1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DebugLoc.h"
51 #include "llvm/CodeGen/DwarfWriter.h"
52 #include "llvm/Analysis/DebugInfo.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "SelectionDAGBuild.h"
60 unsigned FastISel::getRegForValue(Value
*V
) {
61 MVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
62 // Don't handle non-simple values in FastISel.
63 if (!RealVT
.isSimple())
66 // Ignore illegal types. We must do this before looking up the value
67 // in ValueMap because Arguments are given virtual registers regardless
68 // of whether FastISel can handle them.
69 MVT::SimpleValueType VT
= RealVT
.getSimpleVT();
70 if (!TLI
.isTypeLegal(VT
)) {
71 // Promote MVT::i1 to a legal type though, because it's common and easy.
73 VT
= TLI
.getTypeToTransformTo(VT
).getSimpleVT();
78 // Look up the value to see if we already have a register for it. We
79 // cache values defined by Instructions across blocks, and other values
80 // only locally. This is because Instructions already have the SSA
81 // def-dominatess-use requirement enforced.
82 if (ValueMap
.count(V
))
84 unsigned Reg
= LocalValueMap
[V
];
88 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
89 if (CI
->getValue().getActiveBits() <= 64)
90 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
91 } else if (isa
<AllocaInst
>(V
)) {
92 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
93 } else if (isa
<ConstantPointerNull
>(V
)) {
94 // Translate this as an integer zero so that it can be
95 // local-CSE'd with actual integer zeros.
96 Reg
= getRegForValue(Constant::getNullValue(TD
.getIntPtrType()));
97 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
98 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
101 const APFloat
&Flt
= CF
->getValueAPF();
102 MVT IntVT
= TLI
.getPointerTy();
105 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
107 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
108 APFloat::rmTowardZero
, &isExact
);
110 APInt
IntVal(IntBitWidth
, 2, x
);
112 unsigned IntegerReg
= getRegForValue(ConstantInt::get(IntVal
));
114 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
117 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
118 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
119 Reg
= LocalValueMap
[CE
];
120 } else if (isa
<UndefValue
>(V
)) {
121 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
122 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
125 // If target-independent code couldn't handle the value, give target-specific
127 if (!Reg
&& isa
<Constant
>(V
))
128 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
133 LocalValueMap
[V
] = Reg
;
137 unsigned FastISel::lookUpRegForValue(Value
*V
) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap
.count(V
))
144 return LocalValueMap
[V
];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
154 if (!isa
<Instruction
>(I
)) {
155 LocalValueMap
[I
] = Reg
;
159 unsigned &AssignedReg
= ValueMap
[I
];
160 if (AssignedReg
== 0)
162 else if (Reg
!= AssignedReg
) {
163 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
164 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
165 Reg
, RegClass
, RegClass
);
170 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
171 unsigned IdxN
= getRegForValue(Idx
);
173 // Unhandled operand. Halt "fast" selection and bail.
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT
= TLI
.getPointerTy();
178 MVT IdxVT
= MVT::getMVT(Idx
->getType(), /*HandleUnknown=*/false);
179 if (IdxVT
.bitsLT(PtrVT
))
180 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
181 ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
184 ISD::TRUNCATE
, IdxN
);
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
192 MVT VT
= MVT::getMVT(I
->getType(), /*HandleUnknown=*/true);
193 if (VT
== MVT::Other
|| !VT
.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
201 if (!TLI
.isTypeLegal(VT
)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
205 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
206 ISDOpcode
== ISD::XOR
))
207 VT
= TLI
.getTypeToTransformTo(VT
);
212 unsigned Op0
= getRegForValue(I
->getOperand(0));
214 // Unhandled operand. Halt "fast" selection and bail.
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
219 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
220 ISDOpcode
, Op0
, CI
->getZExtValue());
221 if (ResultReg
!= 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I
, ResultReg
);
228 // Check if the second operand is a constant float.
229 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
230 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
232 if (ResultReg
!= 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I
, ResultReg
);
239 unsigned Op1
= getRegForValue(I
->getOperand(1));
241 // Unhandled operand. Halt "fast" selection and bail.
