1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Streams.h"
33 class MachineFunction
;
34 class TargetInstrInfo
;
36 class VirtRegMap
: public MachineFunctionPass
{
40 NO_STACK_SLOT
= (1L << 30)-1,
41 MAX_STACK_SLOT
= (1L << 18)-1
44 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
45 typedef std::multimap
<MachineInstr
*,
46 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
49 const TargetInstrInfo
*TII
;
52 /// Virt2PhysMap - This is a virtual to physical register
53 /// mapping. Each virtual register is required to have an entry in
54 /// it; even spilled virtual registers (the register mapped to a
55 /// spilled register is the temporary used to load it from the
57 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
59 /// Virt2StackSlotMap - This is virtual register to stack slot
60 /// mapping. Each spilled virtual register has an entry in it
61 /// which corresponds to the stack slot this register is spilled
63 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
65 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
66 /// mapping. Each spilled virtual register that should be remat'd has an
67 /// entry in it which corresponds to the remat id.
68 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
70 /// Virt2SplitMap - This is virtual register to splitted virtual register
72 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
74 /// Virt2SplitKillMap - This is splitted virtual register to its last use
75 /// (kill) index mapping.
76 IndexedMap
<unsigned> Virt2SplitKillMap
;
78 /// ReMatMap - This is virtual register to re-materialized instruction
79 /// mapping. Each virtual register whose definition is going to be
80 /// re-materialized has an entry in it.
81 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
83 /// MI2VirtMap - This is MachineInstr to virtual register
84 /// mapping. In the case of memory spill code being folded into
85 /// instructions, we need to know which virtual register was
86 /// read/written by this instruction.
87 MI2VirtMapTy MI2VirtMap
;
89 /// SpillPt2VirtMap - This records the virtual registers which should
90 /// be spilled right after the MachineInstr due to live interval
92 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
95 /// RestorePt2VirtMap - This records the virtual registers which should
96 /// be restored right before the MachineInstr due to live interval
98 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
100 /// EmergencySpillMap - This records the physical registers that should
101 /// be spilled / restored around the MachineInstr since the register
102 /// allocator has run out of registers.
103 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
105 /// EmergencySpillSlots - This records emergency spill slots used to
106 /// spill physical registers when the register allocator runs out of
107 /// registers. Ideally only one stack slot is used per function per
109 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
111 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
112 /// virtual register, an unique id is being assigned. This keeps track of
113 /// the highest id used so far. Note, this starts at (1<<18) to avoid
114 /// conflicts with stack slot numbers.
117 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
118 int LowSpillSlot
, HighSpillSlot
;
120 /// SpillSlotToUsesMap - Records uses for each register spill slot.
121 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
123 /// ImplicitDefed - One bit for each virtual register. If set it indicates
124 /// the register is implicitly defined.
125 BitVector ImplicitDefed
;
127 /// UnusedRegs - A list of physical registers that have not been used.
128 BitVector UnusedRegs
;
130 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
131 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
135 VirtRegMap() : MachineFunctionPass(&ID
), Virt2PhysMap(NO_PHYS_REG
),
136 Virt2StackSlotMap(NO_STACK_SLOT
),
137 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
138 Virt2SplitKillMap(0), ReMatMap(NULL
),
139 ReMatId(MAX_STACK_SLOT
+1),
140 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
141 virtual bool runOnMachineFunction(MachineFunction
&MF
);
143 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
144 AU
.setPreservesAll();
145 MachineFunctionPass::getAnalysisUsage(AU
);
150 /// @brief returns true if the specified virtual register is
151 /// mapped to a physical register
152 bool hasPhys(unsigned virtReg
) const {
153 return getPhys(virtReg
) != NO_PHYS_REG
;
156 /// @brief returns the physical register mapped to the specified
158 unsigned getPhys(unsigned virtReg
) const {
159 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
160 return Virt2PhysMap
[virtReg
];
163 /// @brief creates a mapping for the specified virtual register to
164 /// the specified physical register
165 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
166 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
167 TargetRegisterInfo::isPhysicalRegister(physReg
));
168 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
169 "attempt to assign physical register to already mapped "
171 Virt2PhysMap
[virtReg
] = physReg
;
174 /// @brief clears the specified virtual register's, physical
176 void clearVirt(unsigned virtReg
) {
177 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
178 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
179 "attempt to clear a not assigned virtual register");
180 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
183 /// @brief clears all virtual to physical register mappings
184 void clearAllVirt() {
185 Virt2PhysMap
.clear();
189 /// @brief records virtReg is a split live interval from SReg.
