Merge branch 'master' into msp430
[llvm/msp430.git] / lib / CodeGen / RegAllocPBQP.cpp
blob9b2c92c13e505dcac8cb90180abceb4d78adf043
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP.h"
35 #include "VirtRegMap.h"
36 #include "VirtRegRewriter.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveStackAnalysis.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineLoopInfo.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RegAllocRegistry.h"
43 #include "llvm/CodeGen/RegisterCoalescer.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include <limits>
48 #include <map>
49 #include <memory>
50 #include <set>
51 #include <vector>
53 using namespace llvm;
55 static RegisterRegAlloc
56 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
57 createPBQPRegisterAllocator);
59 namespace {
61 //!
62 //! PBQP based allocators solve the register allocation problem by mapping
63 //! register allocation problems to Partitioned Boolean Quadratic
64 //! Programming problems.
65 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
66 public:
68 static char ID;
70 //! Construct a PBQP register allocator.
71 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
73 //! Return the pass name.
74 virtual const char* getPassName() const throw() {
75 return "PBQP Register Allocator";
78 //! PBQP analysis usage.
79 virtual void getAnalysisUsage(AnalysisUsage &au) const {
80 au.addRequired<LiveIntervals>();
81 au.addRequiredTransitive<RegisterCoalescer>();
82 au.addRequired<LiveStacks>();
83 au.addPreserved<LiveStacks>();
84 au.addRequired<MachineLoopInfo>();
85 au.addPreserved<MachineLoopInfo>();
86 au.addRequired<VirtRegMap>();
87 MachineFunctionPass::getAnalysisUsage(au);
90 //! Perform register allocation
91 virtual bool runOnMachineFunction(MachineFunction &MF);
93 private:
94 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
95 typedef std::vector<const LiveInterval*> Node2LIMap;
96 typedef std::vector<unsigned> AllowedSet;
97 typedef std::vector<AllowedSet> AllowedSetMap;
98 typedef std::set<unsigned> RegSet;
99 typedef std::pair<unsigned, unsigned> RegPair;
100 typedef std::map<RegPair, PBQPNum> CoalesceMap;
102 typedef std::set<LiveInterval*> LiveIntervalSet;
104 MachineFunction *mf;
105 const TargetMachine *tm;
106 const TargetRegisterInfo *tri;
107 const TargetInstrInfo *tii;
108 const MachineLoopInfo *loopInfo;
109 MachineRegisterInfo *mri;
111 LiveIntervals *lis;
112 LiveStacks *lss;
113 VirtRegMap *vrm;
115 LI2NodeMap li2Node;
116 Node2LIMap node2LI;
117 AllowedSetMap allowedSets;
118 LiveIntervalSet vregIntervalsToAlloc,
119 emptyVRegIntervals;
122 //! Builds a PBQP cost vector.
123 template <typename RegContainer>
124 PBQPVector* buildCostVector(unsigned vReg,
125 const RegContainer &allowed,
126 const CoalesceMap &cealesces,
127 PBQPNum spillCost) const;
129 //! \brief Builds a PBQP interference matrix.
131 //! @return Either a pointer to a non-zero PBQP matrix representing the
132 //! allocation option costs, or a null pointer for a zero matrix.
134 //! Expects allowed sets for two interfering LiveIntervals. These allowed
135 //! sets should contain only allocable registers from the LiveInterval's
136 //! register class, with any interfering pre-colored registers removed.
137 template <typename RegContainer>
138 PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
139 const RegContainer &allowed2) const;
142 //! Expects allowed sets for two potentially coalescable LiveIntervals,
143 //! and an estimated benefit due to coalescing. The allowed sets should
144 //! contain only allocable registers from the LiveInterval's register
145 //! classes, with any interfering pre-colored registers removed.
146 template <typename RegContainer>
147 PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
148 const RegContainer &allowed2,
149 PBQPNum cBenefit) const;
151 //! \brief Finds coalescing opportunities and returns them as a map.