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
246 ISDOpcode
, Op0
, Op1
);
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I
, ResultReg
);
257 bool FastISel::SelectGetElementPtr(User
*I
) {
258 unsigned N
= getRegForValue(I
->getOperand(0));
260 // Unhandled operand. Halt "fast" selection and bail.
263 const Type
*Ty
= I
->getOperand(0)->getType();
264 MVT::SimpleValueType VT
= TLI
.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
268 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
269 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
272 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
273 // FIXME: This can be optimized by combining the add with a
275 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
277 // Unhandled operand. Halt "fast" selection and bail.
280 Ty
= StTy
->getElementType(Field
);
282 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
286 if (CI
->getZExtValue() == 0) continue;
288 TD
.getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
289 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
291 // Unhandled operand. Halt "fast" selection and bail.
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize
= TD
.getTypeAllocSize(Ty
);
298 unsigned IdxN
= getRegForGEPIndex(Idx
);
300 // Unhandled operand. Halt "fast" selection and bail.
303 if (ElementSize
!= 1) {
304 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
306 // Unhandled operand. Halt "fast" selection and bail.
309 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
311 // Unhandled operand. Halt "fast" selection and bail.
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I
, N
);
321 bool FastISel::SelectCall(User
*I
) {
322 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
323 if (!F
) return false;
325 unsigned IID
= F
->getIntrinsicID();
328 case Intrinsic::dbg_stoppoint
: {
329 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
330 if (DIDescriptor::ValidDebugInfo(SPI
->getContext(), CodeGenOpt::None
)) {
331 DICompileUnit
CU(cast
<GlobalVariable
>(SPI
->getContext()));
332 unsigned Line
= SPI
->getLine();
333 unsigned Col
= SPI
->getColumn();
334 unsigned Idx
= MF
.getOrCreateDebugLocID(CU
.getGV(), Line
, Col
);
335 setCurDebugLoc(DebugLoc::get(Idx
));
339 case Intrinsic::dbg_region_start
: {
340 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
341 if (DIDescriptor::ValidDebugInfo(RSI
->getContext(), CodeGenOpt::None
) &&
342 DW
&& DW
->ShouldEmitDwarfDebug()) {
344 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
->getContext()));
345 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
346 BuildMI(MBB
, DL
, II
).addImm(ID
);
350 case Intrinsic::dbg_region_end
: {
351 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
352 if (DIDescriptor::ValidDebugInfo(REI
->getContext(), CodeGenOpt::None
) &&
353 DW
&& DW
->ShouldEmitDwarfDebug()) {
355 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
->getContext()));
356 if (!Subprogram
.isNull() && !Subprogram
.describes(MF
.getFunction())) {
357 // This is end of an inlined function.
358 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
359 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
361 // Returned ID is 0 if this is unbalanced "end of inlined
362 // scope". This could happen if optimizer eats dbg intrinsics
363 // or "beginning of inlined scope" is not recoginized due to
364 // missing location info. In such cases, do ignore this region.end.
365 BuildMI(MBB
, DL
, II
).addImm(ID
);
367 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
368 ID
= DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
->getContext()));
369 BuildMI(MBB
, DL
, II
).addImm(ID
);
374 case Intrinsic::dbg_func_start
: {
375 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
376 Value
*SP
= FSI
->getSubprogram();
377 if (!DIDescriptor::ValidDebugInfo(SP
, CodeGenOpt::None
))
380 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
381 // (most?) gdb expects.
382 DebugLoc PrevLoc
= DL
;
383 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
384 DICompileUnit CompileUnit
= Subprogram
.getCompileUnit();
386 if (!Subprogram
.describes(MF
.getFunction())) {
387 // This is a beginning of an inlined function.
389 // If llvm.dbg.func.start is seen in a new block before any
390 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
391 // FIXME : Why DebugLoc is reset at the beginning of each block ?
392 if (PrevLoc
.isUnknown())
394 // Record the source line.
