Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blobfd132746ad121829d423e2973a8c399b66053ed5
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 using namespace llvm;
20 /// InsertCastOfTo - Insert a cast of V to the specified type, doing what
21 /// we can to share the casts.
22 Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
23 const Type *Ty) {
24 // Short-circuit unnecessary bitcasts.
25 if (opcode == Instruction::BitCast && V->getType() == Ty)
26 return V;
28 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
29 if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) &&
30 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
31 if (CastInst *CI = dyn_cast<CastInst>(V))
32 if ((CI->getOpcode() == Instruction::PtrToInt ||
33 CI->getOpcode() == Instruction::IntToPtr) &&
34 SE.getTypeSizeInBits(CI->getType()) ==
35 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
36 return CI->getOperand(0);
37 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
38 if ((CE->getOpcode() == Instruction::PtrToInt ||
39 CE->getOpcode() == Instruction::IntToPtr) &&
40 SE.getTypeSizeInBits(CE->getType()) ==
41 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
42 return CE->getOperand(0);
45 // FIXME: keep track of the cast instruction.
46 if (Constant *C = dyn_cast<Constant>(V))
47 return ConstantExpr::getCast(opcode, C, Ty);
49 if (Argument *A = dyn_cast<Argument>(V)) {
50 // Check to see if there is already a cast!
51 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
52 UI != E; ++UI) {
53 if ((*UI)->getType() == Ty)
54 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
55 if (CI->getOpcode() == opcode) {
56 // If the cast isn't the first instruction of the function, move it.
57 if (BasicBlock::iterator(CI) !=
58 A->getParent()->getEntryBlock().begin()) {
59 // If the CastInst is the insert point, change the insert point.
60 if (CI == InsertPt) ++InsertPt;
61 // Splice the cast at the beginning of the entry block.
62 CI->moveBefore(A->getParent()->getEntryBlock().begin());
64 return CI;
67 Instruction *I = CastInst::Create(opcode, V, Ty, V->getName(),
68 A->getParent()->getEntryBlock().begin());
69 InsertedValues.insert(I);
70 return I;
73 Instruction *I = cast<Instruction>(V);
75 // Check to see if there is already a cast. If there is, use it.
76 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
77 UI != E; ++UI) {
78 if ((*UI)->getType() == Ty)
79 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
80 if (CI->getOpcode() == opcode) {
81 BasicBlock::iterator It = I; ++It;
82 if (isa<InvokeInst>(I))
83 It = cast<InvokeInst>(I)->getNormalDest()->begin();
84 while (isa<PHINode>(It)) ++It;
85 if (It != BasicBlock::iterator(CI)) {
86 // If the CastInst is the insert point, change the insert point.
87 if (CI == InsertPt) ++InsertPt;
88 // Splice the cast immediately after the operand in question.
89 CI->moveBefore(It);
91 return CI;
94 BasicBlock::iterator IP = I; ++IP;
95 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
96 IP = II->getNormalDest()->begin();
97 while (isa<PHINode>(IP)) ++IP;
98 Instruction *CI = CastInst::Create(opcode, V, Ty, V->getName(), IP);
99 InsertedValues.insert(CI);
100 return CI;
103 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
104 /// which must be possible with a noop cast.
105 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
106 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
107 assert((Op == Instruction::BitCast ||
108 Op == Instruction::PtrToInt ||
109 Op == Instruction::IntToPtr) &&
110 "InsertNoopCastOfTo cannot perform non-noop casts!");
111 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
112 "InsertNoopCastOfTo cannot change sizes!");
113 return InsertCastOfTo(Op, V, Ty);
116 /// InsertBinop - Insert the specified binary operator, doing a small amount
117 /// of work to avoid inserting an obviously redundant operation.
118 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
119 Value *RHS, BasicBlock::iterator InsertPt) {
120 // Fold a binop with constant operands.