153 //! Any entries in the map are guaranteed coalescable, even if their
154 //! corresponding live intervals overlap.
155 CoalesceMap findCoalesces();
157 //! \brief Finds the initial set of vreg intervals to allocate.
158 void findVRegIntervalsToAlloc();
160 //! \brief Constructs a PBQP problem representation of the register
161 //! allocation problem for this function.
163 //! @return a PBQP solver object for the register allocation problem.
164 pbqp* constructPBQPProblem();
166 //! \brief Adds a stack interval if the given live interval has been
167 //! spilled. Used to support stack slot coloring.
168 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
170 //! \brief Given a solved PBQP problem maps this solution back to a register
171 //! assignment.
172 bool mapPBQPToRegAlloc(pbqp *problem);
174 //! \brief Postprocessing before final spilling. Sets basic block "live in"
175 //! variables.
176 void finalizeAlloc() const;
180 char PBQPRegAlloc::ID = 0;
184 template <typename RegContainer>
185 PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
186 const RegContainer &allowed,
187 const CoalesceMap &coalesces,
188 PBQPNum spillCost) const {
190 typedef typename RegContainer::const_iterator AllowedItr;
192 // Allocate vector. Additional element (0th) used for spill option
193 PBQPVector *v = new PBQPVector(allowed.size() + 1);
195 (*v)[0] = spillCost;
197 // Iterate over the allowed registers inserting coalesce benefits if there
198 // are any.
199 unsigned ai = 0;
200 for (AllowedItr itr = allowed.begin(), end = allowed.end();
201 itr != end; ++itr, ++ai) {
203 unsigned pReg = *itr;
205 CoalesceMap::const_iterator cmItr =
206 coalesces.find(RegPair(vReg, pReg));
208 // No coalesce - on to the next preg.
209 if (cmItr == coalesces.end())
210 continue;
212 // We have a coalesce - insert the benefit.
213 (*v)[ai + 1] = -cmItr->second;
216 return v;
219 template <typename RegContainer>
220 PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
221 const RegContainer &allowed1, const RegContainer &allowed2) const {
223 typedef typename RegContainer::const_iterator RegContainerIterator;
225 // Construct a PBQP matrix representing the cost of allocation options. The
226 // rows and columns correspond to the allocation options for the two live
227 // intervals. Elements will be infinite where corresponding registers alias,
228 // since we cannot allocate aliasing registers to interfering live intervals.
229 // All other elements (non-aliasing combinations) will have zero cost. Note
230 // that the spill option (element 0,0) has zero cost, since we can allocate
231 // both intervals to memory safely (the cost for each individual allocation
232 // to memory is accounted for by the cost vectors for each live interval).
233 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
235 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
236 // between interfering live ranges with non-overlapping register sets (e.g.
237 // non-overlapping reg classes, or disjoint sets of allowed regs within the
238 // same class). The term "overlapping" is used advisedly: sets which do not
239 // intersect, but contain registers which alias, will have non-zero matrices.
240 // We optimize zero matrices away to improve solver speed.
241 bool isZeroMatrix = true;
244 // Row index. Starts at 1, since the 0th row is for the spill option, which
245 // is always zero.
246 unsigned ri = 1;
248 // Iterate over allowed sets, insert infinities where required.
249 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
250 a1Itr != a1End; ++a1Itr) {
252 // Column index, starts at 1 as for row index.
253 unsigned ci = 1;
254 unsigned reg1 = *a1Itr;
256 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
257 a2Itr != a2End; ++a2Itr) {
259 unsigned reg2 = *a2Itr;
261 // If the row/column regs are identical or alias insert an infinity.
262 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
263 (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
264 isZeroMatrix = false;
267 ++ci;
270 ++ri;
273 // If this turns out to be a zero matrix...
274 if (isZeroMatrix) {
275 // free it and return null.