190 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
191 Virt2SplitMap
[virtReg
] = SReg
;
194 /// @brief returns the live interval virtReg is split from.
195 unsigned getPreSplitReg(unsigned virtReg
) {
196 return Virt2SplitMap
[virtReg
];
199 /// @brief returns true if the specified virtual register is not
200 /// mapped to a stack slot or rematerialized.
201 bool isAssignedReg(unsigned virtReg
) const {
202 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
203 getReMatId(virtReg
) == NO_STACK_SLOT
)
205 // Split register can be assigned a physical register as well as a
206 // stack slot or remat id.
207 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
210 /// @brief returns the stack slot mapped to the specified virtual
212 int getStackSlot(unsigned virtReg
) const {
213 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
214 return Virt2StackSlotMap
[virtReg
];
217 /// @brief returns the rematerialization id mapped to the specified virtual
219 int getReMatId(unsigned virtReg
) const {
220 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
221 return Virt2ReMatIdMap
[virtReg
];
224 /// @brief create a mapping for the specifed virtual register to
225 /// the next available stack slot
226 int assignVirt2StackSlot(unsigned virtReg
);
227 /// @brief create a mapping for the specified virtual register to
228 /// the specified stack slot
229 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
231 /// @brief assign an unique re-materialization id to the specified
232 /// virtual register.
233 int assignVirtReMatId(unsigned virtReg
);
234 /// @brief assign an unique re-materialization id to the specified
235 /// virtual register.
236 void assignVirtReMatId(unsigned virtReg
, int id
);
238 /// @brief returns true if the specified virtual register is being
240 bool isReMaterialized(unsigned virtReg
) const {
241 return ReMatMap
[virtReg
] != NULL
;
244 /// @brief returns the original machine instruction being re-issued
245 /// to re-materialize the specified virtual register.
246 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
247 return ReMatMap
[virtReg
];
250 /// @brief records the specified virtual register will be
251 /// re-materialized and the original instruction which will be re-issed
252 /// for this purpose. If parameter all is true, then all uses of the
253 /// registers are rematerialized and it's safe to delete the definition.
254 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
255 ReMatMap
[virtReg
] = def
;
258 /// @brief record the last use (kill) of a split virtual register.
259 void addKillPoint(unsigned virtReg
, unsigned index
) {
260 Virt2SplitKillMap
[virtReg
] = index
;
263 unsigned getKillPoint(unsigned virtReg
) const {
264 return Virt2SplitKillMap
[virtReg
];
267 /// @brief remove the last use (kill) of a split virtual register.
268 void removeKillPoint(unsigned virtReg
) {
269 Virt2SplitKillMap
[virtReg
] = 0;
272 /// @brief returns true if the specified MachineInstr is a spill point.
273 bool isSpillPt(MachineInstr
*Pt
) const {
274 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
277 /// @brief returns the virtual registers that should be spilled due to
278 /// splitting right after the specified MachineInstr.
279 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
280 return SpillPt2VirtMap
[Pt
];
283 /// @brief records the specified MachineInstr as a spill point for virtReg.
284 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
285 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
286 I
= SpillPt2VirtMap
.find(Pt
);
287 if (I
!= SpillPt2VirtMap
.end())
288 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
290 std::vector
<std::pair
<unsigned,bool> > Virts
;
291 Virts
.push_back(std::make_pair(virtReg
, isKill
));
292 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
296 /// @brief - transfer spill point information from one instruction to
298 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
299 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
300 I
= SpillPt2VirtMap
.find(Old
);
301 if (I
== SpillPt2VirtMap
.end())
303 while (!I
->second
.empty()) {
304 unsigned virtReg
= I
->second
.back().first
;
305 bool isKill
= I
->second
.back().second
;
306 I
->second
.pop_back();
307 addSpillPoint(virtReg
, isKill
, New
);
309 SpillPt2VirtMap
.erase(I
);
312 /// @brief returns true if the specified MachineInstr is a restore point.
313 bool isRestorePt(MachineInstr
*Pt
) const {
314 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
317 /// @brief returns the virtual registers that should be restoreed due to
318 /// splitting right after the specified MachineInstr.
319 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
320 return RestorePt2VirtMap
[Pt
];
323 /// @brief records the specified MachineInstr as a restore point for virtReg.
