Merge branch 'master' into msp430
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob5f5aa7b0ab6beb56c0a86550d36b7e38cde156c5
1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuild.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38 #include "llvm/CodeGen/SchedulerRegistry.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/DwarfWriter.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetData.h"
43 #include "llvm/Target/TargetFrameInfo.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/Timer.h"
52 #include <algorithm>
53 using namespace llvm;
55 static cl::opt<bool>
56 DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
57 #ifndef NDEBUG
58 static cl::opt<bool>
59 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60 cl::desc("Enable verbose messages in the \"fast\" "
61 "instruction selector"));
62 static cl::opt<bool>
63 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64 cl::desc("Enable abort calls when \"fast\" instruction fails"));
65 #else
66 static const bool EnableFastISelVerbose = false,
67 EnableFastISelAbort = false;
68 #endif
69 static cl::opt<bool>
70 SchedLiveInCopies("schedule-livein-copies",
71 cl::desc("Schedule copies of livein registers"),
72 cl::init(false));
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77 cl::desc("Pop up a window to show dags before the first "
78 "dag combine pass"));
79 static cl::opt<bool>
80 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81 cl::desc("Pop up a window to show dags before legalize types"));
82 static cl::opt<bool>
83 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84 cl::desc("Pop up a window to show dags before legalize"));
85 static cl::opt<bool>
86 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87 cl::desc("Pop up a window to show dags before the second "
88 "dag combine pass"));
89 static cl::opt<bool>
90 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91 cl::desc("Pop up a window to show dags before the post legalize types"
92 " dag combine pass"));
93 static cl::opt<bool>
94 ViewISelDAGs("view-isel-dags", cl::Hidden,
95 cl::desc("Pop up a window to show isel dags as they are selected"));
96 static cl::opt<bool>
97 ViewSchedDAGs("view-sched-dags", cl::Hidden,
98 cl::desc("Pop up a window to show sched dags as they are processed"));
99 static cl::opt<bool>
100 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101 cl::desc("Pop up a window to show SUnit dags after they are processed"));
102 #else
103 static const bool ViewDAGCombine1 = false,
104 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105 ViewDAGCombine2 = false,
106 ViewDAGCombineLT = false,
107 ViewISelDAGs = false, ViewSchedDAGs = false,
108 ViewSUnitDAGs = false;
109 #endif
111 //===---------------------------------------------------------------------===//
113 /// RegisterScheduler class - Track the registration of instruction schedulers.
115 //===---------------------------------------------------------------------===//
116 MachinePassRegistry RegisterScheduler::Registry;
118 //===---------------------------------------------------------------------===//
120 /// ISHeuristic command line option for instruction schedulers.
122 //===---------------------------------------------------------------------===//
123 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124 RegisterPassParser<RegisterScheduler> >
125 ISHeuristic("pre-RA-sched",
126 cl::init(&createDefaultScheduler),
127 cl::desc("Instruction schedulers available (before register"
128 " allocation):"));
130 static RegisterScheduler
131 defaultListDAGScheduler("default", "Best scheduler for the target",
132 createDefaultScheduler);
134 namespace llvm {
135 //===--------------------------------------------------------------------===//
136 /// createDefaultScheduler - This creates an instruction scheduler appropriate
137 /// for the target.
138 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139 CodeGenOpt::Level OptLevel) {
140 const TargetLowering &TLI = IS->getTargetLowering();
142 if (OptLevel == CodeGenOpt::None)
143 return createFastDAGScheduler(IS, OptLevel);
144 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145 return createTDListDAGScheduler(IS, OptLevel);
146 assert(TLI.getSchedulingPreference() ==
147 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148 return createBURRListDAGScheduler(IS, OptLevel);
152 // EmitInstrWithCustomInserter - This method should be implemented by targets
153 // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
154 // instructions are special in various ways, which require special support to
155 // insert. The specified MachineInstr is created but not inserted into any
156 // basic blocks, and the scheduler passes ownership of it to this method.
157 MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
158 MachineBasicBlock *MBB) const {
159 cerr << "If a target marks an instruction with "
160 << "'usesCustomDAGSchedInserter', it must implement "
161 << "TargetLowering::EmitInstrWithCustomInserter!\n";
162 abort();
163 return 0;
166 /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
167 /// physical register has only a single copy use, then coalesced the copy
168 /// if possible.
169 static void EmitLiveInCopy(MachineBasicBlock *MBB,
170 MachineBasicBlock::iterator &InsertPos,
171 unsigned VirtReg, unsigned PhysReg,
172 const TargetRegisterClass *RC,
173 DenseMap<MachineInstr*, unsigned> &CopyRegMap,
174 const MachineRegisterInfo &MRI,
175 const TargetRegisterInfo &TRI,
176 const TargetInstrInfo &TII) {
177 unsigned NumUses = 0;
178 MachineInstr *UseMI = NULL;
179 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
180 UE = MRI.use_end(); UI != UE; ++UI) {
181 UseMI = &*UI;
182 if (++NumUses > 1)
183 break;
186 // If the number of uses is not one, or the use is not a move instruction,
187 // don't coalesce. Also, only coalesce away a virtual register to virtual
188 // register copy.