395 unsigned Line
= Subprogram
.getLineNumber();
396 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(
397 CompileUnit
.getGV(), Line
, 0)));
399 if (DW
&& DW
->ShouldEmitDwarfDebug()) {
400 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
401 unsigned LabelID
= DW
->RecordInlinedFnStart(Subprogram
,
402 DICompileUnit(PrevLocTpl
.CompileUnit
),
405 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
406 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
409 // Record the source line.
410 unsigned Line
= Subprogram
.getLineNumber();
411 MF
.setDefaultDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(
412 CompileUnit
.getGV(), Line
, 0)));
413 if (DW
&& DW
->ShouldEmitDwarfDebug()) {
414 // llvm.dbg.func_start also defines beginning of function scope.
415 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
->getSubprogram()));
421 case Intrinsic::dbg_declare
: {
422 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
423 Value
*Variable
= DI
->getVariable();
424 if (DIDescriptor::ValidDebugInfo(Variable
, CodeGenOpt::None
) &&
425 DW
&& DW
->ShouldEmitDwarfDebug()) {
426 // Determine the address of the declared object.
427 Value
*Address
= DI
->getAddress();
428 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
429 Address
= BCI
->getOperand(0);
430 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
431 // Don't handle byval struct arguments or VLAs, for example.
433 DenseMap
<const AllocaInst
*, int>::iterator SI
=
434 StaticAllocaMap
.find(AI
);
435 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
438 // Determine the debug globalvariable.
439 GlobalValue
*GV
= cast
<GlobalVariable
>(Variable
);
441 // Build the DECLARE instruction.
442 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DECLARE
);
443 MachineInstr
*DeclareMI
444 = BuildMI(MBB
, DL
, II
).addFrameIndex(FI
).addGlobalAddress(GV
);
445 DIVariable
DV(cast
<GlobalVariable
>(GV
));
447 // This is a local variable
448 DW
->RecordVariableScope(DV
, DeclareMI
);
453 case Intrinsic::eh_exception
: {
454 MVT VT
= TLI
.getValueType(I
->getType());
455 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
457 case TargetLowering::Expand
: {
458 if (!MBB
->isLandingPad()) {
459 // FIXME: Mark exception register as live in. Hack for PR1508.
460 unsigned Reg
= TLI
.getExceptionAddressRegister();
461 if (Reg
) MBB
->addLiveIn(Reg
);
463 unsigned Reg
= TLI
.getExceptionAddressRegister();
464 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
465 unsigned ResultReg
= createResultReg(RC
);
466 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
468 assert(InsertedCopy
&& "Can't copy address registers!");
469 InsertedCopy
= InsertedCopy
;
470 UpdateValueMap(I
, ResultReg
);
476 case Intrinsic::eh_selector_i32
:
477 case Intrinsic::eh_selector_i64
: {
478 MVT VT
= TLI
.getValueType(I
->getType());
479 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
481 case TargetLowering::Expand
: {
482 MVT VT
= (IID
== Intrinsic::eh_selector_i32
?
483 MVT::i32
: MVT::i64
);
486 if (MBB
->isLandingPad())
487 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
490 CatchInfoLost
.insert(cast
<CallInst
>(I
));
492 // FIXME: Mark exception selector register as live in. Hack for PR1508.
493 unsigned Reg
= TLI
.getExceptionSelectorRegister();
494 if (Reg
) MBB
->addLiveIn(Reg
);
497 unsigned Reg
= TLI
.getExceptionSelectorRegister();
498 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
499 unsigned ResultReg
= createResultReg(RC
);
500 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
502 assert(InsertedCopy
&& "Can't copy address registers!");
503 InsertedCopy
= InsertedCopy
;
504 UpdateValueMap(I
, ResultReg
);
507 getRegForValue(Constant::getNullValue(I
->getType()));
508 UpdateValueMap(I
, ResultReg
);
519 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
520 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
521 MVT DstVT
= TLI
.getValueType(I
->getType());
523 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
524 DstVT
== MVT::Other
|| !DstVT
.isSimple())
525 // Unhandled type. Halt "fast" selection and bail.
528 // Check if the destination type is legal. Or as a special case,
529 // it may be i1 if we're doing a truncate because that's
530 // easy and somewhat common.
531 if (!TLI
.isTypeLegal(DstVT
))
532 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
533 // Unhandled type. Halt "fast" selection and bail.
