Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Bitcode / Reader / BitcodeReader.cpp
blobd2b4544cb0060c40f3e10b050bf0a36f70798bc1
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/MDNode.h"
21 #include "llvm/Module.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
30 void BitcodeReader::FreeState() {
31 delete Buffer;
32 Buffer = 0;
33 std::vector<PATypeHolder>().swap(TypeList);
34 ValueList.clear();
36 std::vector<AttrListPtr>().swap(MAttributes);
37 std::vector<BasicBlock*>().swap(FunctionBBs);
38 std::vector<Function*>().swap(FunctionsWithBodies);
39 DeferredFunctionInfo.clear();
42 //===----------------------------------------------------------------------===//
43 // Helper functions to implement forward reference resolution, etc.
44 //===----------------------------------------------------------------------===//
46 /// ConvertToString - Convert a string from a record into an std::string, return
47 /// true on failure.
48 template<typename StrTy>
49 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
50 StrTy &Result) {
51 if (Idx > Record.size())
52 return true;
54 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
55 Result += (char)Record[i];
56 return false;
59 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
60 switch (Val) {
61 default: // Map unknown/new linkages to external
62 case 0: return GlobalValue::ExternalLinkage;
63 case 1: return GlobalValue::WeakAnyLinkage;
64 case 2: return GlobalValue::AppendingLinkage;
65 case 3: return GlobalValue::InternalLinkage;
66 case 4: return GlobalValue::LinkOnceAnyLinkage;
67 case 5: return GlobalValue::DLLImportLinkage;
68 case 6: return GlobalValue::DLLExportLinkage;
69 case 7: return GlobalValue::ExternalWeakLinkage;
70 case 8: return GlobalValue::CommonLinkage;
71 case 9: return GlobalValue::PrivateLinkage;
72 case 10: return GlobalValue::WeakODRLinkage;
73 case 11: return GlobalValue::LinkOnceODRLinkage;
74 case 12: return GlobalValue::AvailableExternallyLinkage;
78 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
79 switch (Val) {
80 default: // Map unknown visibilities to default.
81 case 0: return GlobalValue::DefaultVisibility;
82 case 1: return GlobalValue::HiddenVisibility;
83 case 2: return GlobalValue::ProtectedVisibility;
87 static int GetDecodedCastOpcode(unsigned Val) {
88 switch (Val) {
89 default: return -1;
90 case bitc::CAST_TRUNC : return Instruction::Trunc;
91 case bitc::CAST_ZEXT : return Instruction::ZExt;
92 case bitc::CAST_SEXT : return Instruction::SExt;
93 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
94 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
95 case bitc::CAST_UITOFP : return Instruction::UIToFP;
96 case bitc::CAST_SITOFP : return Instruction::SIToFP;
97 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
98 case bitc::CAST_FPEXT : return Instruction::FPExt;
99 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
100 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
101 case bitc::CAST_BITCAST : return Instruction::BitCast;
104 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
105 switch (Val) {
106 default: return -1;
107 case bitc::BINOP_ADD: return Instruction::Add;
108 case bitc::BINOP_SUB: return Instruction::Sub;
109 case bitc::BINOP_MUL: return Instruction::Mul;
110 case bitc::BINOP_UDIV: return Instruction::UDiv;
111 case bitc::BINOP_SDIV:
112 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
113 case bitc::BINOP_UREM: return Instruction::URem;
114 case bitc::BINOP_SREM:
115 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
116 case bitc::BINOP_SHL: return Instruction::Shl;
117 case bitc::BINOP_LSHR: return Instruction::LShr;
118 case bitc::BINOP_ASHR: return Instruction::AShr;
119 case bitc::BINOP_AND: return Instruction::And;
120 case bitc::BINOP_OR: return Instruction::Or;
121 case bitc::BINOP_XOR: return Instruction::Xor;
125 namespace llvm {
126 namespace {
127 /// @brief A class for maintaining the slot number definition
128 /// as a placeholder for the actual definition for forward constants defs.
129 class ConstantPlaceHolder : public ConstantExpr {
130 ConstantPlaceHolder(); // DO NOT IMPLEMENT
131 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
132 public:
133 // allocate space for exactly one operand
134 void *operator new(size_t s) {
135 return User::operator new(s, 1);
137 explicit ConstantPlaceHolder(const Type *Ty)
138 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
139 Op<0>() = UndefValue::get(Type::Int32Ty);
142 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
143 static inline bool classof(const ConstantPlaceHolder *) { return true; }
144 static bool classof(const Value *V) {
145 return isa<ConstantExpr>(V) &&
146 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
150 /// Provide fast operand accessors
151 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
155 // FIXME: can we inherit this from ConstantExpr?
156 template <>
157 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
162 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
163 if (Idx == size()) {
164 push_back(V);
165 return;
168 if (Idx >= size())
169 resize(Idx+1);
171 WeakVH &OldV = ValuePtrs[Idx];
172 if (OldV == 0) {
173 OldV = V;
174 return;
177 // Handle constants and non-constants (e.g. instrs) differently for
178 // efficiency.
179 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
180 ResolveConstants.push_back(std::make_pair(PHC, Idx));
181 OldV = V;
182 } else {
183 // If there was a forward reference to this value, replace it.
184 Value *PrevVal = OldV;
185 OldV->replaceAllUsesWith(V);
186 delete PrevVal;
191 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
192 const Type *Ty) {
193 if (Idx >= size())
194 resize(Idx + 1);
196 if (Value *V = ValuePtrs[Idx]) {
197 assert(Ty == V->getType() && "Type mismatch in constant table!");
198 return cast<Constant>(V);
201 // Create and return a placeholder, which will later be RAUW'd.
202 Constant *C = new ConstantPlaceHolder(Ty);
203 ValuePtrs[Idx] = C;
204 return C;
207 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
208 if (Idx >= size())
209 resize(Idx + 1);
211 if (Value *V = ValuePtrs[Idx]) {
212 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
213 return V;
216 // No type specified, must be invalid reference.
217 if (Ty == 0) return 0;
219 // Create and return a placeholder, which will later be RAUW'd.
220 Value *V = new Argument(Ty);
221 ValuePtrs[Idx] = V;
222 return V;
225 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
226 /// resolves any forward references. The idea behind this is that we sometimes
227 /// get constants (such as large arrays) which reference *many* forward ref
228 /// constants. Replacing each of these causes a lot of thrashing when
229 /// building/reuniquing the constant. Instead of doing this, we look at all the
230 /// uses and rewrite all the place holders at once for any constant that uses
231 /// a placeholder.
232 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
233 // Sort the values by-pointer so that they are efficient to look up with a
234 // binary search.
235 std::sort(ResolveConstants.begin(), ResolveConstants.end());
237 SmallVector<Constant*, 64> NewOps;
239 while (!ResolveConstants.empty()) {
240 Value *RealVal = operator[](ResolveConstants.back().second);
241 Constant *Placeholder = ResolveConstants.back().first;
242 ResolveConstants.pop_back();
244 // Loop over all users of the placeholder, updating them to reference the
245 // new value. If they reference more than one placeholder, update them all
246 // at once.
247 while (!Placeholder->use_empty()) {
248 Value::use_iterator UI = Placeholder->use_begin();
250 // If the using object isn't uniqued, just update the operands. This
251 // handles instructions and initializers for global variables.
252 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
253 UI.getUse().set(RealVal);
254 continue;
257 // Otherwise, we have a constant that uses the placeholder. Replace that
258 // constant with a new constant that has *all* placeholder uses updated.
259 Constant *UserC = cast<Constant>(*UI);
260 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
261 I != E; ++I) {
262 Value *NewOp;
263 if (!isa<ConstantPlaceHolder>(*I)) {
264 // Not a placeholder reference.
265 NewOp = *I;
266 } else if (*I == Placeholder) {
267 // Common case is that it just references this one placeholder.
268 NewOp = RealVal;
269 } else {
270 // Otherwise, look up the placeholder in ResolveConstants.
