1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
17 #include "llvm/Function.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveStackAnalysis.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegAllocRegistry.h"
26 #include "llvm/CodeGen/RegisterCoalescer.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/ADT/EquivalenceClasses.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/Compiler.h"
44 STATISTIC(NumIters
, "Number of iterations performed");
45 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
46 STATISTIC(NumCoalesce
, "Number of copies coalesced");
47 STATISTIC(NumDowngrade
, "Number of registers downgraded");
50 NewHeuristic("new-spilling-heuristic",
51 cl::desc("Use new spilling heuristic"),
52 cl::init(false), cl::Hidden
);
55 PreSplitIntervals("pre-alloc-split",
56 cl::desc("Pre-register allocation live interval splitting"),
57 cl::init(false), cl::Hidden
);
59 static RegisterRegAlloc
60 linearscanRegAlloc("linearscan", "linear scan register allocator",
61 createLinearScanRegisterAllocator
);
64 struct VISIBILITY_HIDDEN RALinScan
: public MachineFunctionPass
{
66 RALinScan() : MachineFunctionPass(&ID
) {}
68 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
69 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
71 /// RelatedRegClasses - This structure is built the first time a function is
72 /// compiled, and keeps track of which register classes have registers that
73 /// belong to multiple classes or have aliases that are in other classes.
74 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
75 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
77 // NextReloadMap - For each register in the map, it maps to the another
78 // register which is defined by a reload from the same stack slot and
79 // both reloads are in the same basic block.
80 DenseMap
<unsigned, unsigned> NextReloadMap
;
82 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
83 // un-favored for allocation.
84 SmallSet
<unsigned, 8> DowngradedRegs
;
86 // DowngradeMap - A map from virtual registers to physical registers being
87 // downgraded for the virtual registers.
88 DenseMap
<unsigned, unsigned> DowngradeMap
;
91 MachineRegisterInfo
* mri_
;
92 const TargetMachine
* tm_
;
93 const TargetRegisterInfo
* tri_
;
94 const TargetInstrInfo
* tii_
;
95 BitVector allocatableRegs_
;
98 const MachineLoopInfo
*loopInfo
;
100 /// handled_ - Intervals are added to the handled_ set in the order of their
101 /// start value. This is uses for backtracking.
102 std::vector
<LiveInterval
*> handled_
;
104 /// fixed_ - Intervals that correspond to machine registers.
108 /// active_ - Intervals that are currently being processed, and which have a
109 /// live range active for the current point.
110 IntervalPtrs active_
;
112 /// inactive_ - Intervals that are currently being processed, but which have
113 /// a hold at the current point.
114 IntervalPtrs inactive_
;
116 typedef std::priority_queue
<LiveInterval
*,
117 SmallVector
<LiveInterval
*, 64>,
118 greater_ptr
<LiveInterval
> > IntervalHeap
;
119 IntervalHeap unhandled_
;
121 /// regUse_ - Tracks register usage.
122 SmallVector
<unsigned, 32> regUse_
;
123 SmallVector
<unsigned, 32> regUseBackUp_
;
125 /// vrm_ - Tracks register assignments.
128 std::auto_ptr
<Spiller
> spiller_
;
131 virtual const char* getPassName() const {
132 return "Linear Scan Register Allocator";
135 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
136 AU
.addRequired
<LiveIntervals
>();
138 AU
.addRequiredID(StrongPHIEliminationID
);
139 // Make sure PassManager knows which analyses to make available
140 // to coalescing and which analyses coalescing invalidates.
141 AU
.addRequiredTransitive
<RegisterCoalescer
>();
142 if (PreSplitIntervals
)
143 AU
.addRequiredID(PreAllocSplittingID
);
144 AU
.addRequired
<LiveStacks
>();
145 AU
.addPreserved
<LiveStacks
>();
146 AU
.addRequired
<MachineLoopInfo
>();
147 AU
.addPreserved
<MachineLoopInfo
>();
148 AU
.addRequired
<VirtRegMap
>();
149 AU
.addPreserved
<VirtRegMap
>();
150 AU
.addPreservedID(MachineDominatorsID
);
151 MachineFunctionPass::getAnalysisUsage(AU
);
154 /// runOnMachineFunction - register allocate the whole function
155 bool runOnMachineFunction(MachineFunction
&);
158 /// linearScan - the linear scan algorithm
161 /// initIntervalSets - initialize the interval sets.
163 void initIntervalSets();
165 /// processActiveIntervals - expire old intervals and move non-overlapping
166 /// ones to the inactive list.
167 void processActiveIntervals(unsigned CurPoint
);
169 /// processInactiveIntervals - expire old intervals and move overlapping
170 /// ones to the active list.
171 void processInactiveIntervals(unsigned CurPoint
);
173 /// hasNextReloadInterval - Return the next liveinterval that's being
174 /// defined by a reload from the same SS as the specified one.
