1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuild.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38 #include "llvm/CodeGen/SchedulerRegistry.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/DwarfWriter.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetData.h"
43 #include "llvm/Target/TargetFrameInfo.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/Timer.h"
56 DisableLegalizeTypes("disable-legalize-types", cl::Hidden
);
59 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden
,
60 cl::desc("Enable verbose messages in the \"fast\" "
61 "instruction selector"));
63 EnableFastISelAbort("fast-isel-abort", cl::Hidden
,
64 cl::desc("Enable abort calls when \"fast\" instruction fails"));
66 static const bool EnableFastISelVerbose
= false,
67 EnableFastISelAbort
= false;
70 SchedLiveInCopies("schedule-livein-copies",
71 cl::desc("Schedule copies of livein registers"),
76 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
77 cl::desc("Pop up a window to show dags before the first "
80 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
81 cl::desc("Pop up a window to show dags before legalize types"));
83 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
84 cl::desc("Pop up a window to show dags before legalize"));
86 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
87 cl::desc("Pop up a window to show dags before the second "
90 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
91 cl::desc("Pop up a window to show dags before the post legalize types"
92 " dag combine pass"));
94 ViewISelDAGs("view-isel-dags", cl::Hidden
,
95 cl::desc("Pop up a window to show isel dags as they are selected"));
97 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
98 cl::desc("Pop up a window to show sched dags as they are processed"));
100 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
101 cl::desc("Pop up a window to show SUnit dags after they are processed"));
103 static const bool ViewDAGCombine1
= false,
104 ViewLegalizeTypesDAGs
= false, ViewLegalizeDAGs
= false,
105 ViewDAGCombine2
= false,
106 ViewDAGCombineLT
= false,
107 ViewISelDAGs
= false, ViewSchedDAGs
= false,
108 ViewSUnitDAGs
= false;
111 //===---------------------------------------------------------------------===//
113 /// RegisterScheduler class - Track the registration of instruction schedulers.
115 //===---------------------------------------------------------------------===//
116 MachinePassRegistry
RegisterScheduler::Registry
;
118 //===---------------------------------------------------------------------===//
120 /// ISHeuristic command line option for instruction schedulers.
122 //===---------------------------------------------------------------------===//
123 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
124 RegisterPassParser
<RegisterScheduler
> >
125 ISHeuristic("pre-RA-sched",
126 cl::init(&createDefaultScheduler
),
127 cl::desc("Instruction schedulers available (before register"
130 static RegisterScheduler
131 defaultListDAGScheduler("default", "Best scheduler for the target",
132 createDefaultScheduler
);
135 //===--------------------------------------------------------------------===//
136 /// createDefaultScheduler - This creates an instruction scheduler appropriate
138 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
139 CodeGenOpt::Level OptLevel
) {
140 const TargetLowering
&TLI
= IS
->getTargetLowering();
142 if (OptLevel
== CodeGenOpt::None
)
143 return createFastDAGScheduler(IS
, OptLevel
);
144 if (TLI
.getSchedulingPreference() == TargetLowering::SchedulingForLatency
)
145 return createTDListDAGScheduler(IS
, OptLevel
);
146 assert(TLI
.getSchedulingPreference() ==
147 TargetLowering::SchedulingForRegPressure
&& "Unknown sched type!");
148 return createBURRListDAGScheduler(IS
, OptLevel
);
152 // EmitInstrWithCustomInserter - This method should be implemented by targets
153 // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
154 // instructions are special in various ways, which require special support to
155 // insert. The specified MachineInstr is created but not inserted into any
156 // basic blocks, and the scheduler passes ownership of it to this method.
157 MachineBasicBlock
*TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
158 MachineBasicBlock
*MBB
) const {
159 cerr
<< "If a target marks an instruction with "
160 << "'usesCustomDAGSchedInserter', it must implement "
161 << "TargetLowering::EmitInstrWithCustomInserter!\n";
166 /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
167 /// physical register has only a single copy use, then coalesced the copy
169 static void EmitLiveInCopy(MachineBasicBlock
*MBB
,
170 MachineBasicBlock::iterator
&InsertPos
,
171 unsigned VirtReg
, unsigned PhysReg
,
172 const TargetRegisterClass
*RC
,
173 DenseMap
<MachineInstr
*, unsigned> &CopyRegMap
,
174 const MachineRegisterInfo
&MRI
,
175 const TargetRegisterInfo
&TRI
,
176 const TargetInstrInfo
&TII
) {
177 unsigned NumUses
= 0;
178 MachineInstr
*UseMI
= NULL
;
179 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(VirtReg
),
180 UE
= MRI
.use_end(); UI
!= UE
; ++UI
) {
186 // If the number of uses is not one, or the use is not a move instruction,
187 // don't coalesce. Also, only coalesce away a virtual register to virtual
189 bool Coalesced
= false;
190 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
192 TII
.isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
) &&
193 TargetRegisterInfo::isVirtualRegister(DstReg
)) {
198 // Now find an ideal location to insert the copy.
199 MachineBasicBlock::iterator Pos
= InsertPos
;
200 while (Pos
!= MBB
->begin()) {
201 MachineInstr
*PrevMI
= prior(Pos
);
202 DenseMap
<MachineInstr
*, unsigned>::iterator RI
= CopyRegMap
.find(PrevMI
);
203 // copyRegToReg might emit multiple instructions to do a copy.
204 unsigned CopyDstReg
= (RI
== CopyRegMap
.end()) ? 0 : RI
->second
;
205 if (CopyDstReg
&& !TRI
.regsOverlap(CopyDstReg
, PhysReg
))
206 // This is what the BB looks like right now:
211 // We want to insert "r1025 = mov r1". Inserting this copy below the
212 // move to r1024 makes it impossible for that move to be coalesced.
219 break; // Woot! Found a good location.
223 TII
.copyRegToReg(*MBB
, Pos
, VirtReg
, PhysReg
, RC
, RC
);
224 CopyRegMap
.insert(std::make_pair(prior(Pos
), VirtReg
));
226 if (&*InsertPos
== UseMI
) ++InsertPos
;
231 /// EmitLiveInCopies - If this is the first basic block in the function,
232 /// and if it has live ins that need to be copied into vregs, emit the
233 /// copies into the block.
