Implement bswap
[llvm/msp430.git] / lib / Support / APInt.cpp
blobe77fcdbdd242025353c306bf355f1465b733db30
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cmath>
23 #include <limits>
24 #include <cstring>
25 #include <cstdlib>
26 using namespace llvm;
28 /// A utility function for allocating memory, checking for allocation failures,
29 /// and ensuring the contents are zeroed.
30 inline static uint64_t* getClearedMemory(unsigned numWords) {
31 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
37 /// A utility function for allocating memory and checking for allocation
38 /// failure. The content is not zeroed.
39 inline static uint64_t* getMemory(unsigned numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
45 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
46 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
53 void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
59 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
60 : BitWidth(numBits), VAL(0) {
61 assert(BitWidth && "bitwidth too small");
62 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
64 VAL = bigVal[0];
65 else {
66 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
69 unsigned words = std::min<unsigned>(numWords, getNumWords());
70 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
73 // Make sure unused high bits are cleared
74 clearUnusedBits();
77 APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
78 uint8_t radix)
79 : BitWidth(numbits), VAL(0) {
80 assert(BitWidth && "bitwidth too small");
81 fromString(numbits, StrStart, slen, radix);
84 APInt& APInt::AssignSlowCase(const APInt& RHS) {
85 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
89 if (BitWidth == RHS.getBitWidth()) {
90 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
93 return *this;
96 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
106 VAL = RHS.VAL;
107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
116 APInt& APInt::operator=(uint64_t RHS) {
117 if (isSingleWord())
118 VAL = RHS;
119 else {
120 pVal[0] = RHS;
121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
123 return clearUnusedBits();
126 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
127 void APInt::Profile(FoldingSetNodeID& ID) const {
128 ID.AddInteger(BitWidth);
130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
135 unsigned NumWords = getNumWords();
136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
140 /// add_1 - This function adds a single "digit" integer, y, to the multiple
141 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
142 /// 1 is returned if there is a carry out, otherwise 0 is returned.
143 /// @returns the carry of the addition.
144 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
146 dest[i] = y + x[i];
147 if (dest[i] < y)
148 y = 1; // Carry one to next digit.
149 else {
150 y = 0; // No need to carry so exit early
151 break;
154 return y;
157 /// @brief Prefix increment operator. Increments the APInt by one.
158 APInt& APInt::operator++() {
159 if (isSingleWord())
160 ++VAL;
161 else
162 add_1(pVal, pVal, getNumWords(), 1);
163 return clearUnusedBits();
166 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
168 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
169 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170 /// In other words, if y > x then this function returns 1, otherwise 0.
171 /// @returns the borrow out of the subtraction
172 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
174 uint64_t X = x[i];
175 x[i] -= y;
176 if (y > X)
177 y = 1; // We have to "borrow 1" from next "digit"
178 else {
179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
183 return bool(y);
186 /// @brief Prefix decrement operator. Decrements the APInt by one.
187 APInt& APInt::operator--() {
188 if (isSingleWord())
189 --VAL;
190 else
191 sub_1(pVal, getNumWords(), 1);
192 return clearUnusedBits();
195 /// add - This function adds the integer array x to the integer array Y and
196 /// places the result in dest.
197 /// @returns the carry out from the addition
198 /// @brief General addition of 64-bit integer arrays
199 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
200 unsigned len) {
201 bool carry = false;
202 for (unsigned i = 0; i< len; ++i) {
203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
204 dest[i] = x[i] + y[i] + carry;
205 carry = dest[i] < limit || (carry && dest[i] == limit);
207 return carry;
210 /// Adds the RHS APint to this APInt.
211 /// @returns this, after addition of RHS.
212 /// @brief Addition assignment operator.
213 APInt& APInt::operator+=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 VAL += RHS.VAL;
217 else {
218 add(pVal, pVal, RHS.pVal, getNumWords());
220 return clearUnusedBits();
223 /// Subtracts the integer array y from the integer array x
224 /// @returns returns the borrow out.
225 /// @brief Generalized subtraction of 64-bit integer arrays.
226 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227 unsigned len) {
228 bool borrow = false;
229 for (unsigned i = 0; i < len; ++i) {
230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
234 return borrow;
237 /// Subtracts the RHS APInt from this APInt
238 /// @returns this, after subtraction
239 /// @brief Subtraction assignment operator.
240 APInt& APInt::operator-=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
246 return clearUnusedBits();
249 /// Multiplies an integer array, x by a a uint64_t integer and places the result
250 /// into dest.
251 /// @returns the carry out of the multiplication.
252 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
253 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
256 uint64_t carry = 0;
258 // For each digit of x.
259 for (unsigned i = 0; i < len; ++i) {
260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
281 return carry;
284 /// Multiplies integer array x by integer array y and stores the result into
285 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
286 /// @brief Generalized multiplicate of integer arrays.
287 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
290 for (unsigned i = 1; i < ylen; ++i) {
291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
292 uint64_t carry = 0, lx = 0, hx = 0;
293 for (unsigned j = 0; j < xlen; ++j) {
294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
313 dest[i+xlen] = carry;
317 APInt& APInt::operator*=(const APInt& RHS) {
318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
319 if (isSingleWord()) {
320 VAL *= RHS.VAL;
321 clearUnusedBits();
322 return *this;
325 // Get some bit facts about LHS and check for zero
326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
332 // Get some bit facts about RHS and check for zero
333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
341 // Allocate space for the result
342 unsigned destWords = rhsWords + lhsWords;
343 uint64_t *dest = getMemory(destWords);
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
348 // Copy result back into *this
349 clear();
350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
353 // delete dest array and return
354 delete[] dest;
355 return *this;
358 APInt& APInt::operator&=(const APInt& RHS) {
359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
360 if (isSingleWord()) {
361 VAL &= RHS.VAL;
362 return *this;
364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
366 pVal[i] &= RHS.pVal[i];
367 return *this;
370 APInt& APInt::operator|=(const APInt& RHS) {
371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
372 if (isSingleWord()) {
373 VAL |= RHS.VAL;
374 return *this;
376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
378 pVal[i] |= RHS.pVal[i];
379 return *this;
382 APInt& APInt::operator^=(const APInt& RHS) {
383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
384 if (isSingleWord()) {
385 VAL ^= RHS.VAL;
386 this->clearUnusedBits();
387 return *this;
389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
391 pVal[i] ^= RHS.pVal[i];
392 return clearUnusedBits();
395 APInt APInt::AndSlowCase(const APInt& RHS) const {
396 unsigned numWords = getNumWords();
397 uint64_t* val = getMemory(numWords);
398 for (unsigned i = 0; i < numWords; ++i)
399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
403 APInt APInt::OrSlowCase(const APInt& RHS) const {
404 unsigned numWords = getNumWords();
405 uint64_t *val = getMemory(numWords);
406 for (unsigned i = 0; i < numWords; ++i)
407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
411 APInt APInt::XorSlowCase(const APInt& RHS) const {
412 unsigned numWords = getNumWords();
413 uint64_t *val = getMemory(numWords);
414 for (unsigned i = 0; i < numWords; ++i)
415 val[i] = pVal[i] ^ RHS.pVal[i];
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
421 bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
425 for (unsigned i = 0; i < getNumWords(); ++i)
426 if (pVal[i])
427 return false;
428 return true;
431 APInt APInt::operator*(const APInt& RHS) const {
432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
433 if (isSingleWord())
434 return APInt(BitWidth, VAL * RHS.VAL);
435 APInt Result(*this);
436 Result *= RHS;
437 return Result.clearUnusedBits();
440 APInt APInt::operator+(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL + RHS.VAL);
444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
446 return Result.clearUnusedBits();
449 APInt APInt::operator-(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(BitWidth, VAL - RHS.VAL);
453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
455 return Result.clearUnusedBits();
458 bool APInt::operator[](unsigned bitPosition) const {
459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
463 bool APInt::EqualSlowCase(const APInt& RHS) const {
464 // Get some facts about the number of bits used in the two operands.