175 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
177 /// DowngradeRegister - Downgrade a register for allocation.
178 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
180 /// UpgradeRegister - Upgrade a register for allocation.
181 void UpgradeRegister(unsigned Reg
);
183 /// assignRegOrStackSlotAtInterval - assign a register if one
184 /// is available, or spill.
185 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
187 void updateSpillWeights(std::vector
<float> &Weights
,
188 unsigned reg
, float weight
,
189 const TargetRegisterClass
*RC
);
191 /// findIntervalsToSpill - Determine the intervals to spill for the
192 /// specified interval. It's passed the physical registers whose spill
193 /// weight is the lowest among all the registers whose live intervals
194 /// conflict with the interval.
195 void findIntervalsToSpill(LiveInterval
*cur
,
196 std::vector
<std::pair
<unsigned,float> > &Candidates
,
198 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
200 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
201 /// try allocate the definition the same register as the source register
202 /// if the register is not defined during live time of the interval. This
203 /// eliminate a copy. This is used to coalesce copies which were not
204 /// coalesced away before allocation either due to dest and src being in
205 /// different register classes or because the coalescer was overly
207 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
210 /// Register usage / availability tracking helpers.
214 regUse_
.resize(tri_
->getNumRegs(), 0);
215 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
218 void finalizeRegUses() {
220 regUseBackUp_
.clear();
223 void addRegUse(unsigned physReg
) {
224 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
225 "should be physical register!");
227 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
231 void delRegUse(unsigned physReg
) {
232 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
233 "should be physical register!");
234 assert(regUse_
[physReg
] != 0);
236 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
237 assert(regUse_
[*as
] != 0);
242 bool isRegAvail(unsigned physReg
) const {
243 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
244 "should be physical register!");
245 return regUse_
[physReg
] == 0;
248 void backUpRegUses() {
249 regUseBackUp_
= regUse_
;
252 void restoreRegUses() {
253 regUse_
= regUseBackUp_
;
257 /// Register handling helpers.
260 /// getFreePhysReg - return a free physical register for this virtual
261 /// register interval if we have one, otherwise return 0.
262 unsigned getFreePhysReg(LiveInterval
* cur
);
263 unsigned getFreePhysReg(const TargetRegisterClass
*RC
,
264 unsigned MaxInactiveCount
,
265 SmallVector
<unsigned, 256> &inactiveCounts
,
268 /// assignVirt2StackSlot - assigns this virtual register to a
269 /// stack slot. returns the stack slot
270 int assignVirt2StackSlot(unsigned virtReg
);
272 void ComputeRelatedRegClasses();
274 template <typename ItTy
>
275 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
276 if (str
) DOUT
<< str
<< " intervals:\n";
277 for (; i
!= e
; ++i
) {
278 DOUT
<< "\t" << *i
->first
<< " -> ";
279 unsigned reg
= i
->first
->reg
;
280 if (TargetRegisterInfo::isVirtualRegister(reg
)) {
281 reg
= vrm_
->getPhys(reg
);
283 DOUT
<< tri_
->getName(reg
) << '\n';
287 char RALinScan::ID
= 0;
290 static RegisterPass
<RALinScan
>
291 X("linearscan-regalloc", "Linear Scan Register Allocator");
293 void RALinScan::ComputeRelatedRegClasses() {
294 // First pass, add all reg classes to the union, and determine at least one
295 // reg class that each register is in.
296 bool HasAliases
= false;
297 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
298 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
299 RelatedRegClasses
.insert(*RCI
);
300 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
302 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
304 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
306 // Already processed this register. Just make sure we know that
307 // multiple register classes share a register.
308 RelatedRegClasses
.unionSets(PRC
, *RCI
);
315 // Second pass, now that we know conservatively what register classes each reg
316 // belongs to, add info about aliases. We don't need to do this for targets
317 // without register aliases.