271 ResolveConstantsTy::iterator It =
272 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
273 std::pair<Constant*, unsigned>(cast<Constant>(*I),
274 0));
275 assert(It != ResolveConstants.end() && It->first == *I);
276 NewOp = operator[](It->second);
279 NewOps.push_back(cast<Constant>(NewOp));
282 // Make the new constant.
283 Constant *NewC;
284 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
285 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
286 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
287 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
288 UserCS->getType()->isPacked());
289 } else if (isa<ConstantVector>(UserC)) {
290 NewC = ConstantVector::get(&NewOps[0], NewOps.size());
291 } else {
292 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
293 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
294 NewOps.size());
297 UserC->replaceAllUsesWith(NewC);
298 UserC->destroyConstant();
299 NewOps.clear();
302 // Update all ValueHandles, they should be the only users at this point.
303 Placeholder->replaceAllUsesWith(RealVal);
304 delete Placeholder;
309 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
310 // If the TypeID is in range, return it.
311 if (ID < TypeList.size())
312 return TypeList[ID].get();
313 if (!isTypeTable) return 0;
315 // The type table allows forward references. Push as many Opaque types as
316 // needed to get up to ID.
317 while (TypeList.size() <= ID)
318 TypeList.push_back(OpaqueType::get());
319 return TypeList.back().get();
322 //===----------------------------------------------------------------------===//
323 // Functions for parsing blocks from the bitcode file
324 //===----------------------------------------------------------------------===//
326 bool BitcodeReader::ParseAttributeBlock() {
327 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
328 return Error("Malformed block record");
330 if (!MAttributes.empty())
331 return Error("Multiple PARAMATTR blocks found!");
333 SmallVector<uint64_t, 64> Record;
335 SmallVector<AttributeWithIndex, 8> Attrs;
337 // Read all the records.
338 while (1) {
339 unsigned Code = Stream.ReadCode();
340 if (Code == bitc::END_BLOCK) {
341 if (Stream.ReadBlockEnd())
342 return Error("Error at end of PARAMATTR block");
343 return false;
346 if (Code == bitc::ENTER_SUBBLOCK) {
347 // No known subblocks, always skip them.
348 Stream.ReadSubBlockID();
349 if (Stream.SkipBlock())
350 return Error("Malformed block record");
351 continue;
354 if (Code == bitc::DEFINE_ABBREV) {
355 Stream.ReadAbbrevRecord();
356 continue;
359 // Read a record.
360 Record.clear();
361 switch (Stream.ReadRecord(Code, Record)) {
362 default: // Default behavior: ignore.
363 break;
364 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
365 if (Record.size() & 1)
366 return Error("Invalid ENTRY record");
368 // FIXME : Remove this autoupgrade code in LLVM 3.0.
369 // If Function attributes are using index 0 then transfer them
370 // to index ~0. Index 0 is used for return value attributes but used to be
371 // used for function attributes.
372 Attributes RetAttribute = Attribute::None;
373 Attributes FnAttribute = Attribute::None;
374 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
375 // FIXME: remove in LLVM 3.0
376 // The alignment is stored as a 16-bit raw value from bits 31--16.
377 // We shift the bits above 31 down by 11 bits.
379 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
380 if (Alignment && !isPowerOf2_32(Alignment))
381 return Error("Alignment is not a power of two.");
383 Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
384 if (Alignment)
385 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
386 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
387 Record[i+1] = ReconstitutedAttr;
389 if (Record[i] == 0)
390 RetAttribute = Record[i+1];
391 else if (Record[i] == ~0U)
392 FnAttribute = Record[i+1];
395 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
396 Attribute::ReadOnly|Attribute::ReadNone);
398 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
399 (RetAttribute & OldRetAttrs) != 0) {
400 if (FnAttribute == Attribute::None) { // add a slot so they get added.
401 Record.push_back(~0U);
402 Record.push_back(0);
405 FnAttribute |= RetAttribute & OldRetAttrs;
406 RetAttribute &= ~OldRetAttrs;
409 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
410 if (Record[i] == 0) {
411 if (RetAttribute != Attribute::None)
412 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
413 } else if (Record[i] == ~0U) {
414 if (FnAttribute != Attribute::None)
415 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
416 } else if (Record[i+1] != Attribute::None)
417 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
420 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
421 Attrs.clear();
422 break;
429 bool BitcodeReader::ParseTypeTable() {
430 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
431 return Error("Malformed block record");
433 if (!TypeList.empty())
434 return Error("Multiple TYPE_BLOCKs found!");
436 SmallVector<uint64_t, 64> Record;
437 unsigned NumRecords = 0;
439 // Read all the records for this type table.
440 while (1) {
441 unsigned Code = Stream.ReadCode();
442 if (Code == bitc::END_BLOCK) {
443 if (NumRecords != TypeList.size())
444 return Error("Invalid type forward reference in TYPE_BLOCK");
445 if (Stream.ReadBlockEnd())
446 return Error("Error at end of type table block");
447 return false;
450 if (Code == bitc::ENTER_SUBBLOCK) {
451 // No known subblocks, always skip them.
452 Stream.ReadSubBlockID();
453 if (Stream.SkipBlock())
454 return Error("Malformed block record");
455 continue;
458 if (Code == bitc::DEFINE_ABBREV) {
459 Stream.ReadAbbrevRecord();
460 continue;
463 // Read a record.
464 Record.clear();
465 const Type *ResultTy = 0;
466 switch (Stream.ReadRecord(Code, Record)) {
467 default: // Default behavior: unknown type.
468 ResultTy = 0;
469 break;
470 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
471 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
472 // type list. This allows us to reserve space.
473 if (Record.size() < 1)
474 return Error("Invalid TYPE_CODE_NUMENTRY record");
475 TypeList.reserve(Record[0]);
476 continue;
477 case bitc::TYPE_CODE_VOID: // VOID
478 ResultTy = Type::VoidTy;
479 break;
480 case bitc::TYPE_CODE_FLOAT: // FLOAT
481 ResultTy = Type::FloatTy;
482 break;
483 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
484 ResultTy = Type::DoubleTy;
485 break;
486 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
487 ResultTy = Type::X86_FP80Ty;
488 break;
489 case bitc::TYPE_CODE_FP128: // FP128
490 ResultTy = Type::FP128Ty;
491 break;
492 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
493 ResultTy = Type::PPC_FP128Ty;
494 break;
495 case bitc::TYPE_CODE_LABEL: // LABEL
496 ResultTy = Type::LabelTy;
497 break;
498 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
499 ResultTy = 0;
500 break;
501 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
502 if (Record.size() < 1)
503 return Error("Invalid Integer type record");
505 ResultTy = IntegerType::get(Record[0]);
506 break;
507 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
508 // [pointee type, address space]
509 if (Record.size() < 1)
510 return Error("Invalid POINTER type record");
511 unsigned AddressSpace = 0;
512 if (Record.size() == 2)
513 AddressSpace = Record[1];
514 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
515 break;
517 case bitc::TYPE_CODE_FUNCTION: {
518 // FIXME: attrid is dead, remove it in LLVM 3.0
519 // FUNCTION: [vararg, attrid, retty, paramty x N]
520 if (Record.size() < 3)
521 return Error("Invalid FUNCTION type record");
522 std::vector<const Type*> ArgTys;
523 for (unsigned i = 3, e = Record.size(); i != e; ++i)
524 ArgTys.push_back(getTypeByID(Record[i], true));
526 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
527 Record[0]);
528 break;
530 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
531 if (Record.size() < 1)
532 return Error("Invalid STRUCT type record");
533 std::vector<const Type*> EltTys;
534 for (unsigned i = 1, e = Record.size(); i != e; ++i)
535 EltTys.push_back(getTypeByID(Record[i], true));
536 ResultTy = StructType::get(EltTys, Record[0]);
537 break;
539 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
540 if (Record.size() < 2)
541 return Error("Invalid ARRAY type record");
542 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
543 break;
544 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
545 if (Record.size() < 2)
546 return Error("Invalid VECTOR type record");
547 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
548 break;
551 if (NumRecords == TypeList.size()) {
552 // If this is a new type slot, just append it.