189 bool Coalesced = false;
190 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
191 if (NumUses == 1 &&
192 TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
193 TargetRegisterInfo::isVirtualRegister(DstReg)) {
194 VirtReg = DstReg;
195 Coalesced = true;
198 // Now find an ideal location to insert the copy.
199 MachineBasicBlock::iterator Pos = InsertPos;
200 while (Pos != MBB->begin()) {
201 MachineInstr *PrevMI = prior(Pos);
202 DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
203 // copyRegToReg might emit multiple instructions to do a copy.
204 unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
205 if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
206 // This is what the BB looks like right now:
207 // r1024 = mov r0
208 // ...
209 // r1 = mov r1024
211 // We want to insert "r1025 = mov r1". Inserting this copy below the
212 // move to r1024 makes it impossible for that move to be coalesced.
214 // r1025 = mov r1
215 // r1024 = mov r0
216 // ...
217 // r1 = mov 1024
218 // r2 = mov 1025
219 break; // Woot! Found a good location.
220 --Pos;
223 TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
224 CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
225 if (Coalesced) {
226 if (&*InsertPos == UseMI) ++InsertPos;
227 MBB->erase(UseMI);
231 /// EmitLiveInCopies - If this is the first basic block in the function,
232 /// and if it has live ins that need to be copied into vregs, emit the
233 /// copies into the block.
234 static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
235 const MachineRegisterInfo &MRI,
236 const TargetRegisterInfo &TRI,
237 const TargetInstrInfo &TII) {
238 if (SchedLiveInCopies) {
239 // Emit the copies at a heuristically-determined location in the block.
240 DenseMap<MachineInstr*, unsigned> CopyRegMap;
241 MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
242 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
243 E = MRI.livein_end(); LI != E; ++LI)
244 if (LI->second) {
245 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
246 EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
247 RC, CopyRegMap, MRI, TRI, TII);
249 } else {
250 // Emit the copies into the top of the block.
251 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
252 E = MRI.livein_end(); LI != E; ++LI)
253 if (LI->second) {
254 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
255 TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
256 LI->second, LI->first, RC, RC);
261 //===----------------------------------------------------------------------===//
262 // SelectionDAGISel code
263 //===----------------------------------------------------------------------===//
265 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
266 FunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
267 FuncInfo(new FunctionLoweringInfo(TLI)),
268 CurDAG(new SelectionDAG(TLI, *FuncInfo)),
269 SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
270 GFI(),
271 OptLevel(OL),
272 DAGSize(0)
275 SelectionDAGISel::~SelectionDAGISel() {
276 delete SDL;
277 delete CurDAG;
278 delete FuncInfo;
281 unsigned SelectionDAGISel::MakeReg(MVT VT) {
282 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
285 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
286 AU.addRequired<AliasAnalysis>();
287 AU.addRequired<GCModuleInfo>();
288 AU.addRequired<DwarfWriter>();
289 AU.setPreservesAll();
292 bool SelectionDAGISel::runOnFunction(Function &Fn) {
293 // Do some sanity-checking on the command-line options.
294 assert((!EnableFastISelVerbose || EnableFastISel) &&
295 "-fast-isel-verbose requires -fast-isel");
296 assert((!EnableFastISelAbort || EnableFastISel) &&
297 "-fast-isel-abort requires -fast-isel");
299 // Do not codegen any 'available_externally' functions at all, they have
300 // definitions outside the translation unit.
301 if (Fn.hasAvailableExternallyLinkage())
302 return false;
305 // Get alias analysis for load/store combining.
306 AA = &getAnalysis<AliasAnalysis>();
308 TargetMachine &TM = TLI.getTargetMachine();
309 MF = &MachineFunction::construct(&Fn, TM);
310 const TargetInstrInfo &TII = *TM.getInstrInfo();
311 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
313 if (MF->getFunction()->hasGC())
314 GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF->getFunction());
315 else
316 GFI = 0;
317 RegInfo = &MF->getRegInfo();
318 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
320 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
321 DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
322 CurDAG->init(*MF, MMI, DW);
323 FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
324 SDL->init(GFI, *AA);
326 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
327 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
328 // Mark landing pad.
329 FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
331 SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
333 // If the first basic block in the function has live ins that need to be
334 // copied into vregs, emit the copies into the top of the block before
335 // emitting the code for the block.
336 EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
338 // Add function live-ins to entry block live-in set.
339 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
340 E = RegInfo->livein_end(); I != E; ++I)
341 MF->begin()->addLiveIn(I->first);
343 #ifndef NDEBUG
344 assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
345 "Not all catch info was assigned to a landing pad!");
346 #endif
348 FuncInfo->clear();
350 return true;
353 static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
354 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
355 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
356 if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
357 // Apply the catch info to DestBB.
358 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
359 #ifndef NDEBUG
360 if (!FLI.MBBMap[SrcBB]->isLandingPad())
361 FLI.CatchInfoFound.insert(EHSel);
362 #endif
366 /// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
367 /// whether object offset >= 0.