276 delete m;
277 return 0;
280 // ...otherwise return the cost matrix.
281 return m;
284 template <typename RegContainer>
285 PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
286 const RegContainer &allowed1, const RegContainer &allowed2,
287 PBQPNum cBenefit) const {
289 typedef typename RegContainer::const_iterator RegContainerIterator;
291 // Construct a PBQP Matrix representing the benefits of coalescing. As with
292 // interference matrices the rows and columns represent allowed registers
293 // for the LiveIntervals which are (potentially) to be coalesced. The amount
294 // -cBenefit will be placed in any element representing the same register
295 // for both intervals.
296 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
298 // Reset costs to zero.
299 m->reset(0);
301 // Assume the matrix is zero till proven otherwise. Zero matrices will be
302 // optimized away as in the interference case.
303 bool isZeroMatrix = true;
305 // Row index. Starts at 1, since the 0th row is for the spill option, which
306 // is always zero.
307 unsigned ri = 1;
309 // Iterate over the allowed sets, insert coalescing benefits where
310 // appropriate.
311 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
312 a1Itr != a1End; ++a1Itr) {
314 // Column index, starts at 1 as for row index.
315 unsigned ci = 1;
316 unsigned reg1 = *a1Itr;
318 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
319 a2Itr != a2End; ++a2Itr) {
321 // If the row and column represent the same register insert a beneficial
322 // cost to preference this allocation - it would allow us to eliminate a
323 // move instruction.
324 if (reg1 == *a2Itr) {
325 (*m)[ri][ci] = -cBenefit;
326 isZeroMatrix = false;
329 ++ci;
332 ++ri;
335 // If this turns out to be a zero matrix...
336 if (isZeroMatrix) {
337 // ...free it and return null.
338 delete m;
339 return 0;
342 return m;
345 PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
347 typedef MachineFunction::const_iterator MFIterator;
348 typedef MachineBasicBlock::const_iterator MBBIterator;
349 typedef LiveInterval::const_vni_iterator VNIIterator;
351 CoalesceMap coalescesFound;
353 // To find coalesces we need to iterate over the function looking for
354 // copy instructions.
355 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
356 bbItr != bbEnd; ++bbItr) {
358 const MachineBasicBlock *mbb = &*bbItr;
360 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
361 iItr != iEnd; ++iItr) {
363 const MachineInstr *instr = &*iItr;
364 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
366 // If this isn't a copy then continue to the next instruction.
367 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
368 continue;
370 // If the registers are already the same our job is nice and easy.
371 if (dstReg == srcReg)
372 continue;
374 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
375 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
377 // If both registers are physical then we can't coalesce.
378 if (srcRegIsPhysical && dstRegIsPhysical)
379 continue;
381 // If it's a copy that includes a virtual register but the source and
382 // destination classes differ then we can't coalesce, so continue with
383 // the next instruction.
384 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
385 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
387 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
388 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
390 if (srcRegClass != dstRegClass)
391 continue;
393 // We also need any physical regs to be allocable, coalescing with
394 // a non-allocable register is invalid.
395 if (srcRegIsPhysical) {
396 if (std::find(srcRegClass->allocation_order_begin(*mf),
397 srcRegClass->allocation_order_end(*mf), srcReg) ==
398 srcRegClass->allocation_order_end(*mf))
399 continue;
402 if (dstRegIsPhysical) {
403 if (std::find(dstRegClass->allocation_order_begin(*mf),
404 dstRegClass->allocation_order_end(*mf), dstReg) ==
405 dstRegClass->allocation_order_end(*mf))
406 continue;
409 // If we've made it here we have a copy with compatible register classes.
410 // We can probably coalesce, but we need to consider overlap.
411 const LiveInterval *srcLI = &lis->getInterval(srcReg),
412 *dstLI = &lis->getInterval(dstReg);
414 if (srcLI->overlaps(*dstLI)) {
415 // Even in the case of an overlap we might still be able to coalesce,
416 // but we need to make sure that no definition of either range occurs
417 // while the other range is live.
