Merge branch 'master' into msp430
[llvm/msp430.git] / lib / AsmParser / LLParser.cpp
blob21243975f1c1eeee461f4ee7e31d7605a77a9756
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/MDNode.h"
22 #include "llvm/Module.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
29 namespace llvm {
30 /// ValID - Represents a reference of a definition of some sort with no type.
31 /// There are several cases where we have to parse the value but where the
32 /// type can depend on later context. This may either be a numeric reference
33 /// or a symbolic (%var) reference. This is just a discriminated union.
34 struct ValID {
35 enum {
36 t_LocalID, t_GlobalID, // ID in UIntVal.
37 t_LocalName, t_GlobalName, // Name in StrVal.
38 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
39 t_Null, t_Undef, t_Zero, // No value.
40 t_EmptyArray, // No value: []
41 t_Constant, // Value in ConstantVal.
42 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
43 } Kind;
45 LLParser::LocTy Loc;
46 unsigned UIntVal;
47 std::string StrVal, StrVal2;
48 APSInt APSIntVal;
49 APFloat APFloatVal;
50 Constant *ConstantVal;
51 ValID() : APFloatVal(0.0) {}
55 /// Run: module ::= toplevelentity*
56 bool LLParser::Run() {
57 // Prime the lexer.
58 Lex.Lex();
60 return ParseTopLevelEntities() ||
61 ValidateEndOfModule();
64 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65 /// module.
66 bool LLParser::ValidateEndOfModule() {
67 if (!ForwardRefTypes.empty())
68 return Error(ForwardRefTypes.begin()->second.second,
69 "use of undefined type named '" +
70 ForwardRefTypes.begin()->first + "'");
71 if (!ForwardRefTypeIDs.empty())
72 return Error(ForwardRefTypeIDs.begin()->second.second,
73 "use of undefined type '%" +
74 utostr(ForwardRefTypeIDs.begin()->first) + "'");
76 if (!ForwardRefVals.empty())
77 return Error(ForwardRefVals.begin()->second.second,
78 "use of undefined value '@" + ForwardRefVals.begin()->first +
79 "'");
81 if (!ForwardRefValIDs.empty())
82 return Error(ForwardRefValIDs.begin()->second.second,
83 "use of undefined value '@" +
84 utostr(ForwardRefValIDs.begin()->first) + "'");
86 // Look for intrinsic functions and CallInst that need to be upgraded
87 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
90 return false;
93 //===----------------------------------------------------------------------===//
94 // Top-Level Entities
95 //===----------------------------------------------------------------------===//
97 bool LLParser::ParseTopLevelEntities() {
98 while (1) {
99 switch (Lex.getKind()) {
100 default: return TokError("expected top-level entity");
101 case lltok::Eof: return false;
102 //case lltok::kw_define:
103 case lltok::kw_declare: if (ParseDeclare()) return true; break;
104 case lltok::kw_define: if (ParseDefine()) return true; break;
105 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
106 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
107 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
109 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110 case lltok::LocalVar: if (ParseNamedType()) return true; break;
111 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
113 // The Global variable production with no name can have many different
114 // optional leading prefixes, the production is:
115 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116 // OptionalAddrSpace ('constant'|'global') ...
117 case lltok::kw_private: // OptionalLinkage
118 case lltok::kw_internal: // OptionalLinkage
119 case lltok::kw_weak: // OptionalLinkage
120 case lltok::kw_weak_odr: // OptionalLinkage
121 case lltok::kw_linkonce: // OptionalLinkage
122 case lltok::kw_linkonce_odr: // OptionalLinkage
123 case lltok::kw_appending: // OptionalLinkage
124 case lltok::kw_dllexport: // OptionalLinkage
125 case lltok::kw_common: // OptionalLinkage
126 case lltok::kw_dllimport: // OptionalLinkage
127 case lltok::kw_extern_weak: // OptionalLinkage
128 case lltok::kw_external: { // OptionalLinkage
129 unsigned Linkage, Visibility;
130 if (ParseOptionalLinkage(Linkage) ||
131 ParseOptionalVisibility(Visibility) ||
132 ParseGlobal("", 0, Linkage, true, Visibility))
133 return true;
134 break;
136 case lltok::kw_default: // OptionalVisibility
137 case lltok::kw_hidden: // OptionalVisibility
138 case lltok::kw_protected: { // OptionalVisibility
139 unsigned Visibility;
140 if (ParseOptionalVisibility(Visibility) ||
141 ParseGlobal("", 0, 0, false, Visibility))
142 return true;
143 break;
146 case lltok::kw_thread_local: // OptionalThreadLocal
147 case lltok::kw_addrspace: // OptionalAddrSpace
148 case lltok::kw_constant: // GlobalType
149 case lltok::kw_global: // GlobalType
150 if (ParseGlobal("", 0, 0, false, 0)) return true;
151 break;
157 /// toplevelentity
158 /// ::= 'module' 'asm' STRINGCONSTANT
159 bool LLParser::ParseModuleAsm() {
160 assert(Lex.getKind() == lltok::kw_module);
161 Lex.Lex();
163 std::string AsmStr;
164 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165 ParseStringConstant(AsmStr)) return true;
167 const std::string &AsmSoFar = M->getModuleInlineAsm();
168 if (AsmSoFar.empty())
169 M->setModuleInlineAsm(AsmStr);
170 else
171 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172 return false;
175 /// toplevelentity
176 /// ::= 'target' 'triple' '=' STRINGCONSTANT
177 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
178 bool LLParser::ParseTargetDefinition() {
179 assert(Lex.getKind() == lltok::kw_target);
180 std::string Str;
181 switch (Lex.Lex()) {
182 default: return TokError("unknown target property");
183 case lltok::kw_triple:
184 Lex.Lex();
185 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186 ParseStringConstant(Str))
187 return true;
188 M->setTargetTriple(Str);
189 return false;
190 case lltok::kw_datalayout:
191 Lex.Lex();
192 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193 ParseStringConstant(Str))
194 return true;
195 M->setDataLayout(Str);
196 return false;
200 /// toplevelentity
201 /// ::= 'deplibs' '=' '[' ']'
202 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203 bool LLParser::ParseDepLibs() {
204 assert(Lex.getKind() == lltok::kw_deplibs);
205 Lex.Lex();
206 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208 return true;
210 if (EatIfPresent(lltok::rsquare))
211 return false;
213 std::string Str;
214 if (ParseStringConstant(Str)) return true;
215 M->addLibrary(Str);
217 while (EatIfPresent(lltok::comma)) {
218 if (ParseStringConstant(Str)) return true;
219 M->addLibrary(Str);
222 return ParseToken(lltok::rsquare, "expected ']' at end of list");
225 /// toplevelentity
226 /// ::= 'type' type
227 bool LLParser::ParseUnnamedType() {
228 assert(Lex.getKind() == lltok::kw_type);
229 LocTy TypeLoc = Lex.getLoc();
230 Lex.Lex(); // eat kw_type
232 PATypeHolder Ty(Type::VoidTy);
233 if (ParseType(Ty)) return true;
235 unsigned TypeID = NumberedTypes.size();
237 // See if this type was previously referenced.
238 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239 FI = ForwardRefTypeIDs.find(TypeID);
240 if (FI != ForwardRefTypeIDs.end()) {
241 if (FI->second.first.get() == Ty)
242 return Error(TypeLoc, "self referential type is invalid");
244 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245 Ty = FI->second.first.get();
246 ForwardRefTypeIDs.erase(FI);
249 NumberedTypes.push_back(Ty);
251 return false;
254 /// toplevelentity
255 /// ::= LocalVar '=' 'type' type
256 bool LLParser::ParseNamedType() {
257 std::string Name = Lex.getStrVal();
258 LocTy NameLoc = Lex.getLoc();
259 Lex.Lex(); // eat LocalVar.
261 PATypeHolder Ty(Type::VoidTy);
263 if (ParseToken(lltok::equal, "expected '=' after name") ||
264 ParseToken(lltok::kw_type, "expected 'type' after name") ||
265 ParseType(Ty))
266 return true;
268 // Set the type name, checking for conflicts as we do so.
269 bool AlreadyExists = M->addTypeName(Name, Ty);
270 if (!AlreadyExists) return false;
272 // See if this type is a forward reference. We need to eagerly resolve
273 // types to allow recursive type redefinitions below.
274 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275 FI = ForwardRefTypes.find(Name);
276 if (FI != ForwardRefTypes.end()) {
277 if (FI->second.first.get() == Ty)
278 return Error(NameLoc, "self referential type is invalid");
280 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281 Ty = FI->second.first.get();
282 ForwardRefTypes.erase(FI);
285 // Inserting a name that is already defined, get the existing name.
286 const Type *Existing = M->getTypeByName(Name);
287 assert(Existing && "Conflict but no matching type?!");
289 // Otherwise, this is an attempt to redefine a type. That's okay if
290 // the redefinition is identical to the original.
291 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292 if (Existing == Ty) return false;
294 // Any other kind of (non-equivalent) redefinition is an error.
295 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296 Ty->getDescription() + "'");
300 /// toplevelentity
301 /// ::= 'declare' FunctionHeader
302 bool LLParser::ParseDeclare() {
303 assert(Lex.getKind() == lltok::kw_declare);
304 Lex.Lex();
306 Function *F;
307 return ParseFunctionHeader(F, false);
310 /// toplevelentity
311 /// ::= 'define' FunctionHeader '{' ...
312 bool LLParser::ParseDefine() {
313 assert(Lex.getKind() == lltok::kw_define);
314 Lex.Lex();
316 Function *F;
317 return ParseFunctionHeader(F, true) ||
318 ParseFunctionBody(*F);
321 /// ParseGlobalType
322 /// ::= 'constant'
323 /// ::= 'global'
324 bool LLParser::ParseGlobalType(bool &IsConstant) {
325 if (Lex.getKind() == lltok::kw_constant)
326 IsConstant = true;
327 else if (Lex.getKind() == lltok::kw_global)
328 IsConstant = false;
329 else {
330 IsConstant = false;
331 return TokError("expected 'global' or 'constant'");
333 Lex.Lex();
334 return false;
337 /// ParseNamedGlobal:
338 /// GlobalVar '=' OptionalVisibility ALIAS ...
339 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
340 bool LLParser::ParseNamedGlobal() {
341 assert(Lex.getKind() == lltok::GlobalVar);
342 LocTy NameLoc = Lex.getLoc();
343 std::string Name = Lex.getStrVal();
344 Lex.Lex();
346 bool HasLinkage;
347 unsigned Linkage, Visibility;
348 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349 ParseOptionalLinkage(Linkage, HasLinkage) ||
350 ParseOptionalVisibility(Visibility))
351 return true;
353 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355 return ParseAlias(Name, NameLoc, Visibility);
358 /// ParseAlias:
359 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360 /// Aliasee
361 /// ::= TypeAndValue
362 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363 /// ::= 'getelementptr' '(' ... ')'
365 /// Everything through visibility has already been parsed.
367 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368 unsigned Visibility) {
369 assert(Lex.getKind() == lltok::kw_alias);
370 Lex.Lex();
371 unsigned Linkage;
372 LocTy LinkageLoc = Lex.getLoc();
373 if (ParseOptionalLinkage(Linkage))
374 return true;
376 if (Linkage != GlobalValue::ExternalLinkage &&
377 Linkage != GlobalValue::WeakAnyLinkage &&
378 Linkage != GlobalValue::WeakODRLinkage &&
379 Linkage != GlobalValue::InternalLinkage &&
380 Linkage != GlobalValue::PrivateLinkage)
381 return Error(LinkageLoc, "invalid linkage type for alias");
383 Constant *Aliasee;
384 LocTy AliaseeLoc = Lex.getLoc();
385 if (Lex.getKind() != lltok::kw_bitcast &&
386 Lex.getKind() != lltok::kw_getelementptr) {
387 if (ParseGlobalTypeAndValue(Aliasee)) return true;
388 } else {
389 // The bitcast dest type is not present, it is implied by the dest type.
390 ValID ID;
391 if (ParseValID(ID)) return true;
392 if (ID.Kind != ValID::t_Constant)
393 return Error(AliaseeLoc, "invalid aliasee");
394 Aliasee = ID.ConstantVal;
397 if (!isa<PointerType>(Aliasee->getType()))
398 return Error(AliaseeLoc, "alias must have pointer type");
400 // Okay, create the alias but do not insert it into the module yet.