368 static bool
369 IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
370 if (!isa<FrameIndexSDNode>(Op)) return false;
372 FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
373 int FrameIdx = FrameIdxNode->getIndex();
374 return MFI->isFixedObjectIndex(FrameIdx) &&
375 MFI->getObjectOffset(FrameIdx) >= 0;
378 /// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
379 /// possibly be overwritten when lowering the outgoing arguments in a tail
380 /// call. Currently the implementation of this call is very conservative and
381 /// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
382 /// virtual registers would be overwritten by direct lowering.
383 static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
384 MachineFrameInfo *MFI) {
385 RegisterSDNode * OpReg = NULL;
386 if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
387 (Op.getOpcode()== ISD::CopyFromReg &&
388 (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
389 (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
390 (Op.getOpcode() == ISD::LOAD &&
391 IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
392 (Op.getOpcode() == ISD::MERGE_VALUES &&
393 Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
394 IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
395 getOperand(1))))
396 return true;
397 return false;
400 /// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
401 /// DAG and fixes their tailcall attribute operand.
402 static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
403 const TargetLowering& TLI) {
404 SDNode * Ret = NULL;
405 SDValue Terminator = DAG.getRoot();
407 // Find RET node.
408 if (Terminator.getOpcode() == ISD::RET) {
409 Ret = Terminator.getNode();
412 // Fix tail call attribute of CALL nodes.
413 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
414 BI = DAG.allnodes_end(); BI != BE; ) {
415 --BI;
416 if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
417 SDValue OpRet(Ret, 0);
418 SDValue OpCall(BI, 0);
419 bool isMarkedTailCall = TheCall->isTailCall();
420 // If CALL node has tail call attribute set to true and the call is not
421 // eligible (no RET or the target rejects) the attribute is fixed to
422 // false. The TargetLowering::IsEligibleForTailCallOptimization function
423 // must correctly identify tail call optimizable calls.
424 if (!isMarkedTailCall) continue;
425 if (Ret==NULL ||
426 !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
427 // Not eligible. Mark CALL node as non tail call. Note that we
428 // can modify the call node in place since calls are not CSE'd.
429 TheCall->setNotTailCall();
430 } else {
431 // Look for tail call clobbered arguments. Emit a series of
432 // copyto/copyfrom virtual register nodes to protect them.
433 SmallVector<SDValue, 32> Ops;
434 SDValue Chain = TheCall->getChain(), InFlag;
435 Ops.push_back(Chain);
436 Ops.push_back(TheCall->getCallee());
437 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
438 SDValue Arg = TheCall->getArg(i);
439 bool isByVal = TheCall->getArgFlags(i).isByVal();
440 MachineFunction &MF = DAG.getMachineFunction();
441 MachineFrameInfo *MFI = MF.getFrameInfo();
442 if (!isByVal &&
443 IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
444 MVT VT = Arg.getValueType();
445 unsigned VReg = MF.getRegInfo().
446 createVirtualRegister(TLI.getRegClassFor(VT));
447 Chain = DAG.getCopyToReg(Chain, Arg.getDebugLoc(),
448 VReg, Arg, InFlag);
449 InFlag = Chain.getValue(1);
450 Arg = DAG.getCopyFromReg(Chain, Arg.getDebugLoc(),
451 VReg, VT, InFlag);
452 Chain = Arg.getValue(1);
453 InFlag = Arg.getValue(2);
455 Ops.push_back(Arg);
456 Ops.push_back(TheCall->getArgFlagsVal(i));
458 // Link in chain of CopyTo/CopyFromReg.
459 Ops[0] = Chain;
460 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
466 void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
467 BasicBlock::iterator Begin,
468 BasicBlock::iterator End) {
469 SDL->setCurrentBasicBlock(BB);
471 // Lower all of the non-terminator instructions.
472 for (BasicBlock::iterator I = Begin; I != End; ++I)
473 if (!isa<TerminatorInst>(I))
474 SDL->visit(*I);
476 // Ensure that all instructions which are used outside of their defining
477 // blocks are available as virtual registers. Invoke is handled elsewhere.
478 for (BasicBlock::iterator I = Begin; I != End; ++I)
479 if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
480 SDL->CopyToExportRegsIfNeeded(I);
482 // Handle PHI nodes in successor blocks.
483 if (End == LLVMBB->end()) {
484 HandlePHINodesInSuccessorBlocks(LLVMBB);
486 // Lower the terminator after the copies are emitted.
487 SDL->visit(*LLVMBB->getTerminator());
490 // Make sure the root of the DAG is up-to-date.
491 CurDAG->setRoot(SDL->getControlRoot());
493 // Check whether calls in this block are real tail calls. Fix up CALL nodes
494 // with correct tailcall attribute so that the target can rely on the tailcall
495 // attribute indicating whether the call is really eligible for tail call
496 // optimization.
497 if (PerformTailCallOpt)
498 CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
500 // Final step, emit the lowered DAG as machine code.
