1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/DepthFirstIterator.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
40 static cl::opt
<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden
);
41 static cl::opt
<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden
);
42 static cl::opt
<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden
);
44 STATISTIC(NumSplits
, "Number of intervals split");
45 STATISTIC(NumRemats
, "Number of intervals split by rematerialization");
46 STATISTIC(NumFolds
, "Number of intervals split with spill folding");
47 STATISTIC(NumRestoreFolds
, "Number of intervals split with restore folding");
48 STATISTIC(NumRenumbers
, "Number of intervals renumbered into new registers");
49 STATISTIC(NumDeadSpills
, "Number of dead spills removed");
52 class VISIBILITY_HIDDEN PreAllocSplitting
: public MachineFunctionPass
{
53 MachineFunction
*CurrMF
;
54 const TargetMachine
*TM
;
55 const TargetInstrInfo
*TII
;
56 const TargetRegisterInfo
* TRI
;
57 MachineFrameInfo
*MFI
;
58 MachineRegisterInfo
*MRI
;
63 // Barrier - Current barrier being processed.
64 MachineInstr
*Barrier
;
66 // BarrierMBB - Basic block where the barrier resides in.
67 MachineBasicBlock
*BarrierMBB
;
69 // Barrier - Current barrier index.
72 // CurrLI - Current live interval being split.
75 // CurrSLI - Current stack slot live interval.
76 LiveInterval
*CurrSLI
;
78 // CurrSValNo - Current val# for the stack slot live interval.
81 // IntervalSSMap - A map from live interval to spill slots.
82 DenseMap
<unsigned, int> IntervalSSMap
;
84 // Def2SpillMap - A map from a def instruction index to spill index.
85 DenseMap
<unsigned, unsigned> Def2SpillMap
;
89 PreAllocSplitting() : MachineFunctionPass(&ID
) {}
91 virtual bool runOnMachineFunction(MachineFunction
&MF
);
93 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
94 AU
.addRequired
<LiveIntervals
>();
95 AU
.addPreserved
<LiveIntervals
>();
96 AU
.addRequired
<LiveStacks
>();
97 AU
.addPreserved
<LiveStacks
>();
98 AU
.addPreserved
<RegisterCoalescer
>();
100 AU
.addPreservedID(StrongPHIEliminationID
);
102 AU
.addPreservedID(PHIEliminationID
);
103 AU
.addRequired
<MachineDominatorTree
>();
104 AU
.addRequired
<MachineLoopInfo
>();
105 AU
.addRequired
<VirtRegMap
>();
106 AU
.addPreserved
<MachineDominatorTree
>();
107 AU
.addPreserved
<MachineLoopInfo
>();
108 AU
.addPreserved
<VirtRegMap
>();
109 MachineFunctionPass::getAnalysisUsage(AU
);
112 virtual void releaseMemory() {
113 IntervalSSMap
.clear();
114 Def2SpillMap
.clear();
117 virtual const char *getPassName() const {
118 return "Pre-Register Allocaton Live Interval Splitting";
121 /// print - Implement the dump method.
122 virtual void print(std::ostream
&O
, const Module
* M
= 0) const {
126 void print(std::ostream
*O
, const Module
* M
= 0) const {
131 MachineBasicBlock::iterator
132 findNextEmptySlot(MachineBasicBlock
*, MachineInstr
*,
135 MachineBasicBlock::iterator
136 findSpillPoint(MachineBasicBlock
*, MachineInstr
*, MachineInstr
*,
137 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
139 MachineBasicBlock::iterator
140 findRestorePoint(MachineBasicBlock
*, MachineInstr
*, unsigned,
141 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
143 int CreateSpillStackSlot(unsigned, const TargetRegisterClass
*);
145 bool IsAvailableInStack(MachineBasicBlock
*, unsigned, unsigned, unsigned,
146 unsigned&, int&) const;
148 void UpdateSpillSlotInterval(VNInfo
*, unsigned, unsigned);
150 bool SplitRegLiveInterval(LiveInterval
*);
152 bool SplitRegLiveIntervals(const TargetRegisterClass
**,
153 SmallPtrSet
<LiveInterval
*, 8>&);
155 bool createsNewJoin(LiveRange
* LR
, MachineBasicBlock
* DefMBB
,
156 MachineBasicBlock
* BarrierMBB
);
157 bool Rematerialize(unsigned vreg
, VNInfo
* ValNo
,
159 MachineBasicBlock::iterator RestorePt
,
161 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
162 MachineInstr
* FoldSpill(unsigned vreg
, const TargetRegisterClass
* RC
,
164 MachineInstr
* Barrier
,
165 MachineBasicBlock
* MBB
,
167 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
168 MachineInstr
* FoldRestore(unsigned vreg
,
169 const TargetRegisterClass
* RC
,
170 MachineInstr
* Barrier
,
171 MachineBasicBlock
* MBB
,
173 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
174 void RenumberValno(VNInfo
* VN
);
175 void ReconstructLiveInterval(LiveInterval
* LI
);
176 bool removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
);
177 unsigned getNumberOfNonSpills(SmallPtrSet
<MachineInstr
*, 4>& MIs
,
178 unsigned Reg
, int FrameIndex
, bool& TwoAddr
);
179 VNInfo
* PerformPHIConstruction(MachineBasicBlock::iterator Use
,
180 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
181 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
182 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
183 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
184 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
185 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
186 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
187 bool IsTopLevel
, bool IsIntraBlock
);
188 VNInfo
* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use
,
189 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
190 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
191 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
192 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
193 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
194 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
195 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
196 bool IsTopLevel
, bool IsIntraBlock
);
198 } // end anonymous namespace
200 char PreAllocSplitting::ID
= 0;
202 static RegisterPass
<PreAllocSplitting
>
203 X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
205 const PassInfo
*const llvm::PreAllocSplittingID
= &X
;
208 /// findNextEmptySlot - Find a gap after the given machine instruction in the
209 /// instruction index map. If there isn't one, return end().
