In some rare cases, the register allocator can spill registers but end up not utilizi...
[llvm/msp430.git] / lib / CodeGen / VirtRegMap.h
blob91c8322a75a9021fdad81bc6ad42f8ff395f02ab
1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Streams.h"
28 #include <map>
30 namespace llvm {
31 class LiveIntervals;
32 class MachineInstr;
33 class MachineFunction;
34 class TargetInstrInfo;
36 class VirtRegMap : public MachineFunctionPass {
37 public:
38 enum {
39 NO_PHYS_REG = 0,
40 NO_STACK_SLOT = (1L << 30)-1,
41 MAX_STACK_SLOT = (1L << 18)-1
44 enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
45 typedef std::multimap<MachineInstr*,
46 std::pair<unsigned, ModRef> > MI2VirtMapTy;
48 private:
49 const TargetInstrInfo *TII;
51 MachineFunction *MF;
52 /// Virt2PhysMap - This is a virtual to physical register
53 /// mapping. Each virtual register is required to have an entry in
54 /// it; even spilled virtual registers (the register mapped to a
55 /// spilled register is the temporary used to load it from the
56 /// stack).
57 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap;
59 /// Virt2StackSlotMap - This is virtual register to stack slot
60 /// mapping. Each spilled virtual register has an entry in it
61 /// which corresponds to the stack slot this register is spilled
62 /// at.
63 IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
65 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
66 /// mapping. Each spilled virtual register that should be remat'd has an
67 /// entry in it which corresponds to the remat id.
68 IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
70 /// Virt2SplitMap - This is virtual register to splitted virtual register
71 /// mapping.
72 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap;
74 /// Virt2SplitKillMap - This is splitted virtual register to its last use
75 /// (kill) index mapping.
76 IndexedMap<unsigned> Virt2SplitKillMap;
78 /// ReMatMap - This is virtual register to re-materialized instruction
79 /// mapping. Each virtual register whose definition is going to be
80 /// re-materialized has an entry in it.
81 IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
83 /// MI2VirtMap - This is MachineInstr to virtual register
84 /// mapping. In the case of memory spill code being folded into
85 /// instructions, we need to know which virtual register was
86 /// read/written by this instruction.
87 MI2VirtMapTy MI2VirtMap;
89 /// SpillPt2VirtMap - This records the virtual registers which should
90 /// be spilled right after the MachineInstr due to live interval
91 /// splitting.
92 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >
93 SpillPt2VirtMap;
95 /// RestorePt2VirtMap - This records the virtual registers which should
96 /// be restored right before the MachineInstr due to live interval
97 /// splitting.
98 std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap;
100 /// EmergencySpillMap - This records the physical registers that should
101 /// be spilled / restored around the MachineInstr since the register
102 /// allocator has run out of registers.
103 std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap;
105 /// EmergencySpillSlots - This records emergency spill slots used to
106 /// spill physical registers when the register allocator runs out of
107 /// registers. Ideally only one stack slot is used per function per
108 /// register class.
109 std::map<const TargetRegisterClass*, int> EmergencySpillSlots;
111 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
112 /// virtual register, an unique id is being assigned. This keeps track of
113 /// the highest id used so far. Note, this starts at (1<<18) to avoid
114 /// conflicts with stack slot numbers.
115 int ReMatId;
117 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
118 int LowSpillSlot, HighSpillSlot;
120 /// SpillSlotToUsesMap - Records uses for each register spill slot.
121 SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap;
123 /// ImplicitDefed - One bit for each virtual register. If set it indicates
124 /// the register is implicitly defined.
125 BitVector ImplicitDefed;
127 /// UnusedRegs - A list of physical registers that have not been used.