553 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
554 ++NumRecords;
555 } else if (ResultTy == 0) {
556 // Otherwise, this was forward referenced, so an opaque type was created,
557 // but the result type is actually just an opaque. Leave the one we
558 // created previously.
559 ++NumRecords;
560 } else {
561 // Otherwise, this was forward referenced, so an opaque type was created.
562 // Resolve the opaque type to the real type now.
563 assert(NumRecords < TypeList.size() && "Typelist imbalance");
564 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
566 // Don't directly push the new type on the Tab. Instead we want to replace
567 // the opaque type we previously inserted with the new concrete value. The
568 // refinement from the abstract (opaque) type to the new type causes all
569 // uses of the abstract type to use the concrete type (NewTy). This will
570 // also cause the opaque type to be deleted.
571 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
573 // This should have replaced the old opaque type with the new type in the
574 // value table... or with a preexisting type that was already in the
575 // system. Let's just make sure it did.
576 assert(TypeList[NumRecords-1].get() != OldTy &&
577 "refineAbstractType didn't work!");
583 bool BitcodeReader::ParseTypeSymbolTable() {
584 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
585 return Error("Malformed block record");
587 SmallVector<uint64_t, 64> Record;
589 // Read all the records for this type table.
590 std::string TypeName;
591 while (1) {
592 unsigned Code = Stream.ReadCode();
593 if (Code == bitc::END_BLOCK) {
594 if (Stream.ReadBlockEnd())
595 return Error("Error at end of type symbol table block");
596 return false;
599 if (Code == bitc::ENTER_SUBBLOCK) {
600 // No known subblocks, always skip them.
601 Stream.ReadSubBlockID();
602 if (Stream.SkipBlock())
603 return Error("Malformed block record");
604 continue;
607 if (Code == bitc::DEFINE_ABBREV) {
608 Stream.ReadAbbrevRecord();
609 continue;
612 // Read a record.
613 Record.clear();
614 switch (Stream.ReadRecord(Code, Record)) {
615 default: // Default behavior: unknown type.
616 break;
617 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
618 if (ConvertToString(Record, 1, TypeName))
619 return Error("Invalid TST_ENTRY record");
620 unsigned TypeID = Record[0];
621 if (TypeID >= TypeList.size())
622 return Error("Invalid Type ID in TST_ENTRY record");
624 TheModule->addTypeName(TypeName, TypeList[TypeID].get());
625 TypeName.clear();
626 break;
631 bool BitcodeReader::ParseValueSymbolTable() {
632 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
633 return Error("Malformed block record");
635 SmallVector<uint64_t, 64> Record;
637 // Read all the records for this value table.
638 SmallString<128> ValueName;
639 while (1) {
640 unsigned Code = Stream.ReadCode();
641 if (Code == bitc::END_BLOCK) {
642 if (Stream.ReadBlockEnd())
643 return Error("Error at end of value symbol table block");
644 return false;
646 if (Code == bitc::ENTER_SUBBLOCK) {
647 // No known subblocks, always skip them.
648 Stream.ReadSubBlockID();
649 if (Stream.SkipBlock())
650 return Error("Malformed block record");
651 continue;
654 if (Code == bitc::DEFINE_ABBREV) {
655 Stream.ReadAbbrevRecord();
656 continue;
659 // Read a record.
660 Record.clear();
661 switch (Stream.ReadRecord(Code, Record)) {
662 default: // Default behavior: unknown type.
663 break;
664 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
665 if (ConvertToString(Record, 1, ValueName))
666 return Error("Invalid TST_ENTRY record");
667 unsigned ValueID = Record[0];
668 if (ValueID >= ValueList.size())
669 return Error("Invalid Value ID in VST_ENTRY record");
670 Value *V = ValueList[ValueID];
672 V->setName(&ValueName[0], ValueName.size());
673 ValueName.clear();
674 break;
676 case bitc::VST_CODE_BBENTRY: {
677 if (ConvertToString(Record, 1, ValueName))
678 return Error("Invalid VST_BBENTRY record");
679 BasicBlock *BB = getBasicBlock(Record[0]);
680 if (BB == 0)
681 return Error("Invalid BB ID in VST_BBENTRY record");
683 BB->setName(&ValueName[0], ValueName.size());
684 ValueName.clear();
685 break;
691 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
692 /// the LSB for dense VBR encoding.
693 static uint64_t DecodeSignRotatedValue(uint64_t V) {
694 if ((V & 1) == 0)
695 return V >> 1;
696 if (V != 1)
697 return -(V >> 1);
698 // There is no such thing as -0 with integers. "-0" really means MININT.
699 return 1ULL << 63;
702 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
703 /// values and aliases that we can.
704 bool BitcodeReader::ResolveGlobalAndAliasInits() {
705 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
706 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
708 GlobalInitWorklist.swap(GlobalInits);
709 AliasInitWorklist.swap(AliasInits);
711 while (!GlobalInitWorklist.empty()) {
712 unsigned ValID = GlobalInitWorklist.back().second;
713 if (ValID >= ValueList.size()) {
714 // Not ready to resolve this yet, it requires something later in the file.
715 GlobalInits.push_back(GlobalInitWorklist.back());
716 } else {
717 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
718 GlobalInitWorklist.back().first->setInitializer(C);
719 else
720 return Error("Global variable initializer is not a constant!");
722 GlobalInitWorklist.pop_back();
725 while (!AliasInitWorklist.empty()) {
726 unsigned ValID = AliasInitWorklist.back().second;
727 if (ValID >= ValueList.size()) {
728 AliasInits.push_back(AliasInitWorklist.back());
729 } else {
730 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
731 AliasInitWorklist.back().first->setAliasee(C);
732 else
733 return Error("Alias initializer is not a constant!");
735 AliasInitWorklist.pop_back();
737 return false;
741 bool BitcodeReader::ParseConstants() {
742 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
743 return Error("Malformed block record");
745 SmallVector<uint64_t, 64> Record;
747 // Read all the records for this value table.
748 const Type *CurTy = Type::Int32Ty;
749 unsigned NextCstNo = ValueList.size();
750 while (1) {
751 unsigned Code = Stream.ReadCode();
752 if (Code == bitc::END_BLOCK)
753 break;
755 if (Code == bitc::ENTER_SUBBLOCK) {
756 // No known subblocks, always skip them.
757 Stream.ReadSubBlockID();
758 if (Stream.SkipBlock())
759 return Error("Malformed block record");
760 continue;
763 if (Code == bitc::DEFINE_ABBREV) {
764 Stream.ReadAbbrevRecord();
765 continue;
768 // Read a record.
769 Record.clear();
770 Value *V = 0;
771 switch (Stream.ReadRecord(Code, Record)) {
772 default: // Default behavior: unknown constant
773 case bitc::CST_CODE_UNDEF: // UNDEF
774 V = UndefValue::get(CurTy);
775 break;
776 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
777 if (Record.empty())
778 return Error("Malformed CST_SETTYPE record");
779 if (Record[0] >= TypeList.size())
780 return Error("Invalid Type ID in CST_SETTYPE record");
781 CurTy = TypeList[Record[0]];
782 continue; // Skip the ValueList manipulation.
783 case bitc::CST_CODE_NULL: // NULL
784 V = Constant::getNullValue(CurTy);
785 break;
786 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
787 if (!isa<IntegerType>(CurTy) || Record.empty())
788 return Error("Invalid CST_INTEGER record");
789 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
790 break;
791 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
792 if (!isa<IntegerType>(CurTy) || Record.empty())
793 return Error("Invalid WIDE_INTEGER record");
795 unsigned NumWords = Record.size();
796 SmallVector<uint64_t, 8> Words;
797 Words.resize(NumWords);
798 for (unsigned i = 0; i != NumWords; ++i)
799 Words[i] = DecodeSignRotatedValue(Record[i]);
800 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
801 NumWords, &Words[0]));
802 break;
804 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
805 if (Record.empty())
806 return Error("Invalid FLOAT record");
807 if (CurTy == Type::FloatTy)
808 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
809 else if (CurTy == Type::DoubleTy)
810 V = ConstantFP::get(APFloat(APInt(64, Record[0])));
811 else if (CurTy == Type::X86_FP80Ty) {
812 // Bits are not stored the same way as a normal i80 APInt, compensate.