501 CodeGenAndEmitDAG();
502 SDL->clear();
505 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506 SmallPtrSet<SDNode*, 128> VisitedNodes;
507 SmallVector<SDNode*, 128> Worklist;
509 Worklist.push_back(CurDAG->getRoot().getNode());
511 APInt Mask;
512 APInt KnownZero;
513 APInt KnownOne;
515 while (!Worklist.empty()) {
516 SDNode *N = Worklist.back();
517 Worklist.pop_back();
519 // If we've already seen this node, ignore it.
520 if (!VisitedNodes.insert(N))
521 continue;
523 // Otherwise, add all chain operands to the worklist.
524 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
525 if (N->getOperand(i).getValueType() == MVT::Other)
526 Worklist.push_back(N->getOperand(i).getNode());
528 // If this is a CopyToReg with a vreg dest, process it.
529 if (N->getOpcode() != ISD::CopyToReg)
530 continue;
532 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
533 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
534 continue;
536 // Ignore non-scalar or non-integer values.
537 SDValue Src = N->getOperand(2);
538 MVT SrcVT = Src.getValueType();
539 if (!SrcVT.isInteger() || SrcVT.isVector())
540 continue;
542 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
543 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
544 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
546 // Only install this information if it tells us something.
547 if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
548 DestReg -= TargetRegisterInfo::FirstVirtualRegister;
549 FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
550 if (DestReg >= FLI.LiveOutRegInfo.size())
551 FLI.LiveOutRegInfo.resize(DestReg+1);
552 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
553 LOI.NumSignBits = NumSignBits;
554 LOI.KnownOne = KnownOne;
555 LOI.KnownZero = KnownZero;
560 void SelectionDAGISel::CodeGenAndEmitDAG() {
561 std::string GroupName;
562 if (TimePassesIsEnabled)
563 GroupName = "Instruction Selection and Scheduling";
564 std::string BlockName;
565 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
566 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
567 ViewSUnitDAGs)
568 BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
569 BB->getBasicBlock()->getName();
571 DOUT << "Initial selection DAG:\n";
572 DEBUG(CurDAG->dump());
574 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
576 // Run the DAG combiner in pre-legalize mode.
577 if (TimePassesIsEnabled) {
578 NamedRegionTimer T("DAG Combining 1", GroupName);
579 CurDAG->Combine(Unrestricted, *AA, OptLevel);
580 } else {
581 CurDAG->Combine(Unrestricted, *AA, OptLevel);
584 DOUT << "Optimized lowered selection DAG:\n";
585 DEBUG(CurDAG->dump());
587 // Second step, hack on the DAG until it only uses operations and types that
588 // the target supports.
589 if (!DisableLegalizeTypes) {
590 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
591 BlockName);
593 bool Changed;
594 if (TimePassesIsEnabled) {
595 NamedRegionTimer T("Type Legalization", GroupName);
596 Changed = CurDAG->LegalizeTypes();
597 } else {
598 Changed = CurDAG->LegalizeTypes();
601 DOUT << "Type-legalized selection DAG:\n";
602 DEBUG(CurDAG->dump());
604 if (Changed) {
605 if (ViewDAGCombineLT)
606 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
608 // Run the DAG combiner in post-type-legalize mode.
609 if (TimePassesIsEnabled) {
610 NamedRegionTimer T("DAG Combining after legalize types", GroupName);
611 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
612 } else {
613 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
616 DOUT << "Optimized type-legalized selection DAG:\n";
617 DEBUG(CurDAG->dump());
621 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
623 if (TimePassesIsEnabled) {
624 NamedRegionTimer T("DAG Legalization", GroupName);
625 CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
626 } else {
627 CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
630 DOUT << "Legalized selection DAG:\n";
631 DEBUG(CurDAG->dump());
633 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
635 // Run the DAG combiner in post-legalize mode.
636 if (TimePassesIsEnabled) {
637 NamedRegionTimer T("DAG Combining 2", GroupName);
638 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
639 } else {
640 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
643 DOUT << "Optimized legalized selection DAG:\n";
644 DEBUG(CurDAG->dump());
646 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
648 if (OptLevel != CodeGenOpt::None)
649 ComputeLiveOutVRegInfo();
651 // Third, instruction select all of the operations to machine code, adding the
652 // code to the MachineBasicBlock.
653 if (TimePassesIsEnabled) {
654 NamedRegionTimer T("Instruction Selection", GroupName);
655 InstructionSelect();
656 } else {
657 InstructionSelect();
660 DOUT << "Selected selection DAG:\n";
661 DEBUG(CurDAG->dump());
663 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
665 // Schedule machine code.
666 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
667 if (TimePassesIsEnabled) {
668 NamedRegionTimer T("Instruction Scheduling", GroupName);
669 Scheduler->Run(CurDAG, BB, BB->end());
670 } else {
671 Scheduler->Run(CurDAG, BB, BB->end());
674 if (ViewSUnitDAGs) Scheduler->viewGraph();
676 // Emit machine code to BB. This can change 'BB' to the last block being
677 // inserted into.