128 BitVector UnusedRegs;
130 VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT
131 void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
133 public:
134 static char ID;
135 VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG),
136 Virt2StackSlotMap(NO_STACK_SLOT),
137 Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
138 Virt2SplitKillMap(0), ReMatMap(NULL),
139 ReMatId(MAX_STACK_SLOT+1),
140 LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
141 virtual bool runOnMachineFunction(MachineFunction &MF);
143 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144 AU.setPreservesAll();
145 MachineFunctionPass::getAnalysisUsage(AU);
148 void grow();
150 /// @brief returns true if the specified virtual register is
151 /// mapped to a physical register
152 bool hasPhys(unsigned virtReg) const {
153 return getPhys(virtReg) != NO_PHYS_REG;
156 /// @brief returns the physical register mapped to the specified
157 /// virtual register
158 unsigned getPhys(unsigned virtReg) const {
159 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
160 return Virt2PhysMap[virtReg];
163 /// @brief creates a mapping for the specified virtual register to
164 /// the specified physical register
165 void assignVirt2Phys(unsigned virtReg, unsigned physReg) {
166 assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
167 TargetRegisterInfo::isPhysicalRegister(physReg));
168 assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
169 "attempt to assign physical register to already mapped "
170 "virtual register");
171 Virt2PhysMap[virtReg] = physReg;
174 /// @brief clears the specified virtual register's, physical
175 /// register mapping
176 void clearVirt(unsigned virtReg) {
177 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
178 assert(Virt2PhysMap[virtReg] != NO_PHYS_REG &&
179 "attempt to clear a not assigned virtual register");
180 Virt2PhysMap[virtReg] = NO_PHYS_REG;
183 /// @brief clears all virtual to physical register mappings
184 void clearAllVirt() {
185 Virt2PhysMap.clear();
186 grow();
189 /// @brief records virtReg is a split live interval from SReg.
190 void setIsSplitFromReg(unsigned virtReg, unsigned SReg) {
191 Virt2SplitMap[virtReg] = SReg;
194 /// @brief returns the live interval virtReg is split from.
195 unsigned getPreSplitReg(unsigned virtReg) {
196 return Virt2SplitMap[virtReg];
199 /// @brief returns true if the specified virtual register is not
200 /// mapped to a stack slot or rematerialized.
201 bool isAssignedReg(unsigned virtReg) const {
202 if (getStackSlot(virtReg) == NO_STACK_SLOT &&
203 getReMatId(virtReg) == NO_STACK_SLOT)
204 return true;
205 // Split register can be assigned a physical register as well as a
206 // stack slot or remat id.
207 return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG);
210 /// @brief returns the stack slot mapped to the specified virtual
211 /// register
212 int getStackSlot(unsigned virtReg) const {
213 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
214 return Virt2StackSlotMap[virtReg];
217 /// @brief returns the rematerialization id mapped to the specified virtual
218 /// register
219 int getReMatId(unsigned virtReg) const {
220 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
221 return Virt2ReMatIdMap[virtReg];
224 /// @brief create a mapping for the specifed virtual register to
225 /// the next available stack slot
226 int assignVirt2StackSlot(unsigned virtReg);
227 /// @brief create a mapping for the specified virtual register to
228 /// the specified stack slot
229 void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
231 /// @brief assign an unique re-materialization id to the specified
232 /// virtual register.
233 int assignVirtReMatId(unsigned virtReg);
234 /// @brief assign an unique re-materialization id to the specified
235 /// virtual register.
236 void assignVirtReMatId(unsigned virtReg, int id);
238 /// @brief returns true if the specified virtual register is being
239 /// re-materialized.
240 bool isReMaterialized(unsigned virtReg) const {
241 return ReMatMap[virtReg] != NULL;
244 /// @brief returns the original machine instruction being re-issued
245 /// to re-materialize the specified virtual register.
246 MachineInstr *getReMaterializedMI(unsigned virtReg) const {
247 return ReMatMap[virtReg];
250 /// @brief records the specified virtual register will be
251 /// re-materialized and the original instruction which will be re-issed
252 /// for this purpose. If parameter all is true, then all uses of the
253 /// registers are rematerialized and it's safe to delete the definition.