813 uint64_t Rearrange[2];
814 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
815 Rearrange[1] = Record[0] >> 48;
816 V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
817 } else if (CurTy == Type::FP128Ty)
818 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
819 else if (CurTy == Type::PPC_FP128Ty)
820 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
821 else
822 V = UndefValue::get(CurTy);
823 break;
826 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
827 if (Record.empty())
828 return Error("Invalid CST_AGGREGATE record");
830 unsigned Size = Record.size();
831 std::vector<Constant*> Elts;
833 if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
834 for (unsigned i = 0; i != Size; ++i)
835 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
836 STy->getElementType(i)));
837 V = ConstantStruct::get(STy, Elts);
838 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
839 const Type *EltTy = ATy->getElementType();
840 for (unsigned i = 0; i != Size; ++i)
841 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
842 V = ConstantArray::get(ATy, Elts);
843 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
844 const Type *EltTy = VTy->getElementType();
845 for (unsigned i = 0; i != Size; ++i)
846 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
847 V = ConstantVector::get(Elts);
848 } else {
849 V = UndefValue::get(CurTy);
851 break;
853 case bitc::CST_CODE_STRING: { // STRING: [values]
854 if (Record.empty())
855 return Error("Invalid CST_AGGREGATE record");
857 const ArrayType *ATy = cast<ArrayType>(CurTy);
858 const Type *EltTy = ATy->getElementType();
860 unsigned Size = Record.size();
861 std::vector<Constant*> Elts;
862 for (unsigned i = 0; i != Size; ++i)
863 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
864 V = ConstantArray::get(ATy, Elts);
865 break;
867 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
868 if (Record.empty())
869 return Error("Invalid CST_AGGREGATE record");
871 const ArrayType *ATy = cast<ArrayType>(CurTy);
872 const Type *EltTy = ATy->getElementType();
874 unsigned Size = Record.size();
875 std::vector<Constant*> Elts;
876 for (unsigned i = 0; i != Size; ++i)
877 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
878 Elts.push_back(Constant::getNullValue(EltTy));
879 V = ConstantArray::get(ATy, Elts);
880 break;
882 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
883 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
884 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
885 if (Opc < 0) {
886 V = UndefValue::get(CurTy); // Unknown binop.
887 } else {
888 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
889 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
890 V = ConstantExpr::get(Opc, LHS, RHS);
892 break;
894 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
895 if (Record.size() < 3) return Error("Invalid CE_CAST record");
896 int Opc = GetDecodedCastOpcode(Record[0]);
897 if (Opc < 0) {
898 V = UndefValue::get(CurTy); // Unknown cast.
899 } else {
900 const Type *OpTy = getTypeByID(Record[1]);
901 if (!OpTy) return Error("Invalid CE_CAST record");
902 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
903 V = ConstantExpr::getCast(Opc, Op, CurTy);
905 break;
907 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
908 if (Record.size() & 1) return Error("Invalid CE_GEP record");
909 SmallVector<Constant*, 16> Elts;
910 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
911 const Type *ElTy = getTypeByID(Record[i]);
912 if (!ElTy) return Error("Invalid CE_GEP record");
913 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
915 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
916 break;
918 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
919 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
920 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
921 Type::Int1Ty),
922 ValueList.getConstantFwdRef(Record[1],CurTy),
923 ValueList.getConstantFwdRef(Record[2],CurTy));
924 break;
925 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
926 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
927 const VectorType *OpTy =
928 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
929 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
930 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
931 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
932 V = ConstantExpr::getExtractElement(Op0, Op1);
933 break;
935 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
936 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
937 if (Record.size() < 3 || OpTy == 0)
938 return Error("Invalid CE_INSERTELT record");
939 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
940 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
941 OpTy->getElementType());
942 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
943 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
944 break;
946 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
947 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
948 if (Record.size() < 3 || OpTy == 0)
949 return Error("Invalid CE_SHUFFLEVEC record");
950 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
951 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
952 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
953 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
954 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
955 break;
957 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
958 const VectorType *RTy = dyn_cast<VectorType>(CurTy);
959 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
960 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
961 return Error("Invalid CE_SHUFVEC_EX record");
962 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
963 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
964 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
965 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
966 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
967 break;
969 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
970 if (Record.size() < 4) return Error("Invalid CE_CMP record");
971 const Type *OpTy = getTypeByID(Record[0]);
972 if (OpTy == 0) return Error("Invalid CE_CMP record");
973 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
974 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
976 if (OpTy->isFloatingPoint())
977 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
978 else if (!isa<VectorType>(OpTy))
979 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
980 else if (OpTy->isFPOrFPVector())
981 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
982 else
983 V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
984 break;
986 case bitc::CST_CODE_INLINEASM: {
987 if (Record.size() < 2) return Error("Invalid INLINEASM record");
988 std::string AsmStr, ConstrStr;
989 bool HasSideEffects = Record[0];
990 unsigned AsmStrSize = Record[1];
991 if (2+AsmStrSize >= Record.size())
992 return Error("Invalid INLINEASM record");
993 unsigned ConstStrSize = Record[2+AsmStrSize];
994 if (3+AsmStrSize+ConstStrSize > Record.size())
995 return Error("Invalid INLINEASM record");
997 for (unsigned i = 0; i != AsmStrSize; ++i)
998 AsmStr += (char)Record[2+i];
999 for (unsigned i = 0; i != ConstStrSize; ++i)
1000 ConstrStr += (char)Record[3+AsmStrSize+i];
1001 const PointerType *PTy = cast<PointerType>(CurTy);
1002 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1003 AsmStr, ConstrStr, HasSideEffects);
1004 break;
1006 case bitc::CST_CODE_MDSTRING: {
1007 if (Record.size() < 2) return Error("Invalid MDSTRING record");
1008 unsigned MDStringLength = Record.size();
1009 SmallString<8> String;
1010 String.resize(MDStringLength);
1011 for (unsigned i = 0; i != MDStringLength; ++i)
1012 String[i] = Record[i];
1013 V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
1014 break;
1016 case bitc::CST_CODE_MDNODE: {
1017 if (Record.empty() || Record.size() % 2 == 1)
1018 return Error("Invalid CST_MDNODE record");
1020 unsigned Size = Record.size();
1021 SmallVector<Value*, 8> Elts;
1022 for (unsigned i = 0; i != Size; i += 2) {
1023 const Type *Ty = getTypeByID(Record[i], false);
1024 if (Ty != Type::VoidTy)
1025 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], Ty));
1026 else
1027 Elts.push_back(NULL);
1029 V = MDNode::get(&Elts[0], Elts.size());
1030 break;
1034 ValueList.AssignValue(V, NextCstNo);
1035 ++NextCstNo;
1038 if (NextCstNo != ValueList.size())
1039 return Error("Invalid constant reference!");
1041 if (Stream.ReadBlockEnd())
1042 return Error("Error at end of constants block");
1044 // Once all the constants have been read, go through and resolve forward
1045 // references.
1046 ValueList.ResolveConstantForwardRefs();
1047 return false;
1050 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1051 /// remember where it is and then skip it. This lets us lazily deserialize the
1052 /// functions.
1053 bool BitcodeReader::RememberAndSkipFunctionBody() {
1054 // Get the function we are talking about.
1055 if (FunctionsWithBodies.empty())
1056 return Error("Insufficient function protos");
1058 Function *Fn = FunctionsWithBodies.back();
1059 FunctionsWithBodies.pop_back();
1061 // Save the current stream state.
1062 uint64_t CurBit = Stream.GetCurrentBitNo();
1063 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1065 // Set the functions linkage to GhostLinkage so we know it is lazily
1066 // deserialized.
1067 Fn->setLinkage(GlobalValue::GhostLinkage);
1069 // Skip over the function block for now.