401 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402 (GlobalValue::LinkageTypes)Linkage, Name,
403 Aliasee);
404 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
406 // See if this value already exists in the symbol table. If so, it is either
407 // a redefinition or a definition of a forward reference.
408 if (GlobalValue *Val =
409 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410 // See if this was a redefinition. If so, there is no entry in
411 // ForwardRefVals.
412 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413 I = ForwardRefVals.find(Name);
414 if (I == ForwardRefVals.end())
415 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
417 // Otherwise, this was a definition of forward ref. Verify that types
418 // agree.
419 if (Val->getType() != GA->getType())
420 return Error(NameLoc,
421 "forward reference and definition of alias have different types");
423 // If they agree, just RAUW the old value with the alias and remove the
424 // forward ref info.
425 Val->replaceAllUsesWith(GA);
426 Val->eraseFromParent();
427 ForwardRefVals.erase(I);
430 // Insert into the module, we know its name won't collide now.
431 M->getAliasList().push_back(GA);
432 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
434 return false;
437 /// ParseGlobal
438 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439 /// OptionalAddrSpace GlobalType Type Const
440 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441 /// OptionalAddrSpace GlobalType Type Const
443 /// Everything through visibility has been parsed already.
445 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446 unsigned Linkage, bool HasLinkage,
447 unsigned Visibility) {
448 unsigned AddrSpace;
449 bool ThreadLocal, IsConstant;
450 LocTy TyLoc;
452 PATypeHolder Ty(Type::VoidTy);
453 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454 ParseOptionalAddrSpace(AddrSpace) ||
455 ParseGlobalType(IsConstant) ||
456 ParseType(Ty, TyLoc))
457 return true;
459 // If the linkage is specified and is external, then no initializer is
460 // present.
461 Constant *Init = 0;
462 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463 Linkage != GlobalValue::ExternalWeakLinkage &&
464 Linkage != GlobalValue::ExternalLinkage)) {
465 if (ParseGlobalValue(Ty, Init))
466 return true;
469 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470 return Error(TyLoc, "invalid type for global variable");
472 GlobalVariable *GV = 0;
474 // See if the global was forward referenced, if so, use the global.
475 if (!Name.empty()) {
476 if ((GV = M->getGlobalVariable(Name, true)) &&
477 !ForwardRefVals.erase(Name))
478 return Error(NameLoc, "redefinition of global '@" + Name + "'");
479 } else {
480 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481 I = ForwardRefValIDs.find(NumberedVals.size());
482 if (I != ForwardRefValIDs.end()) {
483 GV = cast<GlobalVariable>(I->second.first);
484 ForwardRefValIDs.erase(I);
488 if (GV == 0) {
489 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490 M, false, AddrSpace);
491 } else {
492 if (GV->getType()->getElementType() != Ty)
493 return Error(TyLoc,
494 "forward reference and definition of global have different types");
496 // Move the forward-reference to the correct spot in the module.
497 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
500 if (Name.empty())
501 NumberedVals.push_back(GV);
503 // Set the parsed properties on the global.
504 if (Init)
505 GV->setInitializer(Init);
506 GV->setConstant(IsConstant);
507 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509 GV->setThreadLocal(ThreadLocal);
511 // Parse attributes on the global.
512 while (Lex.getKind() == lltok::comma) {
513 Lex.Lex();
515 if (Lex.getKind() == lltok::kw_section) {
516 Lex.Lex();
517 GV->setSection(Lex.getStrVal());
518 if (ParseToken(lltok::StringConstant, "expected global section string"))
519 return true;
520 } else if (Lex.getKind() == lltok::kw_align) {
521 unsigned Alignment;
522 if (ParseOptionalAlignment(Alignment)) return true;
523 GV->setAlignment(Alignment);
524 } else {
525 TokError("unknown global variable property!");
529 return false;
533 //===----------------------------------------------------------------------===//
534 // GlobalValue Reference/Resolution Routines.
535 //===----------------------------------------------------------------------===//
537 /// GetGlobalVal - Get a value with the specified name or ID, creating a
538 /// forward reference record if needed. This can return null if the value
539 /// exists but does not have the right type.
540 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541 LocTy Loc) {
542 const PointerType *PTy = dyn_cast<PointerType>(Ty);
543 if (PTy == 0) {
544 Error(Loc, "global variable reference must have pointer type");
545 return 0;
548 // Look this name up in the normal function symbol table.
549 GlobalValue *Val =
550 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
552 // If this is a forward reference for the value, see if we already created a
553 // forward ref record.
554 if (Val == 0) {
555 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556 I = ForwardRefVals.find(Name);
557 if (I != ForwardRefVals.end())
558 Val = I->second.first;
561 // If we have the value in the symbol table or fwd-ref table, return it.
562 if (Val) {
563 if (Val->getType() == Ty) return Val;
564 Error(Loc, "'@" + Name + "' defined with type '" +
565 Val->getType()->getDescription() + "'");
566 return 0;
569 // Otherwise, create a new forward reference for this value and remember it.
570 GlobalValue *FwdVal;
571 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572 // Function types can return opaque but functions can't.
573 if (isa<OpaqueType>(FT->getReturnType())) {
574 Error(Loc, "function may not return opaque type");
575 return 0;
578 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579 } else {
580 FwdVal = new GlobalVariable(PTy->getElementType(), false,
581 GlobalValue::ExternalWeakLinkage, 0, Name, M);
584 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585 return FwdVal;
588 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589 const PointerType *PTy = dyn_cast<PointerType>(Ty);
590 if (PTy == 0) {
591 Error(Loc, "global variable reference must have pointer type");
592 return 0;
595 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
597 // If this is a forward reference for the value, see if we already created a
598 // forward ref record.
599 if (Val == 0) {
600 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601 I = ForwardRefValIDs.find(ID);
602 if (I != ForwardRefValIDs.end())
603 Val = I->second.first;
606 // If we have the value in the symbol table or fwd-ref table, return it.
607 if (Val) {
608 if (Val->getType() == Ty) return Val;
609 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610 Val->getType()->getDescription() + "'");
611 return 0;
614 // Otherwise, create a new forward reference for this value and remember it.
615 GlobalValue *FwdVal;
616 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617 // Function types can return opaque but functions can't.
618 if (isa<OpaqueType>(FT->getReturnType())) {
619 Error(Loc, "function may not return opaque type");
620 return 0;
622 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623 } else {
624 FwdVal = new GlobalVariable(PTy->getElementType(), false,
625 GlobalValue::ExternalWeakLinkage, 0, "", M);
628 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629 return FwdVal;
633 //===----------------------------------------------------------------------===//
634 // Helper Routines.
635 //===----------------------------------------------------------------------===//
637 /// ParseToken - If the current token has the specified kind, eat it and return
638 /// success. Otherwise, emit the specified error and return failure.
639 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640 if (Lex.getKind() != T)
641 return TokError(ErrMsg);
642 Lex.Lex();
643 return false;
646 /// ParseStringConstant
647 /// ::= StringConstant
648 bool LLParser::ParseStringConstant(std::string &Result) {
649 if (Lex.getKind() != lltok::StringConstant)
650 return TokError("expected string constant");
651 Result = Lex.getStrVal();
652 Lex.Lex();
653 return false;
656 /// ParseUInt32
657 /// ::= uint32
658 bool LLParser::ParseUInt32(unsigned &Val) {
659 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660 return TokError("expected integer");
661 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662 if (Val64 != unsigned(Val64))
663 return TokError("expected 32-bit integer (too large)");
664 Val = Val64;
665 Lex.Lex();
666 return false;
670 /// ParseOptionalAddrSpace
671 /// := /*empty*/
672 /// := 'addrspace' '(' uint32 ')'
673 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674 AddrSpace = 0;
675 if (!EatIfPresent(lltok::kw_addrspace))
676 return false;
677 return ParseToken(lltok::lparen, "expected '(' in address space") ||
678 ParseUInt32(AddrSpace) ||
679 ParseToken(lltok::rparen, "expected ')' in address space");
682 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
683 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
684 /// 2: function attr.
685 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687 Attrs = Attribute::None;
688 LocTy AttrLoc = Lex.getLoc();
690 while (1) {
691 switch (Lex.getKind()) {
692 case lltok::kw_sext:
693 case lltok::kw_zext:
694 // Treat these as signext/zeroext if they occur in the argument list after
695 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
696 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697 // expr.
698 // FIXME: REMOVE THIS IN LLVM 3.0
699 if (AttrKind == 3) {
700 if (Lex.getKind() == lltok::kw_sext)
701 Attrs |= Attribute::SExt;
702 else
703 Attrs |= Attribute::ZExt;
704 break;
706 // FALL THROUGH.
707 default: // End of attributes.
708 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709 return Error(AttrLoc, "invalid use of function-only attribute");
711 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712 return Error(AttrLoc, "invalid use of parameter-only attribute");
714 return false;
715 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
716 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
717 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
718 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
719 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
720 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
721 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
722 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
724 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
725 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
726 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
727 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
728 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
729 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
730 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
731 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
732 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
735 case lltok::kw_align: {
736 unsigned Alignment;
737 if (ParseOptionalAlignment(Alignment))
738 return true;
739 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
740 continue;
743 Lex.Lex();
747 /// ParseOptionalLinkage
748 /// ::= /*empty*/
749 /// ::= 'private'
750 /// ::= 'internal'
751 /// ::= 'weak'
752 /// ::= 'weak_odr'
753 /// ::= 'linkonce'
754 /// ::= 'linkonce_odr'
755 /// ::= 'appending'
756 /// ::= 'dllexport'
757 /// ::= 'common'
758 /// ::= 'dllimport'
759 /// ::= 'extern_weak'
760 /// ::= 'external'
761 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
762 HasLinkage = false;
763 switch (Lex.getKind()) {
764 default: Res = GlobalValue::ExternalLinkage; return false;
765 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
766 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
767 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
768 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
769 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
770 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
771 case lltok::kw_available_externally:
772 Res = GlobalValue::AvailableExternallyLinkage;
773 break;
774 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
775 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
776 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
777 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
778 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
779 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
781 Lex.Lex();
782 HasLinkage = true;
783 return false;
786 /// ParseOptionalVisibility
787 /// ::= /*empty*/
788 /// ::= 'default'
789 /// ::= 'hidden'
790 /// ::= 'protected'
791 ///
792 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
793 switch (Lex.getKind()) {
794 default: Res = GlobalValue::DefaultVisibility; return false;
795 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
796 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
797 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
799 Lex.Lex();
800 return false;
803 /// ParseOptionalCallingConv
804 /// ::= /*empty*/
805 /// ::= 'ccc'
806 /// ::= 'fastcc'
807 /// ::= 'coldcc'
808 /// ::= 'x86_stdcallcc'
809 /// ::= 'x86_fastcallcc'
810 /// ::= 'cc' UINT
811 ///
812 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
813 switch (Lex.getKind()) {
814 default: CC = CallingConv::C; return false;
815 case lltok::kw_ccc: CC = CallingConv::C; break;
816 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
817 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
818 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
819 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
820 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
822 Lex.Lex();
823 return false;
826 /// ParseOptionalAlignment
827 /// ::= /* empty */
828 /// ::= 'align' 4
829 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
830 Alignment = 0;
831 if (!EatIfPresent(lltok::kw_align))
832 return false;
833 LocTy AlignLoc = Lex.getLoc();
834 if (ParseUInt32(Alignment)) return true;
835 if (!isPowerOf2_32(Alignment))
836 return Error(AlignLoc, "alignment is not a power of two");
837 return false;
840 /// ParseOptionalCommaAlignment
841 /// ::= /* empty */
842 /// ::= ',' 'align' 4
843 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
844 Alignment = 0;
845 if (!EatIfPresent(lltok::comma))
846 return false;
847 return ParseToken(lltok::kw_align, "expected 'align'") ||
848 ParseUInt32(Alignment);
851 /// ParseIndexList
852 /// ::= (',' uint32)+
853 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
854 if (Lex.getKind() != lltok::comma)
855 return TokError("expected ',' as start of index list");
857 while (EatIfPresent(lltok::comma)) {
858 unsigned Idx;
859 if (ParseUInt32(Idx)) return true;
860 Indices.push_back(Idx);
863 return false;
866 //===----------------------------------------------------------------------===//
867 // Type Parsing.