234 static void EmitLiveInCopies(MachineBasicBlock
*EntryMBB
,
235 const MachineRegisterInfo
&MRI
,
236 const TargetRegisterInfo
&TRI
,
237 const TargetInstrInfo
&TII
) {
238 if (SchedLiveInCopies
) {
239 // Emit the copies at a heuristically-determined location in the block.
240 DenseMap
<MachineInstr
*, unsigned> CopyRegMap
;
241 MachineBasicBlock::iterator InsertPos
= EntryMBB
->begin();
242 for (MachineRegisterInfo::livein_iterator LI
= MRI
.livein_begin(),
243 E
= MRI
.livein_end(); LI
!= E
; ++LI
)
245 const TargetRegisterClass
*RC
= MRI
.getRegClass(LI
->second
);
246 EmitLiveInCopy(EntryMBB
, InsertPos
, LI
->second
, LI
->first
,
247 RC
, CopyRegMap
, MRI
, TRI
, TII
);
250 // Emit the copies into the top of the block.
251 for (MachineRegisterInfo::livein_iterator LI
= MRI
.livein_begin(),
252 E
= MRI
.livein_end(); LI
!= E
; ++LI
)
254 const TargetRegisterClass
*RC
= MRI
.getRegClass(LI
->second
);
255 TII
.copyRegToReg(*EntryMBB
, EntryMBB
->begin(),
256 LI
->second
, LI
->first
, RC
, RC
);
261 //===----------------------------------------------------------------------===//
262 // SelectionDAGISel code
263 //===----------------------------------------------------------------------===//
265 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
, CodeGenOpt::Level OL
) :
266 FunctionPass(&ID
), TM(tm
), TLI(*tm
.getTargetLowering()),
267 FuncInfo(new FunctionLoweringInfo(TLI
)),
268 CurDAG(new SelectionDAG(TLI
, *FuncInfo
)),
269 SDL(new SelectionDAGLowering(*CurDAG
, TLI
, *FuncInfo
, OL
)),
275 SelectionDAGISel::~SelectionDAGISel() {
281 unsigned SelectionDAGISel::MakeReg(MVT VT
) {
282 return RegInfo
->createVirtualRegister(TLI
.getRegClassFor(VT
));
285 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
286 AU
.addRequired
<AliasAnalysis
>();
287 AU
.addRequired
<GCModuleInfo
>();
288 AU
.addRequired
<DwarfWriter
>();
289 AU
.setPreservesAll();
292 bool SelectionDAGISel::runOnFunction(Function
&Fn
) {
293 // Do some sanity-checking on the command-line options.
294 assert((!EnableFastISelVerbose
|| EnableFastISel
) &&
295 "-fast-isel-verbose requires -fast-isel");
296 assert((!EnableFastISelAbort
|| EnableFastISel
) &&
297 "-fast-isel-abort requires -fast-isel");
299 // Do not codegen any 'available_externally' functions at all, they have
300 // definitions outside the translation unit.
301 if (Fn
.hasAvailableExternallyLinkage())
305 // Get alias analysis for load/store combining.
306 AA
= &getAnalysis
<AliasAnalysis
>();
308 TargetMachine
&TM
= TLI
.getTargetMachine();
309 MF
= &MachineFunction::construct(&Fn
, TM
);
310 const TargetInstrInfo
&TII
= *TM
.getInstrInfo();
311 const TargetRegisterInfo
&TRI
= *TM
.getRegisterInfo();
313 if (MF
->getFunction()->hasGC())
314 GFI
= &getAnalysis
<GCModuleInfo
>().getFunctionInfo(*MF
->getFunction());
317 RegInfo
= &MF
->getRegInfo();
318 DOUT
<< "\n\n\n=== " << Fn
.getName() << "\n";
320 MachineModuleInfo
*MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
321 DwarfWriter
*DW
= getAnalysisIfAvailable
<DwarfWriter
>();
322 CurDAG
->init(*MF
, MMI
, DW
);
323 FuncInfo
->set(Fn
, *MF
, *CurDAG
, EnableFastISel
);
326 for (Function::iterator I
= Fn
.begin(), E
= Fn
.end(); I
!= E
; ++I
)
327 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(I
->getTerminator()))
329 FuncInfo
->MBBMap
[Invoke
->getSuccessor(1)]->setIsLandingPad();
331 SelectAllBasicBlocks(Fn
, *MF
, MMI
, DW
, TII
);
333 // If the first basic block in the function has live ins that need to be
334 // copied into vregs, emit the copies into the top of the block before
335 // emitting the code for the block.
336 EmitLiveInCopies(MF
->begin(), *RegInfo
, TRI
, TII
);
338 // Add function live-ins to entry block live-in set.
339 for (MachineRegisterInfo::livein_iterator I
= RegInfo
->livein_begin(),
340 E
= RegInfo
->livein_end(); I
!= E
; ++I
)
341 MF
->begin()->addLiveIn(I
->first
);
344 assert(FuncInfo
->CatchInfoFound
.size() == FuncInfo
->CatchInfoLost
.size() &&
345 "Not all catch info was assigned to a landing pad!");
353 static void copyCatchInfo(BasicBlock
*SrcBB
, BasicBlock
*DestBB
,
354 MachineModuleInfo
*MMI
, FunctionLoweringInfo
&FLI
) {
355 for (BasicBlock::iterator I
= SrcBB
->begin(), E
= --SrcBB
->end(); I
!= E
; ++I
)
356 if (EHSelectorInst
*EHSel
= dyn_cast
<EHSelectorInst
>(I
)) {
357 // Apply the catch info to DestBB.
358 AddCatchInfo(*EHSel
, MMI
, FLI
.MBBMap
[DestBB
]);
360 if (!FLI
.MBBMap
[SrcBB
]->isLandingPad())
361 FLI
.CatchInfoFound
.insert(EHSel
);
366 /// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
367 /// whether object offset >= 0.