465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
468 // If the number of bits isn't the same, they aren't equal
469 if (n1 != n2)
470 return false;
472 // If the number of bits fits in a word, we only need to compare the low word.
473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
476 // Otherwise, compare everything
477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
480 return true;
483 bool APInt::EqualSlowCase(uint64_t Val) const {
484 unsigned n = getActiveBits();
485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
491 bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
496 // Get active bit length of both operands
497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
512 // Otherwise, compare all words
513 unsigned topWord = whichWord(std::max(n1,n2)-1);
514 for (int i = topWord; i >= 0; --i) {
515 if (pVal[i] > RHS.pVal[i])
516 return false;
517 if (pVal[i] < RHS.pVal[i])
518 return true;
520 return false;
523 bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
531 APInt lhs(*this);
532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
537 lhs.flip();
538 lhs++;
540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
542 rhs.flip();
543 rhs++;
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
551 else
552 return true;
553 else if (rhsNeg)
554 return false;
555 else
556 return lhs.ult(rhs);
559 APInt& APInt::set(unsigned bitPosition) {
560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
564 return *this;
567 /// Set the given bit to 0 whose position is given as "bitPosition".
568 /// @brief Set a given bit to 0.
569 APInt& APInt::clear(unsigned bitPosition) {
570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
574 return *this;
577 /// @brief Toggle every bit to its opposite value.
579 /// Toggle a given bit to its opposite value whose position is given
580 /// as "bitPosition".
581 /// @brief Toggles a given bit to its opposite value.
582 APInt& APInt::flip(unsigned bitPosition) {
583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
589 unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
593 // Each computation below needs to know if its negative
594 unsigned isNegative = str[0] == '-';
595 if (isNegative) {
596 slen--;
597 str++;
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
617 unsigned sufficient = slen*64/18;
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
622 // Compute how many bits are required.
623 return isNegative + tmp.logBase2() + 1;
626 // From http://www.burtleburtle.net, byBob Jenkins.
627 // When targeting x86, both GCC and LLVM seem to recognize this as a
628 // rotate instruction.
629 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
631 // From http://www.burtleburtle.net, by Bob Jenkins.
632 #define mix(a,b,c) \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
642 // From http://www.burtleburtle.net, by Bob Jenkins.
643 #define final(a,b,c) \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
654 // hashword() was adapted from http://www.burtleburtle.net, by Bob
655 // Jenkins. k is a pointer to an array of uint32_t values; length is
656 // the length of the key, in 32-bit chunks. This version only handles
657 // keys that are a multiple of 32 bits in size.
658 static inline uint32_t hashword(const uint64_t *k64, size_t length)
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
677 /*------------------------------------------- handle the last 3 uint32_t's */
678 switch(length) /* all the case statements fall through */
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
687 /*------------------------------------------------------ report the result */
688 return c;
691 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
692 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
693 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694 // function into about 35 instructions when inlined.
695 static inline uint32_t hashword8(const uint64_t k64)
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
704 #undef final
705 #undef mix
706 #undef rot
708 uint64_t APInt::getHashValue() const {
709 uint64_t hash;
710 if (isSingleWord())
711 hash = hashword8(VAL);
712 else
713 hash = hashword(pVal, getNumWords()*2);
714 return hash;
717 /// HiBits - This function returns the high "numBits" bits of this APInt.
718 APInt APInt::getHiBits(unsigned numBits) const {
719 return APIntOps::lshr(*this, BitWidth - numBits);
722 /// LoBits - This function returns the low "numBits" bits of this APInt.
723 APInt APInt::getLoBits(unsigned numBits) const {
724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
728 bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
732 unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
745 return std::min(Count, BitWidth);
748 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
756 return Count;
759 unsigned APInt::countLeadingOnes() const {
760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
771 int i = getNumWords() - 1;
772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
783 return Count;
786 unsigned APInt::countTrailingZeros() const {
787 if (isSingleWord())
788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
795 return std::min(Count, BitWidth);
798 unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
808 unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
811 Count += CountPopulation_64(pVal[i]);
812 return Count;
815 APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
821 else if (BitWidth == 48) {
822 unsigned Tmp1 = unsigned(VAL >> 16);
823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
837 return Result;
841 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
849 return A;
852 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
884 Tmp = Tmp.shl((unsigned)exp - 52);
885 return isNeg ? -Tmp : Tmp;
888 /// RoundToDouble - This function convert this APInt to a double.
889 /// The layout for double is as following (IEEE Standard 754):
890 /// --------------------------------------
891 /// | Sign Exponent Fraction Bias |
892 /// |-------------------------------------- |
893 /// | 1[63] 11[62-52] 52[51-00] 1023 |
894 /// --------------------------------------
895 double APInt::roundToDouble(bool isSigned) const {
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
912 // Figure out how many bits we're using.
913 unsigned n = Tmp.getActiveBits();
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
927 exp += 1023; // Increment for 1023 bias
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
954 // Truncate to new width.
955 APInt &APInt::trunc(unsigned width) {
956 assert(width < BitWidth && "Invalid APInt Truncate request");
957 assert(width && "Can't truncate to 0 bits");
958 unsigned wordsBefore = getNumWords();
959 BitWidth = width;
960 unsigned wordsAfter = getNumWords();
961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
968 for (unsigned i = 0; i < wordsAfter; ++i)
969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
974 return clearUnusedBits();
977 // Sign extend to a new width.
978 APInt &APInt::sext(unsigned width) {
979 assert(width > BitWidth && "Invalid APInt SignExtend request");
980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
986 // The sign bit is set. First, get some facts
987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
989 BitWidth = width;
990 unsigned wordsAfter = getNumWords();
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
1012 for (unsigned i = 0; i < wordsBefore; ++i)
1013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1024 // Zero extend to a new width.