324 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
325 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
326 RestorePt2VirtMap
.find(Pt
);
327 if (I
!= RestorePt2VirtMap
.end())
328 I
->second
.push_back(virtReg
);
330 std::vector
<unsigned> Virts
;
331 Virts
.push_back(virtReg
);
332 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
336 /// @brief - transfer restore point information from one instruction to
338 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
339 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
340 RestorePt2VirtMap
.find(Old
);
341 if (I
== RestorePt2VirtMap
.end())
343 while (!I
->second
.empty()) {
344 unsigned virtReg
= I
->second
.back();
345 I
->second
.pop_back();
346 addRestorePoint(virtReg
, New
);
348 RestorePt2VirtMap
.erase(I
);
351 /// @brief records that the specified physical register must be spilled
352 /// around the specified machine instr.
353 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
354 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
355 EmergencySpillMap
[MI
].push_back(PhysReg
);
357 std::vector
<unsigned> PhysRegs
;
358 PhysRegs
.push_back(PhysReg
);
359 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
363 /// @brief returns true if one or more physical registers must be spilled
364 /// around the specified instruction.
365 bool hasEmergencySpills(MachineInstr
*MI
) const {
366 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
369 /// @brief returns the physical registers to be spilled and restored around
371 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
372 return EmergencySpillMap
[MI
];
375 /// @brief - transfer emergency spill information from one instruction to
377 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
378 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
379 EmergencySpillMap
.find(Old
);
380 if (I
== EmergencySpillMap
.end())
382 while (!I
->second
.empty()) {
383 unsigned virtReg
= I
->second
.back();
384 I
->second
.pop_back();
385 addEmergencySpill(virtReg
, New
);
387 EmergencySpillMap
.erase(I
);
390 /// @brief return or get a emergency spill slot for the register class.
391 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
393 /// @brief Return lowest spill slot index.
394 int getLowSpillSlot() const {
398 /// @brief Return highest spill slot index.
399 int getHighSpillSlot() const {
400 return HighSpillSlot
;
403 /// @brief Records a spill slot use.
404 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
406 /// @brief Returns true if spill slot has been used.
407 bool isSpillSlotUsed(int FrameIndex
) const {
408 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
409 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
412 /// @brief Mark the specified register as being implicitly defined.
413 void setIsImplicitlyDefined(unsigned VirtReg
) {
414 ImplicitDefed
.set(VirtReg
-TargetRegisterInfo::FirstVirtualRegister
);
417 /// @brief Returns true if the virtual register is implicitly defined.
418 bool isImplicitlyDefined(unsigned VirtReg
) const {
419 return ImplicitDefed
[VirtReg
-TargetRegisterInfo::FirstVirtualRegister
];
422 /// @brief Updates information about the specified virtual register's value
423 /// folded into newMI machine instruction.
424 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
427 /// @brief Updates information about the specified virtual register's value
428 /// folded into the specified machine instruction.
429 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
431 /// @brief returns the virtual registers' values folded in memory
432 /// operands of this instruction
433 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
434 getFoldedVirts(MachineInstr
* MI
) const {
435 return MI2VirtMap
.equal_range(MI
);
438 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
439 /// the folded instruction map and spill point map.
440 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
442 /// FindUnusedRegisters - Gather a list of allocatable registers that
443 /// have not been allocated to any virtual register.
444 bool FindUnusedRegisters(const TargetRegisterInfo
*TRI
,
447 /// HasUnusedRegisters - Return true if there are any allocatable registers
448 /// that have not been allocated to any virtual register.
449 bool HasUnusedRegisters() const {
450 return !UnusedRegs
.none();
453 /// setRegisterUsed - Remember the physical register is now used.
454 void setRegisterUsed(unsigned Reg
) {
455 UnusedRegs
.reset(Reg
);
458 /// isRegisterUnused - Return true if the physical register has not been
460 bool isRegisterUnused(unsigned Reg
) const {
461 return UnusedRegs
[Reg
];
464 /// getFirstUnusedRegister - Return the first physical register that has not
466 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
467 int Reg
= UnusedRegs
.find_first();
469 if (RC
->contains(Reg
))
470 return (unsigned)Reg
;
471 Reg
= UnusedRegs
.find_next(Reg
);
476 void print(std::ostream
&OS
, const Module
* M
= 0) const;
477 void print(std::ostream
*OS
) const { if (OS
) print(*OS
); }
481 inline std::ostream
*operator<<(std::ostream
*OS
, const VirtRegMap
&VRM
) {
485 inline std::ostream
&operator<<(std::ostream
&OS
, const VirtRegMap
&VRM
) {
489 } // End llvm namespace