319 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
320 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
322 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
)
323 RelatedRegClasses
.unionSets(I
->second
, OneClassForEachPhysReg
[*AS
]);
326 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
327 /// try allocate the definition the same register as the source register
328 /// if the register is not defined during live time of the interval. This
329 /// eliminate a copy. This is used to coalesce copies which were not
330 /// coalesced away before allocation either due to dest and src being in
331 /// different register classes or because the coalescer was overly
333 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
334 if ((cur
.preference
&& cur
.preference
== Reg
) || !cur
.containsOneValue())
337 VNInfo
*vni
= cur
.begin()->valno
;
338 if (!vni
->def
|| vni
->def
== ~1U || vni
->def
== ~0U)
340 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
341 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
343 !tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
345 if (TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
346 if (!vrm_
->isAssignedReg(SrcReg
))
349 SrcReg
= vrm_
->getPhys(SrcReg
);
354 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
355 if (!RC
->contains(SrcReg
))
359 if (!li_
->conflictsWithPhysRegDef(cur
, *vrm_
, SrcReg
)) {
360 DOUT
<< "Coalescing: " << cur
<< " -> " << tri_
->getName(SrcReg
)
362 vrm_
->clearVirt(cur
.reg
);
363 vrm_
->assignVirt2Phys(cur
.reg
, SrcReg
);
371 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
373 mri_
= &fn
.getRegInfo();
374 tm_
= &fn
.getTarget();
375 tri_
= tm_
->getRegisterInfo();
376 tii_
= tm_
->getInstrInfo();
377 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
378 li_
= &getAnalysis
<LiveIntervals
>();
379 ls_
= &getAnalysis
<LiveStacks
>();
380 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
382 // We don't run the coalescer here because we have no reason to
383 // interact with it. If the coalescer requires interaction, it
384 // won't do anything. If it doesn't require interaction, we assume
385 // it was run as a separate pass.
387 // If this is the first function compiled, compute the related reg classes.
388 if (RelatedRegClasses
.empty())
389 ComputeRelatedRegClasses();
391 // Also resize register usage trackers.
394 vrm_
= &getAnalysis
<VirtRegMap
>();
395 if (!spiller_
.get()) spiller_
.reset(createSpiller());
401 // Rewrite spill code and update the PhysRegsUsed set.
402 spiller_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
404 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
412 NextReloadMap
.clear();
413 DowngradedRegs
.clear();
414 DowngradeMap
.clear();
419 /// initIntervalSets - initialize the interval sets.
421 void RALinScan::initIntervalSets()
423 assert(unhandled_
.empty() && fixed_
.empty() &&
424 active_
.empty() && inactive_
.empty() &&
425 "interval sets should be empty on initialization");
427 handled_
.reserve(li_
->getNumIntervals());
429 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
430 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
431 mri_
->setPhysRegUsed(i
->second
->reg
);
432 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
434 unhandled_
.push(i
->second
);
438 void RALinScan::linearScan()
440 // linear scan algorithm
441 DOUT
<< "********** LINEAR SCAN **********\n";
442 DOUT
<< "********** Function: " << mf_
->getFunction()->getName() << '\n';
444 DEBUG(printIntervals("fixed", fixed_
.begin(), fixed_
.end()));
446 while (!unhandled_
.empty()) {
447 // pick the interval with the earliest start point
448 LiveInterval
* cur
= unhandled_
.top();
451 DOUT
<< "\n*** CURRENT ***: " << *cur
<< '\n';
454 processActiveIntervals(cur
->beginNumber());
455 processInactiveIntervals(cur
->beginNumber());
457 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
458 "Can only allocate virtual registers!");
461 // Allocating a virtual register. try to find a free
462 // physical register or spill an interval (possibly this one) in order to
464 assignRegOrStackSlotAtInterval(cur
);
466 DEBUG(printIntervals("active", active_
.begin(), active_
.end()));
467 DEBUG(printIntervals("inactive", inactive_
.begin(), inactive_
.end()));
470 // Expire any remaining active intervals
471 while (!active_
.empty()) {
472 IntervalPtr
&IP
= active_
.back();
473 unsigned reg
= IP
.first
->reg
;
474 DOUT
<< "\tinterval " << *IP
.first
<< " expired\n";
475 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
476 "Can only allocate virtual registers!");
477 reg
= vrm_
->getPhys(reg
);
482 // Expire any remaining inactive intervals
483 DEBUG(for (IntervalPtrs::reverse_iterator
484 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
485 DOUT
<< "\tinterval " << *i
->first
<< " expired\n");
488 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
489 MachineFunction::iterator EntryMBB
= mf_
->begin();
490 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
491 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
492 LiveInterval
&cur
= *i
->second
;
494 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
497 else if (vrm_
->isAssignedReg(cur
.reg
))
498 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
501 // Ignore splited live intervals.
502 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
504 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
506 const LiveRange
&LR
= *I
;
507 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
508 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
509 if (LiveInMBBs
[i
] != EntryMBB
)
510 LiveInMBBs
[i
]->addLiveIn(Reg
);
519 /// processActiveIntervals - expire old intervals and move non-overlapping ones
520 /// to the inactive list.
521 void RALinScan::processActiveIntervals(unsigned CurPoint
)
523 DOUT
<< "\tprocessing active intervals:\n";
525 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
526 LiveInterval
*Interval
= active_
[i
].first
;
527 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
528 unsigned reg
= Interval
->reg
;
530 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
532 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
533 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
534 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
535 "Can only allocate virtual registers!");
536 reg
= vrm_
->getPhys(reg
);
539 // Pop off the end of the list.
540 active_
[i
] = active_
.back();
544 } else if (IntervalPos
->start
> CurPoint
) {
545 // Move inactive intervals to inactive list.