1025 APInt &APInt::zext(unsigned width) {
1026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1027 unsigned wordsBefore = getNumWords();
1028 BitWidth = width;
1029 unsigned wordsAfter = getNumWords();
1030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
1035 for (unsigned i = 0; i < wordsBefore; ++i)
1036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1041 return *this;
1044 APInt &APInt::zextOrTrunc(unsigned width) {
1045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1052 APInt &APInt::sextOrTrunc(unsigned width) {
1053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1060 /// Arithmetic right-shift this APInt by shiftAmt.
1061 /// @brief Arithmetic right-shift function.
1062 APInt APInt::ashr(const APInt &shiftAmt) const {
1063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1066 /// Arithmetic right-shift this APInt by shiftAmt.
1067 /// @brief Arithmetic right-shift function.
1068 APInt APInt::ashr(unsigned shiftAmt) const {
1069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
1079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
1090 return APInt(BitWidth, -1ULL, true);
1091 else
1092 return APInt(BitWidth, 0);
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1098 // Compute some values needed by the following shift algorithms
1099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
1109 for (unsigned i = 0; i <= breakWord; ++i)
1110 val[i] = pVal[i+offset]; // move whole word
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
1118 for (unsigned i = 0; i < breakWord; ++i) {
1119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1149 /// Logical right-shift this APInt by shiftAmt.
1150 /// @brief Logical right-shift function.
1151 APInt APInt::lshr(const APInt &shiftAmt) const {
1152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1155 /// Logical right-shift this APInt by shiftAmt.
1156 /// @brief Logical right-shift function.
1157 APInt APInt::lshr(unsigned shiftAmt) const {
1158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1171 // If none of the bits are shifted out, the result is *this. This avoids
1172 // issues with shifting by the size of the integer type, which produces
1173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1187 return APInt(val, BitWidth).clearUnusedBits();
1190 // Compute some values needed by the remaining shift algorithms
1191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
1196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1197 val[i] = pVal[i+offset];
1198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1203 // Shift the low order words
1204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
1206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1211 // Remaining words are 0
1212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1217 /// Left-shift this APInt by shiftAmt.
1218 /// @brief Left-shift function.
1219 APInt APInt::shl(const APInt &shiftAmt) const {
1220 // It's undefined behavior in C to shift by BitWidth or greater.
1221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1224 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
1243 for (unsigned i = 0; i < getNumWords(); i++) {
1244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1247 return APInt(val, BitWidth).clearUnusedBits();
1250 // Compute some values needed by the remaining shift algorithms
1251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
1256 for (unsigned i = 0; i < offset; i++)
1257 val[i] = 0;
1258 for (unsigned i = offset; i < getNumWords(); i++)
1259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1263 // Copy whole words from this to Result.
1264 unsigned i = getNumWords() - 1;
1265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1274 APInt APInt::rotl(const APInt &rotateAmt) const {
1275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1278 APInt APInt::rotl(unsigned rotateAmt) const {
1279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1289 APInt APInt::rotr(const APInt &rotateAmt) const {
1290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1293 APInt APInt::rotr(unsigned rotateAmt) const {
1294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1304 // Square Root - this method computes and returns the square root of "this".
1305 // Three mechanisms are used for computation. For small values (<= 5 bits),
1306 // a table lookup is done. This gets some performance for common cases. For
1307 // values using less than 52 bits, the value is converted to double and then
1308 // the libc sqrt function is called. The result is rounded and then converted
1309 // back to a uint64_t which is then used to construct the result. Finally,
1310 // the Babylonian method for computing square roots is used.
1311 APInt APInt::sqrt() const {
1313 // Determine the magnitude of the value.
1314 unsigned magnitude = getActiveBits();
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336 #ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340 #else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343 #endif
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
1351 unsigned nbits = BitWidth, i = 4;
1352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
1390 assert(0 && "Error in APInt::sqrt computation");
1391 return x_old + 1;
1394 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1395 /// iterative extended Euclidean algorithm is used to solve for this value,
1396 /// however we simplify it to speed up calculating only the inverse, and take
1397 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1398 /// (potentially large) APInts around.
1399 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
1434 // abs(t[i]) is known to be less than *this/2 (see the link above).
1435 return t[i].isNegative() ? t[i] + modulo : t[i];
1438 /// Calculate the magic numbers required to implement a signed integer division
1439 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1440 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1441 /// Warren, Jr., chapter 10.
1442 APInt::ms APInt::magic() const {
1443 const APInt& d = *this;
1444 unsigned p;
1445 APInt ad, anc, delta, q1, r1, q2, r2, t;
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449 struct ms mag;
1451 ad = d.abs();
1452 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1453 anc = t - 1 - t.urem(ad); // absolute value of nc
1454 p = d.getBitWidth() - 1; // initialize p
1455 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1456 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1457 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1458 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1459 do {
1460 p = p + 1;
1461 q1 = q1<<1; // update q1 = 2p/abs(nc)
1462 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1463 if (r1.uge(anc)) { // must be unsigned comparison
1464 q1 = q1 + 1;
1465 r1 = r1 - anc;
1467 q2 = q2<<1; // update q2 = 2p/abs(d)
1468 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1469 if (r2.uge(ad)) { // must be unsigned comparison
1470 q2 = q2 + 1;
1471 r2 = r2 - ad;
1473 delta = ad - r2;
1474 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1476 mag.m = q2 + 1;
1477 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1478 mag.s = p - d.getBitWidth(); // resulting shift
1479 return mag;
1482 /// Calculate the magic numbers required to implement an unsigned integer
1483 /// division by a constant as a sequence of multiplies, adds and shifts.
1484 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1485 /// S. Warren, Jr., chapter 10.
1486 APInt::mu APInt::magicu() const {
1487 const APInt& d = *this;
1488 unsigned p;
1489 APInt nc, delta, q1, r1, q2, r2;
1490 struct mu magu;
1491 magu.a = 0; // initialize "add" indicator
1492 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1493 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1494 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1496 nc = allOnes - (-d).urem(d);
1497 p = d.getBitWidth() - 1; // initialize p
1498 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1499 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1500 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1501 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1502 do {
1503 p = p + 1;
1504 if (r1.uge(nc - r1)) {
1505 q1 = q1 + q1 + 1; // update q1
1506 r1 = r1 + r1 - nc; // update r1
1508 else {
1509 q1 = q1+q1; // update q1
1510 r1 = r1+r1; // update r1
1512 if ((r2 + 1).uge(d - r2)) {
1513 if (q2.uge(signedMax)) magu.a = 1;
1514 q2 = q2+q2 + 1; // update q2
1515 r2 = r2+r2 + 1 - d; // update r2
1517 else {
1518 if (q2.uge(signedMin)) magu.a = 1;
1519 q2 = q2+q2; // update q2
1520 r2 = r2+r2 + 1; // update r2
1522 delta = d - 1 - r2;
1523 } while (p < d.getBitWidth()*2 &&
1524 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1525 magu.m = q2 + 1; // resulting magic number
1526 magu.s = p - d.getBitWidth(); // resulting shift
1527 return magu;
1530 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1531 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1532 /// variables here have the same names as in the algorithm. Comments explain
1533 /// the algorithm and any deviation from it.