369 IsFixedFrameObjectWithPosOffset(MachineFrameInfo
*MFI
, SDValue Op
) {
370 if (!isa
<FrameIndexSDNode
>(Op
)) return false;
372 FrameIndexSDNode
* FrameIdxNode
= dyn_cast
<FrameIndexSDNode
>(Op
);
373 int FrameIdx
= FrameIdxNode
->getIndex();
374 return MFI
->isFixedObjectIndex(FrameIdx
) &&
375 MFI
->getObjectOffset(FrameIdx
) >= 0;
378 /// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
379 /// possibly be overwritten when lowering the outgoing arguments in a tail
380 /// call. Currently the implementation of this call is very conservative and
381 /// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
382 /// virtual registers would be overwritten by direct lowering.
383 static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op
,
384 MachineFrameInfo
*MFI
) {
385 RegisterSDNode
* OpReg
= NULL
;
386 if (Op
.getOpcode() == ISD::FORMAL_ARGUMENTS
||
387 (Op
.getOpcode()== ISD::CopyFromReg
&&
388 (OpReg
= dyn_cast
<RegisterSDNode
>(Op
.getOperand(1))) &&
389 (OpReg
->getReg() >= TargetRegisterInfo::FirstVirtualRegister
)) ||
390 (Op
.getOpcode() == ISD::LOAD
&&
391 IsFixedFrameObjectWithPosOffset(MFI
, Op
.getOperand(1))) ||
392 (Op
.getOpcode() == ISD::MERGE_VALUES
&&
393 Op
.getOperand(Op
.getResNo()).getOpcode() == ISD::LOAD
&&
394 IsFixedFrameObjectWithPosOffset(MFI
, Op
.getOperand(Op
.getResNo()).
400 /// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
401 /// DAG and fixes their tailcall attribute operand.
402 static void CheckDAGForTailCallsAndFixThem(SelectionDAG
&DAG
,
403 const TargetLowering
& TLI
) {
405 SDValue Terminator
= DAG
.getRoot();
408 if (Terminator
.getOpcode() == ISD::RET
) {
409 Ret
= Terminator
.getNode();
412 // Fix tail call attribute of CALL nodes.
413 for (SelectionDAG::allnodes_iterator BE
= DAG
.allnodes_begin(),
414 BI
= DAG
.allnodes_end(); BI
!= BE
; ) {
416 if (CallSDNode
*TheCall
= dyn_cast
<CallSDNode
>(BI
)) {
417 SDValue
OpRet(Ret
, 0);
418 SDValue
OpCall(BI
, 0);
419 bool isMarkedTailCall
= TheCall
->isTailCall();
420 // If CALL node has tail call attribute set to true and the call is not
421 // eligible (no RET or the target rejects) the attribute is fixed to
422 // false. The TargetLowering::IsEligibleForTailCallOptimization function
423 // must correctly identify tail call optimizable calls.
424 if (!isMarkedTailCall
) continue;
426 !TLI
.IsEligibleForTailCallOptimization(TheCall
, OpRet
, DAG
)) {
427 // Not eligible. Mark CALL node as non tail call. Note that we
428 // can modify the call node in place since calls are not CSE'd.
429 TheCall
->setNotTailCall();
431 // Look for tail call clobbered arguments. Emit a series of
432 // copyto/copyfrom virtual register nodes to protect them.
433 SmallVector
<SDValue
, 32> Ops
;
434 SDValue Chain
= TheCall
->getChain(), InFlag
;
435 Ops
.push_back(Chain
);
436 Ops
.push_back(TheCall
->getCallee());
437 for (unsigned i
= 0, e
= TheCall
->getNumArgs(); i
!= e
; ++i
) {
438 SDValue Arg
= TheCall
->getArg(i
);
439 bool isByVal
= TheCall
->getArgFlags(i
).isByVal();
440 MachineFunction
&MF
= DAG
.getMachineFunction();
441 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
443 IsPossiblyOverwrittenArgumentOfTailCall(Arg
, MFI
)) {
444 MVT VT
= Arg
.getValueType();
445 unsigned VReg
= MF
.getRegInfo().
446 createVirtualRegister(TLI
.getRegClassFor(VT
));
447 Chain
= DAG
.getCopyToReg(Chain
, Arg
.getDebugLoc(),
449 InFlag
= Chain
.getValue(1);
450 Arg
= DAG
.getCopyFromReg(Chain
, Arg
.getDebugLoc(),
452 Chain
= Arg
.getValue(1);
453 InFlag
= Arg
.getValue(2);
456 Ops
.push_back(TheCall
->getArgFlagsVal(i
));
458 // Link in chain of CopyTo/CopyFromReg.
460 DAG
.UpdateNodeOperands(OpCall
, Ops
.begin(), Ops
.size());
466 void SelectionDAGISel::SelectBasicBlock(BasicBlock
*LLVMBB
,
467 BasicBlock::iterator Begin
,
468 BasicBlock::iterator End
) {
469 SDL
->setCurrentBasicBlock(BB
);
471 // Lower all of the non-terminator instructions.
472 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
)
473 if (!isa
<TerminatorInst
>(I
))
476 // Ensure that all instructions which are used outside of their defining
477 // blocks are available as virtual registers. Invoke is handled elsewhere.
478 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
)
479 if (!isa
<PHINode
>(I
) && !isa
<InvokeInst
>(I
))
480 SDL
->CopyToExportRegsIfNeeded(I
);
482 // Handle PHI nodes in successor blocks.
483 if (End
== LLVMBB
->end()) {
484 HandlePHINodesInSuccessorBlocks(LLVMBB
);
486 // Lower the terminator after the copies are emitted.
487 SDL
->visit(*LLVMBB
->getTerminator());
490 // Make sure the root of the DAG is up-to-date.
491 CurDAG
->setRoot(SDL
->getControlRoot());
493 // Check whether calls in this block are real tail calls. Fix up CALL nodes
494 // with correct tailcall attribute so that the target can rely on the tailcall
495 // attribute indicating whether the call is really eligible for tail call
497 if (PerformTailCallOpt
)
498 CheckDAGForTailCallsAndFixThem(*CurDAG
, TLI
);
500 // Final step, emit the lowered DAG as machine code.