1070 if (Stream.SkipBlock())
1071 return Error("Malformed block record");
1072 return false;
1075 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1076 // Reject multiple MODULE_BLOCK's in a single bitstream.
1077 if (TheModule)
1078 return Error("Multiple MODULE_BLOCKs in same stream");
1080 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1081 return Error("Malformed block record");
1083 // Otherwise, create the module.
1084 TheModule = new Module(ModuleID);
1086 SmallVector<uint64_t, 64> Record;
1087 std::vector<std::string> SectionTable;
1088 std::vector<std::string> GCTable;
1090 // Read all the records for this module.
1091 while (!Stream.AtEndOfStream()) {
1092 unsigned Code = Stream.ReadCode();
1093 if (Code == bitc::END_BLOCK) {
1094 if (Stream.ReadBlockEnd())
1095 return Error("Error at end of module block");
1097 // Patch the initializers for globals and aliases up.
1098 ResolveGlobalAndAliasInits();
1099 if (!GlobalInits.empty() || !AliasInits.empty())
1100 return Error("Malformed global initializer set");
1101 if (!FunctionsWithBodies.empty())
1102 return Error("Too few function bodies found");
1104 // Look for intrinsic functions which need to be upgraded at some point
1105 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1106 FI != FE; ++FI) {
1107 Function* NewFn;
1108 if (UpgradeIntrinsicFunction(FI, NewFn))
1109 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1112 // Force deallocation of memory for these vectors to favor the client that
1113 // want lazy deserialization.
1114 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1115 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1116 std::vector<Function*>().swap(FunctionsWithBodies);
1117 return false;
1120 if (Code == bitc::ENTER_SUBBLOCK) {
1121 switch (Stream.ReadSubBlockID()) {
1122 default: // Skip unknown content.
1123 if (Stream.SkipBlock())
1124 return Error("Malformed block record");
1125 break;
1126 case bitc::BLOCKINFO_BLOCK_ID:
1127 if (Stream.ReadBlockInfoBlock())
1128 return Error("Malformed BlockInfoBlock");
1129 break;
1130 case bitc::PARAMATTR_BLOCK_ID:
1131 if (ParseAttributeBlock())
1132 return true;
1133 break;
1134 case bitc::TYPE_BLOCK_ID:
1135 if (ParseTypeTable())
1136 return true;
1137 break;
1138 case bitc::TYPE_SYMTAB_BLOCK_ID:
1139 if (ParseTypeSymbolTable())
1140 return true;
1141 break;
1142 case bitc::VALUE_SYMTAB_BLOCK_ID:
1143 if (ParseValueSymbolTable())
1144 return true;
1145 break;
1146 case bitc::CONSTANTS_BLOCK_ID:
1147 if (ParseConstants() || ResolveGlobalAndAliasInits())
1148 return true;
1149 break;
1150 case bitc::FUNCTION_BLOCK_ID:
1151 // If this is the first function body we've seen, reverse the
1152 // FunctionsWithBodies list.
1153 if (!HasReversedFunctionsWithBodies) {
1154 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1155 HasReversedFunctionsWithBodies = true;
1158 if (RememberAndSkipFunctionBody())
1159 return true;
1160 break;
1162 continue;
1165 if (Code == bitc::DEFINE_ABBREV) {
1166 Stream.ReadAbbrevRecord();
1167 continue;
1170 // Read a record.
1171 switch (Stream.ReadRecord(Code, Record)) {
1172 default: break; // Default behavior, ignore unknown content.
1173 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1174 if (Record.size() < 1)
1175 return Error("Malformed MODULE_CODE_VERSION");
1176 // Only version #0 is supported so far.
1177 if (Record[0] != 0)
1178 return Error("Unknown bitstream version!");
1179 break;
1180 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1181 std::string S;
1182 if (ConvertToString(Record, 0, S))
1183 return Error("Invalid MODULE_CODE_TRIPLE record");
1184 TheModule->setTargetTriple(S);
1185 break;
1187 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1188 std::string S;
1189 if (ConvertToString(Record, 0, S))
1190 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1191 TheModule->setDataLayout(S);
1192 break;
1194 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1195 std::string S;
1196 if (ConvertToString(Record, 0, S))
1197 return Error("Invalid MODULE_CODE_ASM record");
1198 TheModule->setModuleInlineAsm(S);
1199 break;
1201 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1202 std::string S;
1203 if (ConvertToString(Record, 0, S))
1204 return Error("Invalid MODULE_CODE_DEPLIB record");
1205 TheModule->addLibrary(S);
1206 break;
1208 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1209 std::string S;
1210 if (ConvertToString(Record, 0, S))
1211 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1212 SectionTable.push_back(S);
1213 break;
1215 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1216 std::string S;
1217 if (ConvertToString(Record, 0, S))
1218 return Error("Invalid MODULE_CODE_GCNAME record");
1219 GCTable.push_back(S);
1220 break;
1222 // GLOBALVAR: [pointer type, isconst, initid,
1223 // linkage, alignment, section, visibility, threadlocal]
1224 case bitc::MODULE_CODE_GLOBALVAR: {
1225 if (Record.size() < 6)
1226 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1227 const Type *Ty = getTypeByID(Record[0]);
1228 if (!isa<PointerType>(Ty))
1229 return Error("Global not a pointer type!");
1230 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1231 Ty = cast<PointerType>(Ty)->getElementType();
1233 bool isConstant = Record[1];
1234 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1235 unsigned Alignment = (1 << Record[4]) >> 1;
1236 std::string Section;
1237 if (Record[5]) {
1238 if (Record[5]-1 >= SectionTable.size())
1239 return Error("Invalid section ID");
1240 Section = SectionTable[Record[5]-1];
1242 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1243 if (Record.size() > 6)
1244 Visibility = GetDecodedVisibility(Record[6]);
1245 bool isThreadLocal = false;
1246 if (Record.size() > 7)
1247 isThreadLocal = Record[7];
1249 GlobalVariable *NewGV =
1250 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1251 isThreadLocal, AddressSpace);
1252 NewGV->setAlignment(Alignment);
1253 if (!Section.empty())
1254 NewGV->setSection(Section);
1255 NewGV->setVisibility(Visibility);
1256 NewGV->setThreadLocal(isThreadLocal);
1258 ValueList.push_back(NewGV);
1260 // Remember which value to use for the global initializer.
1261 if (unsigned InitID = Record[2])
1262 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1263 break;
1265 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1266 // alignment, section, visibility, gc]
1267 case bitc::MODULE_CODE_FUNCTION: {
1268 if (Record.size() < 8)
1269 return Error("Invalid MODULE_CODE_FUNCTION record");
1270 const Type *Ty = getTypeByID(Record[0]);
1271 if (!isa<PointerType>(Ty))
1272 return Error("Function not a pointer type!");
1273 const FunctionType *FTy =
1274 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1275 if (!FTy)
1276 return Error("Function not a pointer to function type!");
1278 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1279 "", TheModule);
1281 Func->setCallingConv(Record[1]);
1282 bool isProto = Record[2];
1283 Func->setLinkage(GetDecodedLinkage(Record[3]));
1284 Func->setAttributes(getAttributes(Record[4]));
1286 Func->setAlignment((1 << Record[5]) >> 1);
1287 if (Record[6]) {
1288 if (Record[6]-1 >= SectionTable.size())
1289 return Error("Invalid section ID");
1290 Func->setSection(SectionTable[Record[6]-1]);
1292 Func->setVisibility(GetDecodedVisibility(Record[7]));
1293 if (Record.size() > 8 && Record[8]) {
1294 if (Record[8]-1 > GCTable.size())
1295 return Error("Invalid GC ID");
1296 Func->setGC(GCTable[Record[8]-1].c_str());
1298 ValueList.push_back(Func);
1300 // If this is a function with a body, remember the prototype we are
1301 // creating now, so that we can match up the body with them later.