678 if (TimePassesIsEnabled) {
679 NamedRegionTimer T("Instruction Creation", GroupName);
680 BB = Scheduler->EmitSchedule();
681 } else {
682 BB = Scheduler->EmitSchedule();
685 // Free the scheduler state.
686 if (TimePassesIsEnabled) {
687 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
688 delete Scheduler;
689 } else {
690 delete Scheduler;
693 DOUT << "Selected machine code:\n";
694 DEBUG(BB->dump());
697 void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
698 MachineFunction &MF,
699 MachineModuleInfo *MMI,
700 DwarfWriter *DW,
701 const TargetInstrInfo &TII) {
702 // Initialize the Fast-ISel state, if needed.
703 FastISel *FastIS = 0;
704 if (EnableFastISel)
705 FastIS = TLI.createFastISel(MF, MMI, DW,
706 FuncInfo->ValueMap,
707 FuncInfo->MBBMap,
708 FuncInfo->StaticAllocaMap
709 #ifndef NDEBUG
710 , FuncInfo->CatchInfoLost
711 #endif
714 // Iterate over all basic blocks in the function.
715 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
716 BasicBlock *LLVMBB = &*I;
717 BB = FuncInfo->MBBMap[LLVMBB];
719 BasicBlock::iterator const Begin = LLVMBB->begin();
720 BasicBlock::iterator const End = LLVMBB->end();
721 BasicBlock::iterator BI = Begin;
723 // Lower any arguments needed in this block if this is the entry block.
724 bool SuppressFastISel = false;
725 if (LLVMBB == &Fn.getEntryBlock()) {
726 LowerArguments(LLVMBB);
728 // If any of the arguments has the byval attribute, forgo
729 // fast-isel in the entry block.
730 if (FastIS) {
731 unsigned j = 1;
732 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
733 I != E; ++I, ++j)
734 if (Fn.paramHasAttr(j, Attribute::ByVal)) {
735 if (EnableFastISelVerbose || EnableFastISelAbort)
736 cerr << "FastISel skips entry block due to byval argument\n";
737 SuppressFastISel = true;
738 break;
743 if (MMI && BB->isLandingPad()) {
744 // Add a label to mark the beginning of the landing pad. Deletion of the
745 // landing pad can thus be detected via the MachineModuleInfo.
746 unsigned LabelID = MMI->addLandingPad(BB);
748 const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
749 BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
751 // Mark exception register as live in.
752 unsigned Reg = TLI.getExceptionAddressRegister();
753 if (Reg) BB->addLiveIn(Reg);
755 // Mark exception selector register as live in.
756 Reg = TLI.getExceptionSelectorRegister();
757 if (Reg) BB->addLiveIn(Reg);
759 // FIXME: Hack around an exception handling flaw (PR1508): the personality
760 // function and list of typeids logically belong to the invoke (or, if you
761 // like, the basic block containing the invoke), and need to be associated
762 // with it in the dwarf exception handling tables. Currently however the
763 // information is provided by an intrinsic (eh.selector) that can be moved
764 // to unexpected places by the optimizers: if the unwind edge is critical,
765 // then breaking it can result in the intrinsics being in the successor of
766 // the landing pad, not the landing pad itself. This results in exceptions
767 // not being caught because no typeids are associated with the invoke.
768 // This may not be the only way things can go wrong, but it is the only way
769 // we try to work around for the moment.
770 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
772 if (Br && Br->isUnconditional()) { // Critical edge?
773 BasicBlock::iterator I, E;
774 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
775 if (isa<EHSelectorInst>(I))
776 break;
778 if (I == E)
779 // No catch info found - try to extract some from the successor.
780 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
784 // Before doing SelectionDAG ISel, see if FastISel has been requested.
785 if (FastIS && !SuppressFastISel) {
786 // Emit code for any incoming arguments. This must happen before
787 // beginning FastISel on the entry block.
788 if (LLVMBB == &Fn.getEntryBlock()) {
789 CurDAG->setRoot(SDL->getControlRoot());
790 CodeGenAndEmitDAG();
791 SDL->clear();
793 FastIS->startNewBlock(BB);
794 // Do FastISel on as many instructions as possible.
795 for (; BI != End; ++BI) {
796 // Just before the terminator instruction, insert instructions to
797 // feed PHI nodes in successor blocks.
798 if (isa<TerminatorInst>(BI))
799 if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
800 if (EnableFastISelVerbose || EnableFastISelAbort) {
801 cerr << "FastISel miss: ";
802 BI->dump();
804 if (EnableFastISelAbort)
805 assert(0 && "FastISel didn't handle a PHI in a successor");
806 break;
809 // First try normal tablegen-generated "fast" selection.
810 if (FastIS->SelectInstruction(BI))
811 continue;
813 // Next, try calling the target to attempt to handle the instruction.
814 if (FastIS->TargetSelectInstruction(BI))
815 continue;
817 // Then handle certain instructions as single-LLVM-Instruction blocks.