419 // Otherwise start by assuming we're ok.
420 bool badDef = false;
422 // Test all defs of the source range.
423 for (VNIIterator
424 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
425 vniItr != vniEnd; ++vniItr) {
427 // If we find a def that kills the coalescing opportunity then
428 // record it and break from the loop.
429 if (dstLI->liveAt((*vniItr)->def)) {
430 badDef = true;
431 break;
435 // If we have a bad def give up, continue to the next instruction.
436 if (badDef)
437 continue;
439 // Otherwise test definitions of the destination range.
440 for (VNIIterator
441 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
442 vniItr != vniEnd; ++vniItr) {
444 // We want to make sure we skip the copy instruction itself.
445 if ((*vniItr)->copy == instr)
446 continue;
448 if (srcLI->liveAt((*vniItr)->def)) {
449 badDef = true;
450 break;
454 // As before a bad def we give up and continue to the next instr.
455 if (badDef)
456 continue;
459 // If we make it to here then either the ranges didn't overlap, or they
460 // did, but none of their definitions would prevent us from coalescing.
461 // We're good to go with the coalesce.
463 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
465 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
466 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
471 return coalescesFound;
474 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
476 // Iterate over all live ranges.
477 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
478 itr != end; ++itr) {
480 // Ignore physical ones.
481 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
482 continue;
484 LiveInterval *li = itr->second;
486 // If this live interval is non-empty we will use pbqp to allocate it.
487 // Empty intervals we allocate in a simple post-processing stage in
488 // finalizeAlloc.
489 if (!li->empty()) {
490 vregIntervalsToAlloc.insert(li);
492 else {
493 emptyVRegIntervals.insert(li);
498 pbqp* PBQPRegAlloc::constructPBQPProblem() {
500 typedef std::vector<const LiveInterval*> LIVector;
501 typedef std::vector<unsigned> RegVector;
503 // This will store the physical intervals for easy reference.
504 LIVector physIntervals;
506 // Start by clearing the old node <-> live interval mappings & allowed sets
507 li2Node.clear();
508 node2LI.clear();
509 allowedSets.clear();
511 // Populate physIntervals, update preg use:
512 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
513 itr != end; ++itr) {
515 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
516 physIntervals.push_back(itr->second);
517 mri->setPhysRegUsed(itr->second->reg);
521 // Iterate over vreg intervals, construct live interval <-> node number
522 // mappings.
523 for (LiveIntervalSet::const_iterator
524 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
525 itr != end; ++itr) {
526 const LiveInterval *li = *itr;
528 li2Node[li] = node2LI.size();
529 node2LI.push_back(li);
532 // Get the set of potential coalesces.
533 CoalesceMap coalesces(findCoalesces());
535 // Construct a PBQP solver for this problem
536 pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
538 // Resize allowedSets container appropriately.
539 allowedSets.resize(vregIntervalsToAlloc.size());
541 // Iterate over virtual register intervals to compute allowed sets...
542 for (unsigned node = 0; node < node2LI.size(); ++node) {
544 // Grab pointers to the interval and its register class.
545 const LiveInterval *li = node2LI[node];
546 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
548 // Start by assuming all allocable registers in the class are allowed...
549 RegVector liAllowed(liRC->allocation_order_begin(*mf),
550 liRC->allocation_order_end(*mf));
552 // Eliminate the physical registers which overlap with this range, along
553 // with all their aliases.
554 for (LIVector::iterator pItr = physIntervals.begin(),
555 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
557 if (!li->overlaps(**pItr))
558 continue;
560 unsigned pReg = (*pItr)->reg;
562 // If we get here then the live intervals overlap, but we're still ok
563 // if they're coalescable.
564 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
565 continue;
567 // If we get here then we have a genuine exclusion.