1534 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1535 unsigned m, unsigned n) {
1536 assert(u && "Must provide dividend");
1537 assert(v && "Must provide divisor");
1538 assert(q && "Must provide quotient");
1539 assert(u != v && u != q && v != q && "Must us different memory");
1540 assert(n>1 && "n must be > 1");
1542 // Knuth uses the value b as the base of the number system. In our case b
1543 // is 2^31 so we just set it to -1u.
1544 uint64_t b = uint64_t(1) << 32;
1546 #if 0
1547 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1548 DEBUG(cerr << "KnuthDiv: original:");
1549 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1550 DEBUG(cerr << " by");
1551 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1552 DEBUG(cerr << '\n');
1553 #endif
1554 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1555 // u and v by d. Note that we have taken Knuth's advice here to use a power
1556 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1557 // 2 allows us to shift instead of multiply and it is easy to determine the
1558 // shift amount from the leading zeros. We are basically normalizing the u
1559 // and v so that its high bits are shifted to the top of v's range without
1560 // overflow. Note that this can require an extra word in u so that u must
1561 // be of length m+n+1.
1562 unsigned shift = CountLeadingZeros_32(v[n-1]);
1563 unsigned v_carry = 0;
1564 unsigned u_carry = 0;
1565 if (shift) {
1566 for (unsigned i = 0; i < m+n; ++i) {
1567 unsigned u_tmp = u[i] >> (32 - shift);
1568 u[i] = (u[i] << shift) | u_carry;
1569 u_carry = u_tmp;
1571 for (unsigned i = 0; i < n; ++i) {
1572 unsigned v_tmp = v[i] >> (32 - shift);
1573 v[i] = (v[i] << shift) | v_carry;
1574 v_carry = v_tmp;
1577 u[m+n] = u_carry;
1578 #if 0
1579 DEBUG(cerr << "KnuthDiv: normal:");
1580 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1581 DEBUG(cerr << " by");
1582 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1583 DEBUG(cerr << '\n');
1584 #endif
1586 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1587 int j = m;
1588 do {
1589 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1590 // D3. [Calculate q'.].
1591 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1592 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1593 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1594 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1595 // on v[n-2] determines at high speed most of the cases in which the trial
1596 // value qp is one too large, and it eliminates all cases where qp is two
1597 // too large.
1598 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1599 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1600 uint64_t qp = dividend / v[n-1];
1601 uint64_t rp = dividend % v[n-1];
1602 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1603 qp--;
1604 rp += v[n-1];
1605 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1606 qp--;
1608 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1610 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1611 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1612 // consists of a simple multiplication by a one-place number, combined with
1613 // a subtraction.
1614 bool isNeg = false;
1615 for (unsigned i = 0; i < n; ++i) {
1616 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1617 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1618 bool borrow = subtrahend > u_tmp;
1619 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1620 << ", subtrahend == " << subtrahend
1621 << ", borrow = " << borrow << '\n');
1623 uint64_t result = u_tmp - subtrahend;
1624 unsigned k = j + i;
1625 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1626 u[k++] = (unsigned)(result >> 32); // subtract high word
1627 while (borrow && k <= m+n) { // deal with borrow to the left
1628 borrow = u[k] == 0;
1629 u[k]--;
1630 k++;
1632 isNeg |= borrow;
1633 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1634 u[j+i+1] << '\n');
1636 DEBUG(cerr << "KnuthDiv: after subtraction:");
1637 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1638 DEBUG(cerr << '\n');
1639 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1640 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1641 // true value plus b**(n+1), namely as the b's complement of
1642 // the true value, and a "borrow" to the left should be remembered.
1644 if (isNeg) {
1645 bool carry = true; // true because b's complement is "complement + 1"
1646 for (unsigned i = 0; i <= m+n; ++i) {
1647 u[i] = ~u[i] + carry; // b's complement
1648 carry = carry && u[i] == 0;
1651 DEBUG(cerr << "KnuthDiv: after complement:");
1652 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1653 DEBUG(cerr << '\n');
1655 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1656 // negative, go to step D6; otherwise go on to step D7.
1657 q[j] = (unsigned)qp;
1658 if (isNeg) {
1659 // D6. [Add back]. The probability that this step is necessary is very
1660 // small, on the order of only 2/b. Make sure that test data accounts for
1661 // this possibility. Decrease q[j] by 1
1662 q[j]--;
1663 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1664 // A carry will occur to the left of u[j+n], and it should be ignored
1665 // since it cancels with the borrow that occurred in D4.
1666 bool carry = false;
1667 for (unsigned i = 0; i < n; i++) {
1668 unsigned limit = std::min(u[j+i],v[i]);
1669 u[j+i] += v[i] + carry;
1670 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1672 u[j+n] += carry;
1674 DEBUG(cerr << "KnuthDiv: after correction:");
1675 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1676 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1678 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1679 } while (--j >= 0);
1681 DEBUG(cerr << "KnuthDiv: quotient:");
1682 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1683 DEBUG(cerr << '\n');
1685 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1686 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1687 // compute the remainder (urem uses this).
1688 if (r) {
1689 // The value d is expressed by the "shift" value above since we avoided
1690 // multiplication by d by using a shift left. So, all we have to do is
1691 // shift right here. In order to mak
1692 if (shift) {
1693 unsigned carry = 0;
1694 DEBUG(cerr << "KnuthDiv: remainder:");
1695 for (int i = n-1; i >= 0; i--) {
1696 r[i] = (u[i] >> shift) | carry;
1697 carry = u[i] << (32 - shift);
1698 DEBUG(cerr << " " << r[i]);
1700 } else {
1701 for (int i = n-1; i >= 0; i--) {
1702 r[i] = u[i];
1703 DEBUG(cerr << " " << r[i]);
1706 DEBUG(cerr << '\n');
1708 #if 0
1709 DEBUG(cerr << std::setbase(10) << '\n');
1710 #endif
1713 void APInt::divide(const APInt LHS, unsigned lhsWords,
1714 const APInt &RHS, unsigned rhsWords,
1715 APInt *Quotient, APInt *Remainder)
1717 assert(lhsWords >= rhsWords && "Fractional result");
1719 // First, compose the values into an array of 32-bit words instead of
1720 // 64-bit words. This is a necessity of both the "short division" algorithm
1721 // and the the Knuth "classical algorithm" which requires there to be native
1722 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1723 // can't use 64-bit operands here because we don't have native results of
1724 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1725 // work on large-endian machines.
1726 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1727 unsigned n = rhsWords * 2;
1728 unsigned m = (lhsWords * 2) - n;
1730 // Allocate space for the temporary values we need either on the stack, if
1731 // it will fit, or on the heap if it won't.