818 if (isa<CallInst>(BI)) {
819 if (EnableFastISelVerbose || EnableFastISelAbort) {
820 cerr << "FastISel missed call: ";
821 BI->dump();
824 if (BI->getType() != Type::VoidTy) {
825 unsigned &R = FuncInfo->ValueMap[BI];
826 if (!R)
827 R = FuncInfo->CreateRegForValue(BI);
830 SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
831 SelectBasicBlock(LLVMBB, BI, next(BI));
832 // If the instruction was codegen'd with multiple blocks,
833 // inform the FastISel object where to resume inserting.
834 FastIS->setCurrentBlock(BB);
835 continue;
838 // Otherwise, give up on FastISel for the rest of the block.
839 // For now, be a little lenient about non-branch terminators.
840 if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
841 if (EnableFastISelVerbose || EnableFastISelAbort) {
842 cerr << "FastISel miss: ";
843 BI->dump();
845 if (EnableFastISelAbort)
846 // The "fast" selector couldn't handle something and bailed.
847 // For the purpose of debugging, just abort.
848 assert(0 && "FastISel didn't select the entire block");
850 break;
854 // Run SelectionDAG instruction selection on the remainder of the block
855 // not handled by FastISel. If FastISel is not run, this is the entire
856 // block.
857 if (BI != End) {
858 // If FastISel is run and it has known DebugLoc then use it.
859 if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
860 SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
861 SelectBasicBlock(LLVMBB, BI, End);
864 FinishBasicBlock();
867 delete FastIS;
870 void
871 SelectionDAGISel::FinishBasicBlock() {
873 DOUT << "Target-post-processed machine code:\n";
874 DEBUG(BB->dump());
876 DOUT << "Total amount of phi nodes to update: "
877 << SDL->PHINodesToUpdate.size() << "\n";
878 DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
879 DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
880 << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
882 // Next, now that we know what the last MBB the LLVM BB expanded is, update
883 // PHI nodes in successors.
884 if (SDL->SwitchCases.empty() &&
885 SDL->JTCases.empty() &&
886 SDL->BitTestCases.empty()) {
887 for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
888 MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
889 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
890 "This is not a machine PHI node that we are updating!");
891 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
892 false));
893 PHI->addOperand(MachineOperand::CreateMBB(BB));
895 SDL->PHINodesToUpdate.clear();
896 return;
899 for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
900 // Lower header first, if it wasn't already lowered
901 if (!SDL->BitTestCases[i].Emitted) {
902 // Set the current basic block to the mbb we wish to insert the code into
903 BB = SDL->BitTestCases[i].Parent;
904 SDL->setCurrentBasicBlock(BB);
905 // Emit the code
906 SDL->visitBitTestHeader(SDL->BitTestCases[i]);
907 CurDAG->setRoot(SDL->getRoot());
908 CodeGenAndEmitDAG();
909 SDL->clear();
912 for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
913 // Set the current basic block to the mbb we wish to insert the code into
914 BB = SDL->BitTestCases[i].Cases[j].ThisBB;
915 SDL->setCurrentBasicBlock(BB);
916 // Emit the code
917 if (j+1 != ej)
918 SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
919 SDL->BitTestCases[i].Reg,
920 SDL->BitTestCases[i].Cases[j]);
921 else
922 SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
923 SDL->BitTestCases[i].Reg,
924 SDL->BitTestCases[i].Cases[j]);
927 CurDAG->setRoot(SDL->getRoot());
928 CodeGenAndEmitDAG();
929 SDL->clear();
932 // Update PHI Nodes
933 for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
934 MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
935 MachineBasicBlock *PHIBB = PHI->getParent();
936 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
937 "This is not a machine PHI node that we are updating!");
938 // This is "default" BB. We have two jumps to it. From "header" BB and
939 // from last "case" BB.
940 if (PHIBB == SDL->BitTestCases[i].Default) {
941 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
942 false));
943 PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
944 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
945 false));
946 PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
947 back().ThisBB));
949 // One of "cases" BB.
950 for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
951 j != ej; ++j) {
952 MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
953 if (cBB->succ_end() !=
954 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
955 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
956 false));
957 PHI->addOperand(MachineOperand::CreateMBB(cBB));
962 SDL->BitTestCases.clear();
964 // If the JumpTable record is filled in, then we need to emit a jump table.
965 // Updating the PHI nodes is tricky in this case, since we need to determine
966 // whether the PHI is a successor of the range check MBB or the jump table MBB
967 for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
968 // Lower header first, if it wasn't already lowered
969 if (!SDL->JTCases[i].first.Emitted) {
970 // Set the current basic block to the mbb we wish to insert the code into
971 BB = SDL->JTCases[i].first.HeaderBB;
972 SDL->setCurrentBasicBlock(BB);
973 // Emit the code
974 SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
975 CurDAG->setRoot(SDL->getRoot());
976 CodeGenAndEmitDAG();
977 SDL->clear();
980 // Set the current basic block to the mbb we wish to insert the code into
981 BB = SDL->JTCases[i].second.MBB;
982 SDL->setCurrentBasicBlock(BB);
983 // Emit the code
984 SDL->visitJumpTable(SDL->JTCases[i].second);
985 CurDAG->setRoot(SDL->getRoot());
986 CodeGenAndEmitDAG();
987 SDL->clear();
989 // Update PHI Nodes
990 for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
991 MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
992 MachineBasicBlock *PHIBB = PHI->getParent();
993 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
994 "This is not a machine PHI node that we are updating!");
995 // "default" BB. We can go there only from header BB.
