1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sparseprop"
16 #include "llvm/Analysis/SparsePropagation.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/Debug.h"
23 //===----------------------------------------------------------------------===//
24 // AbstractLatticeFunction Implementation
25 //===----------------------------------------------------------------------===//
27 AbstractLatticeFunction::~AbstractLatticeFunction() {}
29 /// PrintValue - Render the specified lattice value to the specified stream.
30 void AbstractLatticeFunction::PrintValue(LatticeVal V
, std::ostream
&OS
) {
33 else if (V
== OverdefinedVal
)
35 else if (V
== UntrackedVal
)
38 OS
<< "unknown lattice value";
41 //===----------------------------------------------------------------------===//
42 // SparseSolver Implementation
43 //===----------------------------------------------------------------------===//
45 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
46 /// value, initializing the value's state if it hasn't been entered into the
47 /// map yet. This function is necessary because not all values should start
48 /// out in the underdefined state... Arguments should be overdefined, and
49 /// constants should be marked as constants.
51 SparseSolver::LatticeVal
SparseSolver::getOrInitValueState(Value
*V
) {
52 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
53 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
56 if (LatticeFunc
->IsUntrackedValue(V
))
57 return LatticeFunc
->getUntrackedVal();
58 else if (Constant
*C
= dyn_cast
<Constant
>(V
))
59 LV
= LatticeFunc
->ComputeConstant(C
);
60 else if (Argument
*A
= dyn_cast
<Argument
>(V
))
61 LV
= LatticeFunc
->ComputeArgument(A
);
62 else if (!isa
<Instruction
>(V
))
63 // All other non-instructions are overdefined.
64 LV
= LatticeFunc
->getOverdefinedVal();
66 // All instructions are underdefined by default.
67 LV
= LatticeFunc
->getUndefVal();
69 // If this value is untracked, don't add it to the map.
70 if (LV
== LatticeFunc
->getUntrackedVal())
72 return ValueState
[V
] = LV
;
75 /// UpdateState - When the state for some instruction is potentially updated,
76 /// this function notices and adds I to the worklist if needed.
77 void SparseSolver::UpdateState(Instruction
&Inst
, LatticeVal V
) {
78 DenseMap
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(&Inst
);
79 if (I
!= ValueState
.end() && I
->second
== V
)
82 // An update. Visit uses of I.
83 ValueState
[&Inst
] = V
;
84 InstWorkList
.push_back(&Inst
);
87 /// MarkBlockExecutable - This method can be used by clients to mark all of
88 /// the blocks that are known to be intrinsically live in the processed unit.
89 void SparseSolver::MarkBlockExecutable(BasicBlock
*BB
) {
90 DOUT
<< "Marking Block Executable: " << BB
->getNameStart() << "\n";
91 BBExecutable
.insert(BB
); // Basic block is executable!
92 BBWorkList
.push_back(BB
); // Add the block to the work list!
95 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
96 /// work list if it is not already executable...
97 void SparseSolver::markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
98 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
99 return; // This edge is already known to be executable!
101 DOUT
<< "Marking Edge Executable: " << Source
->getNameStart()
102 << " -> " << Dest
->getNameStart() << "\n";
104 if (BBExecutable
.count(Dest
)) {
105 // The destination is already executable, but we just made an edge
106 // feasible that wasn't before. Revisit the PHI nodes in the block
107 // because they have potentially new operands.
108 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
109 visitPHINode(*cast
<PHINode
>(I
));
112 MarkBlockExecutable(Dest
);
117 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
118 /// successors are reachable from a given terminator instruction.
119 void SparseSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
120 SmallVectorImpl
<bool> &Succs
,
121 bool AggressiveUndef
) {
122 Succs
.resize(TI
.getNumSuccessors());
123 if (TI
.getNumSuccessors() == 0) return;
125 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
126 if (BI
->isUnconditional()) {
133 BCValue
= getOrInitValueState(BI
->getCondition());
135 BCValue
= getLatticeState(BI
->getCondition());
137 if (BCValue
== LatticeFunc
->getOverdefinedVal() ||
138 BCValue
== LatticeFunc
->getUntrackedVal()) {
139 // Overdefined condition variables can branch either way.
140 Succs
[0] = Succs
[1] = true;
144 // If undefined, neither is feasible yet.
145 if (BCValue
== LatticeFunc
->getUndefVal())
148 Constant
*C
= LatticeFunc
->GetConstant(BCValue
, BI
->getCondition(), *this);
149 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
150 // Non-constant values can go either way.
151 Succs
[0] = Succs
[1] = true;
155 // Constant condition variables mean the branch can only go a single way
156 Succs
[C
== ConstantInt::getFalse()] = true;
160 if (isa
<InvokeInst
>(TI
)) {
161 // Invoke instructions successors are always executable.
162 // TODO: Could ask the lattice function if the value can throw.