254 void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
255 ReMatMap[virtReg] = def;
258 /// @brief record the last use (kill) of a split virtual register.
259 void addKillPoint(unsigned virtReg, unsigned index) {
260 Virt2SplitKillMap[virtReg] = index;
263 unsigned getKillPoint(unsigned virtReg) const {
264 return Virt2SplitKillMap[virtReg];
267 /// @brief remove the last use (kill) of a split virtual register.
268 void removeKillPoint(unsigned virtReg) {
269 Virt2SplitKillMap[virtReg] = 0;
272 /// @brief returns true if the specified MachineInstr is a spill point.
273 bool isSpillPt(MachineInstr *Pt) const {
274 return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end();
277 /// @brief returns the virtual registers that should be spilled due to
278 /// splitting right after the specified MachineInstr.
279 std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) {
280 return SpillPt2VirtMap[Pt];
283 /// @brief records the specified MachineInstr as a spill point for virtReg.
284 void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) {
285 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
286 I = SpillPt2VirtMap.find(Pt);
287 if (I != SpillPt2VirtMap.end())
288 I->second.push_back(std::make_pair(virtReg, isKill));
289 else {
290 std::vector<std::pair<unsigned,bool> > Virts;
291 Virts.push_back(std::make_pair(virtReg, isKill));
292 SpillPt2VirtMap.insert(std::make_pair(Pt, Virts));
296 /// @brief - transfer spill point information from one instruction to
297 /// another.
298 void transferSpillPts(MachineInstr *Old, MachineInstr *New) {
299 std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
300 I = SpillPt2VirtMap.find(Old);
301 if (I == SpillPt2VirtMap.end())
302 return;
303 while (!I->second.empty()) {
304 unsigned virtReg = I->second.back().first;
305 bool isKill = I->second.back().second;
306 I->second.pop_back();
307 addSpillPoint(virtReg, isKill, New);
309 SpillPt2VirtMap.erase(I);
312 /// @brief returns true if the specified MachineInstr is a restore point.
313 bool isRestorePt(MachineInstr *Pt) const {
314 return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end();
317 /// @brief returns the virtual registers that should be restoreed due to
318 /// splitting right after the specified MachineInstr.
319 std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) {
320 return RestorePt2VirtMap[Pt];
323 /// @brief records the specified MachineInstr as a restore point for virtReg.
324 void addRestorePoint(unsigned virtReg, MachineInstr *Pt) {
325 std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
326 RestorePt2VirtMap.find(Pt);
327 if (I != RestorePt2VirtMap.end())
328 I->second.push_back(virtReg);
329 else {
330 std::vector<unsigned> Virts;
331 Virts.push_back(virtReg);
332 RestorePt2VirtMap.insert(std::make_pair(Pt, Virts));
336 /// @brief - transfer restore point information from one instruction to
337 /// another.
338 void transferRestorePts(MachineInstr *Old, MachineInstr *New) {
339 std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
340 RestorePt2VirtMap.find(Old);
341 if (I == RestorePt2VirtMap.end())
342 return;
343 while (!I->second.empty()) {
344 unsigned virtReg = I->second.back();
345 I->second.pop_back();
346 addRestorePoint(virtReg, New);
348 RestorePt2VirtMap.erase(I);
351 /// @brief records that the specified physical register must be spilled
352 /// around the specified machine instr.
353 void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) {
354 if (EmergencySpillMap.find(MI) != EmergencySpillMap.end())
355 EmergencySpillMap[MI].push_back(PhysReg);
356 else {
357 std::vector<unsigned> PhysRegs;
358 PhysRegs.push_back(PhysReg);
359 EmergencySpillMap.insert(std::make_pair(MI, PhysRegs));
363 /// @brief returns true if one or more physical registers must be spilled
364 /// around the specified instruction.
365 bool hasEmergencySpills(MachineInstr *MI) const {
366 return EmergencySpillMap.find(MI) != EmergencySpillMap.end();
369 /// @brief returns the physical registers to be spilled and restored around
370 /// the instruction.