868 //===----------------------------------------------------------------------===//
870 /// ParseType - Parse and resolve a full type.
871 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
872 LocTy TypeLoc = Lex.getLoc();
873 if (ParseTypeRec(Result)) return true;
875 // Verify no unresolved uprefs.
876 if (!UpRefs.empty())
877 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
879 if (!AllowVoid && Result.get() == Type::VoidTy)
880 return Error(TypeLoc, "void type only allowed for function results");
882 return false;
885 /// HandleUpRefs - Every time we finish a new layer of types, this function is
886 /// called. It loops through the UpRefs vector, which is a list of the
887 /// currently active types. For each type, if the up-reference is contained in
888 /// the newly completed type, we decrement the level count. When the level
889 /// count reaches zero, the up-referenced type is the type that is passed in:
890 /// thus we can complete the cycle.
892 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
893 // If Ty isn't abstract, or if there are no up-references in it, then there is
894 // nothing to resolve here.
895 if (!ty->isAbstract() || UpRefs.empty()) return ty;
897 PATypeHolder Ty(ty);
898 #if 0
899 errs() << "Type '" << Ty->getDescription()
900 << "' newly formed. Resolving upreferences.\n"
901 << UpRefs.size() << " upreferences active!\n";
902 #endif
904 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
905 // to zero), we resolve them all together before we resolve them to Ty. At
906 // the end of the loop, if there is anything to resolve to Ty, it will be in
907 // this variable.
908 OpaqueType *TypeToResolve = 0;
910 for (unsigned i = 0; i != UpRefs.size(); ++i) {
911 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
912 bool ContainsType =
913 std::find(Ty->subtype_begin(), Ty->subtype_end(),
914 UpRefs[i].LastContainedTy) != Ty->subtype_end();
916 #if 0
917 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
918 << UpRefs[i].LastContainedTy->getDescription() << ") = "
919 << (ContainsType ? "true" : "false")
920 << " level=" << UpRefs[i].NestingLevel << "\n";
921 #endif
922 if (!ContainsType)
923 continue;
925 // Decrement level of upreference
926 unsigned Level = --UpRefs[i].NestingLevel;
927 UpRefs[i].LastContainedTy = Ty;
929 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
930 if (Level != 0)
931 continue;
933 #if 0
934 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
935 #endif
936 if (!TypeToResolve)
937 TypeToResolve = UpRefs[i].UpRefTy;
938 else
939 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
940 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
941 --i; // Do not skip the next element.
944 if (TypeToResolve)
945 TypeToResolve->refineAbstractTypeTo(Ty);
947 return Ty;
951 /// ParseTypeRec - The recursive function used to process the internal
952 /// implementation details of types.
953 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
954 switch (Lex.getKind()) {
955 default:
956 return TokError("expected type");
957 case lltok::Type:
958 // TypeRec ::= 'float' | 'void' (etc)
959 Result = Lex.getTyVal();
960 Lex.Lex();
961 break;
962 case lltok::kw_opaque:
963 // TypeRec ::= 'opaque'
964 Result = OpaqueType::get();
965 Lex.Lex();
966 break;
967 case lltok::lbrace:
968 // TypeRec ::= '{' ... '}'
969 if (ParseStructType(Result, false))
970 return true;
971 break;
972 case lltok::lsquare:
973 // TypeRec ::= '[' ... ']'
974 Lex.Lex(); // eat the lsquare.
975 if (ParseArrayVectorType(Result, false))
976 return true;
977 break;
978 case lltok::less: // Either vector or packed struct.
979 // TypeRec ::= '<' ... '>'
980 Lex.Lex();
981 if (Lex.getKind() == lltok::lbrace) {
982 if (ParseStructType(Result, true) ||
983 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
984 return true;
985 } else if (ParseArrayVectorType(Result, true))
986 return true;
987 break;
988 case lltok::LocalVar:
989 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
990 // TypeRec ::= %foo
991 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
992 Result = T;
993 } else {
994 Result = OpaqueType::get();
995 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
996 std::make_pair(Result,
997 Lex.getLoc())));
998 M->addTypeName(Lex.getStrVal(), Result.get());
1000 Lex.Lex();
1001 break;
1003 case lltok::LocalVarID:
1004 // TypeRec ::= %4
1005 if (Lex.getUIntVal() < NumberedTypes.size())
1006 Result = NumberedTypes[Lex.getUIntVal()];
1007 else {
1008 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1009 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1010 if (I != ForwardRefTypeIDs.end())
1011 Result = I->second.first;
1012 else {
1013 Result = OpaqueType::get();
1014 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1015 std::make_pair(Result,
1016 Lex.getLoc())));
1019 Lex.Lex();
1020 break;
1021 case lltok::backslash: {
1022 // TypeRec ::= '\' 4
1023 Lex.Lex();
1024 unsigned Val;
1025 if (ParseUInt32(Val)) return true;
1026 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
1027 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1028 Result = OT;
1029 break;
1033 // Parse the type suffixes.
1034 while (1) {
1035 switch (Lex.getKind()) {
1036 // End of type.
1037 default: return false;
1039 // TypeRec ::= TypeRec '*'
1040 case lltok::star:
1041 if (Result.get() == Type::LabelTy)
1042 return TokError("basic block pointers are invalid");
1043 if (Result.get() == Type::VoidTy)
1044 return TokError("pointers to void are invalid; use i8* instead");
1045 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1046 Lex.Lex();
1047 break;
1049 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1050 case lltok::kw_addrspace: {
1051 if (Result.get() == Type::LabelTy)
1052 return TokError("basic block pointers are invalid");
1053 if (Result.get() == Type::VoidTy)
1054 return TokError("pointers to void are invalid; use i8* instead");
1055 unsigned AddrSpace;
1056 if (ParseOptionalAddrSpace(AddrSpace) ||
1057 ParseToken(lltok::star, "expected '*' in address space"))
1058 return true;
1060 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1061 break;
1064 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1065 case lltok::lparen:
1066 if (ParseFunctionType(Result))
1067 return true;
1068 break;
1073 /// ParseParameterList
1074 /// ::= '(' ')'
1075 /// ::= '(' Arg (',' Arg)* ')'
1076 /// Arg
1077 /// ::= Type OptionalAttributes Value OptionalAttributes
1078 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1079 PerFunctionState &PFS) {
1080 if (ParseToken(lltok::lparen, "expected '(' in call"))
1081 return true;
1083 while (Lex.getKind() != lltok::rparen) {
1084 // If this isn't the first argument, we need a comma.
1085 if (!ArgList.empty() &&
1086 ParseToken(lltok::comma, "expected ',' in argument list"))
1087 return true;
1089 // Parse the argument.
1090 LocTy ArgLoc;
1091 PATypeHolder ArgTy(Type::VoidTy);
1092 unsigned ArgAttrs1, ArgAttrs2;
1093 Value *V;
1094 if (ParseType(ArgTy, ArgLoc) ||
1095 ParseOptionalAttrs(ArgAttrs1, 0) ||
1096 ParseValue(ArgTy, V, PFS) ||
1097 // FIXME: Should not allow attributes after the argument, remove this in
1098 // LLVM 3.0.
1099 ParseOptionalAttrs(ArgAttrs2, 3))
1100 return true;
1101 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1104 Lex.Lex(); // Lex the ')'.
1105 return false;
1110 /// ParseArgumentList - Parse the argument list for a function type or function
1111 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1112 /// ::= '(' ArgTypeListI ')'
1113 /// ArgTypeListI
1114 /// ::= /*empty*/
1115 /// ::= '...'
1116 /// ::= ArgTypeList ',' '...'
1117 /// ::= ArgType (',' ArgType)*
1119 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1120 bool &isVarArg, bool inType) {
1121 isVarArg = false;
1122 assert(Lex.getKind() == lltok::lparen);
1123 Lex.Lex(); // eat the (.
1125 if (Lex.getKind() == lltok::rparen) {
1126 // empty
1127 } else if (Lex.getKind() == lltok::dotdotdot) {
1128 isVarArg = true;
1129 Lex.Lex();
1130 } else {
1131 LocTy TypeLoc = Lex.getLoc();
1132 PATypeHolder ArgTy(Type::VoidTy);
1133 unsigned Attrs;
1134 std::string Name;
1136 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1137 // types (such as a function returning a pointer to itself). If parsing a
1138 // function prototype, we require fully resolved types.
1139 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1140 ParseOptionalAttrs(Attrs, 0)) return true;
1142 if (ArgTy == Type::VoidTy)
1143 return Error(TypeLoc, "argument can not have void type");
1145 if (Lex.getKind() == lltok::LocalVar ||
1146 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1147 Name = Lex.getStrVal();
1148 Lex.Lex();
1151 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1152 return Error(TypeLoc, "invalid type for function argument");
1154 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1156 while (EatIfPresent(lltok::comma)) {
1157 // Handle ... at end of arg list.
1158 if (EatIfPresent(lltok::dotdotdot)) {
1159 isVarArg = true;
1160 break;
1163 // Otherwise must be an argument type.
1164 TypeLoc = Lex.getLoc();
1165 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1166 ParseOptionalAttrs(Attrs, 0)) return true;
1168 if (ArgTy == Type::VoidTy)
1169 return Error(TypeLoc, "argument can not have void type");
1171 if (Lex.getKind() == lltok::LocalVar ||
1172 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1173 Name = Lex.getStrVal();
1174 Lex.Lex();
1175 } else {
1176 Name = "";
1179 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1180 return Error(TypeLoc, "invalid type for function argument");
1182 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1186 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1189 /// ParseFunctionType
1190 /// ::= Type ArgumentList OptionalAttrs
1191 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1192 assert(Lex.getKind() == lltok::lparen);
1194 if (!FunctionType::isValidReturnType(Result))
1195 return TokError("invalid function return type");
1197 std::vector<ArgInfo> ArgList;
1198 bool isVarArg;
1199 unsigned Attrs;
1200 if (ParseArgumentList(ArgList, isVarArg, true) ||
1201 // FIXME: Allow, but ignore attributes on function types!
1202 // FIXME: Remove in LLVM 3.0
1203 ParseOptionalAttrs(Attrs, 2))
1204 return true;
1206 // Reject names on the arguments lists.
1207 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1208 if (!ArgList[i].Name.empty())
1209 return Error(ArgList[i].Loc, "argument name invalid in function type");
1210 if (!ArgList[i].Attrs != 0) {
1211 // Allow but ignore attributes on function types; this permits
1212 // auto-upgrade.
1213 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1217 std::vector<const Type*> ArgListTy;
1218 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1219 ArgListTy.push_back(ArgList[i].Type);
1221 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1222 return false;
1225 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1226 /// TypeRec
1227 /// ::= '{' '}'
1228 /// ::= '{' TypeRec (',' TypeRec)* '}'
1229 /// ::= '<' '{' '}' '>'
1230 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1231 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1232 assert(Lex.getKind() == lltok::lbrace);
1233 Lex.Lex(); // Consume the '{'
1235 if (EatIfPresent(lltok::rbrace)) {
1236 Result = StructType::get(std::vector<const Type*>(), Packed);
1237 return false;
1240 std::vector<PATypeHolder> ParamsList;
1241 LocTy EltTyLoc = Lex.getLoc();
1242 if (ParseTypeRec(Result)) return true;
1243 ParamsList.push_back(Result);
1245 if (Result == Type::VoidTy)
1246 return Error(EltTyLoc, "struct element can not have void type");
1248 while (EatIfPresent(lltok::comma)) {
1249 EltTyLoc = Lex.getLoc();
1250 if (ParseTypeRec(Result)) return true;
1252 if (Result == Type::VoidTy)
1253 return Error(EltTyLoc, "struct element can not have void type");
1255 ParamsList.push_back(Result);
1258 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1259 return true;
1261 std::vector<const Type*> ParamsListTy;
1262 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1263 ParamsListTy.push_back(ParamsList[i].get());
1264 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1265 return false;
1268 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1269 /// token has already been consumed.