536 // Check if the source operand is legal. Or as a special case,
537 // it may be i1 if we're doing zero-extension because that's
538 // easy and somewhat common.
539 if (!TLI
.isTypeLegal(SrcVT
))
540 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
541 // Unhandled type. Halt "fast" selection and bail.
544 unsigned InputReg
= getRegForValue(I
->getOperand(0));
546 // Unhandled operand. Halt "fast" selection and bail.
549 // If the operand is i1, arrange for the high bits in the register to be zero.
550 if (SrcVT
== MVT::i1
) {
551 SrcVT
= TLI
.getTypeToTransformTo(SrcVT
);
552 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
556 // If the result is i1, truncate to the target's type for i1 first.
557 if (DstVT
== MVT::i1
)
558 DstVT
= TLI
.getTypeToTransformTo(DstVT
);
560 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
567 UpdateValueMap(I
, ResultReg
);
571 bool FastISel::SelectBitCast(User
*I
) {
572 // If the bitcast doesn't change the type, just use the operand value.
573 if (I
->getType() == I
->getOperand(0)->getType()) {
574 unsigned Reg
= getRegForValue(I
->getOperand(0));
577 UpdateValueMap(I
, Reg
);
581 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
582 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
583 MVT DstVT
= TLI
.getValueType(I
->getType());
585 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
586 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
587 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
588 // Unhandled type. Halt "fast" selection and bail.
591 unsigned Op0
= getRegForValue(I
->getOperand(0));
593 // Unhandled operand. Halt "fast" selection and bail.
596 // First, try to perform the bitcast by inserting a reg-reg copy.
597 unsigned ResultReg
= 0;
598 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
599 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
600 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
601 ResultReg
= createResultReg(DstClass
);
603 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
604 Op0
, DstClass
, SrcClass
);
609 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
611 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
612 ISD::BIT_CONVERT
, Op0
);
617 UpdateValueMap(I
, ResultReg
);
622 FastISel::SelectInstruction(Instruction
*I
) {
623 return SelectOperator(I
, I
->getOpcode());
626 /// FastEmitBranch - Emit an unconditional branch to the given block,
627 /// unless it is the immediate (fall-through) successor, and update
630 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
631 MachineFunction::iterator NextMBB
=
632 next(MachineFunction::iterator(MBB
));
634 if (MBB
->isLayoutSuccessor(MSucc
)) {
635 // The unconditional fall-through case, which needs no instructions.
637 // The unconditional branch case.
638 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
640 MBB
->addSuccessor(MSucc
);
644 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
646 case Instruction::Add
: {
647 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FADD
: ISD::ADD
;
648 return SelectBinaryOp(I
, Opc
);
650 case Instruction::Sub
: {
651 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FSUB
: ISD::SUB
;
652 return SelectBinaryOp(I
, Opc
);
654 case Instruction::Mul
: {
655 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FMUL
: ISD::MUL
;
656 return SelectBinaryOp(I
, Opc
);
658 case Instruction::SDiv
:
659 return SelectBinaryOp(I
, ISD::SDIV
);
660 case Instruction::UDiv
:
661 return SelectBinaryOp(I
, ISD::UDIV
);
662 case Instruction::FDiv
:
663 return SelectBinaryOp(I
, ISD::FDIV
);
664 case Instruction::SRem
:
665 return SelectBinaryOp(I
, ISD::SREM
);
666 case Instruction::URem
:
667 return SelectBinaryOp(I
, ISD::UREM
);
668 case Instruction::FRem
:
669 return SelectBinaryOp(I
, ISD::FREM
);
670 case Instruction::Shl
:
671 return SelectBinaryOp(I
, ISD::SHL
);
672 case Instruction::LShr
:
673 return SelectBinaryOp(I
, ISD::SRL
);
674 case Instruction::AShr
:
675 return SelectBinaryOp(I
, ISD::SRA
);
676 case Instruction::And
:
677 return SelectBinaryOp(I
, ISD::AND
);
678 case Instruction::Or
:
679 return SelectBinaryOp(I
, ISD::OR
);
680 case Instruction::Xor
:
681 return SelectBinaryOp(I
, ISD::XOR
);
683 case Instruction::GetElementPtr
:
684 return SelectGetElementPtr(I
);
686 case Instruction::Br
: {
687 BranchInst
*BI
= cast
<BranchInst
>(I
);
689 if (BI
->isUnconditional()) {
690 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
691 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
692 FastEmitBranch(MSucc
);
696 // Conditional branches are not handed yet.