505 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506 SmallPtrSet
<SDNode
*, 128> VisitedNodes
;
507 SmallVector
<SDNode
*, 128> Worklist
;
509 Worklist
.push_back(CurDAG
->getRoot().getNode());
515 while (!Worklist
.empty()) {
516 SDNode
*N
= Worklist
.back();
519 // If we've already seen this node, ignore it.
520 if (!VisitedNodes
.insert(N
))
523 // Otherwise, add all chain operands to the worklist.
524 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
525 if (N
->getOperand(i
).getValueType() == MVT::Other
)
526 Worklist
.push_back(N
->getOperand(i
).getNode());
528 // If this is a CopyToReg with a vreg dest, process it.
529 if (N
->getOpcode() != ISD::CopyToReg
)
532 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
533 if (!TargetRegisterInfo::isVirtualRegister(DestReg
))
536 // Ignore non-scalar or non-integer values.
537 SDValue Src
= N
->getOperand(2);
538 MVT SrcVT
= Src
.getValueType();
539 if (!SrcVT
.isInteger() || SrcVT
.isVector())
542 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
543 Mask
= APInt::getAllOnesValue(SrcVT
.getSizeInBits());
544 CurDAG
->ComputeMaskedBits(Src
, Mask
, KnownZero
, KnownOne
);
546 // Only install this information if it tells us something.
547 if (NumSignBits
!= 1 || KnownZero
!= 0 || KnownOne
!= 0) {
548 DestReg
-= TargetRegisterInfo::FirstVirtualRegister
;
549 FunctionLoweringInfo
&FLI
= CurDAG
->getFunctionLoweringInfo();
550 if (DestReg
>= FLI
.LiveOutRegInfo
.size())
551 FLI
.LiveOutRegInfo
.resize(DestReg
+1);
552 FunctionLoweringInfo::LiveOutInfo
&LOI
= FLI
.LiveOutRegInfo
[DestReg
];
553 LOI
.NumSignBits
= NumSignBits
;
554 LOI
.KnownOne
= KnownOne
;
555 LOI
.KnownZero
= KnownZero
;
560 void SelectionDAGISel::CodeGenAndEmitDAG() {
561 std::string GroupName
;
562 if (TimePassesIsEnabled
)
563 GroupName
= "Instruction Selection and Scheduling";
564 std::string BlockName
;
565 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewLegalizeDAGs
||
566 ViewDAGCombine2
|| ViewDAGCombineLT
|| ViewISelDAGs
|| ViewSchedDAGs
||
568 BlockName
= CurDAG
->getMachineFunction().getFunction()->getName() + ':' +
569 BB
->getBasicBlock()->getName();
571 DOUT
<< "Initial selection DAG:\n";
572 DEBUG(CurDAG
->dump());
574 if (ViewDAGCombine1
) CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
576 // Run the DAG combiner in pre-legalize mode.
577 if (TimePassesIsEnabled
) {
578 NamedRegionTimer
T("DAG Combining 1", GroupName
);
579 CurDAG
->Combine(Unrestricted
, *AA
, OptLevel
);
581 CurDAG
->Combine(Unrestricted
, *AA
, OptLevel
);
584 DOUT
<< "Optimized lowered selection DAG:\n";
585 DEBUG(CurDAG
->dump());
587 // Second step, hack on the DAG until it only uses operations and types that
588 // the target supports.
589 if (!DisableLegalizeTypes
) {
590 if (ViewLegalizeTypesDAGs
) CurDAG
->viewGraph("legalize-types input for " +
594 if (TimePassesIsEnabled
) {
595 NamedRegionTimer
T("Type Legalization", GroupName
);
596 Changed
= CurDAG
->LegalizeTypes();
598 Changed
= CurDAG
->LegalizeTypes();
601 DOUT
<< "Type-legalized selection DAG:\n";
602 DEBUG(CurDAG
->dump());
605 if (ViewDAGCombineLT
)
606 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
608 // Run the DAG combiner in post-type-legalize mode.
609 if (TimePassesIsEnabled
) {
610 NamedRegionTimer
T("DAG Combining after legalize types", GroupName
);
611 CurDAG
->Combine(NoIllegalTypes
, *AA
, OptLevel
);
613 CurDAG
->Combine(NoIllegalTypes
, *AA
, OptLevel
);
616 DOUT
<< "Optimized type-legalized selection DAG:\n";
617 DEBUG(CurDAG
->dump());
621 if (ViewLegalizeDAGs
) CurDAG
->viewGraph("legalize input for " + BlockName
);
623 if (TimePassesIsEnabled
) {
624 NamedRegionTimer
T("DAG Legalization", GroupName
);
625 CurDAG
->Legalize(DisableLegalizeTypes
, OptLevel
);
627 CurDAG
->Legalize(DisableLegalizeTypes
, OptLevel
);
630 DOUT
<< "Legalized selection DAG:\n";
631 DEBUG(CurDAG
->dump());
633 if (ViewDAGCombine2
) CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
635 // Run the DAG combiner in post-legalize mode.
636 if (TimePassesIsEnabled
) {
637 NamedRegionTimer
T("DAG Combining 2", GroupName
);
638 CurDAG
->Combine(NoIllegalOperations
, *AA
, OptLevel
);
640 CurDAG
->Combine(NoIllegalOperations
, *AA
, OptLevel
);
643 DOUT
<< "Optimized legalized selection DAG:\n";
644 DEBUG(CurDAG
->dump());
646 if (ViewISelDAGs
) CurDAG
->viewGraph("isel input for " + BlockName
);
648 if (OptLevel
!= CodeGenOpt::None
)
649 ComputeLiveOutVRegInfo();
651 // Third, instruction select all of the operations to machine code, adding the
652 // code to the MachineBasicBlock.
653 if (TimePassesIsEnabled
) {
654 NamedRegionTimer
T("Instruction Selection", GroupName
);
660 DOUT
<< "Selected selection DAG:\n";
661 DEBUG(CurDAG
->dump());
663 if (ViewSchedDAGs
) CurDAG
->viewGraph("scheduler input for " + BlockName
);
665 // Schedule machine code.