210 MachineBasicBlock::iterator
211 PreAllocSplitting::findNextEmptySlot(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
212 unsigned &SpotIndex
) {
213 MachineBasicBlock::iterator MII
= MI
;
214 if (++MII
!= MBB
->end()) {
215 unsigned Index
= LIs
->findGapBeforeInstr(LIs
->getInstructionIndex(MII
));
224 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
225 /// for spilling the current live interval. The index must be before any
226 /// defs and uses of the live interval register in the mbb. Return begin() if
228 MachineBasicBlock::iterator
229 PreAllocSplitting::findSpillPoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
231 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
232 unsigned &SpillIndex
) {
233 MachineBasicBlock::iterator Pt
= MBB
->begin();
235 MachineBasicBlock::iterator MII
= MI
;
236 MachineBasicBlock::iterator EndPt
= DefMI
237 ? MachineBasicBlock::iterator(DefMI
) : MBB
->begin();
239 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
240 MII
->getOpcode() != TRI
->getCallFrameSetupOpcode())
242 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
244 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
)) {
245 unsigned Index
= LIs
->getInstructionIndex(MII
);
247 // We can't insert the spill between the barrier (a call), and its
248 // corresponding call frame setup.
249 if (MII
->getOpcode() == TRI
->getCallFrameDestroyOpcode()) {
250 while (MII
->getOpcode() != TRI
->getCallFrameSetupOpcode()) {
257 } else if (LIs
->hasGapBeforeInstr(Index
)) {
259 SpillIndex
= LIs
->findGapBeforeInstr(Index
, true);
262 if (RefsInMBB
.count(MII
))
272 /// findRestorePoint - Find a gap in the instruction index map that's suitable
273 /// for restoring the current live interval value. The index must be before any
274 /// uses of the live interval register in the mbb. Return end() if none is
276 MachineBasicBlock::iterator
277 PreAllocSplitting::findRestorePoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
279 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
280 unsigned &RestoreIndex
) {
281 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
282 // begin index accordingly.
283 MachineBasicBlock::iterator Pt
= MBB
->end();
284 MachineBasicBlock::iterator EndPt
= MBB
->getFirstTerminator();
286 // We start at the call, so walk forward until we find the call frame teardown
287 // since we can't insert restores before that. Bail if we encounter a use
289 MachineBasicBlock::iterator MII
= MI
;
290 if (MII
== EndPt
) return Pt
;
292 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
293 MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode())
295 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
298 // FIXME: Limit the number of instructions to examine to reduce
300 while (MII
!= EndPt
) {
301 unsigned Index
= LIs
->getInstructionIndex(MII
);
304 unsigned Gap
= LIs
->findGapBeforeInstr(Index
);
306 // We can't insert a restore between the barrier (a call) and its
307 // corresponding call frame teardown.
308 if (MII
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
310 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
312 } while (MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode());
318 if (RefsInMBB
.count(MII
))
327 /// CreateSpillStackSlot - Create a stack slot for the live interval being
328 /// split. If the live interval was previously split, just reuse the same
330 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg
,
331 const TargetRegisterClass
*RC
) {
333 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
334 if (I
!= IntervalSSMap
.end()) {
337 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
338 IntervalSSMap
[Reg
] = SS
;
341 // Create live interval for stack slot.
342 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
343 if (CurrSLI
->hasAtLeastOneValue())
344 CurrSValNo
= CurrSLI
->getValNumInfo(0);
346 CurrSValNo
= CurrSLI
->getNextValue(~0U, 0, LSs
->getVNInfoAllocator());
350 /// IsAvailableInStack - Return true if register is available in a split stack
351 /// slot at the specified index.
353 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock
*DefMBB
,
354 unsigned Reg
, unsigned DefIndex
,
355 unsigned RestoreIndex
, unsigned &SpillIndex
,
360 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
361 if (I
== IntervalSSMap
.end())
363 DenseMap
<unsigned, unsigned>::iterator II
= Def2SpillMap
.find(DefIndex
);
364 if (II
== Def2SpillMap
.end())
367 // If last spill of def is in the same mbb as barrier mbb (where restore will
368 // be), make sure it's not below the intended restore index.
369 // FIXME: Undo the previous spill?
370 assert(LIs
->getMBBFromIndex(II
->second
) == DefMBB
);
371 if (DefMBB
== BarrierMBB
&& II
->second
>= RestoreIndex
)
375 SpillIndex
= II
->second
;
379 /// UpdateSpillSlotInterval - Given the specified val# of the register live
380 /// interval being split, and the spill and restore indicies, update the live
381 /// interval of the spill stack slot.
383 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo
*ValNo
, unsigned SpillIndex
,
384 unsigned RestoreIndex
) {
385 assert(LIs
->getMBBFromIndex(RestoreIndex
) == BarrierMBB
&&
386 "Expect restore in the barrier mbb");
388 MachineBasicBlock
*MBB
= LIs
->getMBBFromIndex(SpillIndex
);
389 if (MBB
== BarrierMBB
) {
390 // Intra-block spill + restore. We are done.
391 LiveRange
SLR(SpillIndex
, RestoreIndex
, CurrSValNo
);
392 CurrSLI
->addRange(SLR
);
396 SmallPtrSet
<MachineBasicBlock
*, 4> Processed
;
397 unsigned EndIdx
= LIs
->getMBBEndIdx(MBB
);
398 LiveRange
SLR(SpillIndex
, EndIdx
+1, CurrSValNo
);
399 CurrSLI
->addRange(SLR
);
400 Processed
.insert(MBB
);
402 // Start from the spill mbb, figure out the extend of the spill slot's
404 SmallVector
<MachineBasicBlock
*, 4> WorkList
;
405 const LiveRange
*LR
= CurrLI
->getLiveRangeContaining(SpillIndex
);
406 if (LR
->end
> EndIdx
)
407 // If live range extend beyond end of mbb, add successors to work list.
408 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
409 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
410 WorkList
.push_back(*SI
);
412 while (!WorkList
.empty()) {
413 MachineBasicBlock
*MBB
= WorkList
.back();
415 if (Processed
.count(MBB
))
417 unsigned Idx
= LIs
->getMBBStartIdx(MBB
);
418 LR
= CurrLI
->getLiveRangeContaining(Idx
);
419 if (LR
&& LR
->valno
== ValNo
) {
420 EndIdx
= LIs
->getMBBEndIdx(MBB
);
421 if (Idx
<= RestoreIndex
&& RestoreIndex
< EndIdx
) {
422 // Spill slot live interval stops at the restore.
423 LiveRange
SLR(Idx
, RestoreIndex
, CurrSValNo
);
424 CurrSLI
->addRange(SLR
);
425 } else if (LR
->end
> EndIdx
) {
426 // Live range extends beyond end of mbb, process successors.