546 DOUT
<< "\t\tinterval " << *Interval
<< " inactive\n";
547 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
548 "Can only allocate virtual registers!");
549 reg
= vrm_
->getPhys(reg
);
552 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
554 // Pop off the end of the list.
555 active_
[i
] = active_
.back();
559 // Otherwise, just update the iterator position.
560 active_
[i
].second
= IntervalPos
;
565 /// processInactiveIntervals - expire old intervals and move overlapping
566 /// ones to the active list.
567 void RALinScan::processInactiveIntervals(unsigned CurPoint
)
569 DOUT
<< "\tprocessing inactive intervals:\n";
571 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
572 LiveInterval
*Interval
= inactive_
[i
].first
;
573 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
574 unsigned reg
= Interval
->reg
;
576 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
578 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
579 DOUT
<< "\t\tinterval " << *Interval
<< " expired\n";
581 // Pop off the end of the list.
582 inactive_
[i
] = inactive_
.back();
583 inactive_
.pop_back();
585 } else if (IntervalPos
->start
<= CurPoint
) {
586 // move re-activated intervals in active list
587 DOUT
<< "\t\tinterval " << *Interval
<< " active\n";
588 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
589 "Can only allocate virtual registers!");
590 reg
= vrm_
->getPhys(reg
);
593 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
595 // Pop off the end of the list.
596 inactive_
[i
] = inactive_
.back();
597 inactive_
.pop_back();
600 // Otherwise, just update the iterator position.
601 inactive_
[i
].second
= IntervalPos
;
606 /// updateSpillWeights - updates the spill weights of the specifed physical
607 /// register and its weight.
608 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
609 unsigned reg
, float weight
,
610 const TargetRegisterClass
*RC
) {
611 SmallSet
<unsigned, 4> Processed
;
612 SmallSet
<unsigned, 4> SuperAdded
;
613 SmallVector
<unsigned, 4> Supers
;
614 Weights
[reg
] += weight
;
615 Processed
.insert(reg
);
616 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
617 Weights
[*as
] += weight
;
618 Processed
.insert(*as
);
619 if (tri_
->isSubRegister(*as
, reg
) &&
620 SuperAdded
.insert(*as
) &&
622 Supers
.push_back(*as
);
626 // If the alias is a super-register, and the super-register is in the
627 // register class we are trying to allocate. Then add the weight to all
628 // sub-registers of the super-register even if they are not aliases.
629 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
630 // bl should get the same spill weight otherwise it will be choosen
631 // as a spill candidate since spilling bh doesn't make ebx available.
632 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
633 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
634 if (!Processed
.count(*sr
))
635 Weights
[*sr
] += weight
;
640 RALinScan::IntervalPtrs::iterator
641 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
642 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
644 if (I
->first
== LI
) return I
;
648 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
, unsigned Point
){
649 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
650 RALinScan::IntervalPtr
&IP
= V
[i
];
651 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
653 if (I
!= IP
.first
->begin()) --I
;
658 /// addStackInterval - Create a LiveInterval for stack if the specified live
659 /// interval has been spilled.
660 static void addStackInterval(LiveInterval
*cur
, LiveStacks
*ls_
,
661 LiveIntervals
*li_
, float &Weight
,
663 int SS
= vrm_
.getStackSlot(cur
->reg
);
664 if (SS
== VirtRegMap::NO_STACK_SLOT
)
666 LiveInterval
&SI
= ls_
->getOrCreateInterval(SS
);
670 if (SI
.hasAtLeastOneValue())
671 VNI
= SI
.getValNumInfo(0);
673 VNI
= SI
.getNextValue(~0U, 0, ls_
->getVNInfoAllocator());
675 LiveInterval
&RI
= li_
->getInterval(cur
->reg
);
676 // FIXME: This may be overly conservative.
677 SI
.MergeRangesInAsValue(RI
, VNI
);
680 /// getConflictWeight - Return the number of conflicts between cur
681 /// live interval and defs and uses of Reg weighted by loop depthes.
682 static float getConflictWeight(LiveInterval
*cur
, unsigned Reg
,
684 MachineRegisterInfo
*mri_
,
685 const MachineLoopInfo
*loopInfo
) {
687 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
688 E
= mri_
->reg_end(); I
!= E
; ++I
) {
689 MachineInstr
*MI
= &*I
;
690 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
691 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
692 Conflicts
+= powf(10.0f
, (float)loopDepth
);
698 /// findIntervalsToSpill - Determine the intervals to spill for the
699 /// specified interval. It's passed the physical registers whose spill
700 /// weight is the lowest among all the registers whose live intervals
701 /// conflict with the interval.
702 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
703 std::vector
<std::pair
<unsigned,float> > &Candidates
,
705 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
706 // We have figured out the *best* register to spill. But there are other
707 // registers that are pretty good as well (spill weight within 3%). Spill
708 // the one that has fewest defs and uses that conflict with cur.