666 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
667 if (TimePassesIsEnabled
) {
668 NamedRegionTimer
T("Instruction Scheduling", GroupName
);
669 Scheduler
->Run(CurDAG
, BB
, BB
->end());
671 Scheduler
->Run(CurDAG
, BB
, BB
->end());
674 if (ViewSUnitDAGs
) Scheduler
->viewGraph();
676 // Emit machine code to BB. This can change 'BB' to the last block being
678 if (TimePassesIsEnabled
) {
679 NamedRegionTimer
T("Instruction Creation", GroupName
);
680 BB
= Scheduler
->EmitSchedule();
682 BB
= Scheduler
->EmitSchedule();
685 // Free the scheduler state.
686 if (TimePassesIsEnabled
) {
687 NamedRegionTimer
T("Instruction Scheduling Cleanup", GroupName
);
693 DOUT
<< "Selected machine code:\n";
697 void SelectionDAGISel::SelectAllBasicBlocks(Function
&Fn
,
699 MachineModuleInfo
*MMI
,
701 const TargetInstrInfo
&TII
) {
702 // Initialize the Fast-ISel state, if needed.
703 FastISel
*FastIS
= 0;
705 FastIS
= TLI
.createFastISel(MF
, MMI
, DW
,
708 FuncInfo
->StaticAllocaMap
710 , FuncInfo
->CatchInfoLost
714 // Iterate over all basic blocks in the function.
715 for (Function::iterator I
= Fn
.begin(), E
= Fn
.end(); I
!= E
; ++I
) {
716 BasicBlock
*LLVMBB
= &*I
;
717 BB
= FuncInfo
->MBBMap
[LLVMBB
];
719 BasicBlock::iterator
const Begin
= LLVMBB
->begin();
720 BasicBlock::iterator
const End
= LLVMBB
->end();
721 BasicBlock::iterator BI
= Begin
;
723 // Lower any arguments needed in this block if this is the entry block.
724 bool SuppressFastISel
= false;
725 if (LLVMBB
== &Fn
.getEntryBlock()) {
726 LowerArguments(LLVMBB
);
728 // If any of the arguments has the byval attribute, forgo
729 // fast-isel in the entry block.
732 for (Function::arg_iterator I
= Fn
.arg_begin(), E
= Fn
.arg_end();
734 if (Fn
.paramHasAttr(j
, Attribute::ByVal
)) {
735 if (EnableFastISelVerbose
|| EnableFastISelAbort
)
736 cerr
<< "FastISel skips entry block due to byval argument\n";
737 SuppressFastISel
= true;
743 if (MMI
&& BB
->isLandingPad()) {
744 // Add a label to mark the beginning of the landing pad. Deletion of the
745 // landing pad can thus be detected via the MachineModuleInfo.
746 unsigned LabelID
= MMI
->addLandingPad(BB
);
748 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EH_LABEL
);
749 BuildMI(BB
, SDL
->getCurDebugLoc(), II
).addImm(LabelID
);
751 // Mark exception register as live in.
752 unsigned Reg
= TLI
.getExceptionAddressRegister();
753 if (Reg
) BB
->addLiveIn(Reg
);
755 // Mark exception selector register as live in.
756 Reg
= TLI
.getExceptionSelectorRegister();
757 if (Reg
) BB
->addLiveIn(Reg
);
759 // FIXME: Hack around an exception handling flaw (PR1508): the personality
760 // function and list of typeids logically belong to the invoke (or, if you
761 // like, the basic block containing the invoke), and need to be associated
762 // with it in the dwarf exception handling tables. Currently however the
763 // information is provided by an intrinsic (eh.selector) that can be moved
764 // to unexpected places by the optimizers: if the unwind edge is critical,
765 // then breaking it can result in the intrinsics being in the successor of
766 // the landing pad, not the landing pad itself. This results in exceptions
767 // not being caught because no typeids are associated with the invoke.
768 // This may not be the only way things can go wrong, but it is the only way
769 // we try to work around for the moment.
770 BranchInst
*Br
= dyn_cast
<BranchInst
>(LLVMBB
->getTerminator());
772 if (Br
&& Br
->isUnconditional()) { // Critical edge?
773 BasicBlock::iterator I
, E
;
774 for (I
= LLVMBB
->begin(), E
= --LLVMBB
->end(); I
!= E
; ++I
)
775 if (isa
<EHSelectorInst
>(I
))
779 // No catch info found - try to extract some from the successor.
780 copyCatchInfo(Br
->getSuccessor(0), LLVMBB
, MMI
, *FuncInfo
);
784 // Before doing SelectionDAG ISel, see if FastISel has been requested.
785 if (FastIS
&& !SuppressFastISel
) {
786 // Emit code for any incoming arguments. This must happen before
787 // beginning FastISel on the entry block.
788 if (LLVMBB
== &Fn
.getEntryBlock()) {
789 CurDAG
->setRoot(SDL
->getControlRoot());
793 FastIS
->startNewBlock(BB
);
794 // Do FastISel on as many instructions as possible.
795 for (; BI
!= End
; ++BI
) {
796 // Just before the terminator instruction, insert instructions to
797 // feed PHI nodes in successor blocks.
798 if (isa
<TerminatorInst
>(BI
))
799 if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB
, FastIS
)) {
800 if (EnableFastISelVerbose
|| EnableFastISelAbort
) {
801 cerr
<< "FastISel miss: ";
804 if (EnableFastISelAbort
)
805 assert(0 && "FastISel didn't handle a PHI in a successor");
809 // First try normal tablegen-generated "fast" selection.
810 if (FastIS
->SelectInstruction(BI
))
813 // Next, try calling the target to attempt to handle the instruction.
814 if (FastIS
->TargetSelectInstruction(BI
))
817 // Then handle certain instructions as single-LLVM-Instruction blocks.