427 LiveRange
SLR(Idx
, EndIdx
+1, CurrSValNo
);
428 CurrSLI
->addRange(SLR
);
429 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
430 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
431 WorkList
.push_back(*SI
);
433 LiveRange
SLR(Idx
, LR
->end
, CurrSValNo
);
434 CurrSLI
->addRange(SLR
);
436 Processed
.insert(MBB
);
441 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
442 /// construction algorithm to compute the ranges and valnos for an interval.
444 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI
,
445 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
446 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
447 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
448 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
449 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
450 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
451 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
452 bool IsTopLevel
, bool IsIntraBlock
) {
453 // Return memoized result if it's available.
454 if (IsTopLevel
&& Visited
.count(UseI
) && NewVNs
.count(UseI
))
456 else if (!IsTopLevel
&& IsIntraBlock
&& NewVNs
.count(UseI
))
458 else if (!IsIntraBlock
&& LiveOut
.count(MBB
))
461 // Check if our block contains any uses or defs.
462 bool ContainsDefs
= Defs
.count(MBB
);
463 bool ContainsUses
= Uses
.count(MBB
);
467 // Enumerate the cases of use/def contaning blocks.
468 if (!ContainsDefs
&& !ContainsUses
) {
469 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
470 NewVNs
, LiveOut
, Phis
,
471 IsTopLevel
, IsIntraBlock
);
472 } else if (ContainsDefs
&& !ContainsUses
) {
473 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
475 // Search for the def in this block. If we don't find it before the
476 // instruction we care about, go to the fallback case. Note that that
477 // should never happen: this cannot be intrablock, so use should
478 // always be an end() iterator.
479 assert(UseI
== MBB
->end() && "No use marked in intrablock");
481 MachineBasicBlock::iterator Walker
= UseI
;
483 while (Walker
!= MBB
->begin()) {
484 if (BlockDefs
.count(Walker
))
489 // Once we've found it, extend its VNInfo to our instruction.
490 unsigned DefIndex
= LIs
->getInstructionIndex(Walker
);
491 DefIndex
= LiveIntervals::getDefIndex(DefIndex
);
492 unsigned EndIndex
= LIs
->getMBBEndIdx(MBB
);
494 RetVNI
= NewVNs
[Walker
];
495 LI
->addRange(LiveRange(DefIndex
, EndIndex
+1, RetVNI
));
496 } else if (!ContainsDefs
&& ContainsUses
) {
497 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
499 // Search for the use in this block that precedes the instruction we care
500 // about, going to the fallback case if we don't find it.
501 if (UseI
== MBB
->begin())
502 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
503 Uses
, NewVNs
, LiveOut
, Phis
,
504 IsTopLevel
, IsIntraBlock
);
506 MachineBasicBlock::iterator Walker
= UseI
;
509 while (Walker
!= MBB
->begin()) {
510 if (BlockUses
.count(Walker
)) {
517 // Must check begin() too.
519 if (BlockUses
.count(Walker
))
522 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
523 Uses
, NewVNs
, LiveOut
, Phis
,
524 IsTopLevel
, IsIntraBlock
);
527 unsigned UseIndex
= LIs
->getInstructionIndex(Walker
);
528 UseIndex
= LiveIntervals::getUseIndex(UseIndex
);
529 unsigned EndIndex
= 0;
531 EndIndex
= LIs
->getInstructionIndex(UseI
);
532 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
534 EndIndex
= LIs
->getMBBEndIdx(MBB
);
536 // Now, recursively phi construct the VNInfo for the use we found,
537 // and then extend it to include the instruction we care about
538 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
539 NewVNs
, LiveOut
, Phis
, false, true);
541 LI
->addRange(LiveRange(UseIndex
, EndIndex
+1, RetVNI
));
543 // FIXME: Need to set kills properly for inter-block stuff.
544 if (LI
->isKill(RetVNI
, UseIndex
)) LI
->removeKill(RetVNI
, UseIndex
);
546 LI
->addKill(RetVNI
, EndIndex
);
547 } else if (ContainsDefs
&& ContainsUses
) {
548 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
549 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
551 // This case is basically a merging of the two preceding case, with the
552 // special note that checking for defs must take precedence over checking
553 // for uses, because of two-address instructions.
555 if (UseI
== MBB
->begin())
556 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
557 NewVNs
, LiveOut
, Phis
,
558 IsTopLevel
, IsIntraBlock
);
560 MachineBasicBlock::iterator Walker
= UseI
;
562 bool foundDef
= false;
563 bool foundUse
= false;
564 while (Walker
!= MBB
->begin()) {
565 if (BlockDefs
.count(Walker
)) {
568 } else if (BlockUses
.count(Walker
)) {
575 // Must check begin() too.
576 if (!foundDef
&& !foundUse
) {
577 if (BlockDefs
.count(Walker
))
579 else if (BlockUses
.count(Walker
))
582 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
583 Uses
, NewVNs
, LiveOut
, Phis
,
584 IsTopLevel
, IsIntraBlock
);
587 unsigned StartIndex
= LIs
->getInstructionIndex(Walker
);
588 StartIndex
= foundDef
? LiveIntervals::getDefIndex(StartIndex
) :
589 LiveIntervals::getUseIndex(StartIndex
);
590 unsigned EndIndex
= 0;
592 EndIndex
= LIs
->getInstructionIndex(UseI
);
593 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
595 EndIndex
= LIs
->getMBBEndIdx(MBB
);
598 RetVNI
= NewVNs
[Walker
];
600 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
601 NewVNs
, LiveOut
, Phis
, false, true);
603 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
605 if (foundUse
&& LI
->isKill(RetVNI
, StartIndex
))
606 LI
->removeKill(RetVNI
, StartIndex
);
608 LI
->addKill(RetVNI
, EndIndex
);
612 // Memoize results so we don't have to recompute them.
613 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
615 if (!NewVNs
.count(UseI
))
616 NewVNs
[UseI
] = RetVNI
;
617 Visited
.insert(UseI
);
623 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
626 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI
,
627 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
628 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
629 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
630 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
631 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
632 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
633 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
634 bool IsTopLevel
, bool IsIntraBlock
) {
635 // NOTE: Because this is the fallback case from other cases, we do NOT
636 // assume that we are not intrablock here.