1270 /// TypeRec
1271 /// ::= '[' APSINTVAL 'x' Types ']'
1272 /// ::= '<' APSINTVAL 'x' Types '>'
1273 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1274 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1275 Lex.getAPSIntVal().getBitWidth() > 64)
1276 return TokError("expected number in address space");
1278 LocTy SizeLoc = Lex.getLoc();
1279 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1280 Lex.Lex();
1282 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1283 return true;
1285 LocTy TypeLoc = Lex.getLoc();
1286 PATypeHolder EltTy(Type::VoidTy);
1287 if (ParseTypeRec(EltTy)) return true;
1289 if (EltTy == Type::VoidTy)
1290 return Error(TypeLoc, "array and vector element type cannot be void");
1292 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1293 "expected end of sequential type"))
1294 return true;
1296 if (isVector) {
1297 if (Size == 0)
1298 return Error(SizeLoc, "zero element vector is illegal");
1299 if ((unsigned)Size != Size)
1300 return Error(SizeLoc, "size too large for vector");
1301 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1302 return Error(TypeLoc, "vector element type must be fp or integer");
1303 Result = VectorType::get(EltTy, unsigned(Size));
1304 } else {
1305 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1306 return Error(TypeLoc, "invalid array element type");
1307 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1309 return false;
1312 //===----------------------------------------------------------------------===//
1313 // Function Semantic Analysis.
1314 //===----------------------------------------------------------------------===//
1316 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1317 : P(p), F(f) {
1319 // Insert unnamed arguments into the NumberedVals list.
1320 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1321 AI != E; ++AI)
1322 if (!AI->hasName())
1323 NumberedVals.push_back(AI);
1326 LLParser::PerFunctionState::~PerFunctionState() {
1327 // If there were any forward referenced non-basicblock values, delete them.
1328 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1329 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1330 if (!isa<BasicBlock>(I->second.first)) {
1331 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1332 ->getType()));
1333 delete I->second.first;
1334 I->second.first = 0;
1337 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1338 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1339 if (!isa<BasicBlock>(I->second.first)) {
1340 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1341 ->getType()));
1342 delete I->second.first;
1343 I->second.first = 0;
1347 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1348 if (!ForwardRefVals.empty())
1349 return P.Error(ForwardRefVals.begin()->second.second,
1350 "use of undefined value '%" + ForwardRefVals.begin()->first +
1351 "'");
1352 if (!ForwardRefValIDs.empty())
1353 return P.Error(ForwardRefValIDs.begin()->second.second,
1354 "use of undefined value '%" +
1355 utostr(ForwardRefValIDs.begin()->first) + "'");
1356 return false;
1360 /// GetVal - Get a value with the specified name or ID, creating a
1361 /// forward reference record if needed. This can return null if the value
1362 /// exists but does not have the right type.
1363 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1364 const Type *Ty, LocTy Loc) {
1365 // Look this name up in the normal function symbol table.
1366 Value *Val = F.getValueSymbolTable().lookup(Name);
1368 // If this is a forward reference for the value, see if we already created a
1369 // forward ref record.
1370 if (Val == 0) {
1371 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1372 I = ForwardRefVals.find(Name);
1373 if (I != ForwardRefVals.end())
1374 Val = I->second.first;
1377 // If we have the value in the symbol table or fwd-ref table, return it.
1378 if (Val) {
1379 if (Val->getType() == Ty) return Val;
1380 if (Ty == Type::LabelTy)
1381 P.Error(Loc, "'%" + Name + "' is not a basic block");
1382 else
1383 P.Error(Loc, "'%" + Name + "' defined with type '" +
1384 Val->getType()->getDescription() + "'");
1385 return 0;
1388 // Don't make placeholders with invalid type.
1389 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1390 P.Error(Loc, "invalid use of a non-first-class type");
1391 return 0;
1394 // Otherwise, create a new forward reference for this value and remember it.
1395 Value *FwdVal;
1396 if (Ty == Type::LabelTy)
1397 FwdVal = BasicBlock::Create(Name, &F);
1398 else
1399 FwdVal = new Argument(Ty, Name);
1401 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1402 return FwdVal;
1405 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1406 LocTy Loc) {
1407 // Look this name up in the normal function symbol table.
1408 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1410 // If this is a forward reference for the value, see if we already created a
1411 // forward ref record.
1412 if (Val == 0) {
1413 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1414 I = ForwardRefValIDs.find(ID);
1415 if (I != ForwardRefValIDs.end())
1416 Val = I->second.first;
1419 // If we have the value in the symbol table or fwd-ref table, return it.
1420 if (Val) {
1421 if (Val->getType() == Ty) return Val;
1422 if (Ty == Type::LabelTy)
1423 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1424 else
1425 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1426 Val->getType()->getDescription() + "'");
1427 return 0;
1430 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1431 P.Error(Loc, "invalid use of a non-first-class type");
1432 return 0;
1435 // Otherwise, create a new forward reference for this value and remember it.
1436 Value *FwdVal;
1437 if (Ty == Type::LabelTy)
1438 FwdVal = BasicBlock::Create("", &F);
1439 else
1440 FwdVal = new Argument(Ty);
1442 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1443 return FwdVal;
1446 /// SetInstName - After an instruction is parsed and inserted into its
1447 /// basic block, this installs its name.
1448 bool LLParser::PerFunctionState::SetInstName(int NameID,
1449 const std::string &NameStr,
1450 LocTy NameLoc, Instruction *Inst) {
1451 // If this instruction has void type, it cannot have a name or ID specified.
1452 if (Inst->getType() == Type::VoidTy) {
1453 if (NameID != -1 || !NameStr.empty())
1454 return P.Error(NameLoc, "instructions returning void cannot have a name");
1455 return false;
1458 // If this was a numbered instruction, verify that the instruction is the
1459 // expected value and resolve any forward references.
1460 if (NameStr.empty()) {
1461 // If neither a name nor an ID was specified, just use the next ID.
1462 if (NameID == -1)
1463 NameID = NumberedVals.size();
1465 if (unsigned(NameID) != NumberedVals.size())
1466 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1467 utostr(NumberedVals.size()) + "'");
1469 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1470 ForwardRefValIDs.find(NameID);
1471 if (FI != ForwardRefValIDs.end()) {
1472 if (FI->second.first->getType() != Inst->getType())
1473 return P.Error(NameLoc, "instruction forward referenced with type '" +
1474 FI->second.first->getType()->getDescription() + "'");
1475 FI->second.first->replaceAllUsesWith(Inst);
1476 ForwardRefValIDs.erase(FI);
1479 NumberedVals.push_back(Inst);
1480 return false;
1483 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1484 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1485 FI = ForwardRefVals.find(NameStr);
1486 if (FI != ForwardRefVals.end()) {
1487 if (FI->second.first->getType() != Inst->getType())
1488 return P.Error(NameLoc, "instruction forward referenced with type '" +
1489 FI->second.first->getType()->getDescription() + "'");
1490 FI->second.first->replaceAllUsesWith(Inst);
1491 ForwardRefVals.erase(FI);
1494 // Set the name on the instruction.
1495 Inst->setName(NameStr);
1497 if (Inst->getNameStr() != NameStr)
1498 return P.Error(NameLoc, "multiple definition of local value named '" +
1499 NameStr + "'");
1500 return false;
1503 /// GetBB - Get a basic block with the specified name or ID, creating a
1504 /// forward reference record if needed.
1505 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1506 LocTy Loc) {
1507 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1510 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1511 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1514 /// DefineBB - Define the specified basic block, which is either named or
1515 /// unnamed. If there is an error, this returns null otherwise it returns
1516 /// the block being defined.
1517 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1518 LocTy Loc) {
1519 BasicBlock *BB;
1520 if (Name.empty())
1521 BB = GetBB(NumberedVals.size(), Loc);
1522 else
1523 BB = GetBB(Name, Loc);
1524 if (BB == 0) return 0; // Already diagnosed error.
1526 // Move the block to the end of the function. Forward ref'd blocks are
1527 // inserted wherever they happen to be referenced.
1528 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1530 // Remove the block from forward ref sets.
1531 if (Name.empty()) {
1532 ForwardRefValIDs.erase(NumberedVals.size());
1533 NumberedVals.push_back(BB);
1534 } else {
1535 // BB forward references are already in the function symbol table.
1536 ForwardRefVals.erase(Name);
1539 return BB;
1542 //===----------------------------------------------------------------------===//
1543 // Constants.
1544 //===----------------------------------------------------------------------===//
1546 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1547 /// type implied. For example, if we parse "4" we don't know what integer type
1548 /// it has. The value will later be combined with its type and checked for
1549 /// sanity.
1550 bool LLParser::ParseValID(ValID &ID) {
1551 ID.Loc = Lex.getLoc();
1552 switch (Lex.getKind()) {
1553 default: return TokError("expected value token");
1554 case lltok::GlobalID: // @42
1555 ID.UIntVal = Lex.getUIntVal();
1556 ID.Kind = ValID::t_GlobalID;
1557 break;
1558 case lltok::GlobalVar: // @foo
1559 ID.StrVal = Lex.getStrVal();
1560 ID.Kind = ValID::t_GlobalName;
1561 break;
1562 case lltok::LocalVarID: // %42
1563 ID.UIntVal = Lex.getUIntVal();
1564 ID.Kind = ValID::t_LocalID;
1565 break;
1566 case lltok::LocalVar: // %foo
1567 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1568 ID.StrVal = Lex.getStrVal();
1569 ID.Kind = ValID::t_LocalName;
1570 break;
1571 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1572 ID.Kind = ValID::t_Constant;
1573 Lex.Lex();
1574 if (Lex.getKind() == lltok::lbrace) {
1575 SmallVector<Value*, 16> Elts;
1576 if (ParseMDNodeVector(Elts) ||
1577 ParseToken(lltok::rbrace, "expected end of metadata node"))
1578 return true;
1580 ID.ConstantVal = MDNode::get(&Elts[0], Elts.size());
1581 return false;
1584 // MDString:
1585 // ::= '!' STRINGCONSTANT
1586 std::string Str;
1587 if (ParseStringConstant(Str)) return true;
1589 ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1590 return false;
1592 case lltok::APSInt:
1593 ID.APSIntVal = Lex.getAPSIntVal();
1594 ID.Kind = ValID::t_APSInt;
1595 break;
1596 case lltok::APFloat:
1597 ID.APFloatVal = Lex.getAPFloatVal();
1598 ID.Kind = ValID::t_APFloat;
1599 break;
1600 case lltok::kw_true:
1601 ID.ConstantVal = ConstantInt::getTrue();
1602 ID.Kind = ValID::t_Constant;
1603 break;
1604 case lltok::kw_false:
1605 ID.ConstantVal = ConstantInt::getFalse();
1606 ID.Kind = ValID::t_Constant;
1607 break;
1608 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1609 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1610 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1612 case lltok::lbrace: {
1613 // ValID ::= '{' ConstVector '}'
1614 Lex.Lex();
1615 SmallVector<Constant*, 16> Elts;
1616 if (ParseGlobalValueVector(Elts) ||
1617 ParseToken(lltok::rbrace, "expected end of struct constant"))
1618 return true;
1620 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1621 ID.Kind = ValID::t_Constant;
1622 return false;
1624 case lltok::less: {
1625 // ValID ::= '<' ConstVector '>' --> Vector.
1626 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1627 Lex.Lex();
1628 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1630 SmallVector<Constant*, 16> Elts;
1631 LocTy FirstEltLoc = Lex.getLoc();
1632 if (ParseGlobalValueVector(Elts) ||
1633 (isPackedStruct &&
1634 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1635 ParseToken(lltok::greater, "expected end of constant"))
1636 return true;
1638 if (isPackedStruct) {
1639 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1640 ID.Kind = ValID::t_Constant;
1641 return false;
1644 if (Elts.empty())
1645 return Error(ID.Loc, "constant vector must not be empty");
1647 if (!Elts[0]->getType()->isInteger() &&
1648 !Elts[0]->getType()->isFloatingPoint())
1649 return Error(FirstEltLoc,
1650 "vector elements must have integer or floating point type");
1652 // Verify that all the vector elements have the same type.
