059 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1061 // Keep a running idea of what the instruction ID is.
1062 unsigned InstID = CstEnd;
1064 // Finally, emit all the instructions, in order.
1065 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1066 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1067 I != E; ++I) {
1068 WriteInstruction(*I, InstID, VE, Stream, Vals);
1069 if (I->getType() != Type::VoidTy)
1070 ++InstID;
1073 // Emit names for all the instructions etc.
1074 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1076 VE.purgeFunction();
1077 Stream.ExitBlock();
1080 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1081 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1082 const ValueEnumerator &VE,
1083 BitstreamWriter &Stream) {
1084 if (TST.empty()) return;
1086 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1088 // 7-bit fixed width VST_CODE_ENTRY strings.
1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1090 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1092 Log2_32_Ceil(VE.getTypes().size()+1)));
1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1095 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1097 SmallVector<unsigned, 64> NameVals;
1099 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1100 TI != TE; ++TI) {
1101 // TST_ENTRY: [typeid, namechar x N]
1102 NameVals.push_back(VE.getTypeID(TI->second));
1104 const std::string &Str = TI->first;
1105 bool is7Bit = true;
1106 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1107 NameVals.push_back((unsigned char)Str[i]);
1108 if (Str[i] & 128)
1109 is7Bit = false;
1112 // Emit the finished record.
1113 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1114 NameVals.clear();
1117 Stream.ExitBlock();
1120 // Emit blockinfo, which defines the standard abbreviations etc.
1121 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1122 // We only want to emit block info records for blocks that have multiple
1123 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1124 // blocks can defined their abbrevs inline.
1125 Stream.EnterBlockInfoBlock(2);
1127 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1133 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1134 Abbv) != VST_ENTRY_8_ABBREV)
1135 assert(0 && "Unexpected abbrev ordering!");
1138 { // 7-bit fixed width VST_ENTRY strings.
1139 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1140 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1144 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1145 Abbv) != VST_ENTRY_7_ABBREV)
1146 assert(0 && "Unexpected abbrev ordering!");
1148 { // 6-bit char6 VST_ENTRY strings.
1149 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1150 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1154 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1155 Abbv) != VST_ENTRY_6_ABBREV)
1156 assert(0 && "Unexpected abbrev ordering!");
1158 { // 6-bit char6 VST_BBENTRY strings.
1159 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1160 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1164 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1165 Abbv) != VST_BBENTRY_6_ABBREV)
1166 assert(0 && "Unexpected abbrev ordering!");
1171 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1172 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1173 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1175 Log2_32_Ceil(VE.getTypes().size()+1)));
1176 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1177 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1178 assert(0 && "Unexpected abbrev ordering!");
1181 { // INTEGER abbrev for CONSTANTS_BLOCK.
1182 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1183 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1185 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1186 Abbv) != CONSTANTS_INTEGER_ABBREV)
1187 assert(0 && "Unexpected abbrev ordering!");
1190 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1191 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1192 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1195 Log2_32_Ceil(VE.getTypes().size()+1)));
1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1198 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1199 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1200 assert(0 && "Unexpected abbrev ordering!");
1202 { // NULL abbrev for CONSTANTS_BLOCK.
1203 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1204 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1206 Abbv) != CONSTANTS_NULL_Abbrev)
1207 assert(0 && "Unexpected abbrev ordering!");
1210 // FIXME: This should only use space for first class types!
1212 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1213 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1214 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1218 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1219 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1220 assert(0 && "Unexpected abbrev ordering!");
1222 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1223 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1224 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1228 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1229 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1230 assert(0 && "Unexpected abbrev ordering!");
1232 { // INST_CAST abbrev for FUNCTION_BLOCK.
1233 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1237 Log2_32_Ceil(VE.getTypes().size()+1)));
1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1239 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1240 Abbv) != FUNCTION_INST_CAST_ABBREV)
1241 assert(0 && "Unexpected abbrev ordering!");
1244 { // INST_RET abbrev for FUNCTION_BLOCK.
1245 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1248 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1249 assert(0 && "Unexpected abbrev ordering!");
1251 { // INST_RET abbrev for FUNCTION_BLOCK.
1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1256 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1257 assert(0 && "Unexpected abbrev ordering!");
1259 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1260 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1261 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1263 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1264 assert(0 && "Unexpected abbrev ordering!");
1267 Stream.ExitBlock();
1271 /// WriteModule - Emit the specified module to the bitstream.
1272 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1273 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1275 // Emit the version number if it is non-zero.
1276 if (CurVersion) {
1277 SmallVector<unsigned, 1> Vals;
1278 Vals.push_back(CurVersion);
1279 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1282 // Analyze the module, enumerating globals, functions, etc.
1283 ValueEnumerator VE(M);
1285 // Emit blockinfo, which defines the standard abbreviations etc.
1286 WriteBlockInfo(VE, Stream);
1288 // Emit information about parameter attributes.