818 if (isa
<CallInst
>(BI
)) {
819 if (EnableFastISelVerbose
|| EnableFastISelAbort
) {
820 cerr
<< "FastISel missed call: ";
824 if (BI
->getType() != Type::VoidTy
) {
825 unsigned &R
= FuncInfo
->ValueMap
[BI
];
827 R
= FuncInfo
->CreateRegForValue(BI
);
830 SDL
->setCurDebugLoc(FastIS
->getCurDebugLoc());
831 SelectBasicBlock(LLVMBB
, BI
, next(BI
));
832 // If the instruction was codegen'd with multiple blocks,
833 // inform the FastISel object where to resume inserting.
834 FastIS
->setCurrentBlock(BB
);
838 // Otherwise, give up on FastISel for the rest of the block.
839 // For now, be a little lenient about non-branch terminators.
840 if (!isa
<TerminatorInst
>(BI
) || isa
<BranchInst
>(BI
)) {
841 if (EnableFastISelVerbose
|| EnableFastISelAbort
) {
842 cerr
<< "FastISel miss: ";
845 if (EnableFastISelAbort
)
846 // The "fast" selector couldn't handle something and bailed.
847 // For the purpose of debugging, just abort.
848 assert(0 && "FastISel didn't select the entire block");
854 // Run SelectionDAG instruction selection on the remainder of the block
855 // not handled by FastISel. If FastISel is not run, this is the entire
858 // If FastISel is run and it has known DebugLoc then use it.
859 if (FastIS
&& !FastIS
->getCurDebugLoc().isUnknown())
860 SDL
->setCurDebugLoc(FastIS
->getCurDebugLoc());
861 SelectBasicBlock(LLVMBB
, BI
, End
);
871 SelectionDAGISel::FinishBasicBlock() {
873 DOUT
<< "Target-post-processed machine code:\n";
876 DOUT
<< "Total amount of phi nodes to update: "
877 << SDL
->PHINodesToUpdate
.size() << "\n";
878 DEBUG(for (unsigned i
= 0, e
= SDL
->PHINodesToUpdate
.size(); i
!= e
; ++i
)
879 DOUT
<< "Node " << i
<< " : (" << SDL
->PHINodesToUpdate
[i
].first
880 << ", " << SDL
->PHINodesToUpdate
[i
].second
<< ")\n";);
882 // Next, now that we know what the last MBB the LLVM BB expanded is, update
883 // PHI nodes in successors.
884 if (SDL
->SwitchCases
.empty() &&
885 SDL
->JTCases
.empty() &&
886 SDL
->BitTestCases
.empty()) {
887 for (unsigned i
= 0, e
= SDL
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
888 MachineInstr
*PHI
= SDL
->PHINodesToUpdate
[i
].first
;
889 assert(PHI
->getOpcode() == TargetInstrInfo::PHI
&&
890 "This is not a machine PHI node that we are updating!");
891 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[i
].second
,
893 PHI
->addOperand(MachineOperand::CreateMBB(BB
));
895 SDL
->PHINodesToUpdate
.clear();
899 for (unsigned i
= 0, e
= SDL
->BitTestCases
.size(); i
!= e
; ++i
) {
900 // Lower header first, if it wasn't already lowered
901 if (!SDL
->BitTestCases
[i
].Emitted
) {
902 // Set the current basic block to the mbb we wish to insert the code into
903 BB
= SDL
->BitTestCases
[i
].Parent
;
904 SDL
->setCurrentBasicBlock(BB
);
906 SDL
->visitBitTestHeader(SDL
->BitTestCases
[i
]);
907 CurDAG
->setRoot(SDL
->getRoot());
912 for (unsigned j
= 0, ej
= SDL
->BitTestCases
[i
].Cases
.size(); j
!= ej
; ++j
) {
913 // Set the current basic block to the mbb we wish to insert the code into
914 BB
= SDL
->BitTestCases
[i
].Cases
[j
].ThisBB
;
915 SDL
->setCurrentBasicBlock(BB
);
918 SDL
->visitBitTestCase(SDL
->BitTestCases
[i
].Cases
[j
+1].ThisBB
,
919 SDL
->BitTestCases
[i
].Reg
,
920 SDL
->BitTestCases
[i
].Cases
[j
]);
922 SDL
->visitBitTestCase(SDL
->BitTestCases
[i
].Default
,
923 SDL
->BitTestCases
[i
].Reg
,
924 SDL
->BitTestCases
[i
].Cases
[j
]);
927 CurDAG
->setRoot(SDL
->getRoot());
933 for (unsigned pi
= 0, pe
= SDL
->PHINodesToUpdate
.size(); pi
!= pe
; ++pi
) {
934 MachineInstr
*PHI
= SDL
->PHINodesToUpdate
[pi
].first
;
935 MachineBasicBlock
*PHIBB
= PHI
->getParent();
936 assert(PHI
->getOpcode() == TargetInstrInfo::PHI
&&
937 "This is not a machine PHI node that we are updating!");
938 // This is "default" BB. We have two jumps to it. From "header" BB and
939 // from last "case" BB.
940 if (PHIBB
== SDL
->BitTestCases
[i
].Default
) {
941 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pi
].second
,
943 PHI
->addOperand(MachineOperand::CreateMBB(SDL
->BitTestCases
[i
].Parent
));
944 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pi
].second
,
946 PHI
->addOperand(MachineOperand::CreateMBB(SDL
->BitTestCases
[i
].Cases
.
949 // One of "cases" BB.
950 for (unsigned j
= 0, ej
= SDL
->BitTestCases
[i
].Cases
.size();
952 MachineBasicBlock
* cBB
= SDL
->BitTestCases
[i
].Cases
[j
].ThisBB
;
953 if (cBB
->succ_end() !=
954 std::find(cBB
->succ_begin(),cBB
->succ_end(), PHIBB
)) {
955 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pi
].second
,
957 PHI
->addOperand(MachineOperand::CreateMBB(cBB
));
962 SDL
->BitTestCases
.clear();
964 // If the JumpTable record is filled in, then we need to emit a jump table.