637 if (Phis
.count(MBB
)) return Phis
[MBB
];
639 unsigned StartIndex
= LIs
->getMBBStartIdx(MBB
);
640 VNInfo
*RetVNI
= Phis
[MBB
] = LI
->getNextValue(~0U, /*FIXME*/ 0,
641 LIs
->getVNInfoAllocator());
642 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
644 // If there are no uses or defs between our starting point and the
645 // beginning of the block, then recursive perform phi construction
646 // on our predecessors.
647 DenseMap
<MachineBasicBlock
*, VNInfo
*> IncomingVNs
;
648 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
649 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
650 VNInfo
* Incoming
= PerformPHIConstruction((*PI
)->end(), *PI
, LI
,
651 Visited
, Defs
, Uses
, NewVNs
,
652 LiveOut
, Phis
, false, false);
654 IncomingVNs
[*PI
] = Incoming
;
657 if (MBB
->pred_size() == 1 && !RetVNI
->hasPHIKill
) {
658 VNInfo
* OldVN
= RetVNI
;
659 VNInfo
* NewVN
= IncomingVNs
.begin()->second
;
660 VNInfo
* MergedVN
= LI
->MergeValueNumberInto(OldVN
, NewVN
);
661 if (MergedVN
== OldVN
) std::swap(OldVN
, NewVN
);
663 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator LOI
= LiveOut
.begin(),
664 LOE
= LiveOut
.end(); LOI
!= LOE
; ++LOI
)
665 if (LOI
->second
== OldVN
)
666 LOI
->second
= MergedVN
;
667 for (DenseMap
<MachineInstr
*, VNInfo
*>::iterator NVI
= NewVNs
.begin(),
668 NVE
= NewVNs
.end(); NVI
!= NVE
; ++NVI
)
669 if (NVI
->second
== OldVN
)
670 NVI
->second
= MergedVN
;
671 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator PI
= Phis
.begin(),
672 PE
= Phis
.end(); PI
!= PE
; ++PI
)
673 if (PI
->second
== OldVN
)
674 PI
->second
= MergedVN
;
677 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
678 // VNInfo to represent the joined value.
679 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator I
=
680 IncomingVNs
.begin(), E
= IncomingVNs
.end(); I
!= E
; ++I
) {
681 I
->second
->hasPHIKill
= true;
682 unsigned KillIndex
= LIs
->getMBBEndIdx(I
->first
);
683 if (!LiveInterval::isKill(I
->second
, KillIndex
))
684 LI
->addKill(I
->second
, KillIndex
);
688 unsigned EndIndex
= 0;
690 EndIndex
= LIs
->getInstructionIndex(UseI
);
691 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
693 EndIndex
= LIs
->getMBBEndIdx(MBB
);
694 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
696 LI
->addKill(RetVNI
, EndIndex
);
698 // Memoize results so we don't have to recompute them.
700 LiveOut
[MBB
] = RetVNI
;
702 if (!NewVNs
.count(UseI
))
703 NewVNs
[UseI
] = RetVNI
;
704 Visited
.insert(UseI
);
710 /// ReconstructLiveInterval - Recompute a live interval from scratch.
711 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval
* LI
) {
712 BumpPtrAllocator
& Alloc
= LIs
->getVNInfoAllocator();
714 // Clear the old ranges and valnos;
717 // Cache the uses and defs of the register
718 typedef DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> > RegMap
;
721 // Keep track of the new VNs we're creating.
722 DenseMap
<MachineInstr
*, VNInfo
*> NewVNs
;
723 SmallPtrSet
<VNInfo
*, 2> PhiVNs
;
725 // Cache defs, and create a new VNInfo for each def.
726 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
727 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
728 Defs
[(*DI
).getParent()].insert(&*DI
);
730 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
731 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
733 VNInfo
* NewVN
= LI
->getNextValue(DefIdx
, 0, Alloc
);
735 // If the def is a move, set the copy field.
736 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
737 if (TII
->isMoveInstr(*DI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
738 if (DstReg
== LI
->reg
)
741 NewVNs
[&*DI
] = NewVN
;
744 // Cache uses as a separate pass from actually processing them.
745 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
746 UE
= MRI
->use_end(); UI
!= UE
; ++UI
)
747 Uses
[(*UI
).getParent()].insert(&*UI
);
749 // Now, actually process every use and use a phi construction algorithm
750 // to walk from it to its reaching definitions, building VNInfos along
752 DenseMap
<MachineBasicBlock
*, VNInfo
*> LiveOut
;
753 DenseMap
<MachineBasicBlock
*, VNInfo
*> Phis
;
754 SmallPtrSet
<MachineInstr
*, 4> Visited
;
755 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
756 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
757 PerformPHIConstruction(&*UI
, UI
->getParent(), LI
, Visited
, Defs
,
758 Uses
, NewVNs
, LiveOut
, Phis
, true, true);
761 // Add ranges for dead defs
762 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
763 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
764 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
765 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
767 if (LI
->liveAt(DefIdx
)) continue;
769 VNInfo
* DeadVN
= NewVNs
[&*DI
];
770 LI
->addRange(LiveRange(DefIdx
, DefIdx
+1, DeadVN
));
771 LI
->addKill(DeadVN
, DefIdx
);
775 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
776 /// be allocated to a different register. This function creates a new vreg,
777 /// copies the valno and its live ranges over to the new vreg's interval,
778 /// removes them from the old interval, and rewrites all uses and defs of
779 /// the original reg to the new vreg within those ranges.