709 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
710 SmallVector
<LiveInterval
*, 8> SLIs
[3];
712 DOUT
<< "\tConsidering " << NumCands
<< " candidates: ";
713 DEBUG(for (unsigned i
= 0; i
!= NumCands
; ++i
)
714 DOUT
<< tri_
->getName(Candidates
[i
].first
) << " ";
717 // Calculate the number of conflicts of each candidate.
718 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
719 unsigned Reg
= i
->first
->reg
;
720 unsigned PhysReg
= vrm_
->getPhys(Reg
);
721 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
723 for (unsigned j
= 0; j
< NumCands
; ++j
) {
724 unsigned Candidate
= Candidates
[j
].first
;
725 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
727 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
728 SLIs
[j
].push_back(i
->first
);
733 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
734 unsigned Reg
= i
->first
->reg
;
735 unsigned PhysReg
= vrm_
->getPhys(Reg
);
736 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
738 for (unsigned j
= 0; j
< NumCands
; ++j
) {
739 unsigned Candidate
= Candidates
[j
].first
;
740 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
742 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
743 SLIs
[j
].push_back(i
->first
);
748 // Which is the best candidate?
749 unsigned BestCandidate
= 0;
750 float MinConflicts
= Conflicts
[0];
751 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
752 if (Conflicts
[i
] < MinConflicts
) {
754 MinConflicts
= Conflicts
[i
];
758 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
759 std::back_inserter(SpillIntervals
));
763 struct WeightCompare
{
764 typedef std::pair
<unsigned, float> RegWeightPair
;
765 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
766 return LHS
.second
< RHS
.second
;
771 static bool weightsAreClose(float w1
, float w2
) {
775 float diff
= w1
- w2
;
776 if (diff
<= 0.02f
) // Within 0.02f
778 return (diff
/ w2
) <= 0.05f
; // Within 5%.
781 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
782 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
783 if (I
== NextReloadMap
.end())
785 return &li_
->getInterval(I
->second
);
788 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
789 bool isNew
= DowngradedRegs
.insert(Reg
);
790 isNew
= isNew
; // Silence compiler warning.
791 assert(isNew
&& "Multiple reloads holding the same register?");
792 DowngradeMap
.insert(std::make_pair(li
->reg
, Reg
));
793 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
) {
794 isNew
= DowngradedRegs
.insert(*AS
);
795 isNew
= isNew
; // Silence compiler warning.
796 assert(isNew
&& "Multiple reloads holding the same register?");
797 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
802 void RALinScan::UpgradeRegister(unsigned Reg
) {
804 DowngradedRegs
.erase(Reg
);
805 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
806 DowngradedRegs
.erase(*AS
);
812 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
813 return A
->beginNumber() < B
->beginNumber();
818 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
820 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
)
822 DOUT
<< "\tallocating current interval: ";
824 // This is an implicitly defined live interval, just assign any register.
825 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
827 unsigned physReg
= cur
->preference
;
829 physReg
= *RC
->allocation_order_begin(*mf_
);
830 DOUT
<< tri_
->getName(physReg
) << '\n';
831 // Note the register is not really in use.
832 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
838 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
839 unsigned StartPosition
= cur
->beginNumber();
840 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
842 // If start of this live interval is defined by a move instruction and its
843 // source is assigned a physical register that is compatible with the target
844 // register class, then we should try to assign it the same register.
845 // This can happen when the move is from a larger register class to a smaller
846 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
847 if (!cur
->preference
&& cur
->hasAtLeastOneValue()) {
848 VNInfo
*vni
= cur
->begin()->valno
;
849 if (vni
->def
&& vni
->def
!= ~1U && vni
->def
!= ~0U) {
850 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
851 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
853 tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
)) {
855 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
857 else if (vrm_
->isAssignedReg(SrcReg
))
858 Reg
= vrm_
->getPhys(SrcReg
);
861 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
863 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
864 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
865 cur
->preference
= Reg
;
871 // For every interval in inactive we overlap with, mark the
872 // register as not free and update spill weights.
873 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
874 e
= inactive_
.end(); i
!= e
; ++i
) {
875 unsigned Reg
= i
->first
->reg
;
876 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
877 "Can only allocate virtual registers!");
878 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
879 // If this is not in a related reg class to the register we're allocating,
881 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
882 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
883 Reg
= vrm_
->getPhys(Reg
);
885 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
889 // Speculatively check to see if we can get a register right now. If not,
890 // we know we won't be able to by adding more constraints. If so, we can
891 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
892 // is very bad (it contains all callee clobbered registers for any functions
893 // with a call), so we want to avoid doing that if possible.