1653 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1654 if (Elts[i]->getType() != Elts[0]->getType())
1655 return Error(FirstEltLoc,
1656 "vector element #" + utostr(i) +
1657 " is not of type '" + Elts[0]->getType()->getDescription());
1659 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1660 ID.Kind = ValID::t_Constant;
1661 return false;
1663 case lltok::lsquare: { // Array Constant
1664 Lex.Lex();
1665 SmallVector<Constant*, 16> Elts;
1666 LocTy FirstEltLoc = Lex.getLoc();
1667 if (ParseGlobalValueVector(Elts) ||
1668 ParseToken(lltok::rsquare, "expected end of array constant"))
1669 return true;
1671 // Handle empty element.
1672 if (Elts.empty()) {
1673 // Use undef instead of an array because it's inconvenient to determine
1674 // the element type at this point, there being no elements to examine.
1675 ID.Kind = ValID::t_EmptyArray;
1676 return false;
1679 if (!Elts[0]->getType()->isFirstClassType())
1680 return Error(FirstEltLoc, "invalid array element type: " +
1681 Elts[0]->getType()->getDescription());
1683 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1685 // Verify all elements are correct type!
1686 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1687 if (Elts[i]->getType() != Elts[0]->getType())
1688 return Error(FirstEltLoc,
1689 "array element #" + utostr(i) +
1690 " is not of type '" +Elts[0]->getType()->getDescription());
1693 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1694 ID.Kind = ValID::t_Constant;
1695 return false;
1697 case lltok::kw_c: // c "foo"
1698 Lex.Lex();
1699 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1700 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1701 ID.Kind = ValID::t_Constant;
1702 return false;
1704 case lltok::kw_asm: {
1705 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1706 bool HasSideEffect;
1707 Lex.Lex();
1708 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1709 ParseStringConstant(ID.StrVal) ||
1710 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1711 ParseToken(lltok::StringConstant, "expected constraint string"))
1712 return true;
1713 ID.StrVal2 = Lex.getStrVal();
1714 ID.UIntVal = HasSideEffect;
1715 ID.Kind = ValID::t_InlineAsm;
1716 return false;
1719 case lltok::kw_trunc:
1720 case lltok::kw_zext:
1721 case lltok::kw_sext:
1722 case lltok::kw_fptrunc:
1723 case lltok::kw_fpext:
1724 case lltok::kw_bitcast:
1725 case lltok::kw_uitofp:
1726 case lltok::kw_sitofp:
1727 case lltok::kw_fptoui:
1728 case lltok::kw_fptosi:
1729 case lltok::kw_inttoptr:
1730 case lltok::kw_ptrtoint: {
1731 unsigned Opc = Lex.getUIntVal();
1732 PATypeHolder DestTy(Type::VoidTy);
1733 Constant *SrcVal;
1734 Lex.Lex();
1735 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1736 ParseGlobalTypeAndValue(SrcVal) ||
1737 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1738 ParseType(DestTy) ||
1739 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1740 return true;
1741 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1742 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1743 SrcVal->getType()->getDescription() + "' to '" +
1744 DestTy->getDescription() + "'");
1745 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1746 DestTy);
1747 ID.Kind = ValID::t_Constant;
1748 return false;
1750 case lltok::kw_extractvalue: {
1751 Lex.Lex();
1752 Constant *Val;
1753 SmallVector<unsigned, 4> Indices;
1754 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1755 ParseGlobalTypeAndValue(Val) ||
1756 ParseIndexList(Indices) ||
1757 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1758 return true;
1759 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1760 return Error(ID.Loc, "extractvalue operand must be array or struct");
1761 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1762 Indices.end()))
1763 return Error(ID.Loc, "invalid indices for extractvalue");
1764 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1765 &Indices[0], Indices.size());
1766 ID.Kind = ValID::t_Constant;
1767 return false;
1769 case lltok::kw_insertvalue: {
1770 Lex.Lex();
1771 Constant *Val0, *Val1;
1772 SmallVector<unsigned, 4> Indices;
1773 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1774 ParseGlobalTypeAndValue(Val0) ||
1775 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1776 ParseGlobalTypeAndValue(Val1) ||
1777 ParseIndexList(Indices) ||
1778 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1779 return true;
1780 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1781 return Error(ID.Loc, "extractvalue operand must be array or struct");
1782 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1783 Indices.end()))
1784 return Error(ID.Loc, "invalid indices for insertvalue");
1785 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1786 &Indices[0], Indices.size());
1787 ID.Kind = ValID::t_Constant;
1788 return false;
1790 case lltok::kw_icmp:
1791 case lltok::kw_fcmp:
1792 case lltok::kw_vicmp:
1793 case lltok::kw_vfcmp: {
1794 unsigned PredVal, Opc = Lex.getUIntVal();
1795 Constant *Val0, *Val1;
1796 Lex.Lex();
1797 if (ParseCmpPredicate(PredVal, Opc) ||
1798 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1799 ParseGlobalTypeAndValue(Val0) ||
1800 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1801 ParseGlobalTypeAndValue(Val1) ||
1802 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1803 return true;
1805 if (Val0->getType() != Val1->getType())
1806 return Error(ID.Loc, "compare operands must have the same type");
1808 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1810 if (Opc == Instruction::FCmp) {
1811 if (!Val0->getType()->isFPOrFPVector())
1812 return Error(ID.Loc, "fcmp requires floating point operands");
1813 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1814 } else if (Opc == Instruction::ICmp) {
1815 if (!Val0->getType()->isIntOrIntVector() &&
1816 !isa<PointerType>(Val0->getType()))
1817 return Error(ID.Loc, "icmp requires pointer or integer operands");
1818 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1819 } else if (Opc == Instruction::VFCmp) {
1820 // FIXME: REMOVE VFCMP Support
1821 if (!Val0->getType()->isFPOrFPVector() ||
1822 !isa<VectorType>(Val0->getType()))
1823 return Error(ID.Loc, "vfcmp requires vector floating point operands");
1824 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1825 } else if (Opc == Instruction::VICmp) {
1826 // FIXME: REMOVE VICMP Support
1827 if (!Val0->getType()->isIntOrIntVector() ||
1828 !isa<VectorType>(Val0->getType()))
1829 return Error(ID.Loc, "vicmp requires vector floating point operands");
1830 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1832 ID.Kind = ValID::t_Constant;
1833 return false;
1836 // Binary Operators.
1837 case lltok::kw_add:
1838 case lltok::kw_sub:
1839 case lltok::kw_mul:
1840 case lltok::kw_udiv:
1841 case lltok::kw_sdiv:
1842 case lltok::kw_fdiv:
1843 case lltok::kw_urem:
1844 case lltok::kw_srem:
1845 case lltok::kw_frem: {
1846 unsigned Opc = Lex.getUIntVal();
1847 Constant *Val0, *Val1;
1848 Lex.Lex();
1849 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1850 ParseGlobalTypeAndValue(Val0) ||
1851 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1852 ParseGlobalTypeAndValue(Val1) ||
1853 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1854 return true;
1855 if (Val0->getType() != Val1->getType())
1856 return Error(ID.Loc, "operands of constexpr must have same type");
1857 if (!Val0->getType()->isIntOrIntVector() &&
1858 !Val0->getType()->isFPOrFPVector())
1859 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1860 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1861 ID.Kind = ValID::t_Constant;
1862 return false;
1865 // Logical Operations
1866 case lltok::kw_shl:
1867 case lltok::kw_lshr:
1868 case lltok::kw_ashr:
1869 case lltok::kw_and:
1870 case lltok::kw_or:
1871 case lltok::kw_xor: {
1872 unsigned Opc = Lex.getUIntVal();
1873 Constant *Val0, *Val1;
1874 Lex.Lex();
1875 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1876 ParseGlobalTypeAndValue(Val0) ||
1877 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1878 ParseGlobalTypeAndValue(Val1) ||
1879 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1880 return true;
1881 if (Val0->getType() != Val1->getType())
1882 return Error(ID.Loc, "operands of constexpr must have same type");
1883 if (!Val0->getType()->isIntOrIntVector())
1884 return Error(ID.Loc,
1885 "constexpr requires integer or integer vector operands");
1886 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1887 ID.Kind = ValID::t_Constant;
1888 return false;
1891 case lltok::kw_getelementptr:
1892 case lltok::kw_shufflevector:
1893 case lltok::kw_insertelement:
1894 case lltok::kw_extractelement:
1895 case lltok::kw_select: {
1896 unsigned Opc = Lex.getUIntVal();
1897 SmallVector<Constant*, 16> Elts;
1898 Lex.Lex();
1899 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1900 ParseGlobalValueVector(Elts) ||
1901 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1902 return true;
1904 if (Opc == Instruction::GetElementPtr) {
1905 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1906 return Error(ID.Loc, "getelementptr requires pointer operand");
1908 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1909 (Value**)&Elts[1], Elts.size()-1))
1910 return Error(ID.Loc, "invalid indices for getelementptr");
1911 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1912 &Elts[1], Elts.size()-1);
1913 } else if (Opc == Instruction::Select) {
1914 if (Elts.size() != 3)
1915 return Error(ID.Loc, "expected three operands to select");
1916 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1917 Elts[2]))
1918 return Error(ID.Loc, Reason);
1919 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1920 } else if (Opc == Instruction::ShuffleVector) {
1921 if (Elts.size() != 3)
1922 return Error(ID.Loc, "expected three operands to shufflevector");
1923 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1924 return Error(ID.Loc, "invalid operands to shufflevector");
1925 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1926 } else if (Opc == Instruction::ExtractElement) {
1927 if (Elts.size() != 2)
1928 return Error(ID.Loc, "expected two operands to extractelement");
1929 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1930 return Error(ID.Loc, "invalid extractelement operands");
1931 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1932 } else {
1933 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1934 if (Elts.size() != 3)
1935 return Error(ID.Loc, "expected three operands to insertelement");
1936 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1937 return Error(ID.Loc, "invalid insertelement operands");
1938 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1941 ID.Kind = ValID::t_Constant;
1942 return false;
1946 Lex.Lex();
1947 return false;
1950 /// ParseGlobalValue - Parse a global value with the specified type.
1951 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1952 V = 0;
1953 ValID ID;
1954 return ParseValID(ID) ||
1955 ConvertGlobalValIDToValue(Ty, ID, V);
1958 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1959 /// constant.
1960 bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1961 Constant *&V) {
1962 if (isa<FunctionType>(Ty))
1963 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1965 switch (ID.Kind) {
1966 default: assert(0 && "Unknown ValID!");
1967 case ValID::t_LocalID:
1968 case ValID::t_LocalName:
1969 return Error(ID.Loc, "invalid use of function-local name");
1970 case ValID::t_InlineAsm:
1971 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1972 case ValID::t_GlobalName:
1973 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1974 return V == 0;
1975 case ValID::t_GlobalID:
1976 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1977 return V == 0;
1978 case ValID::t_APSInt:
1979 if (!isa<IntegerType>(Ty))
1980 return Error(ID.Loc, "integer constant must have integer type");
1981 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1982 V = ConstantInt::get(ID.APSIntVal);
1983 return false;
1984 case ValID::t_APFloat:
1985 if (!Ty->isFloatingPoint() ||
1986 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1987 return Error(ID.Loc, "floating point constant invalid for type");
1989 // The lexer has no type info, so builds all float and double FP constants
1990 // as double. Fix this here. Long double does not need this.
1991 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1992 Ty == Type::FloatTy) {
1993 bool Ignored;
1994 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1995 &Ignored);
1997 V = ConstantFP::get(ID.APFloatVal);
1999 if (V->getType() != Ty)
2000 return Error(ID.Loc, "floating point constant does not have type '" +
2001 Ty->getDescription() + "'");
2003 return false;
2004 case ValID::t_Null:
2005 if (!isa<PointerType>(Ty))
2006 return Error(ID.Loc, "null must be a pointer type");
2007 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2008 return false;
2009 case ValID::t_Undef:
2010 // FIXME: LabelTy should not be a first-class type.
2011 if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2012 !isa<OpaqueType>(Ty))
2013 return Error(ID.Loc, "invalid type for undef constant");
2014 V = UndefValue::get(Ty);
2015 return false;
2016 case ValID::t_EmptyArray:
2017 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2018 return Error(ID.Loc, "invalid empty array initializer");
2019 V = UndefValue::get(Ty);
2020 return false;
2021 case ValID::t_Zero:
2022 // FIXME: LabelTy should not be a first-class type.