780 void PreAllocSplitting::RenumberValno(VNInfo
* VN
) {
781 SmallVector
<VNInfo
*, 4> Stack
;
782 SmallVector
<VNInfo
*, 4> VNsToCopy
;
785 // Walk through and copy the valno we care about, and any other valnos
786 // that are two-address redefinitions of the one we care about. These
787 // will need to be rewritten as well. We also check for safety of the
788 // renumbering here, by making sure that none of the valno involved has
790 while (!Stack
.empty()) {
791 VNInfo
* OldVN
= Stack
.back();
794 // Bail out if we ever encounter a valno that has a PHI kill. We can't
796 if (OldVN
->hasPHIKill
) return;
798 VNsToCopy
.push_back(OldVN
);
800 // Locate two-address redefinitions
801 for (SmallVector
<unsigned, 4>::iterator KI
= OldVN
->kills
.begin(),
802 KE
= OldVN
->kills
.end(); KI
!= KE
; ++KI
) {
803 MachineInstr
* MI
= LIs
->getInstructionFromIndex(*KI
);
804 unsigned DefIdx
= MI
->findRegisterDefOperandIdx(CurrLI
->reg
);
805 if (DefIdx
== ~0U) continue;
806 if (MI
->isRegTiedToUseOperand(DefIdx
)) {
808 CurrLI
->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI
));
809 if (NextVN
== OldVN
) continue;
810 Stack
.push_back(NextVN
);
815 // Create the new vreg
816 unsigned NewVReg
= MRI
->createVirtualRegister(MRI
->getRegClass(CurrLI
->reg
));
818 // Create the new live interval
819 LiveInterval
& NewLI
= LIs
->getOrCreateInterval(NewVReg
);
821 for (SmallVector
<VNInfo
*, 4>::iterator OI
= VNsToCopy
.begin(), OE
=
822 VNsToCopy
.end(); OI
!= OE
; ++OI
) {
825 // Copy the valno over
826 VNInfo
* NewVN
= NewLI
.getNextValue(OldVN
->def
, OldVN
->copy
,
827 LIs
->getVNInfoAllocator());
828 NewLI
.copyValNumInfo(NewVN
, OldVN
);
829 NewLI
.MergeValueInAsValue(*CurrLI
, OldVN
, NewVN
);
831 // Remove the valno from the old interval
832 CurrLI
->removeValNo(OldVN
);
835 // Rewrite defs and uses. This is done in two stages to avoid invalidating
837 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> OpsToChange
;
839 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
840 E
= MRI
->reg_end(); I
!= E
; ++I
) {
841 MachineOperand
& MO
= I
.getOperand();
842 unsigned InstrIdx
= LIs
->getInstructionIndex(&*I
);
844 if ((MO
.isUse() && NewLI
.liveAt(LiveIntervals::getUseIndex(InstrIdx
))) ||
845 (MO
.isDef() && NewLI
.liveAt(LiveIntervals::getDefIndex(InstrIdx
))))
846 OpsToChange
.push_back(std::make_pair(&*I
, I
.getOperandNo()));
849 for (SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8>::iterator I
=
850 OpsToChange
.begin(), E
= OpsToChange
.end(); I
!= E
; ++I
) {
851 MachineInstr
* Inst
= I
->first
;
852 unsigned OpIdx
= I
->second
;
853 MachineOperand
& MO
= Inst
->getOperand(OpIdx
);
857 // Grow the VirtRegMap, since we've created a new vreg.
860 // The renumbered vreg shares a stack slot with the old register.
861 if (IntervalSSMap
.count(CurrLI
->reg
))
862 IntervalSSMap
[NewVReg
] = IntervalSSMap
[CurrLI
->reg
];
867 bool PreAllocSplitting::Rematerialize(unsigned vreg
, VNInfo
* ValNo
,
869 MachineBasicBlock::iterator RestorePt
,
871 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
872 MachineBasicBlock
& MBB
= *RestorePt
->getParent();
874 MachineBasicBlock::iterator KillPt
= BarrierMBB
->end();
875 unsigned KillIdx
= 0;
876 if (ValNo
->def
== ~0U || DefMI
->getParent() == BarrierMBB
)
877 KillPt
= findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, KillIdx
);
879 KillPt
= findNextEmptySlot(DefMI
->getParent(), DefMI
, KillIdx
);
881 if (KillPt
== DefMI
->getParent()->end())
884 TII
->reMaterialize(MBB
, RestorePt
, vreg
, DefMI
);
885 LIs
->InsertMachineInstrInMaps(prior(RestorePt
), RestoreIdx
);
887 ReconstructLiveInterval(CurrLI
);
888 unsigned RematIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
889 RematIdx
= LiveIntervals::getDefIndex(RematIdx
);
890 RenumberValno(CurrLI
->findDefinedVNInfo(RematIdx
));
897 MachineInstr
* PreAllocSplitting::FoldSpill(unsigned vreg
,
898 const TargetRegisterClass
* RC
,
900 MachineInstr
* Barrier
,
901 MachineBasicBlock
* MBB
,
903 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
904 MachineBasicBlock::iterator Pt
= MBB
->begin();
906 // Go top down if RefsInMBB is empty.
907 if (RefsInMBB
.empty())
910 MachineBasicBlock::iterator FoldPt
= Barrier
;
911 while (&*FoldPt
!= DefMI
&& FoldPt
!= MBB
->begin() &&
912 !RefsInMBB
.count(FoldPt
))
915 int OpIdx
= FoldPt
->findRegisterDefOperandIdx(vreg
, false);
919 SmallVector
<unsigned, 1> Ops
;
920 Ops
.push_back(OpIdx
);
922 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
925 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(vreg
);
926 if (I
!= IntervalSSMap
.end()) {
929 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
932 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
936 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
937 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
940 IntervalSSMap
[vreg
] = SS
;
941 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
942 if (CurrSLI
->hasAtLeastOneValue())
943 CurrSValNo
= CurrSLI
->getValNumInfo(0);
945 CurrSValNo
= CurrSLI
->getNextValue(~0U, 0, LSs
->getVNInfoAllocator());
951 MachineInstr
* PreAllocSplitting::FoldRestore(unsigned vreg
,
952 const TargetRegisterClass
* RC
,
953 MachineInstr
* Barrier
,
954 MachineBasicBlock
* MBB
,
956 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
957 if ((int)RestoreFoldLimit
!= -1 && RestoreFoldLimit
== (int)NumRestoreFolds
)
960 // Go top down if RefsInMBB is empty.
961 if (RefsInMBB
.empty())
964 // Can't fold a restore between a call stack setup and teardown.
965 MachineBasicBlock::iterator FoldPt
= Barrier
;
967 // Advance from barrier to call frame teardown.
968 while (FoldPt
!= MBB
->getFirstTerminator() &&
969 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
970 if (RefsInMBB
.count(FoldPt
))
976 if (FoldPt
== MBB
->getFirstTerminator())
981 // Now find the restore point.