569 // Remove the overlapping reg...
570 RegVector::iterator eraseItr =
571 std::find(liAllowed.begin(), liAllowed.end(), pReg);
573 if (eraseItr != liAllowed.end())
574 liAllowed.erase(eraseItr);
576 const unsigned *aliasItr = tri->getAliasSet(pReg);
578 if (aliasItr != 0) {
579 // ...and its aliases.
580 for (; *aliasItr != 0; ++aliasItr) {
581 RegVector::iterator eraseItr =
582 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
584 if (eraseItr != liAllowed.end()) {
585 liAllowed.erase(eraseItr);
591 // Copy the allowed set into a member vector for use when constructing cost
592 // vectors & matrices, and mapping PBQP solutions back to assignments.
593 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
595 // Set the spill cost to the interval weight, or epsilon if the
596 // interval weight is zero
597 PBQPNum spillCost = (li->weight != 0.0) ?
598 li->weight : std::numeric_limits<PBQPNum>::min();
600 // Build a cost vector for this interval.
601 add_pbqp_nodecosts(solver, node,
602 buildCostVector(li->reg, allowedSets[node], coalesces,
603 spillCost));
608 // Now add the cost matrices...
609 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
610 const LiveInterval *li = node2LI[node1];
612 // Test for live range overlaps and insert interference matrices.
613 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
614 const LiveInterval *li2 = node2LI[node2];
616 CoalesceMap::const_iterator cmItr =
617 coalesces.find(RegPair(li->reg, li2->reg));
619 PBQPMatrix *m = 0;
621 if (cmItr != coalesces.end()) {
622 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
623 cmItr->second);
625 else if (li->overlaps(*li2)) {
626 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
629 if (m != 0) {
630 add_pbqp_edgecosts(solver, node1, node2, m);
631 delete m;
636 // We're done, PBQP problem constructed - return it.
637 return solver;
640 void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
641 MachineRegisterInfo* mri) {
642 int stackSlot = vrm->getStackSlot(spilled->reg);
644 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
645 return;
647 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
648 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
650 VNInfo *vni;
651 if (stackInterval.getNumValNums() != 0)
652 vni = stackInterval.getValNumInfo(0);
653 else
654 vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
656 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
657 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
660 bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
662 // Set to true if we have any spills
663 bool anotherRoundNeeded = false;
665 // Clear the existing allocation.
666 vrm->clearAllVirt();
668 // Iterate over the nodes mapping the PBQP solution to a register assignment.
669 for (unsigned node = 0; node < node2LI.size(); ++node) {
670 unsigned virtReg = node2LI[node]->reg,
671 allocSelection = get_pbqp_solution(problem, node);
673 // If the PBQP solution is non-zero it's a physical register...
674 if (allocSelection != 0) {
675 // Get the physical reg, subtracting 1 to account for the spill option.
676 unsigned physReg = allowedSets[node][allocSelection - 1];
678 DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
680 assert(physReg != 0);
682 // Add to the virt reg map and update the used phys regs.
683 vrm->assignVirt2Phys(virtReg, physReg);
685 // ...Otherwise it's a spill.
686 else {
688 // Make sure we ignore this virtual reg on the next round
689 // of allocation
690 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
692 // Insert spill ranges for this live range
693 const LiveInterval *spillInterval = node2LI[node];
694 double oldSpillWeight = spillInterval->weight;
695 SmallVector<LiveInterval*, 8> spillIs;
696 std::vector<LiveInterval*> newSpills =
697 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
698 addStackInterval(spillInterval, mri);
700 DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
701 << oldSpillWeight << ", New vregs: ";
703 // Copy any newly inserted live intervals into the list of regs to
704 // allocate.