371 std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) {
372 return EmergencySpillMap[MI];
375 /// @brief - transfer emergency spill information from one instruction to
376 /// another.
377 void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) {
378 std::map<MachineInstr*,std::vector<unsigned> >::iterator I =
379 EmergencySpillMap.find(Old);
380 if (I == EmergencySpillMap.end())
381 return;
382 while (!I->second.empty()) {
383 unsigned virtReg = I->second.back();
384 I->second.pop_back();
385 addEmergencySpill(virtReg, New);
387 EmergencySpillMap.erase(I);
390 /// @brief return or get a emergency spill slot for the register class.
391 int getEmergencySpillSlot(const TargetRegisterClass *RC);
393 /// @brief Return lowest spill slot index.
394 int getLowSpillSlot() const {
395 return LowSpillSlot;
398 /// @brief Return highest spill slot index.
399 int getHighSpillSlot() const {
400 return HighSpillSlot;
403 /// @brief Records a spill slot use.
404 void addSpillSlotUse(int FrameIndex, MachineInstr *MI);
406 /// @brief Returns true if spill slot has been used.
407 bool isSpillSlotUsed(int FrameIndex) const {
408 assert(FrameIndex >= 0 && "Spill slot index should not be negative!");
409 return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty();
412 /// @brief Mark the specified register as being implicitly defined.
413 void setIsImplicitlyDefined(unsigned VirtReg) {
414 ImplicitDefed.set(VirtReg-TargetRegisterInfo::FirstVirtualRegister);
417 /// @brief Returns true if the virtual register is implicitly defined.
418 bool isImplicitlyDefined(unsigned VirtReg) const {
419 return ImplicitDefed[VirtReg-TargetRegisterInfo::FirstVirtualRegister];
422 /// @brief Updates information about the specified virtual register's value
423 /// folded into newMI machine instruction.
424 void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI,
425 ModRef MRInfo);
427 /// @brief Updates information about the specified virtual register's value
428 /// folded into the specified machine instruction.
429 void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo);
431 /// @brief returns the virtual registers' values folded in memory
432 /// operands of this instruction
433 std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
434 getFoldedVirts(MachineInstr* MI) const {
435 return MI2VirtMap.equal_range(MI);
438 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
439 /// the folded instruction map and spill point map.
440 void RemoveMachineInstrFromMaps(MachineInstr *MI);
442 /// FindUnusedRegisters - Gather a list of allocatable registers that
443 /// have not been allocated to any virtual register.
444 bool FindUnusedRegisters(const TargetRegisterInfo *TRI,
445 LiveIntervals* LIs);
447 /// HasUnusedRegisters - Return true if there are any allocatable registers
448 /// that have not been allocated to any virtual register.
449 bool HasUnusedRegisters() const {
450 return !UnusedRegs.none();
453 /// setRegisterUsed - Remember the physical register is now used.
454 void setRegisterUsed(unsigned Reg) {
455 UnusedRegs.reset(Reg);
458 /// isRegisterUnused - Return true if the physical register has not been
459 /// used.
460 bool isRegisterUnused(unsigned Reg) const {
461 return UnusedRegs[Reg];
464 /// getFirstUnusedRegister - Return the first physical register that has not
465 /// been used.
466 unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) {
467 int Reg = UnusedRegs.find_first();
468 while (Reg != -1) {
469 if (RC->contains(Reg))
470 return (unsigned)Reg;
471 Reg = UnusedRegs.find_next(Reg);
473 return 0;
476 void print(std::ostream &OS, const Module* M = 0) const;
477 void print(std::ostream *OS) const { if (OS) print(*OS); }
478 void dump() const;
481 inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) {
482 VRM.print(OS);
483 return OS;
485 inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) {
486 VRM.print(OS);
487 return OS;
489 } // End llvm namespace
491 #endif