1302 if (!isProto)
1303 FunctionsWithBodies.push_back(Func);
1304 break;
1306 // ALIAS: [alias type, aliasee val#, linkage]
1307 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1308 case bitc::MODULE_CODE_ALIAS: {
1309 if (Record.size() < 3)
1310 return Error("Invalid MODULE_ALIAS record");
1311 const Type *Ty = getTypeByID(Record[0]);
1312 if (!isa<PointerType>(Ty))
1313 return Error("Function not a pointer type!");
1315 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1316 "", 0, TheModule);
1317 // Old bitcode files didn't have visibility field.
1318 if (Record.size() > 3)
1319 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1320 ValueList.push_back(NewGA);
1321 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1322 break;
1324 /// MODULE_CODE_PURGEVALS: [numvals]
1325 case bitc::MODULE_CODE_PURGEVALS:
1326 // Trim down the value list to the specified size.
1327 if (Record.size() < 1 || Record[0] > ValueList.size())
1328 return Error("Invalid MODULE_PURGEVALS record");
1329 ValueList.shrinkTo(Record[0]);
1330 break;
1332 Record.clear();
1335 return Error("Premature end of bitstream");
1338 bool BitcodeReader::ParseBitcode() {
1339 TheModule = 0;
1341 if (Buffer->getBufferSize() & 3)
1342 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1344 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1345 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1347 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1348 // The magic number is 0x0B17C0DE stored in little endian.
1349 if (isBitcodeWrapper(BufPtr, BufEnd))
1350 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1351 return Error("Invalid bitcode wrapper header");
1353 StreamFile.init(BufPtr, BufEnd);
1354 Stream.init(StreamFile);
1356 // Sniff for the signature.
1357 if (Stream.Read(8) != 'B' ||
1358 Stream.Read(8) != 'C' ||
1359 Stream.Read(4) != 0x0 ||
1360 Stream.Read(4) != 0xC ||
1361 Stream.Read(4) != 0xE ||
1362 Stream.Read(4) != 0xD)
1363 return Error("Invalid bitcode signature");
1365 // We expect a number of well-defined blocks, though we don't necessarily
1366 // need to understand them all.
1367 while (!Stream.AtEndOfStream()) {
1368 unsigned Code = Stream.ReadCode();
1370 if (Code != bitc::ENTER_SUBBLOCK)
1371 return Error("Invalid record at top-level");
1373 unsigned BlockID = Stream.ReadSubBlockID();
1375 // We only know the MODULE subblock ID.
1376 switch (BlockID) {
1377 case bitc::BLOCKINFO_BLOCK_ID:
1378 if (Stream.ReadBlockInfoBlock())
1379 return Error("Malformed BlockInfoBlock");
1380 break;
1381 case bitc::MODULE_BLOCK_ID:
1382 if (ParseModule(Buffer->getBufferIdentifier()))
1383 return true;
1384 break;
1385 default:
1386 if (Stream.SkipBlock())
1387 return Error("Malformed block record");
1388 break;
1392 return false;
1396 /// ParseFunctionBody - Lazily parse the specified function body block.
1397 bool BitcodeReader::ParseFunctionBody(Function *F) {
1398 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1399 return Error("Malformed block record");
1401 unsigned ModuleValueListSize = ValueList.size();
1403 // Add all the function arguments to the value table.
1404 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1405 ValueList.push_back(I);
1407 unsigned NextValueNo = ValueList.size();
1408 BasicBlock *CurBB = 0;
1409 unsigned CurBBNo = 0;
1411 // Read all the records.
1412 SmallVector<uint64_t, 64> Record;
1413 while (1) {
1414 unsigned Code = Stream.ReadCode();
1415 if (Code == bitc::END_BLOCK) {
1416 if (Stream.ReadBlockEnd())
1417 return Error("Error at end of function block");
1418 break;
1421 if (Code == bitc::ENTER_SUBBLOCK) {
1422 switch (Stream.ReadSubBlockID()) {
1423 default: // Skip unknown content.
1424 if (Stream.SkipBlock())
1425 return Error("Malformed block record");
1426 break;
1427 case bitc::CONSTANTS_BLOCK_ID:
1428 if (ParseConstants()) return true;
1429 NextValueNo = ValueList.size();
1430 break;
1431 case bitc::VALUE_SYMTAB_BLOCK_ID:
1432 if (ParseValueSymbolTable()) return true;
1433 break;
1435 continue;
1438 if (Code == bitc::DEFINE_ABBREV) {
1439 Stream.ReadAbbrevRecord();
1440 continue;
1443 // Read a record.
1444 Record.clear();
1445 Instruction *I = 0;
1446 switch (Stream.ReadRecord(Code, Record)) {
1447 default: // Default behavior: reject
1448 return Error("Unknown instruction");
1449 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
1450 if (Record.size() < 1 || Record[0] == 0)
1451 return Error("Invalid DECLAREBLOCKS record");
1452 // Create all the basic blocks for the function.
1453 FunctionBBs.resize(Record[0]);
1454 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1455 FunctionBBs[i] = BasicBlock::Create("", F);
1456 CurBB = FunctionBBs[0];
1457 continue;
1459 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
1460 unsigned OpNum = 0;
1461 Value *LHS, *RHS;
1462 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1463 getValue(Record, OpNum, LHS->getType(), RHS) ||
1464 OpNum+1 != Record.size())
1465 return Error("Invalid BINOP record");
1467 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1468 if (Opc == -1) return Error("Invalid BINOP record");
1469 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1470 break;
1472 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
1473 unsigned OpNum = 0;
1474 Value *Op;
1475 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1476 OpNum+2 != Record.size())
1477 return Error("Invalid CAST record");
1479 const Type *ResTy = getTypeByID(Record[OpNum]);
1480 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1481 if (Opc == -1 || ResTy == 0)
1482 return Error("Invalid CAST record");
1483 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1484 break;
1486 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1487 unsigned OpNum = 0;
1488 Value *BasePtr;
1489 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1490 return Error("Invalid GEP record");
1492 SmallVector<Value*, 16> GEPIdx;
1493 while (OpNum != Record.size()) {
1494 Value *Op;
1495 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1496 return Error("Invalid GEP record");
1497 GEPIdx.push_back(Op);
1500 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1501 break;
1504 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1505 // EXTRACTVAL: [opty, opval, n x indices]
1506 unsigned OpNum = 0;
1507 Value *Agg;
1508 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1509 return Error("Invalid EXTRACTVAL record");
1511 SmallVector<unsigned, 4> EXTRACTVALIdx;
1512 for (unsigned RecSize = Record.size();
1513 OpNum != RecSize; ++OpNum) {
1514 uint64_t Index = Record[OpNum];
1515 if ((unsigned)Index != Index)
1516 return Error("Invalid EXTRACTVAL index");
1517 EXTRACTVALIdx.push_back((unsigned)Index);
1520 I = ExtractValueInst::Create(Agg,
1521 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1522 break;
1525 case bitc::FUNC_CODE_INST_INSERTVAL: {
1526 // INSERTVAL: [opty, opval, opty, opval, n x indices]
1527 unsigned OpNum = 0;
1528 Value *Agg;
1529 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1530 return Error("Invalid INSERTVAL record");
1531 Value *Val;
1532 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1533 return Error("Invalid INSERTVAL record");
1535 SmallVector<unsigned, 4> INSERTVALIdx;
1536 for (unsigned RecSize = Record.size();
1537 OpNum != RecSize; ++OpNum) {
1538 uint64_t Index = Record[OpNum];
1539 if ((unsigned)Index != Index)
1540 return Error("Invalid INSERTVAL index");
1541 INSERTVALIdx.push_back((unsigned)Index);
1544 I = InsertValueInst::Create(Agg, Val,
1545 INSERTVALIdx.begin(), INSERTVALIdx.end());
1546 break;
1549 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1550 // obsolete form of select
1551 // handles select i1 ... in old bitcode