697 // Halt "fast" selection and bail.
701 case Instruction::Unreachable
:
705 case Instruction::PHI
:
706 // PHI nodes are already emitted.
709 case Instruction::Alloca
:
710 // FunctionLowering has the static-sized case covered.
711 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
714 // Dynamic-sized alloca is not handled yet.
717 case Instruction::Call
:
718 return SelectCall(I
);
720 case Instruction::BitCast
:
721 return SelectBitCast(I
);
723 case Instruction::FPToSI
:
724 return SelectCast(I
, ISD::FP_TO_SINT
);
725 case Instruction::ZExt
:
726 return SelectCast(I
, ISD::ZERO_EXTEND
);
727 case Instruction::SExt
:
728 return SelectCast(I
, ISD::SIGN_EXTEND
);
729 case Instruction::Trunc
:
730 return SelectCast(I
, ISD::TRUNCATE
);
731 case Instruction::SIToFP
:
732 return SelectCast(I
, ISD::SINT_TO_FP
);
734 case Instruction::IntToPtr
: // Deliberate fall-through.
735 case Instruction::PtrToInt
: {
736 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
737 MVT DstVT
= TLI
.getValueType(I
->getType());
738 if (DstVT
.bitsGT(SrcVT
))
739 return SelectCast(I
, ISD::ZERO_EXTEND
);
740 if (DstVT
.bitsLT(SrcVT
))
741 return SelectCast(I
, ISD::TRUNCATE
);
742 unsigned Reg
= getRegForValue(I
->getOperand(0));
743 if (Reg
== 0) return false;
744 UpdateValueMap(I
, Reg
);
749 // Unhandled instruction. Halt "fast" selection and bail.
754 FastISel::FastISel(MachineFunction
&mf
,
755 MachineModuleInfo
*mmi
,
757 DenseMap
<const Value
*, unsigned> &vm
,
758 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
759 DenseMap
<const AllocaInst
*, int> &am
761 , SmallSet
<Instruction
*, 8> &cil
774 MRI(MF
.getRegInfo()),
775 MFI(*MF
.getFrameInfo()),
776 MCP(*MF
.getConstantPool()),
778 TD(*TM
.getTargetData()),
779 TII(*TM
.getInstrInfo()),
780 TLI(*TM
.getTargetLowering()) {
783 FastISel::~FastISel() {}
785 unsigned FastISel::FastEmit_(MVT::SimpleValueType
, MVT::SimpleValueType
,
790 unsigned FastISel::FastEmit_r(MVT::SimpleValueType
, MVT::SimpleValueType
,
791 ISD::NodeType
, unsigned /*Op0*/) {
795 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType
, MVT::SimpleValueType
,
796 ISD::NodeType
, unsigned /*Op0*/,
801 unsigned FastISel::FastEmit_i(MVT::SimpleValueType
, MVT::SimpleValueType
,
802 ISD::NodeType
, uint64_t /*Imm*/) {
806 unsigned FastISel::FastEmit_f(MVT::SimpleValueType
, MVT::SimpleValueType
,
807 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
811 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType
, MVT::SimpleValueType
,
812 ISD::NodeType
, unsigned /*Op0*/,
817 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType
, MVT::SimpleValueType
,
818 ISD::NodeType
, unsigned /*Op0*/,
819 ConstantFP
* /*FPImm*/) {
823 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType
, MVT::SimpleValueType
,
825 unsigned /*Op0*/, unsigned /*Op1*/,
830 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
831 /// to emit an instruction with an immediate operand using FastEmit_ri.
832 /// If that fails, it materializes the immediate into a register and try
833 /// FastEmit_rr instead.