2023 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2024 return Error(ID.Loc, "invalid type for null constant");
2025 V = Constant::getNullValue(Ty);
2026 return false;
2027 case ValID::t_Constant:
2028 if (ID.ConstantVal->getType() != Ty)
2029 return Error(ID.Loc, "constant expression type mismatch");
2030 V = ID.ConstantVal;
2031 return false;
2035 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2036 PATypeHolder Type(Type::VoidTy);
2037 return ParseType(Type) ||
2038 ParseGlobalValue(Type, V);
2041 /// ParseGlobalValueVector
2042 /// ::= /*empty*/
2043 /// ::= TypeAndValue (',' TypeAndValue)*
2044 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2045 // Empty list.
2046 if (Lex.getKind() == lltok::rbrace ||
2047 Lex.getKind() == lltok::rsquare ||
2048 Lex.getKind() == lltok::greater ||
2049 Lex.getKind() == lltok::rparen)
2050 return false;
2052 Constant *C;
2053 if (ParseGlobalTypeAndValue(C)) return true;
2054 Elts.push_back(C);
2056 while (EatIfPresent(lltok::comma)) {
2057 if (ParseGlobalTypeAndValue(C)) return true;
2058 Elts.push_back(C);
2061 return false;
2065 //===----------------------------------------------------------------------===//
2066 // Function Parsing.
2067 //===----------------------------------------------------------------------===//
2069 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2070 PerFunctionState &PFS) {
2071 if (ID.Kind == ValID::t_LocalID)
2072 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2073 else if (ID.Kind == ValID::t_LocalName)
2074 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2075 else if (ID.Kind == ValID::t_InlineAsm) {
2076 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2077 const FunctionType *FTy =
2078 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2079 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2080 return Error(ID.Loc, "invalid type for inline asm constraint string");
2081 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2082 return false;
2083 } else {
2084 Constant *C;
2085 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2086 V = C;
2087 return false;
2090 return V == 0;
2093 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2094 V = 0;
2095 ValID ID;
2096 return ParseValID(ID) ||
2097 ConvertValIDToValue(Ty, ID, V, PFS);
2100 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2101 PATypeHolder T(Type::VoidTy);
2102 return ParseType(T) ||
2103 ParseValue(T, V, PFS);
2106 /// FunctionHeader
2107 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2108 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2109 /// OptionalAlign OptGC
2110 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2111 // Parse the linkage.
2112 LocTy LinkageLoc = Lex.getLoc();
2113 unsigned Linkage;
2115 unsigned Visibility, CC, RetAttrs;
2116 PATypeHolder RetType(Type::VoidTy);
2117 LocTy RetTypeLoc = Lex.getLoc();
2118 if (ParseOptionalLinkage(Linkage) ||
2119 ParseOptionalVisibility(Visibility) ||
2120 ParseOptionalCallingConv(CC) ||
2121 ParseOptionalAttrs(RetAttrs, 1) ||
2122 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2123 return true;
2125 // Verify that the linkage is ok.
2126 switch ((GlobalValue::LinkageTypes)Linkage) {
2127 case GlobalValue::ExternalLinkage:
2128 break; // always ok.
2129 case GlobalValue::DLLImportLinkage:
2130 case GlobalValue::ExternalWeakLinkage:
2131 if (isDefine)
2132 return Error(LinkageLoc, "invalid linkage for function definition");
2133 break;
2134 case GlobalValue::PrivateLinkage:
2135 case GlobalValue::InternalLinkage:
2136 case GlobalValue::AvailableExternallyLinkage:
2137 case GlobalValue::LinkOnceAnyLinkage:
2138 case GlobalValue::LinkOnceODRLinkage:
2139 case GlobalValue::WeakAnyLinkage:
2140 case GlobalValue::WeakODRLinkage:
2141 case GlobalValue::DLLExportLinkage:
2142 if (!isDefine)
2143 return Error(LinkageLoc, "invalid linkage for function declaration");
2144 break;
2145 case GlobalValue::AppendingLinkage:
2146 case GlobalValue::GhostLinkage:
2147 case GlobalValue::CommonLinkage:
2148 return Error(LinkageLoc, "invalid function linkage type");
2151 if (!FunctionType::isValidReturnType(RetType) ||
2152 isa<OpaqueType>(RetType))
2153 return Error(RetTypeLoc, "invalid function return type");
2155 LocTy NameLoc = Lex.getLoc();
2157 std::string FunctionName;
2158 if (Lex.getKind() == lltok::GlobalVar) {
2159 FunctionName = Lex.getStrVal();
2160 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2161 unsigned NameID = Lex.getUIntVal();
2163 if (NameID != NumberedVals.size())
2164 return TokError("function expected to be numbered '%" +
2165 utostr(NumberedVals.size()) + "'");
2166 } else {
2167 return TokError("expected function name");
2170 Lex.Lex();
2172 if (Lex.getKind() != lltok::lparen)
2173 return TokError("expected '(' in function argument list");
2175 std::vector<ArgInfo> ArgList;
2176 bool isVarArg;
2177 unsigned FuncAttrs;
2178 std::string Section;
2179 unsigned Alignment;
2180 std::string GC;
2182 if (ParseArgumentList(ArgList, isVarArg, false) ||
2183 ParseOptionalAttrs(FuncAttrs, 2) ||
2184 (EatIfPresent(lltok::kw_section) &&
2185 ParseStringConstant(Section)) ||
2186 ParseOptionalAlignment(Alignment) ||
2187 (EatIfPresent(lltok::kw_gc) &&
2188 ParseStringConstant(GC)))
2189 return true;
2191 // If the alignment was parsed as an attribute, move to the alignment field.
2192 if (FuncAttrs & Attribute::Alignment) {
2193 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2194 FuncAttrs &= ~Attribute::Alignment;
2197 // Okay, if we got here, the function is syntactically valid. Convert types
2198 // and do semantic checks.
2199 std::vector<const Type*> ParamTypeList;
2200 SmallVector<AttributeWithIndex, 8> Attrs;
2201 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2202 // attributes.
2203 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2204 if (FuncAttrs & ObsoleteFuncAttrs) {
2205 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2206 FuncAttrs &= ~ObsoleteFuncAttrs;
2209 if (RetAttrs != Attribute::None)
2210 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2212 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2213 ParamTypeList.push_back(ArgList[i].Type);
2214 if (ArgList[i].Attrs != Attribute::None)
2215 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2218 if (FuncAttrs != Attribute::None)
2219 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2221 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2223 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2224 RetType != Type::VoidTy)
2225 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2227 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2228 const PointerType *PFT = PointerType::getUnqual(FT);
2230 Fn = 0;
2231 if (!FunctionName.empty()) {
2232 // If this was a definition of a forward reference, remove the definition
2233 // from the forward reference table and fill in the forward ref.
2234 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2235 ForwardRefVals.find(FunctionName);
2236 if (FRVI != ForwardRefVals.end()) {
2237 Fn = M->getFunction(FunctionName);
2238 ForwardRefVals.erase(FRVI);
2239 } else if ((Fn = M->getFunction(FunctionName))) {
2240 // If this function already exists in the symbol table, then it is
2241 // multiply defined. We accept a few cases for old backwards compat.
2242 // FIXME: Remove this stuff for LLVM 3.0.
2243 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2244 (!Fn->isDeclaration() && isDefine)) {
2245 // If the redefinition has different type or different attributes,
2246 // reject it. If both have bodies, reject it.
2247 return Error(NameLoc, "invalid redefinition of function '" +
2248 FunctionName + "'");
2249 } else if (Fn->isDeclaration()) {
2250 // Make sure to strip off any argument names so we can't get conflicts.
2251 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2252 AI != AE; ++AI)
2253 AI->setName("");
2257 } else if (FunctionName.empty()) {
2258 // If this is a definition of a forward referenced function, make sure the
2259 // types agree.
2260 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2261 = ForwardRefValIDs.find(NumberedVals.size());
2262 if (I != ForwardRefValIDs.end()) {
2263 Fn = cast<Function>(I->second.first);
2264 if (Fn->getType() != PFT)
2265 return Error(NameLoc, "type of definition and forward reference of '@" +
2266 utostr(NumberedVals.size()) +"' disagree");
2267 ForwardRefValIDs.erase(I);
2271 if (Fn == 0)
2272 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2273 else // Move the forward-reference to the correct spot in the module.
2274 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2276 if (FunctionName.empty())
2277 NumberedVals.push_back(Fn);
2279 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2280 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2281 Fn->setCallingConv(CC);
2282 Fn->setAttributes(PAL);
2283 Fn->setAlignment(Alignment);
2284 Fn->setSection(Section);
2285 if (!GC.empty()) Fn->setGC(GC.c_str());
2287 // Add all of the arguments we parsed to the function.
2288 Function::arg_iterator ArgIt = Fn->arg_begin();
2289 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2290 // If the argument has a name, insert it into the argument symbol table.
2291 if (ArgList[i].Name.empty()) continue;
2293 // Set the name, if it conflicted, it will be auto-renamed.
2294 ArgIt->setName(ArgList[i].Name);
2296 if (ArgIt->getNameStr() != ArgList[i].Name)
2297 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2298 ArgList[i].Name + "'");
2301 return false;
2305 /// ParseFunctionBody
2306 /// ::= '{' BasicBlock+ '}'
2307 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2309 bool LLParser::ParseFunctionBody(Function &Fn) {
2310 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2311 return TokError("expected '{' in function body");
2312 Lex.Lex(); // eat the {.
2314 PerFunctionState PFS(*this, Fn);
2316 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2317 if (ParseBasicBlock(PFS)) return true;
2319 // Eat the }.
2320 Lex.Lex();
2322 // Verify function is ok.
2323 return PFS.VerifyFunctionComplete();
2326 /// ParseBasicBlock
2327 /// ::= LabelStr? Instruction*
2328 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2329 // If this basic block starts out with a name, remember it.
2330 std::string Name;
2331 LocTy NameLoc = Lex.getLoc();
2332 if (Lex.getKind() == lltok::LabelStr) {
2333 Name = Lex.getStrVal();
2334 Lex.Lex();
2337 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2338 if (BB == 0) return true;
2340 std::string NameStr;
2342 // Parse the instructions in this block until we get a terminator.
2343 Instruction *Inst;
2344 do {
2345 // This instruction may have three possibilities for a name: a) none
2346 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2347 LocTy NameLoc = Lex.getLoc();
2348 int NameID = -1;
2349 NameStr = "";
2351 if (Lex.getKind() == lltok::LocalVarID) {
2352 NameID = Lex.getUIntVal();
2353 Lex.Lex();
2354 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2355 return true;
2356 } else if (Lex.getKind() == lltok::LocalVar ||
2357 // FIXME: REMOVE IN LLVM 3.0
2358 Lex.getKind() == lltok::StringConstant) {
2359 NameStr = Lex.getStrVal();
2360 Lex.Lex();
2361 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2362 return true;
2365 if (ParseInstruction(Inst, BB, PFS)) return true;
2367 BB->getInstList().push_back(Inst);
2369 // Set the name on the instruction.
2370 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2371 } while (!isa<TerminatorInst>(Inst));
2373 return false;
2376 //===----------------------------------------------------------------------===//
2377 // Instruction Parsing.
2378 //===----------------------------------------------------------------------===//
2380 /// ParseInstruction - Parse one of the many different instructions.
2382 bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2383 PerFunctionState &PFS) {
2384 lltok::Kind Token = Lex.getKind();
2385 if (Token == lltok::Eof)
2386 return TokError("found end of file when expecting more instructions");
2387 LocTy Loc = Lex.getLoc();
2388 unsigned KeywordVal = Lex.getUIntVal();
2389 Lex.Lex(); // Eat the keyword.
2391 switch (Token) {
2392 default: return Error(Loc, "expected instruction opcode");
2393 // Terminator Instructions.
2394 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2395 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2396 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2397 case lltok::kw_br: return ParseBr(Inst, PFS);
2398 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2399 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2400 // Binary Operators.
2401 case lltok::kw_add:
2402 case lltok::kw_sub:
2403 case lltok::kw_mul: return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2405 case lltok::kw_udiv:
2406 case lltok::kw_sdiv:
2407 case lltok::kw_urem:
2408 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2409 case lltok::kw_fdiv:
2410 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2411 case lltok::kw_shl:
2412 case lltok::kw_lshr:
2413 case lltok::kw_ashr:
2414 case lltok::kw_and:
2415 case lltok::kw_or:
2416 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2417 case lltok::kw_icmp:
2418 case lltok::kw_fcmp:
2419 case lltok::kw_vicmp:
2420 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
2421 // Casts.