1732 unsigned SPACE[128];
1733 unsigned *U = 0;
1734 unsigned *V = 0;
1735 unsigned *Q = 0;
1736 unsigned *R = 0;
1737 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1738 U = &SPACE[0];
1739 V = &SPACE[m+n+1];
1740 Q = &SPACE[(m+n+1) + n];
1741 if (Remainder)
1742 R = &SPACE[(m+n+1) + n + (m+n)];
1743 } else {
1744 U = new unsigned[m + n + 1];
1745 V = new unsigned[n];
1746 Q = new unsigned[m+n];
1747 if (Remainder)
1748 R = new unsigned[n];
1751 // Initialize the dividend
1752 memset(U, 0, (m+n+1)*sizeof(unsigned));
1753 for (unsigned i = 0; i < lhsWords; ++i) {
1754 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1755 U[i * 2] = (unsigned)(tmp & mask);
1756 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1758 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1760 // Initialize the divisor
1761 memset(V, 0, (n)*sizeof(unsigned));
1762 for (unsigned i = 0; i < rhsWords; ++i) {
1763 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1764 V[i * 2] = (unsigned)(tmp & mask);
1765 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1768 // initialize the quotient and remainder
1769 memset(Q, 0, (m+n) * sizeof(unsigned));
1770 if (Remainder)
1771 memset(R, 0, n * sizeof(unsigned));
1773 // Now, adjust m and n for the Knuth division. n is the number of words in
1774 // the divisor. m is the number of words by which the dividend exceeds the
1775 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1776 // contain any zero words or the Knuth algorithm fails.
1777 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1778 n--;
1779 m++;
1781 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1782 m--;
1784 // If we're left with only a single word for the divisor, Knuth doesn't work
1785 // so we implement the short division algorithm here. This is much simpler
1786 // and faster because we are certain that we can divide a 64-bit quantity
1787 // by a 32-bit quantity at hardware speed and short division is simply a
1788 // series of such operations. This is just like doing short division but we
1789 // are using base 2^32 instead of base 10.
1790 assert(n != 0 && "Divide by zero?");
1791 if (n == 1) {
1792 unsigned divisor = V[0];
1793 unsigned remainder = 0;
1794 for (int i = m+n-1; i >= 0; i--) {
1795 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1796 if (partial_dividend == 0) {
1797 Q[i] = 0;
1798 remainder = 0;
1799 } else if (partial_dividend < divisor) {
1800 Q[i] = 0;
1801 remainder = (unsigned)partial_dividend;
1802 } else if (partial_dividend == divisor) {
1803 Q[i] = 1;
1804 remainder = 0;
1805 } else {
1806 Q[i] = (unsigned)(partial_dividend / divisor);
1807 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1810 if (R)
1811 R[0] = remainder;
1812 } else {
1813 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1814 // case n > 1.
1815 KnuthDiv(U, V, Q, R, m, n);
1818 // If the caller wants the quotient
1819 if (Quotient) {
1820 // Set up the Quotient value's memory.
1821 if (Quotient->BitWidth != LHS.BitWidth) {
1822 if (Quotient->isSingleWord())
1823 Quotient->VAL = 0;
1824 else
1825 delete [] Quotient->pVal;
1826 Quotient->BitWidth = LHS.BitWidth;
1827 if (!Quotient->isSingleWord())
1828 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1829 } else
1830 Quotient->clear();
1832 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1833 // order words.
1834 if (lhsWords == 1) {
1835 uint64_t tmp =
1836 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1837 if (Quotient->isSingleWord())
1838 Quotient->VAL = tmp;
1839 else
1840 Quotient->pVal[0] = tmp;
1841 } else {
1842 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1843 for (unsigned i = 0; i < lhsWords; ++i)
1844 Quotient->pVal[i] =
1845 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1849 // If the caller wants the remainder
1850 if (Remainder) {
1851 // Set up the Remainder value's memory.
1852 if (Remainder->BitWidth != RHS.BitWidth) {
1853 if (Remainder->isSingleWord())
1854 Remainder->VAL = 0;
1855 else
1856 delete [] Remainder->pVal;
1857 Remainder->BitWidth = RHS.BitWidth;
1858 if (!Remainder->isSingleWord())
1859 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1860 } else
1861 Remainder->clear();
1863 // The remainder is in R. Reconstitute the remainder into Remainder's low
1864 // order words.
1865 if (rhsWords == 1) {
1866 uint64_t tmp =
1867 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1868 if (Remainder->isSingleWord())
1869 Remainder->VAL = tmp;
1870 else
1871 Remainder->pVal[0] = tmp;
1872 } else {
1873 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1874 for (unsigned i = 0; i < rhsWords; ++i)
1875 Remainder->pVal[i] =
1876 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1880 // Clean up the memory we allocated.
1881 if (U != &SPACE[0]) {
1882 delete [] U;
1883 delete [] V;
1884 delete [] Q;
1885 delete [] R;
1889 APInt APInt::udiv(const APInt& RHS) const {
1890 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1892 // First, deal with the easy case
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Divide by zero?");
1895 return APInt(BitWidth, VAL / RHS.VAL);
1898 // Get some facts about the LHS and RHS number of bits and words
1899 unsigned rhsBits = RHS.getActiveBits();
1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1901 assert(rhsWords && "Divided by zero???");
1902 unsigned lhsBits = this->getActiveBits();
1903 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1905 // Deal with some degenerate cases
1906 if (!lhsWords)
1907 // 0 / X ===> 0
1908 return APInt(BitWidth, 0);
1909 else if (lhsWords < rhsWords || this->ult(RHS)) {
1910 // X / Y ===> 0, iff X < Y
1911 return APInt(BitWidth, 0);
1912 } else if (*this == RHS) {
1913 // X / X ===> 1
1914 return APInt(BitWidth, 1);
1915 } else if (lhsWords == 1 && rhsWords == 1) {
1916 // All high words are zero, just use native divide
1917 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1920 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1921 APInt Quotient(1,0); // to hold result.
1922 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1923 return Quotient;
1926 APInt APInt::urem(const APInt& RHS) const {
1927 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1928 if (isSingleWord()) {
1929 assert(RHS.VAL != 0 && "Remainder by zero?");
1930 return APInt(BitWidth, VAL % RHS.VAL);
1933 // Get some facts about the LHS
1934 unsigned lhsBits = getActiveBits();
1935 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1937 // Get some facts about the RHS
1938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1940 assert(rhsWords && "Performing remainder operation by zero ???");
1942 // Check the degenerate cases
1943 if (lhsWords == 0) {
1944 // 0 % Y ===> 0
1945 return APInt(BitWidth, 0);
1946 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1947 // X % Y ===> X, iff X < Y
1948 return *this;
1949 } else if (*this == RHS) {
1950 // X % X == 0;
1951 return APInt(BitWidth, 0);
1952 } else if (lhsWords == 1) {
1953 // All high words are zero, just use native remainder
1954 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1957 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1958 APInt Remainder(1,0);
1959 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1960 return Remainder;
1963 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1964 APInt &Quotient, APInt &Remainder) {
1965 // Get some size facts about the dividend and divisor
1966 unsigned lhsBits = LHS.getActiveBits();
1967 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1968 unsigned rhsBits = RHS.getActiveBits();
1969 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1971 // Check the degenerate cases
1972 if (lhsWords == 0) {
1973 Quotient = 0; // 0 / Y ===> 0
1974 Remainder = 0; // 0 % Y ===> 0
1975 return;
1978 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1979 Quotient = 0; // X / Y ===> 0, iff X < Y
1980 Remainder = LHS; // X % Y ===> X, iff X < Y
1981 return;
1984 if (LHS == RHS) {
1985 Quotient = 1; // X / X ===> 1
1986 Remainder = 0; // X % X ===> 0;
1987 return;
1990 if (lhsWords == 1 && rhsWords == 1) {
1991 // There is only one word to consider so use the native versions.