982 while (FoldPt
!= MBB
->getFirstTerminator() && !RefsInMBB
.count(FoldPt
)) {
983 if (FoldPt
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
984 while (FoldPt
!= MBB
->getFirstTerminator() &&
985 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
986 if (RefsInMBB
.count(FoldPt
))
992 if (FoldPt
== MBB
->getFirstTerminator())
999 if (FoldPt
== MBB
->getFirstTerminator())
1002 int OpIdx
= FoldPt
->findRegisterUseOperandIdx(vreg
, true);
1006 SmallVector
<unsigned, 1> Ops
;
1007 Ops
.push_back(OpIdx
);
1009 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
1012 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
1016 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
1017 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
1024 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
1025 /// so it would not cross the barrier that's being processed. Shrink wrap
1026 /// (minimize) the live interval to the last uses.
1027 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval
*LI
) {
1030 // Find live range where current interval cross the barrier.
1031 LiveInterval::iterator LR
=
1032 CurrLI
->FindLiveRangeContaining(LIs
->getUseIndex(BarrierIdx
));
1033 VNInfo
*ValNo
= LR
->valno
;
1035 if (ValNo
->def
== ~1U) {
1036 // Defined by a dead def? How can this be?
1037 assert(0 && "Val# is defined by a dead def?");
1041 MachineInstr
*DefMI
= (ValNo
->def
!= ~0U)
1042 ? LIs
->getInstructionFromIndex(ValNo
->def
) : NULL
;
1044 // If this would create a new join point, do not split.
1045 if (DefMI
&& createsNewJoin(LR
, DefMI
->getParent(), Barrier
->getParent()))
1048 // Find all references in the barrier mbb.
1049 SmallPtrSet
<MachineInstr
*, 4> RefsInMBB
;
1050 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
1051 E
= MRI
->reg_end(); I
!= E
; ++I
) {
1052 MachineInstr
*RefMI
= &*I
;
1053 if (RefMI
->getParent() == BarrierMBB
)
1054 RefsInMBB
.insert(RefMI
);
1057 // Find a point to restore the value after the barrier.
1058 unsigned RestoreIndex
= 0;
1059 MachineBasicBlock::iterator RestorePt
=
1060 findRestorePoint(BarrierMBB
, Barrier
, LR
->end
, RefsInMBB
, RestoreIndex
);
1061 if (RestorePt
== BarrierMBB
->end())
1064 if (DefMI
&& LIs
->isReMaterializable(*LI
, ValNo
, DefMI
))
1065 if (Rematerialize(LI
->reg
, ValNo
, DefMI
, RestorePt
,
1066 RestoreIndex
, RefsInMBB
))
1069 // Add a spill either before the barrier or after the definition.
1070 MachineBasicBlock
*DefMBB
= DefMI
? DefMI
->getParent() : NULL
;
1071 const TargetRegisterClass
*RC
= MRI
->getRegClass(CurrLI
->reg
);
1072 unsigned SpillIndex
= 0;
1073 MachineInstr
*SpillMI
= NULL
;
1075 if (ValNo
->def
== ~0U) {
1076 // If it's defined by a phi, we must split just before the barrier.
1077 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, 0, Barrier
,
1078 BarrierMBB
, SS
, RefsInMBB
))) {
1079 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1081 MachineBasicBlock::iterator SpillPt
=
1082 findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, SpillIndex
);
1083 if (SpillPt
== BarrierMBB
->begin())
1084 return false; // No gap to insert spill.
1087 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1088 TII
->storeRegToStackSlot(*BarrierMBB
, SpillPt
, CurrLI
->reg
, true, SS
, RC
);
1089 SpillMI
= prior(SpillPt
);
1090 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1092 } else if (!IsAvailableInStack(DefMBB
, CurrLI
->reg
, ValNo
->def
,
1093 RestoreIndex
, SpillIndex
, SS
)) {
1094 // If it's already split, just restore the value. There is no need to spill
1097 return false; // Def is dead. Do nothing.
1099 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, DefMI
, Barrier
,
1100 BarrierMBB
, SS
, RefsInMBB
))) {
1101 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1103 // Check if it's possible to insert a spill after the def MI.
1104 MachineBasicBlock::iterator SpillPt
;
1105 if (DefMBB
== BarrierMBB
) {
1106 // Add spill after the def and the last use before the barrier.
1107 SpillPt
= findSpillPoint(BarrierMBB
, Barrier
, DefMI
,
1108 RefsInMBB
, SpillIndex
);
1109 if (SpillPt
== DefMBB
->begin())
1110 return false; // No gap to insert spill.
1112 SpillPt
= findNextEmptySlot(DefMBB
, DefMI
, SpillIndex
);
1113 if (SpillPt
== DefMBB
->end())
1114 return false; // No gap to insert spill.
1116 // Add spill. The store instruction kills the register if def is before
1117 // the barrier in the barrier block.
1118 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1119 TII
->storeRegToStackSlot(*DefMBB
, SpillPt
, CurrLI
->reg
,
1120 DefMBB
== BarrierMBB
, SS
, RC
);
1121 SpillMI
= prior(SpillPt
);
1122 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1126 // Remember def instruction index to spill index mapping.
1127 if (DefMI
&& SpillMI
)
1128 Def2SpillMap
[ValNo
->def
] = SpillIndex
;
1131 bool FoldedRestore
= false;
1132 if (MachineInstr
* LMI
= FoldRestore(CurrLI
->reg
, RC
, Barrier
,
1133 BarrierMBB
, SS
, RefsInMBB
)) {
1135 RestoreIndex
= LIs
->getInstructionIndex(RestorePt
);
1136 FoldedRestore
= true;
1138 TII
->loadRegFromStackSlot(*BarrierMBB
, RestorePt
, CurrLI
->reg
, SS
, RC
);
1139 MachineInstr
*LoadMI
= prior(RestorePt
);
1140 LIs
->InsertMachineInstrInMaps(LoadMI
, RestoreIndex
);
1143 // Update spill stack slot live interval.
1144 UpdateSpillSlotInterval(ValNo
, LIs
->getUseIndex(SpillIndex
)+1,
1145 LIs
->getDefIndex(RestoreIndex
));
1147 ReconstructLiveInterval(CurrLI
);
1149 if (!FoldedRestore
) {
1150 unsigned RestoreIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
1151 RestoreIdx
= LiveIntervals::getDefIndex(RestoreIdx
);
1152 RenumberValno(CurrLI
->findDefinedVNInfo(RestoreIdx
));
1159 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1160 /// barrier that's being processed.
1162 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass
**RCs
,
1163 SmallPtrSet
<LiveInterval
*, 8>& Split
) {
1164 // First find all the virtual registers whose live intervals are intercepted
1165 // by the current barrier.