965 // Updating the PHI nodes is tricky in this case, since we need to determine
966 // whether the PHI is a successor of the range check MBB or the jump table MBB
967 for (unsigned i
= 0, e
= SDL
->JTCases
.size(); i
!= e
; ++i
) {
968 // Lower header first, if it wasn't already lowered
969 if (!SDL
->JTCases
[i
].first
.Emitted
) {
970 // Set the current basic block to the mbb we wish to insert the code into
971 BB
= SDL
->JTCases
[i
].first
.HeaderBB
;
972 SDL
->setCurrentBasicBlock(BB
);
974 SDL
->visitJumpTableHeader(SDL
->JTCases
[i
].second
, SDL
->JTCases
[i
].first
);
975 CurDAG
->setRoot(SDL
->getRoot());
980 // Set the current basic block to the mbb we wish to insert the code into
981 BB
= SDL
->JTCases
[i
].second
.MBB
;
982 SDL
->setCurrentBasicBlock(BB
);
984 SDL
->visitJumpTable(SDL
->JTCases
[i
].second
);
985 CurDAG
->setRoot(SDL
->getRoot());
990 for (unsigned pi
= 0, pe
= SDL
->PHINodesToUpdate
.size(); pi
!= pe
; ++pi
) {
991 MachineInstr
*PHI
= SDL
->PHINodesToUpdate
[pi
].first
;
992 MachineBasicBlock
*PHIBB
= PHI
->getParent();
993 assert(PHI
->getOpcode() == TargetInstrInfo::PHI
&&
994 "This is not a machine PHI node that we are updating!");
995 // "default" BB. We can go there only from header BB.
996 if (PHIBB
== SDL
->JTCases
[i
].second
.Default
) {
997 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pi
].second
,
999 PHI
->addOperand(MachineOperand::CreateMBB(SDL
->JTCases
[i
].first
.HeaderBB
));
1001 // JT BB. Just iterate over successors here
1002 if (BB
->succ_end() != std::find(BB
->succ_begin(),BB
->succ_end(), PHIBB
)) {
1003 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pi
].second
,
1005 PHI
->addOperand(MachineOperand::CreateMBB(BB
));
1009 SDL
->JTCases
.clear();
1011 // If the switch block involved a branch to one of the actual successors, we
1012 // need to update PHI nodes in that block.
1013 for (unsigned i
= 0, e
= SDL
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1014 MachineInstr
*PHI
= SDL
->PHINodesToUpdate
[i
].first
;
1015 assert(PHI
->getOpcode() == TargetInstrInfo::PHI
&&
1016 "This is not a machine PHI node that we are updating!");
1017 if (BB
->isSuccessor(PHI
->getParent())) {
1018 PHI
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[i
].second
,
1020 PHI
->addOperand(MachineOperand::CreateMBB(BB
));
1024 // If we generated any switch lowering information, build and codegen any
1025 // additional DAGs necessary.
1026 for (unsigned i
= 0, e
= SDL
->SwitchCases
.size(); i
!= e
; ++i
) {
1027 // Set the current basic block to the mbb we wish to insert the code into
1028 BB
= SDL
->SwitchCases
[i
].ThisBB
;
1029 SDL
->setCurrentBasicBlock(BB
);
1032 SDL
->visitSwitchCase(SDL
->SwitchCases
[i
]);
1033 CurDAG
->setRoot(SDL
->getRoot());
1034 CodeGenAndEmitDAG();
1037 // Handle any PHI nodes in successors of this chunk, as if we were coming
1038 // from the original BB before switch expansion. Note that PHI nodes can
1039 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1040 // handle them the right number of times.
1041 while ((BB
= SDL
->SwitchCases
[i
].TrueBB
)) { // Handle LHS and RHS.
1042 for (MachineBasicBlock::iterator Phi
= BB
->begin();
1043 Phi
!= BB
->end() && Phi
->getOpcode() == TargetInstrInfo::PHI
; ++Phi
){
1044 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1045 for (unsigned pn
= 0; ; ++pn
) {
1046 assert(pn
!= SDL
->PHINodesToUpdate
.size() &&
1047 "Didn't find PHI entry!");
1048 if (SDL
->PHINodesToUpdate
[pn
].first
== Phi
) {
1049 Phi
->addOperand(MachineOperand::CreateReg(SDL
->PHINodesToUpdate
[pn
].
1051 Phi
->addOperand(MachineOperand::CreateMBB(SDL
->SwitchCases
[i
].ThisBB
));
1057 // Don't process RHS if same block as LHS.
1058 if (BB
== SDL
->SwitchCases
[i
].FalseBB
)
1059 SDL
->SwitchCases
[i
].FalseBB
= 0;
1061 // If we haven't handled the RHS, do so now. Otherwise, we're done.
1062 SDL
->SwitchCases
[i
].TrueBB
= SDL
->SwitchCases
[i
].FalseBB
;
1063 SDL
->SwitchCases
[i
].FalseBB
= 0;
1065 assert(SDL
->SwitchCases
[i
].TrueBB
== 0 && SDL
->SwitchCases
[i
].FalseBB
== 0);
1067 SDL
->SwitchCases
.clear();
1069 SDL
->PHINodesToUpdate
.clear();
1073 /// Create the scheduler. If a specific scheduler was specified
1074 /// via the SchedulerRegistry, use it, otherwise select the
1075 /// one preferred by the target.
1077 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
1078 RegisterScheduler::FunctionPassCtor Ctor
= RegisterScheduler::getDefault();
1082 RegisterScheduler::setDefault(Ctor
);
1085 return Ctor(this, OptLevel
);
1088 ScheduleHazardRecognizer
*SelectionDAGISel::CreateTargetHazardRecognizer() {
1089 return new ScheduleHazardRecognizer();
1092 //===----------------------------------------------------------------------===//
1093 // Helper functions used by the generated instruction selector.
1094 //===----------------------------------------------------------------------===//
1095 // Calls to these methods are generated by tblgen.
1097 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1098 /// the dag combiner simplified the 255, we still want to match. RHS is the
1099 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1100 /// specified in the .td file (e.g. 255).
1101 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
1102 int64_t DesiredMaskS
) const {
1103 const APInt
&ActualMask
= RHS
->getAPIntValue();
1104 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1106 // If the actual mask exactly matches, success!
1107 if (ActualMask
== DesiredMask
)
1110 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1111 if (ActualMask
.intersects(~DesiredMask
))
1114 // Otherwise, the DAG Combiner may have proven that the value coming in is
1115 // either already zero or is not demanded. Check for known zero input bits.