705 for (std::vector<LiveInterval*>::const_iterator
706 itr = newSpills.begin(), end = newSpills.end();
707 itr != end; ++itr) {
709 assert(!(*itr)->empty() && "Empty spill range.");
711 DOUT << (*itr)->reg << " ";
713 vregIntervalsToAlloc.insert(*itr);
716 DOUT << ")\n";
718 // We need another round if spill intervals were added.
719 anotherRoundNeeded |= !newSpills.empty();
723 return !anotherRoundNeeded;
726 void PBQPRegAlloc::finalizeAlloc() const {
727 typedef LiveIntervals::iterator LIIterator;
728 typedef LiveInterval::Ranges::const_iterator LRIterator;
730 // First allocate registers for the empty intervals.
731 for (LiveIntervalSet::const_iterator
732 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
733 itr != end; ++itr) {
734 LiveInterval *li = *itr;
736 unsigned physReg = li->preference;
738 if (physReg == 0) {
739 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
740 physReg = *liRC->allocation_order_begin(*mf);
743 vrm->assignVirt2Phys(li->reg, physReg);
746 // Finally iterate over the basic blocks to compute and set the live-in sets.
747 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
748 MachineBasicBlock *entryMBB = &*mf->begin();
750 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
751 liItr != liEnd; ++liItr) {
753 const LiveInterval *li = liItr->second;
754 unsigned reg = 0;
756 // Get the physical register for this interval
757 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
758 reg = li->reg;
760 else if (vrm->isAssignedReg(li->reg)) {
761 reg = vrm->getPhys(li->reg);
763 else {
764 // Ranges which are assigned a stack slot only are ignored.
765 continue;
768 // Iterate over the ranges of the current interval...
769 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
770 lrItr != lrEnd; ++lrItr) {
772 // Find the set of basic blocks which this range is live into...
773 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
774 // And add the physreg for this interval to their live-in sets.
775 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
776 if (liveInMBBs[i] != entryMBB) {
777 if (!liveInMBBs[i]->isLiveIn(reg)) {
778 liveInMBBs[i]->addLiveIn(reg);
782 liveInMBBs.clear();
789 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
791 mf = &MF;
792 tm = &mf->getTarget();
793 tri = tm->getRegisterInfo();
794 tii = tm->getInstrInfo();
795 mri = &mf->getRegInfo();
797 lis = &getAnalysis<LiveIntervals>();
798 lss = &getAnalysis<LiveStacks>();
799 loopInfo = &getAnalysis<MachineLoopInfo>();
801 vrm = &getAnalysis<VirtRegMap>();
803 DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
805 // Allocator main loop:
807 // * Map current regalloc problem to a PBQP problem
808 // * Solve the PBQP problem
809 // * Map the solution back to a register allocation
810 // * Spill if necessary
812 // This process is continued till no more spills are generated.
814 // Find the vreg intervals in need of allocation.
815 findVRegIntervalsToAlloc();
817 // If there aren't any then we're done here.
818 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
819 return true;
821 // If there are non-empty intervals allocate them using pbqp.
822 if (!vregIntervalsToAlloc.empty()) {
824 bool pbqpAllocComplete = false;
825 unsigned round = 0;
827 while (!pbqpAllocComplete) {
828 DOUT << " PBQP Regalloc round " << round << ":\n";
830 pbqp *problem = constructPBQPProblem();
832 solve_pbqp(problem);
834 pbqpAllocComplete = mapPBQPToRegAlloc(problem);
836 free_pbqp(problem);
838 ++round;
842 // Finalise allocation, allocate empty ranges.
843 finalizeAlloc();
845 vregIntervalsToAlloc.clear();
846 emptyVRegIntervals.clear();
847 li2Node.clear();
848 node2LI.clear();
849 allowedSets.clear();
851 DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
853 // Run rewriter
854 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
856 rewriter->runOnMachineFunction(*mf, *vrm, lis);
858 return true;
861 FunctionPass* llvm::createPBQPRegisterAllocator() {
862 return new PBQPRegAlloc();
866 #undef DEBUG_TYPE