121 if (Constant *CLHS = dyn_cast<Constant>(LHS))
122 if (Constant *CRHS = dyn_cast<Constant>(RHS))
123 return ConstantExpr::get(Opcode, CLHS, CRHS);
125 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
126 unsigned ScanLimit = 6;
127 BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
128 if (InsertPt != BlockBegin) {
129 // Scanning starts from the last instruction before InsertPt.
130 BasicBlock::iterator IP = InsertPt;
131 --IP;
132 for (; ScanLimit; --IP, --ScanLimit) {
133 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
134 if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
135 BinOp->getOperand(1) == RHS)
136 return BinOp;
137 if (IP == BlockBegin) break;
141 // If we haven't found this binop, insert it.
142 Instruction *BO = BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt);
143 InsertedValues.insert(BO);
144 return BO;
147 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
148 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
149 Value *V = expand(S->getOperand(S->getNumOperands()-1));
150 V = InsertNoopCastOfTo(V, Ty);
152 // Emit a bunch of add instructions
153 for (int i = S->getNumOperands()-2; i >= 0; --i) {
154 Value *W = expand(S->getOperand(i));
155 W = InsertNoopCastOfTo(W, Ty);
156 V = InsertBinop(Instruction::Add, V, W, InsertPt);
158 return V;
161 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
162 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
163 int FirstOp = 0; // Set if we should emit a subtract.
164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
165 if (SC->getValue()->isAllOnesValue())
166 FirstOp = 1;
168 int i = S->getNumOperands()-2;
169 Value *V = expand(S->getOperand(i+1));
170 V = InsertNoopCastOfTo(V, Ty);
172 // Emit a bunch of multiply instructions
173 for (; i >= FirstOp; --i) {
174 Value *W = expand(S->getOperand(i));
175 W = InsertNoopCastOfTo(W, Ty);
176 V = InsertBinop(Instruction::Mul, V, W, InsertPt);
179 // -1 * ... ---> 0 - ...
180 if (FirstOp == 1)
181 V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt);
182 return V;
185 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
186 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
188 Value *LHS = expand(S->getLHS());
189 LHS = InsertNoopCastOfTo(LHS, Ty);
190 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
191 const APInt &RHS = SC->getValue()->getValue();
192 if (RHS.isPowerOf2())
193 return InsertBinop(Instruction::LShr, LHS,
194 ConstantInt::get(Ty, RHS.logBase2()),
195 InsertPt);
198 Value *RHS = expand(S->getRHS());
199 RHS = InsertNoopCastOfTo(RHS, Ty);
200 return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
203 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
204 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
205 const Loop *L = S->getLoop();
207 // {X,+,F} --> X + {0,+,F}
208 if (!S->getStart()->isZero()) {
209 Value *Start = expand(S->getStart());
210 Start = InsertNoopCastOfTo(Start, Ty);
211 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
212 NewOps[0] = SE.getIntegerSCEV(0, Ty);
213 Value *Rest = expand(SE.getAddRecExpr(NewOps, L));
214 Rest = InsertNoopCastOfTo(Rest, Ty);
216 // FIXME: look for an existing add to use.
217 return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
220 // {0,+,1} --> Insert a canonical induction variable into the loop!
221 if (S->isAffine() &&
222 S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
223 // Create and insert the PHI node for the induction variable in the
224 // specified loop.
225 BasicBlock *Header = L->getHeader();
226 PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
227 InsertedValues.insert(PN);
228 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
230 pred_iterator HPI = pred_begin(Header);
231 assert(HPI != pred_end(Header) && "Loop with zero preds???");
232 if (!L->contains(*HPI)) ++HPI;
233 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
234 "No backedge in loop?");
236 // Insert a unit add instruction right before the terminator corresponding
237 // to the back-edge.
238 Constant *One = ConstantInt::get(Ty, 1);
239 Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
240 (*HPI)->getTerminator());
241 InsertedValues.insert(Add);
243 pred_iterator PI = pred_begin(Header);
244 if (*PI == L->getLoopPreheader())
245 ++PI;
246 PN->addIncoming(Add, *PI);
247 return PN;
250 // Get the canonical induction variable I for this loop.