834 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
835 unsigned Op0
, uint64_t Imm
,
836 MVT::SimpleValueType ImmType
) {
837 // First check if immediate type is legal. If not, we can't use the ri form.
838 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
841 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
842 if (MaterialReg
== 0)
844 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
847 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
848 /// to emit an instruction with a floating-point immediate operand using
849 /// FastEmit_rf. If that fails, it materializes the immediate into a register
850 /// and try FastEmit_rr instead.
851 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
852 unsigned Op0
, ConstantFP
*FPImm
,
853 MVT::SimpleValueType ImmType
) {
854 // First check if immediate type is legal. If not, we can't use the rf form.
855 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
859 // Materialize the constant in a register.
860 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
861 if (MaterialReg
== 0) {
862 // If the target doesn't have a way to directly enter a floating-point
863 // value into a register, use an alternate approach.
864 // TODO: The current approach only supports floating-point constants
865 // that can be constructed by conversion from integer values. This should
866 // be replaced by code that creates a load from a constant-pool entry,
867 // which will require some target-specific work.
868 const APFloat
&Flt
= FPImm
->getValueAPF();
869 MVT IntVT
= TLI
.getPointerTy();
872 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
874 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
875 APFloat::rmTowardZero
, &isExact
);
878 APInt
IntVal(IntBitWidth
, 2, x
);
880 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
881 ISD::Constant
, IntVal
.getZExtValue());
884 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
885 ISD::SINT_TO_FP
, IntegerReg
);
886 if (MaterialReg
== 0)
889 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
892 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
893 return MRI
.createVirtualRegister(RC
);
896 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
897 const TargetRegisterClass
* RC
) {
898 unsigned ResultReg
= createResultReg(RC
);
899 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
901 BuildMI(MBB
, DL
, II
, ResultReg
);
905 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
906 const TargetRegisterClass
*RC
,
908 unsigned ResultReg
= createResultReg(RC
);
909 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
911 if (II
.getNumDefs() >= 1)
912 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
914 BuildMI(MBB
, DL
, II
).addReg(Op0
);
915 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
916 II
.ImplicitDefs
[0], RC
, RC
);
924 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
925 const TargetRegisterClass
*RC
,
926 unsigned Op0
, unsigned Op1
) {
927 unsigned ResultReg
= createResultReg(RC
);
928 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
930 if (II
.getNumDefs() >= 1)
931 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
933 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
934 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
935 II
.ImplicitDefs
[0], RC
, RC
);
942 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
943 const TargetRegisterClass
*RC
,
944 unsigned Op0
, uint64_t Imm
) {
945 unsigned ResultReg
= createResultReg(RC
);
946 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
948 if (II
.getNumDefs() >= 1)
949 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
951 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
952 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
953 II
.ImplicitDefs
[0], RC
, RC
);
960 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
961 const TargetRegisterClass
*RC
,
962 unsigned Op0
, ConstantFP
*FPImm
) {
963 unsigned ResultReg
= createResultReg(RC
);
964 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
966 if (II
.getNumDefs() >= 1)
967 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
969 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
970 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
971 II
.ImplicitDefs
[0], RC
, RC
);
978 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
979 const TargetRegisterClass
*RC
,
980 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
981 unsigned ResultReg
= createResultReg(RC
);
982 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
984 if (II
.getNumDefs() >= 1)
985 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
987 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
988 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
989 II
.ImplicitDefs
[0], RC
, RC
);
996 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
997 const TargetRegisterClass
*RC
,
999 unsigned ResultReg
= createResultReg(RC
);
1000 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
1002 if (II
.getNumDefs() >= 1)
1003 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
1005 BuildMI(MBB
, DL
, II
).addImm(Imm
);
1006 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1007 II
.ImplicitDefs
[0], RC
, RC
);
1014 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT
,
1015 unsigned Op0
, uint32_t Idx
) {
1016 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
1018 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1019 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
1021 if (II
.getNumDefs() >= 1)
1022 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
1024 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1025 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1026 II
.ImplicitDefs
[0], RC
, RC
);
1033 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1034 /// with all but the least significant bit set to zero.
1035 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT
, unsigned Op
) {
1036 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);