996 if (PHIBB == SDL->JTCases[i].second.Default) {
997 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
998 false));
999 PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
1001 // JT BB. Just iterate over successors here
1002 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
1003 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
1004 false));
1005 PHI->addOperand(MachineOperand::CreateMBB(BB));
1009 SDL->JTCases.clear();
1011 // If the switch block involved a branch to one of the actual successors, we
1012 // need to update PHI nodes in that block.
1013 for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
1014 MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
1015 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1016 "This is not a machine PHI node that we are updating!");
1017 if (BB->isSuccessor(PHI->getParent())) {
1018 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
1019 false));
1020 PHI->addOperand(MachineOperand::CreateMBB(BB));
1024 // If we generated any switch lowering information, build and codegen any
1025 // additional DAGs necessary.
1026 for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
1027 // Set the current basic block to the mbb we wish to insert the code into
1028 BB = SDL->SwitchCases[i].ThisBB;
1029 SDL->setCurrentBasicBlock(BB);
1031 // Emit the code
1032 SDL->visitSwitchCase(SDL->SwitchCases[i]);
1033 CurDAG->setRoot(SDL->getRoot());
1034 CodeGenAndEmitDAG();
1035 SDL->clear();
1037 // Handle any PHI nodes in successors of this chunk, as if we were coming
1038 // from the original BB before switch expansion. Note that PHI nodes can
1039 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1040 // handle them the right number of times.
1041 while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
1042 for (MachineBasicBlock::iterator Phi = BB->begin();
1043 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1044 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1045 for (unsigned pn = 0; ; ++pn) {
1046 assert(pn != SDL->PHINodesToUpdate.size() &&
1047 "Didn't find PHI entry!");
1048 if (SDL->PHINodesToUpdate[pn].first == Phi) {
1049 Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1050 second, false));
1051 Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1052 break;
1057 // Don't process RHS if same block as LHS.
1058 if (BB == SDL->SwitchCases[i].FalseBB)
1059 SDL->SwitchCases[i].FalseBB = 0;
1061 // If we haven't handled the RHS, do so now. Otherwise, we're done.
1062 SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1063 SDL->SwitchCases[i].FalseBB = 0;
1065 assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1067 SDL->SwitchCases.clear();
1069 SDL->PHINodesToUpdate.clear();
1073 /// Create the scheduler. If a specific scheduler was specified
1074 /// via the SchedulerRegistry, use it, otherwise select the
1075 /// one preferred by the target.
1077 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1078 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1080 if (!Ctor) {
1081 Ctor = ISHeuristic;
1082 RegisterScheduler::setDefault(Ctor);
1085 return Ctor(this, OptLevel);
1088 ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1089 return new ScheduleHazardRecognizer();
1092 //===----------------------------------------------------------------------===//
1093 // Helper functions used by the generated instruction selector.
1094 //===----------------------------------------------------------------------===//
1095 // Calls to these methods are generated by tblgen.
1097 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1098 /// the dag combiner simplified the 255, we still want to match. RHS is the
1099 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1100 /// specified in the .td file (e.g. 255).
1101 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1102 int64_t DesiredMaskS) const {
1103 const APInt &ActualMask = RHS->getAPIntValue();
1104 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1106 // If the actual mask exactly matches, success!
1107 if (ActualMask == DesiredMask)
1108 return true;
1110 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1111 if (ActualMask.intersects(~DesiredMask))
1112 return false;
1114 // Otherwise, the DAG Combiner may have proven that the value coming in is
1115 // either already zero or is not demanded. Check for known zero input bits.
1116 APInt NeededMask = DesiredMask & ~ActualMask;
1117 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1118 return true;
1120 // TODO: check to see if missing bits are just not demanded.
1122 // Otherwise, this pattern doesn't match.
1123 return false;
1126 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1127 /// the dag combiner simplified the 255, we still want to match. RHS is the
1128 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1129 /// specified in the .td file (e.g. 255).
1130 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1131 int64_t DesiredMaskS) const {
1132 const APInt &ActualMask = RHS->getAPIntValue();
1133 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1135 // If the actual mask exactly matches, success!
1136 if (ActualMask == DesiredMask)
1137 return true;
1139 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1140 if (ActualMask.intersects(~DesiredMask))
1141 return false;
1143 // Otherwise, the DAG Combiner may have proven that the value coming in is
1144 // either already zero or is not demanded. Check for known zero input bits.
1145 APInt NeededMask = DesiredMask & ~ActualMask;
1147 APInt KnownZero, KnownOne;
1148 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1150 // If all the missing bits in the or are already known to be set, match!
1151 if ((NeededMask & KnownOne) == NeededMask)
1152 return true;
1154 // TODO: check to see if missing bits are just not demanded.