1992 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1993 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1994 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1995 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1996 return;
1999 // Okay, lets do it the long way
2000 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2003 void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
2004 uint8_t radix) {
2005 // Check our assumptions here
2006 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2007 "Radix should be 2, 8, 10, or 16!");
2008 assert(str && "String is null?");
2009 bool isNeg = str[0] == '-';
2010 if (isNeg)
2011 str++, slen--;
2012 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2013 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2014 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2015 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
2017 // Allocate memory
2018 if (!isSingleWord())
2019 pVal = getClearedMemory(getNumWords());
2021 // Figure out if we can shift instead of multiply
2022 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2024 // Set up an APInt for the digit to add outside the loop so we don't
2025 // constantly construct/destruct it.
2026 APInt apdigit(getBitWidth(), 0);
2027 APInt apradix(getBitWidth(), radix);
2029 // Enter digit traversal loop
2030 for (unsigned i = 0; i < slen; i++) {
2031 // Get a digit
2032 unsigned digit = 0;
2033 char cdigit = str[i];
2034 if (radix == 16) {
2035 if (!isxdigit(cdigit))
2036 assert(0 && "Invalid hex digit in string");
2037 if (isdigit(cdigit))
2038 digit = cdigit - '0';
2039 else if (cdigit >= 'a')
2040 digit = cdigit - 'a' + 10;
2041 else if (cdigit >= 'A')
2042 digit = cdigit - 'A' + 10;
2043 else
2044 assert(0 && "huh? we shouldn't get here");
2045 } else if (isdigit(cdigit)) {
2046 digit = cdigit - '0';
2047 assert((radix == 10 ||
2048 (radix == 8 && digit != 8 && digit != 9) ||
2049 (radix == 2 && (digit == 0 || digit == 1))) &&
2050 "Invalid digit in string for given radix");
2051 } else {
2052 assert(0 && "Invalid character in digit string");
2055 // Shift or multiply the value by the radix
2056 if (slen > 1) {
2057 if (shift)
2058 *this <<= shift;
2059 else
2060 *this *= apradix;
2063 // Add in the digit we just interpreted
2064 if (apdigit.isSingleWord())
2065 apdigit.VAL = digit;
2066 else
2067 apdigit.pVal[0] = digit;
2068 *this += apdigit;
2070 // If its negative, put it in two's complement form
2071 if (isNeg) {
2072 (*this)--;
2073 this->flip();
2077 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2078 bool Signed) const {
2079 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2080 "Radix should be 2, 8, 10, or 16!");
2082 // First, check for a zero value and just short circuit the logic below.
2083 if (*this == 0) {
2084 Str.push_back('0');
2085 return;
2088 static const char Digits[] = "0123456789ABCDEF";
2090 if (isSingleWord()) {
2091 char Buffer[65];
2092 char *BufPtr = Buffer+65;
2094 uint64_t N;
2095 if (Signed) {
2096 int64_t I = getSExtValue();
2097 if (I < 0) {
2098 Str.push_back('-');
2099 I = -I;
2101 N = I;
2102 } else {
2103 N = getZExtValue();
2106 while (N) {
2107 *--BufPtr = Digits[N % Radix];
2108 N /= Radix;
2110 Str.append(BufPtr, Buffer+65);
2111 return;
2114 APInt Tmp(*this);
2116 if (Signed && isNegative()) {
2117 // They want to print the signed version and it is a negative value
2118 // Flip the bits and add one to turn it into the equivalent positive
2119 // value and put a '-' in the result.
2120 Tmp.flip();
2121 Tmp++;
2122 Str.push_back('-');
2125 // We insert the digits backward, then reverse them to get the right order.
2126 unsigned StartDig = Str.size();
2128 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2129 // because the number of bits per digit (1, 3 and 4 respectively) divides
2130 // equaly. We just shift until the value is zero.
2131 if (Radix != 10) {
2132 // Just shift tmp right for each digit width until it becomes zero
2133 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2134 unsigned MaskAmt = Radix - 1;
2136 while (Tmp != 0) {
2137 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2138 Str.push_back(Digits[Digit]);
2139 Tmp = Tmp.lshr(ShiftAmt);
2141 } else {
2142 APInt divisor(4, 10);
2143 while (Tmp != 0) {
2144 APInt APdigit(1, 0);
2145 APInt tmp2(Tmp.getBitWidth(), 0);
2146 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2147 &APdigit);
2148 unsigned Digit = (unsigned)APdigit.getZExtValue();
2149 assert(Digit < Radix && "divide failed");
2150 Str.push_back(Digits[Digit]);
2151 Tmp = tmp2;
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
2159 /// toString - This returns the APInt as a std::string. Note that this is an
2160 /// inefficient method. It is better to pass in a SmallVector/SmallString
2161 /// to the methods above.
2162 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2163 SmallString<40> S;
2164 toString(S, Radix, Signed);
2165 return S.c_str();
2169 void APInt::dump() const {
2170 SmallString<40> S, U;
2171 this->toStringUnsigned(U);
2172 this->toStringSigned(S);
2173 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2176 void APInt::print(raw_ostream &OS, bool isSigned) const {
2177 SmallString<40> S;
2178 this->toString(S, 10, isSigned);
2179 OS << S.c_str();
2182 // This implements a variety of operations on a representation of
2183 // arbitrary precision, two's-complement, bignum integer values.
2185 /* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2186 and unrestricting assumption. */
2187 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2188 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2190 /* Some handy functions local to this file. */
2191 namespace {
2193 /* Returns the integer part with the least significant BITS set.
2194 BITS cannot be zero. */
2195 static inline integerPart
2196 lowBitMask(unsigned int bits)
2198 assert (bits != 0 && bits <= integerPartWidth);
2200 return ~(integerPart) 0 >> (integerPartWidth - bits);
2203 /* Returns the value of the lower half of PART. */
2204 static inline integerPart
2205 lowHalf(integerPart part)
2207 return part & lowBitMask(integerPartWidth / 2);
2210 /* Returns the value of the upper half of PART. */
2211 static inline integerPart
2212 highHalf(integerPart part)
2214 return part >> (integerPartWidth / 2);
2217 /* Returns the bit number of the most significant set bit of a part.