894 unsigned physReg
= getFreePhysReg(cur
);
895 unsigned BestPhysReg
= physReg
;
897 // We got a register. However, if it's in the fixed_ list, we might
898 // conflict with it. Check to see if we conflict with it or any of its
900 SmallSet
<unsigned, 8> RegAliases
;
901 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
902 RegAliases
.insert(*AS
);
904 bool ConflictsWithFixed
= false;
905 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
906 IntervalPtr
&IP
= fixed_
[i
];
907 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
908 // Okay, this reg is on the fixed list. Check to see if we actually
910 LiveInterval
*I
= IP
.first
;
911 if (I
->endNumber() > StartPosition
) {
912 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
914 if (II
!= I
->begin() && II
->start
> StartPosition
)
916 if (cur
->overlapsFrom(*I
, II
)) {
917 ConflictsWithFixed
= true;
924 // Okay, the register picked by our speculative getFreePhysReg call turned
925 // out to be in use. Actually add all of the conflicting fixed registers to
926 // regUse_ so we can do an accurate query.
927 if (ConflictsWithFixed
) {
928 // For every interval in fixed we overlap with, mark the register as not
929 // free and update spill weights.
930 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
931 IntervalPtr
&IP
= fixed_
[i
];
932 LiveInterval
*I
= IP
.first
;
934 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
935 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
936 I
->endNumber() > StartPosition
) {
937 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
939 if (II
!= I
->begin() && II
->start
> StartPosition
)
941 if (cur
->overlapsFrom(*I
, II
)) {
942 unsigned reg
= I
->reg
;
944 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
949 // Using the newly updated regUse_ object, which includes conflicts in the
950 // future, see if there are any registers available.
951 physReg
= getFreePhysReg(cur
);
955 // Restore the physical register tracker, removing information about the
959 // If we find a free register, we are done: assign this virtual to
960 // the free physical register and add this interval to the active
963 DOUT
<< tri_
->getName(physReg
) << '\n';
964 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
966 active_
.push_back(std::make_pair(cur
, cur
->begin()));
967 handled_
.push_back(cur
);
969 // "Upgrade" the physical register since it has been allocated.
970 UpgradeRegister(physReg
);
971 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
972 // "Downgrade" physReg to try to keep physReg from being allocated until
973 // the next reload from the same SS is allocated.
974 NextReloadLI
->preference
= physReg
;
975 DowngradeRegister(cur
, physReg
);
979 DOUT
<< "no free registers\n";
981 // Compile the spill weights into an array that is better for scanning.
982 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
983 for (std::vector
<std::pair
<unsigned, float> >::iterator
984 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
985 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
987 // for each interval in active, update spill weights.
988 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
990 unsigned reg
= i
->first
->reg
;
991 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
992 "Can only allocate virtual registers!");
993 reg
= vrm_
->getPhys(reg
);
994 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
997 DOUT
<< "\tassigning stack slot at interval "<< *cur
<< ":\n";
999 // Find a register to spill.
1000 float minWeight
= HUGE_VALF
;
1001 unsigned minReg
= 0; /*cur->preference*/; // Try the pref register first.
1004 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1005 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1006 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1007 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1009 float regWeight
= SpillWeights
[reg
];
1010 if (minWeight
> regWeight
)
1012 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1015 // If we didn't find a register that is spillable, try aliases?
1017 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1018 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1020 // No need to worry about if the alias register size < regsize of RC.
1021 // We are going to spill all registers that alias it anyway.
1022 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1023 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1027 // Sort all potential spill candidates by weight.
1028 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare());
1029 minReg
= RegsWeights
[0].first
;
1030 minWeight
= RegsWeights
[0].second
;
1031 if (minWeight
== HUGE_VALF
) {
1032 // All registers must have inf weight. Just grab one!
1033 minReg
= BestPhysReg
? BestPhysReg
: *RC
->allocation_order_begin(*mf_
);
1034 if (cur
->weight
== HUGE_VALF
||
1035 li_
->getApproximateInstructionCount(*cur
) == 0) {
1036 // Spill a physical register around defs and uses.
1037 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1038 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1039 // in fixed_. Reset them.
1040 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1041 IntervalPtr
&IP
= fixed_
[i
];
1042 LiveInterval
*I
= IP
.first
;
1043 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1044 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1047 DowngradedRegs
.clear();
1048 assignRegOrStackSlotAtInterval(cur
);
1050 cerr
<< "Ran out of registers during register allocation!\n";
1057 // Find up to 3 registers to consider as spill candidates.