251 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
253 // If this is a simple linear addrec, emit it now as a special case.
254 if (S->isAffine()) { // {0,+,F} --> i*F
255 Value *F = expand(S->getOperand(1));
256 F = InsertNoopCastOfTo(F, Ty);
258 // IF the step is by one, just return the inserted IV.
259 if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
260 if (CI->getValue() == 1)
261 return I;
263 // If the insert point is directly inside of the loop, emit the multiply at
264 // the insert point. Otherwise, L is a loop that is a parent of the insert
265 // point loop. If we can, move the multiply to the outer most loop that it
266 // is safe to be in.
267 BasicBlock::iterator MulInsertPt = getInsertionPoint();
268 Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
269 if (InsertPtLoop != L && InsertPtLoop &&
270 L->contains(InsertPtLoop->getHeader())) {
271 do {
272 // If we cannot hoist the multiply out of this loop, don't.
273 if (!InsertPtLoop->isLoopInvariant(F)) break;
275 BasicBlock *InsertPtLoopPH = InsertPtLoop->getLoopPreheader();
277 // If this loop hasn't got a preheader, we aren't able to hoist the
278 // multiply.
279 if (!InsertPtLoopPH)
280 break;
282 // Otherwise, move the insert point to the preheader.
283 MulInsertPt = InsertPtLoopPH->getTerminator();
284 InsertPtLoop = InsertPtLoop->getParentLoop();
285 } while (InsertPtLoop != L);
288 return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
291 // If this is a chain of recurrences, turn it into a closed form, using the
292 // folders, then expandCodeFor the closed form. This allows the folders to
293 // simplify the expression without having to build a bunch of special code
294 // into this folder.
295 SCEVHandle IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
297 SCEVHandle V = S->evaluateAtIteration(IH, SE);
298 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
300 return expand(V);
303 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
304 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
305 Value *V = expand(S->getOperand());
306 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
307 Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt);
308 InsertedValues.insert(I);
309 return I;
312 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
313 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
314 Value *V = expand(S->getOperand());
315 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
316 Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt);
317 InsertedValues.insert(I);
318 return I;
321 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
322 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
323 Value *V = expand(S->getOperand());
324 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
325 Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt);
326 InsertedValues.insert(I);
327 return I;
330 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
331 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
332 Value *LHS = expand(S->getOperand(0));
333 LHS = InsertNoopCastOfTo(LHS, Ty);
334 for (unsigned i = 1; i < S->getNumOperands(); ++i) {
335 Value *RHS = expand(S->getOperand(i));
336 RHS = InsertNoopCastOfTo(RHS, Ty);
337 Instruction *ICmp =
338 new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
339 InsertedValues.insert(ICmp);
340 Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt);
341 InsertedValues.insert(Sel);
342 LHS = Sel;
344 return LHS;
347 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
348 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
349 Value *LHS = expand(S->getOperand(0));
350 LHS = InsertNoopCastOfTo(LHS, Ty);
351 for (unsigned i = 1; i < S->getNumOperands(); ++i) {
352 Value *RHS = expand(S->getOperand(i));
353 RHS = InsertNoopCastOfTo(RHS, Ty);
354 Instruction *ICmp =
355 new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
356 InsertedValues.insert(ICmp);
357 Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt);
358 InsertedValues.insert(Sel);
359 LHS = Sel;
361 return LHS;
364 Value *SCEVExpander::expandCodeFor(SCEVHandle SH, const Type *Ty) {
365 // Expand the code for this SCEV.
366 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
367 "non-trivial casts should be done with the SCEVs directly!");
368 Value *V = expand(SH);
369 return InsertNoopCastOfTo(V, Ty);
372 Value *SCEVExpander::expand(const SCEV *S) {
373 // Check to see if we already expanded this.
374 std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
375 if (I != InsertedExpressions.end())
376 return I->second;
378 Value *V = visit(S);
379 InsertedExpressions[S] = V;
380 return V;