2218 If the input number has no bits set -1U is returned. */
2219 static unsigned int
2220 partMSB(integerPart value)
2222 unsigned int n, msb;
2224 if (value == 0)
2225 return -1U;
2227 n = integerPartWidth / 2;
2229 msb = 0;
2230 do {
2231 if (value >> n) {
2232 value >>= n;
2233 msb += n;
2236 n >>= 1;
2237 } while (n);
2239 return msb;
2242 /* Returns the bit number of the least significant set bit of a
2243 part. If the input number has no bits set -1U is returned. */
2244 static unsigned int
2245 partLSB(integerPart value)
2247 unsigned int n, lsb;
2249 if (value == 0)
2250 return -1U;
2252 lsb = integerPartWidth - 1;
2253 n = integerPartWidth / 2;
2255 do {
2256 if (value << n) {
2257 value <<= n;
2258 lsb -= n;
2261 n >>= 1;
2262 } while (n);
2264 return lsb;
2268 /* Sets the least significant part of a bignum to the input value, and
2269 zeroes out higher parts. */
2270 void
2271 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2273 unsigned int i;
2275 assert (parts > 0);
2277 dst[0] = part;
2278 for(i = 1; i < parts; i++)
2279 dst[i] = 0;
2282 /* Assign one bignum to another. */
2283 void
2284 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2286 unsigned int i;
2288 for(i = 0; i < parts; i++)
2289 dst[i] = src[i];
2292 /* Returns true if a bignum is zero, false otherwise. */
2293 bool
2294 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2296 unsigned int i;
2298 for(i = 0; i < parts; i++)
2299 if (src[i])
2300 return false;
2302 return true;
2305 /* Extract the given bit of a bignum; returns 0 or 1. */
2307 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2309 return(parts[bit / integerPartWidth]
2310 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2313 /* Set the given bit of a bignum. */
2314 void
2315 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2317 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2320 /* Returns the bit number of the least significant set bit of a
2321 number. If the input number has no bits set -1U is returned. */
2322 unsigned int
2323 APInt::tcLSB(const integerPart *parts, unsigned int n)
2325 unsigned int i, lsb;
2327 for(i = 0; i < n; i++) {
2328 if (parts[i] != 0) {
2329 lsb = partLSB(parts[i]);
2331 return lsb + i * integerPartWidth;
2335 return -1U;
2338 /* Returns the bit number of the most significant set bit of a number.
2339 If the input number has no bits set -1U is returned. */
2340 unsigned int
2341 APInt::tcMSB(const integerPart *parts, unsigned int n)
2343 unsigned int msb;
2345 do {
2346 --n;
2348 if (parts[n] != 0) {
2349 msb = partMSB(parts[n]);
2351 return msb + n * integerPartWidth;
2353 } while (n);
2355 return -1U;
2358 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2359 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2360 the least significant bit of DST. All high bits above srcBITS in
2361 DST are zero-filled. */
2362 void
2363 APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2364 unsigned int srcBits, unsigned int srcLSB)
2366 unsigned int firstSrcPart, dstParts, shift, n;
2368 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2369 assert (dstParts <= dstCount);
2371 firstSrcPart = srcLSB / integerPartWidth;
2372 tcAssign (dst, src + firstSrcPart, dstParts);
2374 shift = srcLSB % integerPartWidth;
2375 tcShiftRight (dst, dstParts, shift);
2377 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2378 in DST. If this is less that srcBits, append the rest, else
2379 clear the high bits. */
2380 n = dstParts * integerPartWidth - shift;
2381 if (n < srcBits) {
2382 integerPart mask = lowBitMask (srcBits - n);
2383 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2384 << n % integerPartWidth);
2385 } else if (n > srcBits) {
2386 if (srcBits % integerPartWidth)
2387 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2390 /* Clear high parts. */
2391 while (dstParts < dstCount)
2392 dst[dstParts++] = 0;
2395 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2396 integerPart
2397 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2398 integerPart c, unsigned int parts)
2400 unsigned int i;
2402 assert(c <= 1);
2404 for(i = 0; i < parts; i++) {
2405 integerPart l;
2407 l = dst[i];
2408 if (c) {
2409 dst[i] += rhs[i] + 1;
2410 c = (dst[i] <= l);
2411 } else {
2412 dst[i] += rhs[i];
2413 c = (dst[i] < l);
2417 return c;
2420 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2421 integerPart
2422 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2423 integerPart c, unsigned int parts)
2425 unsigned int i;
2427 assert(c <= 1);
2429 for(i = 0; i < parts; i++) {
2430 integerPart l;
2432 l = dst[i];
2433 if (c) {
2434 dst[i] -= rhs[i] + 1;
2435 c = (dst[i] >= l);
2436 } else {
2437 dst[i] -= rhs[i];
2438 c = (dst[i] > l);
2442 return c;
2445 /* Negate a bignum in-place. */
2446 void
2447 APInt::tcNegate(integerPart *dst, unsigned int parts)
2449 tcComplement(dst, parts);
2450 tcIncrement(dst, parts);
2453 /* DST += SRC * MULTIPLIER + CARRY if add is true
2454 DST = SRC * MULTIPLIER + CARRY if add is false
2456 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2457 they must start at the same point, i.e. DST == SRC.