1058 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1059 while (LastCandidate
> 1) {
1060 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1065 DOUT
<< "\t\tregister(s) with min weight(s): ";
1066 DEBUG(for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1067 DOUT
<< tri_
->getName(RegsWeights
[i
].first
)
1068 << " (" << RegsWeights
[i
].second
<< ")\n");
1070 // If the current has the minimum weight, we need to spill it and
1071 // add any added intervals back to unhandled, and restart
1073 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1074 DOUT
<< "\t\t\tspilling(c): " << *cur
<< '\n';
1076 SmallVector
<LiveInterval
*, 8> spillIs
;
1077 std::vector
<LiveInterval
*> added
=
1078 li_
->addIntervalsForSpills(*cur
, spillIs
, loopInfo
, *vrm_
, SSWeight
);
1079 std::sort(added
.begin(), added
.end(), LISorter());
1080 addStackInterval(cur
, ls_
, li_
, SSWeight
, *vrm_
);
1082 return; // Early exit if all spills were folded.
1084 // Merge added with unhandled. Note that we have already sorted
1085 // intervals returned by addIntervalsForSpills by their starting
1087 // This also update the NextReloadMap. That is, it adds mapping from a
1088 // register defined by a reload from SS to the next reload from SS in the
1089 // same basic block.
1090 MachineBasicBlock
*LastReloadMBB
= 0;
1091 LiveInterval
*LastReload
= 0;
1092 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1093 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1094 LiveInterval
*ReloadLi
= added
[i
];
1095 if (ReloadLi
->weight
== HUGE_VALF
&&
1096 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1097 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1098 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1099 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1100 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1101 // Last reload of same SS is in the same MBB. We want to try to
1102 // allocate both reloads the same register and make sure the reg
1103 // isn't clobbered in between if at all possible.
1104 assert(LastReload
->beginNumber() < ReloadIdx
);
1105 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1107 LastReloadMBB
= ReloadMBB
;
1108 LastReload
= ReloadLi
;
1109 LastReloadSS
= ReloadSS
;
1111 unhandled_
.push(ReloadLi
);
1118 // Push the current interval back to unhandled since we are going
1119 // to re-run at least this iteration. Since we didn't modify it it
1120 // should go back right in the front of the list
1121 unhandled_
.push(cur
);
1123 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1124 "did not choose a register to spill?");
1126 // We spill all intervals aliasing the register with
1127 // minimum weight, rollback to the interval with the earliest
1128 // start point and let the linear scan algorithm run again
1129 SmallVector
<LiveInterval
*, 8> spillIs
;
1131 // Determine which intervals have to be spilled.
1132 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1134 // Set of spilled vregs (used later to rollback properly)
1135 SmallSet
<unsigned, 8> spilled
;
1137 // The earliest start of a Spilled interval indicates up to where
1138 // in handled we need to roll back
1139 unsigned earliestStart
= cur
->beginNumber();
1141 // Spill live intervals of virtual regs mapped to the physical register we
1142 // want to clear (and its aliases). We only spill those that overlap with the
1143 // current interval as the rest do not affect its allocation. we also keep
1144 // track of the earliest start of all spilled live intervals since this will
1145 // mark our rollback point.
1146 std::vector
<LiveInterval
*> added
;
1147 while (!spillIs
.empty()) {
1148 LiveInterval
*sli
= spillIs
.back();
1150 DOUT
<< "\t\t\tspilling(a): " << *sli
<< '\n';
1151 earliestStart
= std::min(earliestStart
, sli
->beginNumber());
1153 std::vector
<LiveInterval
*> newIs
=
1154 li_
->addIntervalsForSpills(*sli
, spillIs
, loopInfo
, *vrm_
, SSWeight
);
1155 addStackInterval(sli
, ls_
, li_
, SSWeight
, *vrm_
);
1156 std::copy(newIs
.begin(), newIs
.end(), std::back_inserter(added
));
1157 spilled
.insert(sli
->reg
);
1160 DOUT
<< "\t\trolling back to: " << earliestStart
<< '\n';
1162 // Scan handled in reverse order up to the earliest start of a
1163 // spilled live interval and undo each one, restoring the state of
1165 while (!handled_
.empty()) {
1166 LiveInterval
* i
= handled_
.back();
1167 // If this interval starts before t we are done.
1168 if (i
->beginNumber() < earliestStart
)
1170 DOUT
<< "\t\t\tundo changes for: " << *i
<< '\n';
1171 handled_
.pop_back();
1173 // When undoing a live interval allocation we must know if it is active or
1174 // inactive to properly update regUse_ and the VirtRegMap.
1175 IntervalPtrs::iterator it
;
1176 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1178 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1179 if (!spilled
.count(i
->reg
))
1181 delRegUse(vrm_
->getPhys(i
->reg
));
1182 vrm_
->clearVirt(i
->reg
);
1183 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1184 inactive_
.erase(it
);
1185 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1186 if (!spilled
.count(i
->reg
))
1188 vrm_
->clearVirt(i
->reg
);
1190 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1191 "Can only allocate virtual registers!");
1192 vrm_
->clearVirt(i
->reg
);
1196 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1197 if (ii
== DowngradeMap
.end())
1198 // It interval has a preference, it must be defined by a copy. Clear the
1199 // preference now since the source interval allocation may have been
1203 UpgradeRegister(ii
->second
);
1207 // Rewind the iterators in the active, inactive, and fixed lists back to the
1208 // point we reverted to.