2422 case lltok::kw_trunc:
2423 case lltok::kw_zext:
2424 case lltok::kw_sext:
2425 case lltok::kw_fptrunc:
2426 case lltok::kw_fpext:
2427 case lltok::kw_bitcast:
2428 case lltok::kw_uitofp:
2429 case lltok::kw_sitofp:
2430 case lltok::kw_fptoui:
2431 case lltok::kw_fptosi:
2432 case lltok::kw_inttoptr:
2433 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2434 // Other.
2435 case lltok::kw_select: return ParseSelect(Inst, PFS);
2436 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2437 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2438 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2439 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2440 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2441 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2442 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2443 // Memory.
2444 case lltok::kw_alloca:
2445 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2446 case lltok::kw_free: return ParseFree(Inst, PFS);
2447 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2448 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2449 case lltok::kw_volatile:
2450 if (EatIfPresent(lltok::kw_load))
2451 return ParseLoad(Inst, PFS, true);
2452 else if (EatIfPresent(lltok::kw_store))
2453 return ParseStore(Inst, PFS, true);
2454 else
2455 return TokError("expected 'load' or 'store'");
2456 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2457 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2458 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2459 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2463 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2464 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2465 // FIXME: REMOVE vicmp/vfcmp!
2466 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2467 switch (Lex.getKind()) {
2468 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2469 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2470 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2471 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2472 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2473 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2474 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2475 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2476 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2477 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2478 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2479 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2480 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2481 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2482 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2483 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2484 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2486 } else {
2487 switch (Lex.getKind()) {
2488 default: TokError("expected icmp predicate (e.g. 'eq')");
2489 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2490 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2491 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2492 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2493 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2494 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2495 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2496 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2497 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2498 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2501 Lex.Lex();
2502 return false;
2505 //===----------------------------------------------------------------------===//
2506 // Terminator Instructions.
2507 //===----------------------------------------------------------------------===//
2509 /// ParseRet - Parse a return instruction.
2510 /// ::= 'ret' void
2511 /// ::= 'ret' TypeAndValue
2512 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2513 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2514 PerFunctionState &PFS) {
2515 PATypeHolder Ty(Type::VoidTy);
2516 if (ParseType(Ty, true /*void allowed*/)) return true;
2518 if (Ty == Type::VoidTy) {
2519 Inst = ReturnInst::Create();
2520 return false;
2523 Value *RV;
2524 if (ParseValue(Ty, RV, PFS)) return true;
2526 // The normal case is one return value.
2527 if (Lex.getKind() == lltok::comma) {
2528 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2529 // of 'ret {i32,i32} {i32 1, i32 2}'
2530 SmallVector<Value*, 8> RVs;
2531 RVs.push_back(RV);
2533 while (EatIfPresent(lltok::comma)) {
2534 if (ParseTypeAndValue(RV, PFS)) return true;
2535 RVs.push_back(RV);
2538 RV = UndefValue::get(PFS.getFunction().getReturnType());
2539 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2540 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2541 BB->getInstList().push_back(I);
2542 RV = I;
2545 Inst = ReturnInst::Create(RV);
2546 return false;
2550 /// ParseBr
2551 /// ::= 'br' TypeAndValue
2552 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2553 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2554 LocTy Loc, Loc2;
2555 Value *Op0, *Op1, *Op2;
2556 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2558 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2559 Inst = BranchInst::Create(BB);
2560 return false;
2563 if (Op0->getType() != Type::Int1Ty)
2564 return Error(Loc, "branch condition must have 'i1' type");
2566 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2567 ParseTypeAndValue(Op1, Loc, PFS) ||
2568 ParseToken(lltok::comma, "expected ',' after true destination") ||
2569 ParseTypeAndValue(Op2, Loc2, PFS))
2570 return true;
2572 if (!isa<BasicBlock>(Op1))
2573 return Error(Loc, "true destination of branch must be a basic block");
2574 if (!isa<BasicBlock>(Op2))
2575 return Error(Loc2, "true destination of branch must be a basic block");
2577 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2578 return false;
2581 /// ParseSwitch
2582 /// Instruction
2583 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2584 /// JumpTable
2585 /// ::= (TypeAndValue ',' TypeAndValue)*
2586 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2587 LocTy CondLoc, BBLoc;
2588 Value *Cond, *DefaultBB;
2589 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2590 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2591 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2592 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2593 return true;
2595 if (!isa<IntegerType>(Cond->getType()))
2596 return Error(CondLoc, "switch condition must have integer type");
2597 if (!isa<BasicBlock>(DefaultBB))
2598 return Error(BBLoc, "default destination must be a basic block");
2600 // Parse the jump table pairs.
2601 SmallPtrSet<Value*, 32> SeenCases;
2602 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2603 while (Lex.getKind() != lltok::rsquare) {
2604 Value *Constant, *DestBB;
2606 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2607 ParseToken(lltok::comma, "expected ',' after case value") ||
2608 ParseTypeAndValue(DestBB, BBLoc, PFS))
2609 return true;
2611 if (!SeenCases.insert(Constant))
2612 return Error(CondLoc, "duplicate case value in switch");
2613 if (!isa<ConstantInt>(Constant))
2614 return Error(CondLoc, "case value is not a constant integer");
2615 if (!isa<BasicBlock>(DestBB))
2616 return Error(BBLoc, "case destination is not a basic block");
2618 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2619 cast<BasicBlock>(DestBB)));
2622 Lex.Lex(); // Eat the ']'.
2624 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2625 Table.size());
2626 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2627 SI->addCase(Table[i].first, Table[i].second);
2628 Inst = SI;
2629 return false;
2632 /// ParseInvoke
2633 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2634 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2635 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2636 LocTy CallLoc = Lex.getLoc();
2637 unsigned CC, RetAttrs, FnAttrs;
2638 PATypeHolder RetType(Type::VoidTy);
2639 LocTy RetTypeLoc;
2640 ValID CalleeID;
2641 SmallVector<ParamInfo, 16> ArgList;
2643 Value *NormalBB, *UnwindBB;
2644 if (ParseOptionalCallingConv(CC) ||
2645 ParseOptionalAttrs(RetAttrs, 1) ||
2646 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2647 ParseValID(CalleeID) ||
2648 ParseParameterList(ArgList, PFS) ||
2649 ParseOptionalAttrs(FnAttrs, 2) ||
2650 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2651 ParseTypeAndValue(NormalBB, PFS) ||
2652 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2653 ParseTypeAndValue(UnwindBB, PFS))
2654 return true;
2656 if (!isa<BasicBlock>(NormalBB))
2657 return Error(CallLoc, "normal destination is not a basic block");
2658 if (!isa<BasicBlock>(UnwindBB))
2659 return Error(CallLoc, "unwind destination is not a basic block");
2661 // If RetType is a non-function pointer type, then this is the short syntax
2662 // for the call, which means that RetType is just the return type. Infer the
2663 // rest of the function argument types from the arguments that are present.
2664 const PointerType *PFTy = 0;
2665 const FunctionType *Ty = 0;
2666 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2667 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2668 // Pull out the types of all of the arguments...
2669 std::vector<const Type*> ParamTypes;
2670 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2671 ParamTypes.push_back(ArgList[i].V->getType());
2673 if (!FunctionType::isValidReturnType(RetType))
2674 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2676 Ty = FunctionType::get(RetType, ParamTypes, false);
2677 PFTy = PointerType::getUnqual(Ty);
2680 // Look up the callee.
2681 Value *Callee;
2682 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2684 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2685 // function attributes.
2686 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2687 if (FnAttrs & ObsoleteFuncAttrs) {
2688 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2689 FnAttrs &= ~ObsoleteFuncAttrs;
2692 // Set up the Attributes for the function.
2693 SmallVector<AttributeWithIndex, 8> Attrs;
2694 if (RetAttrs != Attribute::None)
2695 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2697 SmallVector<Value*, 8> Args;
2699 // Loop through FunctionType's arguments and ensure they are specified
2700 // correctly. Also, gather any parameter attributes.
2701 FunctionType::param_iterator I = Ty->param_begin();
2702 FunctionType::param_iterator E = Ty->param_end();
2703 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2704 const Type *ExpectedTy = 0;
2705 if (I != E) {
2706 ExpectedTy = *I++;
2707 } else if (!Ty->isVarArg()) {
2708 return Error(ArgList[i].Loc, "too many arguments specified");
2711 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2712 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2713 ExpectedTy->getDescription() + "'");
2714 Args.push_back(ArgList[i].V);
2715 if (ArgList[i].Attrs != Attribute::None)
2716 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2719 if (I != E)
2720 return Error(CallLoc, "not enough parameters specified for call");
2722 if (FnAttrs != Attribute::None)
2723 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2725 // Finish off the Attributes and check them
2726 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2728 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2729 cast<BasicBlock>(UnwindBB),
2730 Args.begin(), Args.end());
2731 II->setCallingConv(CC);
2732 II->setAttributes(PAL);
2733 Inst = II;
2734 return false;
2739 //===----------------------------------------------------------------------===//
2740 // Binary Operators.
2741 //===----------------------------------------------------------------------===//
2743 /// ParseArithmetic
2744 /// ::= ArithmeticOps TypeAndValue ',' Value
2746 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2747 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2748 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2749 unsigned Opc, unsigned OperandType) {
2750 LocTy Loc; Value *LHS, *RHS;
2751 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2752 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2753 ParseValue(LHS->getType(), RHS, PFS))
2754 return true;
2756 bool Valid;
2757 switch (OperandType) {
2758 default: assert(0 && "Unknown operand type!");
2759 case 0: // int or FP.
2760 Valid = LHS->getType()->isIntOrIntVector() ||
2761 LHS->getType()->isFPOrFPVector();
2762 break;
2763 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2764 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2767 if (!Valid)
2768 return Error(Loc, "invalid operand type for instruction");
2770 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2771 return false;
2774 /// ParseLogical
2775 /// ::= ArithmeticOps TypeAndValue ',' Value {
2776 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2777 unsigned Opc) {
2778 LocTy Loc; Value *LHS, *RHS;
2779 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2780 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2781 ParseValue(LHS->getType(), RHS, PFS))
2782 return true;
2784 if (!LHS->getType()->isIntOrIntVector())
2785 return Error(Loc,"instruction requires integer or integer vector operands");
2787 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2788 return false;
2792 /// ParseCompare
2793 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
2794 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2795 /// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2796 /// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2797 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2798 unsigned Opc) {
2799 // Parse the integer/fp comparison predicate.
2800 LocTy Loc;
2801 unsigned Pred;
2802 Value *LHS, *RHS;
2803 if (ParseCmpPredicate(Pred, Opc) ||
2804 ParseTypeAndValue(LHS, Loc, PFS) ||
2805 ParseToken(lltok::comma, "expected ',' after compare value") ||
2806 ParseValue(LHS->getType(), RHS, PFS))
2807 return true;
2809 if (Opc == Instruction::FCmp) {
2810 if (!LHS->getType()->isFPOrFPVector())
2811 return Error(Loc, "fcmp requires floating point operands");
2812 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2813 } else if (Opc == Instruction::ICmp) {
2814 if (!LHS->getType()->isIntOrIntVector() &&
2815 !isa<PointerType>(LHS->getType()))
2816 return Error(Loc, "icmp requires integer operands");
2817 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2818 } else if (Opc == Instruction::VFCmp) {
2819 if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2820 return Error(Loc, "vfcmp requires vector floating point operands");
2821 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2822 } else if (Opc == Instruction::VICmp) {
2823 if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2824 return Error(Loc, "vicmp requires vector floating point operands");
2825 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2827 return false;
2830 //===----------------------------------------------------------------------===//
2831 // Other Instructions.