1552 unsigned OpNum = 0;
1553 Value *TrueVal, *FalseVal, *Cond;
1554 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1555 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1556 getValue(Record, OpNum, Type::Int1Ty, Cond))
1557 return Error("Invalid SELECT record");
1559 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1560 break;
1563 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1564 // new form of select
1565 // handles select i1 or select [N x i1]
1566 unsigned OpNum = 0;
1567 Value *TrueVal, *FalseVal, *Cond;
1568 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1569 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1570 getValueTypePair(Record, OpNum, NextValueNo, Cond))
1571 return Error("Invalid SELECT record");
1573 // select condition can be either i1 or [N x i1]
1574 if (const VectorType* vector_type =
1575 dyn_cast<const VectorType>(Cond->getType())) {
1576 // expect <n x i1>
1577 if (vector_type->getElementType() != Type::Int1Ty)
1578 return Error("Invalid SELECT condition type");
1579 } else {
1580 // expect i1
1581 if (Cond->getType() != Type::Int1Ty)
1582 return Error("Invalid SELECT condition type");
1585 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1586 break;
1589 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1590 unsigned OpNum = 0;
1591 Value *Vec, *Idx;
1592 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1593 getValue(Record, OpNum, Type::Int32Ty, Idx))
1594 return Error("Invalid EXTRACTELT record");
1595 I = new ExtractElementInst(Vec, Idx);
1596 break;
1599 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1600 unsigned OpNum = 0;
1601 Value *Vec, *Elt, *Idx;
1602 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1603 getValue(Record, OpNum,
1604 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1605 getValue(Record, OpNum, Type::Int32Ty, Idx))
1606 return Error("Invalid INSERTELT record");
1607 I = InsertElementInst::Create(Vec, Elt, Idx);
1608 break;
1611 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1612 unsigned OpNum = 0;
1613 Value *Vec1, *Vec2, *Mask;
1614 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1615 getValue(Record, OpNum, Vec1->getType(), Vec2))
1616 return Error("Invalid SHUFFLEVEC record");
1618 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1619 return Error("Invalid SHUFFLEVEC record");
1620 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1621 break;
1624 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1625 // VFCmp/VICmp
1626 // or old form of ICmp/FCmp returning bool
1627 unsigned OpNum = 0;
1628 Value *LHS, *RHS;
1629 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1630 getValue(Record, OpNum, LHS->getType(), RHS) ||
1631 OpNum+1 != Record.size())
1632 return Error("Invalid CMP record");
1634 if (LHS->getType()->isFloatingPoint())
1635 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1636 else if (!isa<VectorType>(LHS->getType()))
1637 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1638 else if (LHS->getType()->isFPOrFPVector())
1639 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1640 else
1641 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1642 break;
1644 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1645 // Fcmp/ICmp returning bool or vector of bool
1646 unsigned OpNum = 0;
1647 Value *LHS, *RHS;
1648 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1649 getValue(Record, OpNum, LHS->getType(), RHS) ||
1650 OpNum+1 != Record.size())
1651 return Error("Invalid CMP2 record");
1653 if (LHS->getType()->isFPOrFPVector())
1654 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1655 else
1656 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1657 break;
1659 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1660 if (Record.size() != 2)
1661 return Error("Invalid GETRESULT record");
1662 unsigned OpNum = 0;
1663 Value *Op;
1664 getValueTypePair(Record, OpNum, NextValueNo, Op);
1665 unsigned Index = Record[1];
1666 I = ExtractValueInst::Create(Op, Index);
1667 break;
1670 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1672 unsigned Size = Record.size();
1673 if (Size == 0) {
1674 I = ReturnInst::Create();
1675 break;
1678 unsigned OpNum = 0;
1679 SmallVector<Value *,4> Vs;
1680 do {
1681 Value *Op = NULL;
1682 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1683 return Error("Invalid RET record");
1684 Vs.push_back(Op);
1685 } while(OpNum != Record.size());
1687 const Type *ReturnType = F->getReturnType();
1688 if (Vs.size() > 1 ||
1689 (isa<StructType>(ReturnType) &&
1690 (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1691 Value *RV = UndefValue::get(ReturnType);
1692 for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1693 I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1694 CurBB->getInstList().push_back(I);
1695 ValueList.AssignValue(I, NextValueNo++);
1696 RV = I;
1698 I = ReturnInst::Create(RV);
1699 break;
1702 I = ReturnInst::Create(Vs[0]);
1703 break;
1705 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1706 if (Record.size() != 1 && Record.size() != 3)
1707 return Error("Invalid BR record");
1708 BasicBlock *TrueDest = getBasicBlock(Record[0]);
1709 if (TrueDest == 0)
1710 return Error("Invalid BR record");
1712 if (Record.size() == 1)
1713 I = BranchInst::Create(TrueDest);
1714 else {
1715 BasicBlock *FalseDest = getBasicBlock(Record[1]);
1716 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1717 if (FalseDest == 0 || Cond == 0)
1718 return Error("Invalid BR record");
1719 I = BranchInst::Create(TrueDest, FalseDest, Cond);
1721 break;
1723 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1724 if (Record.size() < 3 || (Record.size() & 1) == 0)
1725 return Error("Invalid SWITCH record");
1726 const Type *OpTy = getTypeByID(Record[0]);
1727 Value *Cond = getFnValueByID(Record[1], OpTy);
1728 BasicBlock *Default = getBasicBlock(Record[2]);
1729 if (OpTy == 0 || Cond == 0 || Default == 0)
1730 return Error("Invalid SWITCH record");
1731 unsigned NumCases = (Record.size()-3)/2;
1732 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1733 for (unsigned i = 0, e = NumCases; i != e; ++i) {
1734 ConstantInt *CaseVal =
1735 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1736 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1737 if (CaseVal == 0 || DestBB == 0) {
1738 delete SI;
1739 return Error("Invalid SWITCH record!");
1741 SI->addCase(CaseVal, DestBB);
1743 I = SI;
1744 break;
1747 case bitc::FUNC_CODE_INST_INVOKE: {
1748 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1749 if (Record.size() < 4) return Error("Invalid INVOKE record");
1750 AttrListPtr PAL = getAttributes(Record[0]);
1751 unsigned CCInfo = Record[1];
1752 BasicBlock *NormalBB = getBasicBlock(Record[2]);
1753 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1755 unsigned OpNum = 4;
1756 Value *Callee;
1757 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1758 return Error("Invalid INVOKE record");
1760 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1761 const FunctionType *FTy = !CalleeTy ? 0 :
1762 dyn_cast<FunctionType>(CalleeTy->getElementType());
1764 // Check that the right number of fixed parameters are here.
1765 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1766 Record.size() < OpNum+FTy->getNumParams())
1767 return Error("Invalid INVOKE record");
1769 SmallVector<Value*, 16> Ops;
1770 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1771 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1772 if (Ops.back() == 0) return Error("Invalid INVOKE record");
1775 if (!FTy->isVarArg()) {
1776 if (Record.size() != OpNum)
1777 return Error("Invalid INVOKE record");
1778 } else {
1779 // Read type/value pairs for varargs params.