1209 RevertVectorIteratorsTo(active_
, earliestStart
);
1210 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1211 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1213 // Scan the rest and undo each interval that expired after t and
1214 // insert it in active (the next iteration of the algorithm will
1215 // put it in inactive if required)
1216 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1217 LiveInterval
*HI
= handled_
[i
];
1218 if (!HI
->expiredAt(earliestStart
) &&
1219 HI
->expiredAt(cur
->beginNumber())) {
1220 DOUT
<< "\t\t\tundo changes for: " << *HI
<< '\n';
1221 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1222 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1223 addRegUse(vrm_
->getPhys(HI
->reg
));
1227 // Merge added with unhandled.
1228 // This also update the NextReloadMap. That is, it adds mapping from a
1229 // register defined by a reload from SS to the next reload from SS in the
1230 // same basic block.
1231 MachineBasicBlock
*LastReloadMBB
= 0;
1232 LiveInterval
*LastReload
= 0;
1233 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1234 std::sort(added
.begin(), added
.end(), LISorter());
1235 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1236 LiveInterval
*ReloadLi
= added
[i
];
1237 if (ReloadLi
->weight
== HUGE_VALF
&&
1238 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1239 unsigned ReloadIdx
= ReloadLi
->beginNumber();
1240 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1241 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1242 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1243 // Last reload of same SS is in the same MBB. We want to try to
1244 // allocate both reloads the same register and make sure the reg
1245 // isn't clobbered in between if at all possible.
1246 assert(LastReload
->beginNumber() < ReloadIdx
);
1247 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1249 LastReloadMBB
= ReloadMBB
;
1250 LastReload
= ReloadLi
;
1251 LastReloadSS
= ReloadSS
;
1253 unhandled_
.push(ReloadLi
);
1257 unsigned RALinScan::getFreePhysReg(const TargetRegisterClass
*RC
,
1258 unsigned MaxInactiveCount
,
1259 SmallVector
<unsigned, 256> &inactiveCounts
,
1261 unsigned FreeReg
= 0;
1262 unsigned FreeRegInactiveCount
= 0;
1264 TargetRegisterClass::iterator I
= RC
->allocation_order_begin(*mf_
);
1265 TargetRegisterClass::iterator E
= RC
->allocation_order_end(*mf_
);
1266 assert(I
!= E
&& "No allocatable register in this register class!");
1268 // Scan for the first available register.
1269 for (; I
!= E
; ++I
) {
1271 // Ignore "downgraded" registers.
1272 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1274 if (isRegAvail(Reg
)) {
1276 if (FreeReg
< inactiveCounts
.size())
1277 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1279 FreeRegInactiveCount
= 0;
1284 // If there are no free regs, or if this reg has the max inactive count,
1285 // return this register.
1286 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
)
1289 // Continue scanning the registers, looking for the one with the highest
1290 // inactive count. Alkis found that this reduced register pressure very
1291 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1293 for (; I
!= E
; ++I
) {
1295 // Ignore "downgraded" registers.
1296 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1298 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1299 FreeRegInactiveCount
< inactiveCounts
[Reg
]) {
1301 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1302 if (FreeRegInactiveCount
== MaxInactiveCount
)
1303 break; // We found the one with the max inactive count.
1310 /// getFreePhysReg - return a free physical register for this virtual register
1311 /// interval if we have one, otherwise return 0.
1312 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1313 SmallVector
<unsigned, 256> inactiveCounts
;
1314 unsigned MaxInactiveCount
= 0;
1316 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1317 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1319 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1321 unsigned reg
= i
->first
->reg
;
1322 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1323 "Can only allocate virtual registers!");
1325 // If this is not in a related reg class to the register we're allocating,
1327 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1328 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1329 reg
= vrm_
->getPhys(reg
);
1330 if (inactiveCounts
.size() <= reg
)
1331 inactiveCounts
.resize(reg
+1);
1332 ++inactiveCounts
[reg
];
1333 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1337 // If copy coalescer has assigned a "preferred" register, check if it's
1339 if (cur
->preference
) {
1340 DOUT
<< "(preferred: " << tri_
->getName(cur
->preference
) << ") ";
1341 if (isRegAvail(cur
->preference
) &&
1342 RC
->contains(cur
->preference
))
1343 return cur
->preference
;
1346 if (!DowngradedRegs
.empty()) {
1347 unsigned FreeReg
= getFreePhysReg(RC
, MaxInactiveCount
, inactiveCounts
,
1352 return getFreePhysReg(RC
, MaxInactiveCount
, inactiveCounts
, false);
1355 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1356 return new RALinScan();