1156 // Otherwise, this pattern doesn't match.
1157 return false;
1161 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1162 /// by tblgen. Others should not call it.
1163 void SelectionDAGISel::
1164 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1165 std::vector<SDValue> InOps;
1166 std::swap(InOps, Ops);
1168 Ops.push_back(InOps[0]); // input chain.
1169 Ops.push_back(InOps[1]); // input asm string.
1171 unsigned i = 2, e = InOps.size();
1172 if (InOps[e-1].getValueType() == MVT::Flag)
1173 --e; // Don't process a flag operand if it is here.
1175 while (i != e) {
1176 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1177 if ((Flags & 7) != 4 /*MEM*/) {
1178 // Just skip over this operand, copying the operands verbatim.
1179 Ops.insert(Ops.end(), InOps.begin()+i,
1180 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1181 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1182 } else {
1183 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1184 "Memory operand with multiple values?");
1185 // Otherwise, this is a memory operand. Ask the target to select it.
1186 std::vector<SDValue> SelOps;
1187 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1188 cerr << "Could not match memory address. Inline asm failure!\n";
1189 exit(1);
1192 // Add this to the output node.
1193 MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1194 Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1195 IntPtrTy));
1196 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1197 i += 2;
1201 // Add the flag input back if present.
1202 if (e != InOps.size())
1203 Ops.push_back(InOps.back());
1206 /// findFlagUse - Return use of MVT::Flag value produced by the specified
1207 /// SDNode.
1209 static SDNode *findFlagUse(SDNode *N) {
1210 unsigned FlagResNo = N->getNumValues()-1;
1211 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1212 SDUse &Use = I.getUse();
1213 if (Use.getResNo() == FlagResNo)
1214 return Use.getUser();
1216 return NULL;
1219 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1220 /// This function recursively traverses up the operand chain, ignoring
1221 /// certain nodes.
1222 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1223 SDNode *Root,
1224 SmallPtrSet<SDNode*, 16> &Visited) {
1225 if (Use->getNodeId() < Def->getNodeId() ||
1226 !Visited.insert(Use))
1227 return false;
1229 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1230 SDNode *N = Use->getOperand(i).getNode();
1231 if (N == Def) {
1232 if (Use == ImmedUse || Use == Root)
1233 continue; // We are not looking for immediate use.
1234 assert(N != Root);
1235 return true;
1238 // Traverse up the operand chain.
1239 if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1240 return true;
1242 return false;
1245 /// isNonImmUse - Start searching from Root up the DAG to check is Def can
1246 /// be reached. Return true if that's the case. However, ignore direct uses
1247 /// by ImmedUse (which would be U in the example illustrated in
1248 /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1249 /// case).
1250 /// FIXME: to be really generic, we should allow direct use by any node
1251 /// that is being folded. But realisticly since we only fold loads which
1252 /// have one non-chain use, we only need to watch out for load/op/store
1253 /// and load/op/cmp case where the root (store / cmp) may reach the load via
1254 /// its chain operand.
1255 static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1256 SmallPtrSet<SDNode*, 16> Visited;
1257 return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1260 /// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1261 /// U can be folded during instruction selection that starts at Root and
1262 /// folding N is profitable.
1263 bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1264 SDNode *Root) const {
1265 if (OptLevel == CodeGenOpt::None) return false;
1267 // If Root use can somehow reach N through a path that that doesn't contain
1268 // U then folding N would create a cycle. e.g. In the following
1269 // diagram, Root can reach N through X. If N is folded into into Root, then
1270 // X is both a predecessor and a successor of U.
1272 // [N*] //
1273 // ^ ^ //
1274 // / \ //
1275 // [U*] [X]? //
1276 // ^ ^ //
1277 // \ / //
1278 // \ / //
1279 // [Root*] //
1281 // * indicates nodes to be folded together.
1283 // If Root produces a flag, then it gets (even more) interesting. Since it
1284 // will be "glued" together with its flag use in the scheduler, we need to
1285 // check if it might reach N.
1287 // [N*] //
1288 // ^ ^ //
1289 // / \ //
1290 // [U*] [X]? //
1291 // ^ ^ //
1292 // \ \ //
1293 // \ | //
1294 // [Root*] | //
1295 // ^ | //
1296 // f | //
1297 // | / //
1298 // [Y] / //
1299 // ^ / //
1300 // f / //
1301 // | / //
1302 // [FU] //
1304 // If FU (flag use) indirectly reaches N (the load), and Root folds N
1305 // (call it Fold), then X is a predecessor of FU and a successor of
1306 // Fold. But since Fold and FU are flagged together, this will create
1307 // a cycle in the scheduling graph.
1309 MVT VT = Root->getValueType(Root->getNumValues()-1);
1310 while (VT == MVT::Flag) {
1311 SDNode *FU = findFlagUse(Root);
1312 if (FU == NULL)
1313 break;
1314 Root = FU;
1315 VT = Root->getValueType(Root->getNumValues()-1);
1318 return !isNonImmUse(Root, N, U);
1322 char SelectionDAGISel::ID = 0;