1780 while (OpNum != Record.size()) {
1781 Value *Op;
1782 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1783 return Error("Invalid INVOKE record");
1784 Ops.push_back(Op);
1788 I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1789 Ops.begin(), Ops.end());
1790 cast<InvokeInst>(I)->setCallingConv(CCInfo);
1791 cast<InvokeInst>(I)->setAttributes(PAL);
1792 break;
1794 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1795 I = new UnwindInst();
1796 break;
1797 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1798 I = new UnreachableInst();
1799 break;
1800 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1801 if (Record.size() < 1 || ((Record.size()-1)&1))
1802 return Error("Invalid PHI record");
1803 const Type *Ty = getTypeByID(Record[0]);
1804 if (!Ty) return Error("Invalid PHI record");
1806 PHINode *PN = PHINode::Create(Ty);
1807 PN->reserveOperandSpace((Record.size()-1)/2);
1809 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1810 Value *V = getFnValueByID(Record[1+i], Ty);
1811 BasicBlock *BB = getBasicBlock(Record[2+i]);
1812 if (!V || !BB) return Error("Invalid PHI record");
1813 PN->addIncoming(V, BB);
1815 I = PN;
1816 break;
1819 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1820 if (Record.size() < 3)
1821 return Error("Invalid MALLOC record");
1822 const PointerType *Ty =
1823 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1824 Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1825 unsigned Align = Record[2];
1826 if (!Ty || !Size) return Error("Invalid MALLOC record");
1827 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1828 break;
1830 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1831 unsigned OpNum = 0;
1832 Value *Op;
1833 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1834 OpNum != Record.size())
1835 return Error("Invalid FREE record");
1836 I = new FreeInst(Op);
1837 break;
1839 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1840 if (Record.size() < 3)
1841 return Error("Invalid ALLOCA record");
1842 const PointerType *Ty =
1843 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1844 Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1845 unsigned Align = Record[2];
1846 if (!Ty || !Size) return Error("Invalid ALLOCA record");
1847 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1848 break;
1850 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1851 unsigned OpNum = 0;
1852 Value *Op;
1853 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1854 OpNum+2 != Record.size())
1855 return Error("Invalid LOAD record");
1857 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1858 break;
1860 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1861 unsigned OpNum = 0;
1862 Value *Val, *Ptr;
1863 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1864 getValue(Record, OpNum,
1865 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1866 OpNum+2 != Record.size())
1867 return Error("Invalid STORE record");
1869 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1870 break;
1872 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1873 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1874 unsigned OpNum = 0;
1875 Value *Val, *Ptr;
1876 if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1877 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1878 OpNum+2 != Record.size())
1879 return Error("Invalid STORE record");
1881 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1882 break;
1884 case bitc::FUNC_CODE_INST_CALL: {
1885 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1886 if (Record.size() < 3)
1887 return Error("Invalid CALL record");
1889 AttrListPtr PAL = getAttributes(Record[0]);
1890 unsigned CCInfo = Record[1];
1892 unsigned OpNum = 2;
1893 Value *Callee;
1894 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1895 return Error("Invalid CALL record");
1897 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1898 const FunctionType *FTy = 0;
1899 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1900 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1901 return Error("Invalid CALL record");
1903 SmallVector<Value*, 16> Args;
1904 // Read the fixed params.
1905 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1906 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1907 Args.push_back(getBasicBlock(Record[OpNum]));
1908 else
1909 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1910 if (Args.back() == 0) return Error("Invalid CALL record");
1913 // Read type/value pairs for varargs params.
1914 if (!FTy->isVarArg()) {
1915 if (OpNum != Record.size())
1916 return Error("Invalid CALL record");
1917 } else {
1918 while (OpNum != Record.size()) {
1919 Value *Op;
1920 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1921 return Error("Invalid CALL record");
1922 Args.push_back(Op);
1926 I = CallInst::Create(Callee, Args.begin(), Args.end());
1927 cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1928 cast<CallInst>(I)->setTailCall(CCInfo & 1);
1929 cast<CallInst>(I)->setAttributes(PAL);
1930 break;
1932 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1933 if (Record.size() < 3)
1934 return Error("Invalid VAARG record");
1935 const Type *OpTy = getTypeByID(Record[0]);
1936 Value *Op = getFnValueByID(Record[1], OpTy);
1937 const Type *ResTy = getTypeByID(Record[2]);
1938 if (!OpTy || !Op || !ResTy)
1939 return Error("Invalid VAARG record");
1940 I = new VAArgInst(Op, ResTy);
1941 break;
1945 // Add instruction to end of current BB. If there is no current BB, reject
1946 // this file.
1947 if (CurBB == 0) {
1948 delete I;
1949 return Error("Invalid instruction with no BB");
1951 CurBB->getInstList().push_back(I);
1953 // If this was a terminator instruction, move to the next block.
1954 if (isa<TerminatorInst>(I)) {
1955 ++CurBBNo;
1956 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1959 // Non-void values get registered in the value table for future use.
1960 if (I && I->getType() != Type::VoidTy)
1961 ValueList.AssignValue(I, NextValueNo++);
1964 // Check the function list for unresolved values.
1965 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1966 if (A->getParent() == 0) {
1967 // We found at least one unresolved value. Nuke them all to avoid leaks.
1968 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1969 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1970 A->replaceAllUsesWith(UndefValue::get(A->getType()));
1971 delete A;
1974 return Error("Never resolved value found in function!");
1978 // Trim the value list down to the size it was before we parsed this function.
1979 ValueList.shrinkTo(ModuleValueListSize);
1980 std::vector<BasicBlock*>().swap(FunctionBBs);
1982 return false;
1985 //===----------------------------------------------------------------------===//
1986 // ModuleProvider implementation
1987 //===----------------------------------------------------------------------===//
1990 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1991 // If it already is material, ignore the request.
1992 if (!F->hasNotBeenReadFromBitcode()) return false;
1994 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1995 DeferredFunctionInfo.find(F);
1996 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1998 // Move the bit stream to the saved position of the deferred function body and
1999 // restore the real linkage type for the function.
2000 Stream.JumpToBit(DFII->second.first);
2001 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2003 if (ParseFunctionBody(F)) {
2004 if (ErrInfo) *ErrInfo = ErrorString;
2005 return true;
2008 // Upgrade any old intrinsic calls in the function.
2009 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2010 E = UpgradedIntrinsics.end(); I != E; ++I) {
2011 if (I->first != I->second) {
2012 for (Value::use_iterator UI = I->first->use_begin(),
2013 UE = I->first->use_end(); UI != UE; ) {
2014 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2015 UpgradeIntrinsicCall(CI, I->second);
2020 return false;
2023 void BitcodeReader::dematerializeFunction(Function *F) {
2024 // If this function isn't materialized, or if it is a proto, this is a noop.
2025 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2026 return;
2028 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2030 // Just forget the function body, we can remat it later.
2031 F->deleteBody();
2032 F->setLinkage(GlobalValue::GhostLinkage);
2036 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2037 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2038 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2039 ++I) {
2040 Function *F = I->first;
2041 if (F->hasNotBeenReadFromBitcode() &&
2042 materializeFunction(F, ErrInfo))
2043 return 0;
2046 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2047 // delete the old functions to clean up. We can't do this unless the entire
2048 // module is materialized because there could always be another function body
2049 // with calls to the old function.
2050 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2051 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2052 if (I->first != I->second) {
2053 for (Value::use_iterator UI = I->first->use_begin(),
2054 UE = I->first->use_end(); UI != UE; ) {
2055 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2056 UpgradeIntrinsicCall(CI, I->second);
2058 if (!I->first->use_empty())
2059 I->first->replaceAllUsesWith(I->second);
2060 I->first->eraseFromParent();
2063 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2065 return TheModule;
2069 /// This method is provided by the parent ModuleProvde class and overriden
2070 /// here. It simply releases the module from its provided and frees up our
2071 /// state.
2072 /// @brief Release our hold on the generated module
2073 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2074 // Since we're losing control of this Module, we must hand it back complete
2075 Module *M = ModuleProvider::releaseModule(ErrInfo);
2076 FreeState();
2077 return M;
2081 //===----------------------------------------------------------------------===//
2082 // External interface
2083 //===----------------------------------------------------------------------===//
2085 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2087 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2088 std::string *ErrMsg) {
2089 BitcodeReader *R = new BitcodeReader(Buffer);
2090 if (R->ParseBitcode()) {
2091 if (ErrMsg)
2092 *ErrMsg = R->getErrorString();
2094 // Don't let the BitcodeReader dtor delete 'Buffer'.
2095 R->releaseMemoryBuffer();
2096 delete R;
2097 return 0;
2099 return R;
2102 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2103 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2104 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2105 BitcodeReader *R;
2106 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2107 if (!R) return 0;
2109 // Read in the entire module.
2110 Module *M = R->materializeModule(ErrMsg);
2112 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2113 // there was an error.
2114 R->releaseMemoryBuffer();
2116 // If there was no error, tell ModuleProvider not to delete it when its dtor
2117 // is run.
2118 if (M)
2119 M = R->releaseModule(ErrMsg);
2121 delete R;
2122 return M;