1289 WriteAttributeTable(VE, Stream);
1291 // Emit information describing all of the types in the module.
1292 WriteTypeTable(VE, Stream);
1294 // Emit top-level description of module, including target triple, inline asm,
1295 // descriptors for global variables, and function prototype info.
1296 WriteModuleInfo(M, VE, Stream);
1298 // Emit constants.
1299 WriteModuleConstants(VE, Stream);
1301 // If we have any aggregate values in the value table, purge them - these can
1302 // only be used to initialize global variables. Doing so makes the value
1303 // namespace smaller for code in functions.
1304 int NumNonAggregates = VE.PurgeAggregateValues();
1305 if (NumNonAggregates != -1) {
1306 SmallVector<unsigned, 1> Vals;
1307 Vals.push_back(NumNonAggregates);
1308 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1311 // Emit function bodies.
1312 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1313 if (!I->isDeclaration())
1314 WriteFunction(*I, VE, Stream);
1316 // Emit the type symbol table information.
1317 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1319 // Emit names for globals/functions etc.
1320 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1322 Stream.ExitBlock();
1325 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1326 /// header and trailer to make it compatible with the system archiver. To do
1327 /// this we emit the following header, and then emit a trailer that pads the
1328 /// file out to be a multiple of 16 bytes.
1329 ///
1330 /// struct bc_header {
1331 /// uint32_t Magic; // 0x0B17C0DE
1332 /// uint32_t Version; // Version, currently always 0.
1333 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1334 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1335 /// uint32_t CPUType; // CPU specifier.
1336 /// ... potentially more later ...
1337 /// };
1338 enum {
1339 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1340 DarwinBCHeaderSize = 5*4
1343 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1344 const std::string &TT) {
1345 unsigned CPUType = ~0U;
1347 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
1348 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the
1349 // specific constants here because they are implicitly part of the Darwin ABI.
1350 enum {
1351 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1352 DARWIN_CPU_TYPE_X86 = 7,
1353 DARWIN_CPU_TYPE_POWERPC = 18
1356 if (TT.find("x86_64-") == 0)
1357 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1358 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1359 TT[4] == '-' && TT[1] - '3' < 6)
1360 CPUType = DARWIN_CPU_TYPE_X86;
1361 else if (TT.find("powerpc-") == 0)
1362 CPUType = DARWIN_CPU_TYPE_POWERPC;
1363 else if (TT.find("powerpc64-") == 0)
1364 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1366 // Traditional Bitcode starts after header.
1367 unsigned BCOffset = DarwinBCHeaderSize;
1369 Stream.Emit(0x0B17C0DE, 32);
1370 Stream.Emit(0 , 32); // Version.
1371 Stream.Emit(BCOffset , 32);
1372 Stream.Emit(0 , 32); // Filled in later.
1373 Stream.Emit(CPUType , 32);
1376 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1377 /// finalize the header.
1378 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1379 // Update the size field in the header.
1380 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1382 // If the file is not a multiple of 16 bytes, insert dummy padding.
1383 while (BufferSize & 15) {
1384 Stream.Emit(0, 8);
1385 ++BufferSize;
1390 /// WriteBitcodeToFile - Write the specified module to the specified output
1391 /// stream.
1392 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1393 raw_os_ostream RawOut(Out);
1394 // If writing to stdout, set binary mode.
1395 if (llvm::cout == Out)
1396 sys::Program::ChangeStdoutToBinary();
1397 WriteBitcodeToFile(M, RawOut);
1400 /// WriteBitcodeToFile - Write the specified module to the specified output
1401 /// stream.
1402 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1403 std::vector<unsigned char> Buffer;
1404 BitstreamWriter Stream(Buffer);
1406 Buffer.reserve(256*1024);
1408 WriteBitcodeToStream( M, Stream );
1410 // If writing to stdout, set binary mode.
1411 if (&llvm::outs() == &Out)
1412 sys::Program::ChangeStdoutToBinary();
1414 // Write the generated bitstream to "Out".
1415 Out.write((char*)&Buffer.front(), Buffer.size());
1417 // Make sure it hits disk now.
1418 Out.flush();
1421 /// WriteBitcodeToStream - Write the specified module to the specified output
1422 /// stream.
1423 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1424 // If this is darwin, emit a file header and trailer if needed.
1425 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1426 if (isDarwin)
1427 EmitDarwinBCHeader(Stream, M->getTargetTriple());
1429 // Emit the file header.
1430 Stream.Emit((unsigned)'B', 8);
1431 Stream.Emit((unsigned)'C', 8);
1432 Stream.Emit(0x0, 4);
1433 Stream.Emit(0xC, 4);
1434 Stream.Emit(0xE, 4);
1435 Stream.Emit(0xD, 4);
1437 // Emit the module.
1438 WriteModule(M, Stream);
1440 if (isDarwin)
1441 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());