2459 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2460 returned. Otherwise DST is filled with the least significant
2461 DSTPARTS parts of the result, and if all of the omitted higher
2462 parts were zero return zero, otherwise overflow occurred and
2463 return one. */
2465 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2466 integerPart multiplier, integerPart carry,
2467 unsigned int srcParts, unsigned int dstParts,
2468 bool add)
2470 unsigned int i, n;
2472 /* Otherwise our writes of DST kill our later reads of SRC. */
2473 assert(dst <= src || dst >= src + srcParts);
2474 assert(dstParts <= srcParts + 1);
2476 /* N loops; minimum of dstParts and srcParts. */
2477 n = dstParts < srcParts ? dstParts: srcParts;
2479 for(i = 0; i < n; i++) {
2480 integerPart low, mid, high, srcPart;
2482 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2484 This cannot overflow, because
2486 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2488 which is less than n^2. */
2490 srcPart = src[i];
2492 if (multiplier == 0 || srcPart == 0) {
2493 low = carry;
2494 high = 0;
2495 } else {
2496 low = lowHalf(srcPart) * lowHalf(multiplier);
2497 high = highHalf(srcPart) * highHalf(multiplier);
2499 mid = lowHalf(srcPart) * highHalf(multiplier);
2500 high += highHalf(mid);
2501 mid <<= integerPartWidth / 2;
2502 if (low + mid < low)
2503 high++;
2504 low += mid;
2506 mid = highHalf(srcPart) * lowHalf(multiplier);
2507 high += highHalf(mid);
2508 mid <<= integerPartWidth / 2;
2509 if (low + mid < low)
2510 high++;
2511 low += mid;
2513 /* Now add carry. */
2514 if (low + carry < low)
2515 high++;
2516 low += carry;
2519 if (add) {
2520 /* And now DST[i], and store the new low part there. */
2521 if (low + dst[i] < low)
2522 high++;
2523 dst[i] += low;
2524 } else
2525 dst[i] = low;
2527 carry = high;
2530 if (i < dstParts) {
2531 /* Full multiplication, there is no overflow. */
2532 assert(i + 1 == dstParts);
2533 dst[i] = carry;
2534 return 0;
2535 } else {
2536 /* We overflowed if there is carry. */
2537 if (carry)
2538 return 1;
2540 /* We would overflow if any significant unwritten parts would be
2541 non-zero. This is true if any remaining src parts are non-zero
2542 and the multiplier is non-zero. */
2543 if (multiplier)
2544 for(; i < srcParts; i++)
2545 if (src[i])
2546 return 1;
2548 /* We fitted in the narrow destination. */
2549 return 0;
2553 /* DST = LHS * RHS, where DST has the same width as the operands and
2554 is filled with the least significant parts of the result. Returns
2555 one if overflow occurred, otherwise zero. DST must be disjoint
2556 from both operands. */
2558 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2559 const integerPart *rhs, unsigned int parts)
2561 unsigned int i;
2562 int overflow;
2564 assert(dst != lhs && dst != rhs);
2566 overflow = 0;
2567 tcSet(dst, 0, parts);
2569 for(i = 0; i < parts; i++)
2570 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2571 parts - i, true);
2573 return overflow;
2576 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2577 operands. No overflow occurs. DST must be disjoint from both
2578 operands. Returns the number of parts required to hold the
2579 result. */
2580 unsigned int
2581 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2582 const integerPart *rhs, unsigned int lhsParts,
2583 unsigned int rhsParts)
2585 /* Put the narrower number on the LHS for less loops below. */
2586 if (lhsParts > rhsParts) {
2587 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2588 } else {
2589 unsigned int n;
2591 assert(dst != lhs && dst != rhs);
2593 tcSet(dst, 0, rhsParts);
2595 for(n = 0; n < lhsParts; n++)
2596 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2598 n = lhsParts + rhsParts;
2600 return n - (dst[n - 1] == 0);
2604 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2605 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2606 set REMAINDER to the remainder, return zero. i.e.
2608 OLD_LHS = RHS * LHS + REMAINDER
2610 SCRATCH is a bignum of the same size as the operands and result for
2611 use by the routine; its contents need not be initialized and are
2612 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2615 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2616 integerPart *remainder, integerPart *srhs,
2617 unsigned int parts)
2619 unsigned int n, shiftCount;
2620 integerPart mask;
2622 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2624 shiftCount = tcMSB(rhs, parts) + 1;
2625 if (shiftCount == 0)
2626 return true;
2628 shiftCount = parts * integerPartWidth - shiftCount;
2629 n = shiftCount / integerPartWidth;
2630 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2632 tcAssign(srhs, rhs, parts);
2633 tcShiftLeft(srhs, parts, shiftCount);
2634 tcAssign(remainder, lhs, parts);
2635 tcSet(lhs, 0, parts);
2637 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2638 the total. */
2639 for(;;) {
2640 int compare;
2642 compare = tcCompare(remainder, srhs, parts);
2643 if (compare >= 0) {
2644 tcSubtract(remainder, srhs, 0, parts);
2645 lhs[n] |= mask;
2648 if (shiftCount == 0)
2649 break;
2650 shiftCount--;
2651 tcShiftRight(srhs, parts, 1);
2652 if ((mask >>= 1) == 0)
2653 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2656 return false;
2659 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2660 There are no restrictions on COUNT. */
2661 void
2662 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2664 if (count) {
2665 unsigned int jump, shift;
2667 /* Jump is the inter-part jump; shift is is intra-part shift. */
2668 jump = count / integerPartWidth;
2669 shift = count % integerPartWidth;
2671 while (parts > jump) {
2672 integerPart part;
2674 parts--;
2676 /* dst[i] comes from the two parts src[i - jump] and, if we have
2677 an intra-part shift, src[i - jump - 1]. */
2678 part = dst[parts - jump];
2679 if (shift) {
2680 part <<= shift;
2681 if (parts >= jump + 1)
2682 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2685 dst[parts] = part;
2688 while (parts > 0)
2689 dst[--parts] = 0;
2693 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2694 zero. There are no restrictions on COUNT. */
2695 void
2696 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2698 if (count) {
2699 unsigned int i, jump, shift;
2701 /* Jump is the inter-part jump; shift is is intra-part shift. */
2702 jump = count / integerPartWidth;
2703 shift = count % integerPartWidth;
2705 /* Perform the shift. This leaves the most significant COUNT bits
2706 of the result at zero. */
2707 for(i = 0; i < parts; i++) {
2708 integerPart part;
2710 if (i + jump >= parts) {
2711 part = 0;
2712 } else {
2713 part = dst[i + jump];
2714 if (shift) {
2715 part >>= shift;
2716 if (i + jump + 1 < parts)
2717 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2721 dst[i] = part;
2726 /* Bitwise and of two bignums. */
2727 void
2728 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2730 unsigned int i;
2732 for(i = 0; i < parts; i++)
2733 dst[i] &= rhs[i];
2736 /* Bitwise inclusive or of two bignums. */
2737 void
2738 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2740 unsigned int i;
2742 for(i = 0; i < parts; i++)
2743 dst[i] |= rhs[i];
2746 /* Bitwise exclusive or of two bignums. */
2747 void
2748 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2750 unsigned int i;
2752 for(i = 0; i < parts; i++)
2753 dst[i] ^= rhs[i];
2756 /* Complement a bignum in-place. */
2757 void
2758 APInt::tcComplement(integerPart *dst, unsigned int parts)
2760 unsigned int i;
2762 for(i = 0; i < parts; i++)
2763 dst[i] = ~dst[i];
2766 /* Comparison (unsigned) of two bignums. */
2768 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2769 unsigned int parts)
2771 while (parts) {
2772 parts--;
2773 if (lhs[parts] == rhs[parts])
2774 continue;
2776 if (lhs[parts] > rhs[parts])
2777 return 1;
2778 else
2779 return -1;
2782 return 0;
2785 /* Increment a bignum in-place, return the carry flag. */
2786 integerPart
2787 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2789 unsigned int i;
2791 for(i = 0; i < parts; i++)
2792 if (++dst[i] != 0)
2793 break;
2795 return i == parts;
2798 /* Set the least significant BITS bits of a bignum, clear the
2799 rest. */
2800 void
2801 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2802 unsigned int bits)
2804 unsigned int i;
2806 i = 0;
2807 while (bits > integerPartWidth) {
2808 dst[i++] = ~(integerPart) 0;
2809 bits -= integerPartWidth;
2812 if (bits)
2813 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2815 while (i < parts)
2816 dst[i++] = 0;