163 Succs
[0] = Succs
[1] = true;
167 SwitchInst
&SI
= cast
<SwitchInst
>(TI
);
170 SCValue
= getOrInitValueState(SI
.getCondition());
172 SCValue
= getLatticeState(SI
.getCondition());
174 if (SCValue
== LatticeFunc
->getOverdefinedVal() ||
175 SCValue
== LatticeFunc
->getUntrackedVal()) {
176 // All destinations are executable!
177 Succs
.assign(TI
.getNumSuccessors(), true);
181 // If undefined, neither is feasible yet.
182 if (SCValue
== LatticeFunc
->getUndefVal())
185 Constant
*C
= LatticeFunc
->GetConstant(SCValue
, SI
.getCondition(), *this);
186 if (C
== 0 || !isa
<ConstantInt
>(C
)) {
187 // All destinations are executable!
188 Succs
.assign(TI
.getNumSuccessors(), true);
192 Succs
[SI
.findCaseValue(cast
<ConstantInt
>(C
))] = true;
196 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
197 /// basic block to the 'To' basic block is currently feasible...
198 bool SparseSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
,
199 bool AggressiveUndef
) {
200 SmallVector
<bool, 16> SuccFeasible
;
201 TerminatorInst
*TI
= From
->getTerminator();
202 getFeasibleSuccessors(*TI
, SuccFeasible
, AggressiveUndef
);
204 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
205 if (TI
->getSuccessor(i
) == To
&& SuccFeasible
[i
])
211 void SparseSolver::visitTerminatorInst(TerminatorInst
&TI
) {
212 SmallVector
<bool, 16> SuccFeasible
;
213 getFeasibleSuccessors(TI
, SuccFeasible
, true);
215 BasicBlock
*BB
= TI
.getParent();
217 // Mark all feasible successors executable...
218 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
220 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
223 void SparseSolver::visitPHINode(PHINode
&PN
) {
224 LatticeVal PNIV
= getOrInitValueState(&PN
);
225 LatticeVal Overdefined
= LatticeFunc
->getOverdefinedVal();
227 // If this value is already overdefined (common) just return.
228 if (PNIV
== Overdefined
|| PNIV
== LatticeFunc
->getUntrackedVal())
229 return; // Quick exit
231 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
232 // and slow us down a lot. Just mark them overdefined.
233 if (PN
.getNumIncomingValues() > 64) {
234 UpdateState(PN
, Overdefined
);
238 // Look at all of the executable operands of the PHI node. If any of them
239 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
240 // transfer function to give us the merge of the incoming values.
241 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
242 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
243 if (!isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent(), true))
246 // Merge in this value.
247 LatticeVal OpVal
= getOrInitValueState(PN
.getIncomingValue(i
));
249 PNIV
= LatticeFunc
->MergeValues(PNIV
, OpVal
);
251 if (PNIV
== Overdefined
)
252 break; // Rest of input values don't matter.
255 // Update the PHI with the compute value, which is the merge of the inputs.
256 UpdateState(PN
, PNIV
);
260 void SparseSolver::visitInst(Instruction
&I
) {
261 // PHIs are handled by the propagation logic, they are never passed into the
262 // transfer functions.
263 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
264 return visitPHINode(*PN
);
266 // Otherwise, ask the transfer function what the result is. If this is
267 // something that we care about, remember it.
268 LatticeVal IV
= LatticeFunc
->ComputeInstructionState(I
, *this);
269 if (IV
!= LatticeFunc
->getUntrackedVal())
272 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(&I
))
273 visitTerminatorInst(*TI
);
276 void SparseSolver::Solve(Function
&F
) {
277 MarkBlockExecutable(&F
.getEntryBlock());
279 // Process the work lists until they are empty!
280 while (!BBWorkList
.empty() || !InstWorkList
.empty()) {
281 // Process the instruction work list.
282 while (!InstWorkList
.empty()) {
283 Instruction
*I
= InstWorkList
.back();
284 InstWorkList
.pop_back();
286 DOUT
<< "\nPopped off I-WL: " << *I
;
288 // "I" got into the work list because it made a transition. See if any
289 // users are both live and in need of updating.
290 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
292 Instruction
*U
= cast
<Instruction
>(*UI
);
293 if (BBExecutable
.count(U
->getParent())) // Inst is executable?
298 // Process the basic block work list.
299 while (!BBWorkList
.empty()) {
300 BasicBlock
*BB
= BBWorkList
.back();
301 BBWorkList
.pop_back();
303 DOUT
<< "\nPopped off BBWL: " << *BB
;
305 // Notify all instructions in this basic block that they are newly
307 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
313 void SparseSolver::Print(Function
&F
, std::ostream
&OS
) const {
314 OS
<< "\nFUNCTION: " << F
.getNameStr() << "\n";
315 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
316 if (!BBExecutable
.count(BB
))
317 OS
<< "INFEASIBLE: ";
320 OS
<< BB
->getNameStr() << ":\n";
323 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
324 LatticeFunc
->PrintValue(getLatticeState(I
), OS
);