1166 SmallVector
<LiveInterval
*, 8> Intervals
;
1167 for (const TargetRegisterClass
**RC
= RCs
; *RC
; ++RC
) {
1168 // FIXME: If it's not safe to move any instruction that defines the barrier
1169 // register class, then it means there are some special dependencies which
1170 // codegen is not modelling. Ignore these barriers for now.
1171 if (!TII
->isSafeToMoveRegClassDefs(*RC
))
1173 std::vector
<unsigned> &VRs
= MRI
->getRegClassVirtRegs(*RC
);
1174 for (unsigned i
= 0, e
= VRs
.size(); i
!= e
; ++i
) {
1175 unsigned Reg
= VRs
[i
];
1176 if (!LIs
->hasInterval(Reg
))
1178 LiveInterval
*LI
= &LIs
->getInterval(Reg
);
1179 if (LI
->liveAt(BarrierIdx
) && !Barrier
->readsRegister(Reg
))
1180 // Virtual register live interval is intercepted by the barrier. We
1181 // should split and shrink wrap its interval if possible.
1182 Intervals
.push_back(LI
);
1186 // Process the affected live intervals.
1187 bool Change
= false;
1188 while (!Intervals
.empty()) {
1189 if (PreSplitLimit
!= -1 && (int)NumSplits
== PreSplitLimit
)
1191 else if (NumSplits
== 4)
1193 LiveInterval
*LI
= Intervals
.back();
1194 Intervals
.pop_back();
1195 bool result
= SplitRegLiveInterval(LI
);
1196 if (result
) Split
.insert(LI
);
1203 unsigned PreAllocSplitting::getNumberOfNonSpills(
1204 SmallPtrSet
<MachineInstr
*, 4>& MIs
,
1205 unsigned Reg
, int FrameIndex
,
1206 bool& FeedsTwoAddr
) {
1207 unsigned NonSpills
= 0;
1208 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= MIs
.begin(), UE
= MIs
.end();
1210 int StoreFrameIndex
;
1211 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1212 if (StoreVReg
!= Reg
|| StoreFrameIndex
!= FrameIndex
)
1215 int DefIdx
= (*UI
)->findRegisterDefOperandIdx(Reg
);
1216 if (DefIdx
!= -1 && (*UI
)->isRegTiedToUseOperand(DefIdx
))
1217 FeedsTwoAddr
= true;
1223 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1224 /// split, and see if any of the spills are unnecessary. If so, remove them.
1225 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
) {
1226 bool changed
= false;
1228 // Walk over all of the live intervals that were touched by the splitter,
1229 // and see if we can do any DCE and/or folding.
1230 for (SmallPtrSet
<LiveInterval
*, 8>::iterator LI
= split
.begin(),
1231 LE
= split
.end(); LI
!= LE
; ++LI
) {
1232 DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> > VNUseCount
;
1234 // First, collect all the uses of the vreg, and sort them by their
1235 // reaching definition (VNInfo).
1236 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin((*LI
)->reg
),
1237 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1238 unsigned index
= LIs
->getInstructionIndex(&*UI
);
1239 index
= LiveIntervals::getUseIndex(index
);
1241 const LiveRange
* LR
= (*LI
)->getLiveRangeContaining(index
);
1242 VNUseCount
[LR
->valno
].insert(&*UI
);
1245 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1246 // and/or fold them away.
1247 for (LiveInterval::vni_iterator VI
= (*LI
)->vni_begin(),
1248 VE
= (*LI
)->vni_end(); VI
!= VE
; ++VI
) {
1250 if (DeadSplitLimit
!= -1 && (int)NumDeadSpills
== DeadSplitLimit
)
1253 VNInfo
* CurrVN
= *VI
;
1255 // We don't currently try to handle definitions with PHI kills, because
1256 // it would involve processing more than one VNInfo at once.
1257 if (CurrVN
->hasPHIKill
) continue;
1259 // We also don't try to handle the results of PHI joins, since there's
1260 // no defining instruction to analyze.
1261 unsigned DefIdx
= CurrVN
->def
;
1262 if (DefIdx
== ~0U || DefIdx
== ~1U) continue;
1264 // We're only interested in eliminating cruft introduced by the splitter,
1265 // is of the form load-use or load-use-store. First, check that the
1266 // definition is a load, and remember what stack slot we loaded it from.
1267 MachineInstr
* DefMI
= LIs
->getInstructionFromIndex(DefIdx
);
1269 if (!TII
->isLoadFromStackSlot(DefMI
, FrameIndex
)) continue;
1271 // If the definition has no uses at all, just DCE it.
1272 if (VNUseCount
[CurrVN
].size() == 0) {
1273 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1274 (*LI
)->removeValNo(CurrVN
);
1275 DefMI
->eraseFromParent();
1276 VNUseCount
.erase(CurrVN
);
1282 // Second, get the number of non-store uses of the definition, as well as
1283 // a flag indicating whether it feeds into a later two-address definition.
1284 bool FeedsTwoAddr
= false;
1285 unsigned NonSpillCount
= getNumberOfNonSpills(VNUseCount
[CurrVN
],
1286 (*LI
)->reg
, FrameIndex
,
1289 // If there's one non-store use and it doesn't feed a two-addr, then
1290 // this is a load-use-store case that we can try to fold.
1291 if (NonSpillCount
== 1 && !FeedsTwoAddr
) {
1292 // Start by finding the non-store use MachineInstr.
1293 SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= VNUseCount
[CurrVN
].begin();
1294 int StoreFrameIndex
;
1295 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1296 while (UI
!= VNUseCount
[CurrVN
].end() &&
1297 (StoreVReg
== (*LI
)->reg
&& StoreFrameIndex
== FrameIndex
)) {
1299 if (UI
!= VNUseCount
[CurrVN
].end())
1300 StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1302 if (UI
== VNUseCount
[CurrVN
].end()) continue;
1304 MachineInstr
* use
= *UI
;
1306 // Attempt to fold it away!
1307 int OpIdx
= use
->findRegisterUseOperandIdx((*LI
)->reg
, false);
1308 if (OpIdx
== -1) continue;
1309 SmallVector
<unsigned, 1> Ops
;
1310 Ops
.push_back(OpIdx
);
1311 if (!TII
->canFoldMemoryOperand(use
, Ops
)) continue;
1313 MachineInstr
* NewMI
=
1314 TII
->foldMemoryOperand(*use
->getParent()->getParent(),
1315 use
, Ops
, FrameIndex
);
1317 if (!NewMI
) continue;
1319 // Update relevant analyses.