2832 //===----------------------------------------------------------------------===//
2835 /// ParseCast
2836 /// ::= CastOpc TypeAndValue 'to' Type
2837 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2838 unsigned Opc) {
2839 LocTy Loc; Value *Op;
2840 PATypeHolder DestTy(Type::VoidTy);
2841 if (ParseTypeAndValue(Op, Loc, PFS) ||
2842 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2843 ParseType(DestTy))
2844 return true;
2846 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2847 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2848 return Error(Loc, "invalid cast opcode for cast from '" +
2849 Op->getType()->getDescription() + "' to '" +
2850 DestTy->getDescription() + "'");
2852 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2853 return false;
2856 /// ParseSelect
2857 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2858 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2859 LocTy Loc;
2860 Value *Op0, *Op1, *Op2;
2861 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2862 ParseToken(lltok::comma, "expected ',' after select condition") ||
2863 ParseTypeAndValue(Op1, PFS) ||
2864 ParseToken(lltok::comma, "expected ',' after select value") ||
2865 ParseTypeAndValue(Op2, PFS))
2866 return true;
2868 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2869 return Error(Loc, Reason);
2871 Inst = SelectInst::Create(Op0, Op1, Op2);
2872 return false;
2875 /// ParseVA_Arg
2876 /// ::= 'va_arg' TypeAndValue ',' Type
2877 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2878 Value *Op;
2879 PATypeHolder EltTy(Type::VoidTy);
2880 LocTy TypeLoc;
2881 if (ParseTypeAndValue(Op, PFS) ||
2882 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2883 ParseType(EltTy, TypeLoc))
2884 return true;
2886 if (!EltTy->isFirstClassType())
2887 return Error(TypeLoc, "va_arg requires operand with first class type");
2889 Inst = new VAArgInst(Op, EltTy);
2890 return false;
2893 /// ParseExtractElement
2894 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2895 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2896 LocTy Loc;
2897 Value *Op0, *Op1;
2898 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2899 ParseToken(lltok::comma, "expected ',' after extract value") ||
2900 ParseTypeAndValue(Op1, PFS))
2901 return true;
2903 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2904 return Error(Loc, "invalid extractelement operands");
2906 Inst = new ExtractElementInst(Op0, Op1);
2907 return false;
2910 /// ParseInsertElement
2911 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2912 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2913 LocTy Loc;
2914 Value *Op0, *Op1, *Op2;
2915 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2916 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2917 ParseTypeAndValue(Op1, PFS) ||
2918 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2919 ParseTypeAndValue(Op2, PFS))
2920 return true;
2922 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2923 return Error(Loc, "invalid extractelement operands");
2925 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2926 return false;
2929 /// ParseShuffleVector
2930 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2931 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2932 LocTy Loc;
2933 Value *Op0, *Op1, *Op2;
2934 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2935 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2936 ParseTypeAndValue(Op1, PFS) ||
2937 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2938 ParseTypeAndValue(Op2, PFS))
2939 return true;
2941 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2942 return Error(Loc, "invalid extractelement operands");
2944 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2945 return false;
2948 /// ParsePHI
2949 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2950 bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2951 PATypeHolder Ty(Type::VoidTy);
2952 Value *Op0, *Op1;
2953 LocTy TypeLoc = Lex.getLoc();
2955 if (ParseType(Ty) ||
2956 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2957 ParseValue(Ty, Op0, PFS) ||
2958 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2959 ParseValue(Type::LabelTy, Op1, PFS) ||
2960 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2961 return true;
2963 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2964 while (1) {
2965 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2967 if (!EatIfPresent(lltok::comma))
2968 break;
2970 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2971 ParseValue(Ty, Op0, PFS) ||
2972 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2973 ParseValue(Type::LabelTy, Op1, PFS) ||
2974 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2975 return true;
2978 if (!Ty->isFirstClassType())
2979 return Error(TypeLoc, "phi node must have first class type");
2981 PHINode *PN = PHINode::Create(Ty);
2982 PN->reserveOperandSpace(PHIVals.size());
2983 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2984 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2985 Inst = PN;
2986 return false;
2989 /// ParseCall
2990 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2991 /// ParameterList OptionalAttrs
2992 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2993 bool isTail) {
2994 unsigned CC, RetAttrs, FnAttrs;
2995 PATypeHolder RetType(Type::VoidTy);
2996 LocTy RetTypeLoc;
2997 ValID CalleeID;
2998 SmallVector<ParamInfo, 16> ArgList;
2999 LocTy CallLoc = Lex.getLoc();
3001 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3002 ParseOptionalCallingConv(CC) ||
3003 ParseOptionalAttrs(RetAttrs, 1) ||
3004 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3005 ParseValID(CalleeID) ||
3006 ParseParameterList(ArgList, PFS) ||
3007 ParseOptionalAttrs(FnAttrs, 2))
3008 return true;
3010 // If RetType is a non-function pointer type, then this is the short syntax
3011 // for the call, which means that RetType is just the return type. Infer the
3012 // rest of the function argument types from the arguments that are present.
3013 const PointerType *PFTy = 0;
3014 const FunctionType *Ty = 0;
3015 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3016 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3017 // Pull out the types of all of the arguments...
3018 std::vector<const Type*> ParamTypes;
3019 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3020 ParamTypes.push_back(ArgList[i].V->getType());
3022 if (!FunctionType::isValidReturnType(RetType))
3023 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3025 Ty = FunctionType::get(RetType, ParamTypes, false);
3026 PFTy = PointerType::getUnqual(Ty);
3029 // Look up the callee.
3030 Value *Callee;
3031 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3033 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3034 // function attributes.
3035 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3036 if (FnAttrs & ObsoleteFuncAttrs) {
3037 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3038 FnAttrs &= ~ObsoleteFuncAttrs;
3041 // Set up the Attributes for the function.
3042 SmallVector<AttributeWithIndex, 8> Attrs;
3043 if (RetAttrs != Attribute::None)
3044 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3046 SmallVector<Value*, 8> Args;
3048 // Loop through FunctionType's arguments and ensure they are specified
3049 // correctly. Also, gather any parameter attributes.
3050 FunctionType::param_iterator I = Ty->param_begin();
3051 FunctionType::param_iterator E = Ty->param_end();
3052 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3053 const Type *ExpectedTy = 0;
3054 if (I != E) {
3055 ExpectedTy = *I++;
3056 } else if (!Ty->isVarArg()) {
3057 return Error(ArgList[i].Loc, "too many arguments specified");
3060 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3061 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3062 ExpectedTy->getDescription() + "'");
3063 Args.push_back(ArgList[i].V);
3064 if (ArgList[i].Attrs != Attribute::None)
3065 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3068 if (I != E)
3069 return Error(CallLoc, "not enough parameters specified for call");
3071 if (FnAttrs != Attribute::None)
3072 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3074 // Finish off the Attributes and check them
3075 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3077 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3078 CI->setTailCall(isTail);
3079 CI->setCallingConv(CC);
3080 CI->setAttributes(PAL);
3081 Inst = CI;
3082 return false;
3085 //===----------------------------------------------------------------------===//
3086 // Memory Instructions.
3087 //===----------------------------------------------------------------------===//
3089 /// ParseAlloc
3090 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3091 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3092 bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3093 unsigned Opc) {
3094 PATypeHolder Ty(Type::VoidTy);
3095 Value *Size = 0;
3096 LocTy SizeLoc = 0;
3097 unsigned Alignment = 0;
3098 if (ParseType(Ty)) return true;
3100 if (EatIfPresent(lltok::comma)) {
3101 if (Lex.getKind() == lltok::kw_align) {
3102 if (ParseOptionalAlignment(Alignment)) return true;
3103 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3104 ParseOptionalCommaAlignment(Alignment)) {
3105 return true;
3109 if (Size && Size->getType() != Type::Int32Ty)
3110 return Error(SizeLoc, "element count must be i32");
3112 if (Opc == Instruction::Malloc)
3113 Inst = new MallocInst(Ty, Size, Alignment);
3114 else
3115 Inst = new AllocaInst(Ty, Size, Alignment);
3116 return false;
3119 /// ParseFree
3120 /// ::= 'free' TypeAndValue
3121 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3122 Value *Val; LocTy Loc;
3123 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3124 if (!isa<PointerType>(Val->getType()))
3125 return Error(Loc, "operand to free must be a pointer");
3126 Inst = new FreeInst(Val);
3127 return false;
3130 /// ParseLoad
3131 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3132 bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3133 bool isVolatile) {
3134 Value *Val; LocTy Loc;
3135 unsigned Alignment;
3136 if (ParseTypeAndValue(Val, Loc, PFS) ||
3137 ParseOptionalCommaAlignment(Alignment))
3138 return true;
3140 if (!isa<PointerType>(Val->getType()) ||
3141 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3142 return Error(Loc, "load operand must be a pointer to a first class type");
3144 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3145 return false;
3148 /// ParseStore
3149 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3150 bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3151 bool isVolatile) {
3152 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3153 unsigned Alignment;
3154 if (ParseTypeAndValue(Val, Loc, PFS) ||
3155 ParseToken(lltok::comma, "expected ',' after store operand") ||
3156 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3157 ParseOptionalCommaAlignment(Alignment))
3158 return true;
3160 if (!isa<PointerType>(Ptr->getType()))
3161 return Error(PtrLoc, "store operand must be a pointer");
3162 if (!Val->getType()->isFirstClassType())
3163 return Error(Loc, "store operand must be a first class value");
3164 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3165 return Error(Loc, "stored value and pointer type do not match");
3167 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3168 return false;
3171 /// ParseGetResult
3172 /// ::= 'getresult' TypeAndValue ',' uint
3173 /// FIXME: Remove support for getresult in LLVM 3.0
3174 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3175 Value *Val; LocTy ValLoc, EltLoc;
3176 unsigned Element;
3177 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3178 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3179 ParseUInt32(Element, EltLoc))
3180 return true;
3182 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3183 return Error(ValLoc, "getresult inst requires an aggregate operand");
3184 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3185 return Error(EltLoc, "invalid getresult index for value");
3186 Inst = ExtractValueInst::Create(Val, Element);
3187 return false;
3190 /// ParseGetElementPtr
3191 /// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3192 bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3193 Value *Ptr, *Val; LocTy Loc, EltLoc;
3194 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3196 if (!isa<PointerType>(Ptr->getType()))
3197 return Error(Loc, "base of getelementptr must be a pointer");
3199 SmallVector<Value*, 16> Indices;
3200 while (EatIfPresent(lltok::comma)) {
3201 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3202 if (!isa<IntegerType>(Val->getType()))
3203 return Error(EltLoc, "getelementptr index must be an integer");
3204 Indices.push_back(Val);
3207 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3208 Indices.begin(), Indices.end()))
3209 return Error(Loc, "invalid getelementptr indices");
3210 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3211 return false;
3214 /// ParseExtractValue
3215 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3216 bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3217 Value *Val; LocTy Loc;
3218 SmallVector<unsigned, 4> Indices;
3219 if (ParseTypeAndValue(Val, Loc, PFS) ||
3220 ParseIndexList(Indices))
3221 return true;
3223 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3224 return Error(Loc, "extractvalue operand must be array or struct");
3226 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3227 Indices.end()))
3228 return Error(Loc, "invalid indices for extractvalue");
3229 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3230 return false;
3233 /// ParseInsertValue
3234 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3235 bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3236 Value *Val0, *Val1; LocTy Loc0, Loc1;
3237 SmallVector<unsigned, 4> Indices;
3238 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3239 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3240 ParseTypeAndValue(Val1, Loc1, PFS) ||
3241 ParseIndexList(Indices))
3242 return true;
3244 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3245 return Error(Loc0, "extractvalue operand must be array or struct");
3247 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3248 Indices.end()))
3249 return Error(Loc0, "invalid indices for insertvalue");
3250 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3251 return false;
3254 //===----------------------------------------------------------------------===//
3255 // Embedded metadata.
3256 //===----------------------------------------------------------------------===//
3258 /// ParseMDNodeVector
3259 /// ::= Element (',' Element)*
3260 /// Element
3261 /// ::= 'null' | TypeAndValue
3262 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3263 assert(Lex.getKind() == lltok::lbrace);
3264 Lex.Lex();
3265 do {
3266 Value *V;
3267 if (Lex.getKind() == lltok::kw_null) {
3268 Lex.Lex();
3269 V = 0;
3270 } else {
3271 Constant *C;
3272 if (ParseGlobalTypeAndValue(C)) return true;
3273 V = C;
3275 Elts.push_back(V);
3276 } while (EatIfPresent(lltok::comma));
3278 return false;