1116 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1117 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
1120 // TODO: check to see if missing bits are just not demanded.
1122 // Otherwise, this pattern doesn't match.
1126 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1127 /// the dag combiner simplified the 255, we still want to match. RHS is the
1128 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1129 /// specified in the .td file (e.g. 255).
1130 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
1131 int64_t DesiredMaskS
) const {
1132 const APInt
&ActualMask
= RHS
->getAPIntValue();
1133 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1135 // If the actual mask exactly matches, success!
1136 if (ActualMask
== DesiredMask
)
1139 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1140 if (ActualMask
.intersects(~DesiredMask
))
1143 // Otherwise, the DAG Combiner may have proven that the value coming in is
1144 // either already zero or is not demanded. Check for known zero input bits.
1145 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1147 APInt KnownZero
, KnownOne
;
1148 CurDAG
->ComputeMaskedBits(LHS
, NeededMask
, KnownZero
, KnownOne
);
1150 // If all the missing bits in the or are already known to be set, match!
1151 if ((NeededMask
& KnownOne
) == NeededMask
)
1154 // TODO: check to see if missing bits are just not demanded.
1156 // Otherwise, this pattern doesn't match.
1161 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1162 /// by tblgen. Others should not call it.
1163 void SelectionDAGISel::
1164 SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
) {
1165 std::vector
<SDValue
> InOps
;
1166 std::swap(InOps
, Ops
);
1168 Ops
.push_back(InOps
[0]); // input chain.
1169 Ops
.push_back(InOps
[1]); // input asm string.
1171 unsigned i
= 2, e
= InOps
.size();
1172 if (InOps
[e
-1].getValueType() == MVT::Flag
)
1173 --e
; // Don't process a flag operand if it is here.
1176 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
1177 if ((Flags
& 7) != 4 /*MEM*/) {
1178 // Just skip over this operand, copying the operands verbatim.
1179 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
1180 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
1181 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
1183 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
1184 "Memory operand with multiple values?");
1185 // Otherwise, this is a memory operand. Ask the target to select it.
1186 std::vector
<SDValue
> SelOps
;
1187 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], 'm', SelOps
)) {
1188 cerr
<< "Could not match memory address. Inline asm failure!\n";
1192 // Add this to the output node.
1193 MVT IntPtrTy
= CurDAG
->getTargetLoweringInfo().getPointerTy();
1194 Ops
.push_back(CurDAG
->getTargetConstant(4/*MEM*/ | (SelOps
.size()<< 3),
1196 Ops
.insert(Ops
.end(), SelOps
.begin(), SelOps
.end());
1201 // Add the flag input back if present.
1202 if (e
!= InOps
.size())
1203 Ops
.push_back(InOps
.back());
1206 /// findFlagUse - Return use of MVT::Flag value produced by the specified
1209 static SDNode
*findFlagUse(SDNode
*N
) {
1210 unsigned FlagResNo
= N
->getNumValues()-1;
1211 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
1212 SDUse
&Use
= I
.getUse();
1213 if (Use
.getResNo() == FlagResNo
)
1214 return Use
.getUser();
1219 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1220 /// This function recursively traverses up the operand chain, ignoring
1222 static bool findNonImmUse(SDNode
*Use
, SDNode
* Def
, SDNode
*ImmedUse
,
1224 SmallPtrSet
<SDNode
*, 16> &Visited
) {
1225 if (Use
->getNodeId() < Def
->getNodeId() ||
1226 !Visited
.insert(Use
))
1229 for (unsigned i
= 0, e
= Use
->getNumOperands(); i
!= e
; ++i
) {
1230 SDNode
*N
= Use
->getOperand(i
).getNode();
1232 if (Use
== ImmedUse
|| Use
== Root
)
1233 continue; // We are not looking for immediate use.
1238 // Traverse up the operand chain.
1239 if (findNonImmUse(N
, Def
, ImmedUse
, Root
, Visited
))
1245 /// isNonImmUse - Start searching from Root up the DAG to check is Def can
1246 /// be reached. Return true if that's the case. However, ignore direct uses
1247 /// by ImmedUse (which would be U in the example illustrated in
1248 /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1250 /// FIXME: to be really generic, we should allow direct use by any node
1251 /// that is being folded. But realisticly since we only fold loads which
1252 /// have one non-chain use, we only need to watch out for load/op/store
1253 /// and load/op/cmp case where the root (store / cmp) may reach the load via
1254 /// its chain operand.
1255 static inline bool isNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
) {
1256 SmallPtrSet
<SDNode
*, 16> Visited
;
1257 return findNonImmUse(Root
, Def
, ImmedUse
, Root
, Visited
);
1260 /// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1261 /// U can be folded during instruction selection that starts at Root and
1262 /// folding N is profitable.
1263 bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode
*N
, SDNode
*U
,
1264 SDNode
*Root
) const {
1265 if (OptLevel
== CodeGenOpt::None
) return false;
1267 // If Root use can somehow reach N through a path that that doesn't contain
1268 // U then folding N would create a cycle. e.g. In the following
1269 // diagram, Root can reach N through X. If N is folded into into Root, then
1270 // X is both a predecessor and a successor of U.
1281 // * indicates nodes to be folded together.
1283 // If Root produces a flag, then it gets (even more) interesting. Since it
1284 // will be "glued" together with its flag use in the scheduler, we need to
1285 // check if it might reach N.
1304 // If FU (flag use) indirectly reaches N (the load), and Root folds N
1305 // (call it Fold), then X is a predecessor of FU and a successor of
1306 // Fold. But since Fold and FU are flagged together, this will create
1307 // a cycle in the scheduling graph.
1309 MVT VT
= Root
->getValueType(Root
->getNumValues()-1);
1310 while (VT
== MVT::Flag
) {
1311 SDNode
*FU
= findFlagUse(Root
);
1315 VT
= Root
->getValueType(Root
->getNumValues()-1);
1318 return !isNonImmUse(Root
, N
, U
);
1322 char SelectionDAGISel::ID
= 0;