1320 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1321 LIs
->ReplaceMachineInstrInMaps(use
, NewMI
);
1322 (*LI
)->removeValNo(CurrVN
);
1324 DefMI
->eraseFromParent();
1325 MachineBasicBlock
* MBB
= use
->getParent();
1326 NewMI
= MBB
->insert(MBB
->erase(use
), NewMI
);
1327 VNUseCount
[CurrVN
].erase(use
);
1329 // Remove deleted instructions. Note that we need to remove them from
1330 // the VNInfo->use map as well, just to be safe.
1331 for (SmallPtrSet
<MachineInstr
*, 4>::iterator II
=
1332 VNUseCount
[CurrVN
].begin(), IE
= VNUseCount
[CurrVN
].end();
1334 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1335 VNI
= VNUseCount
.begin(), VNE
= VNUseCount
.end(); VNI
!= VNE
;
1337 if (VNI
->first
!= CurrVN
)
1338 VNI
->second
.erase(*II
);
1339 LIs
->RemoveMachineInstrFromMaps(*II
);
1340 (*II
)->eraseFromParent();
1343 VNUseCount
.erase(CurrVN
);
1345 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1346 VI
= VNUseCount
.begin(), VE
= VNUseCount
.end(); VI
!= VE
; ++VI
)
1347 if (VI
->second
.erase(use
))
1348 VI
->second
.insert(NewMI
);
1355 // If there's more than one non-store instruction, we can't profitably
1356 // fold it, so bail.
1357 if (NonSpillCount
) continue;
1359 // Otherwise, this is a load-store case, so DCE them.
1360 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
=
1361 VNUseCount
[CurrVN
].begin(), UE
= VNUseCount
[CurrVN
].end();
1363 LIs
->RemoveMachineInstrFromMaps(*UI
);
1364 (*UI
)->eraseFromParent();
1367 VNUseCount
.erase(CurrVN
);
1369 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1370 (*LI
)->removeValNo(CurrVN
);
1371 DefMI
->eraseFromParent();
1380 bool PreAllocSplitting::createsNewJoin(LiveRange
* LR
,
1381 MachineBasicBlock
* DefMBB
,
1382 MachineBasicBlock
* BarrierMBB
) {
1383 if (DefMBB
== BarrierMBB
)
1386 if (LR
->valno
->hasPHIKill
)
1389 unsigned MBBEnd
= LIs
->getMBBEndIdx(BarrierMBB
);
1390 if (LR
->end
< MBBEnd
)
1393 MachineLoopInfo
& MLI
= getAnalysis
<MachineLoopInfo
>();
1394 if (MLI
.getLoopFor(DefMBB
) != MLI
.getLoopFor(BarrierMBB
))
1397 MachineDominatorTree
& MDT
= getAnalysis
<MachineDominatorTree
>();
1398 SmallPtrSet
<MachineBasicBlock
*, 4> Visited
;
1399 typedef std::pair
<MachineBasicBlock
*,
1400 MachineBasicBlock::succ_iterator
> ItPair
;
1401 SmallVector
<ItPair
, 4> Stack
;
1402 Stack
.push_back(std::make_pair(BarrierMBB
, BarrierMBB
->succ_begin()));
1404 while (!Stack
.empty()) {
1405 ItPair P
= Stack
.back();
1408 MachineBasicBlock
* PredMBB
= P
.first
;
1409 MachineBasicBlock::succ_iterator S
= P
.second
;
1411 if (S
== PredMBB
->succ_end())
1413 else if (Visited
.count(*S
)) {
1414 Stack
.push_back(std::make_pair(PredMBB
, ++S
));
1417 Stack
.push_back(std::make_pair(PredMBB
, S
+1));
1419 MachineBasicBlock
* MBB
= *S
;
1420 Visited
.insert(MBB
);
1422 if (MBB
== BarrierMBB
)
1425 MachineDomTreeNode
* DefMDTN
= MDT
.getNode(DefMBB
);
1426 MachineDomTreeNode
* BarrierMDTN
= MDT
.getNode(BarrierMBB
);
1427 MachineDomTreeNode
* MDTN
= MDT
.getNode(MBB
)->getIDom();
1429 if (MDTN
== DefMDTN
)
1431 else if (MDTN
== BarrierMDTN
)
1433 MDTN
= MDTN
->getIDom();
1436 MBBEnd
= LIs
->getMBBEndIdx(MBB
);
1437 if (LR
->end
> MBBEnd
)
1438 Stack
.push_back(std::make_pair(MBB
, MBB
->succ_begin()));
1445 bool PreAllocSplitting::runOnMachineFunction(MachineFunction
&MF
) {
1447 TM
= &MF
.getTarget();
1448 TRI
= TM
->getRegisterInfo();
1449 TII
= TM
->getInstrInfo();
1450 MFI
= MF
.getFrameInfo();
1451 MRI
= &MF
.getRegInfo();
1452 LIs
= &getAnalysis
<LiveIntervals
>();
1453 LSs
= &getAnalysis
<LiveStacks
>();
1454 VRM
= &getAnalysis
<VirtRegMap
>();
1456 bool MadeChange
= false;
1458 // Make sure blocks are numbered in order.
1459 MF
.RenumberBlocks();
1461 MachineBasicBlock
*Entry
= MF
.begin();
1462 SmallPtrSet
<MachineBasicBlock
*,16> Visited
;
1464 SmallPtrSet
<LiveInterval
*, 8> Split
;
1466 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*,16> >
1467 DFI
= df_ext_begin(Entry
, Visited
), E
= df_ext_end(Entry
, Visited
);
1470 for (MachineBasicBlock::iterator I
= BarrierMBB
->begin(),
1471 E
= BarrierMBB
->end(); I
!= E
; ++I
) {
1473 const TargetRegisterClass
**BarrierRCs
=
1474 Barrier
->getDesc().getRegClassBarriers();
1477 BarrierIdx
= LIs
->getInstructionIndex(Barrier
);
1478 MadeChange
|= SplitRegLiveIntervals(BarrierRCs
, Split
);
1482 MadeChange
|= removeDeadSpills(Split
);