1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
38 STATISTIC(numJoins
, "Number of interval joins performed");
39 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
40 STATISTIC(numCommutes
, "Number of instruction commuting performed");
41 STATISTIC(numExtends
, "Number of copies extended");
42 STATISTIC(NumReMats
, "Number of instructions re-materialized");
43 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
44 STATISTIC(numAborts
, "Number of times interval joining aborted");
45 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
47 char SimpleRegisterCoalescing::ID
= 0;
49 EnableJoining("join-liveintervals",
50 cl::desc("Coalesce copies (default=true)"),
54 NewHeuristic("new-coalescer-heuristic",
55 cl::desc("Use new coalescer heuristic"),
56 cl::init(false), cl::Hidden
);
59 CrossClassJoin("join-cross-class-copies",
60 cl::desc("Coalesce cross register class copies"),
61 cl::init(false), cl::Hidden
);
64 PhysJoinTweak("tweak-phys-join-heuristics",
65 cl::desc("Tweak heuristics for joining phys reg with vr"),
66 cl::init(false), cl::Hidden
);
68 static RegisterPass
<SimpleRegisterCoalescing
>
69 X("simple-register-coalescing", "Simple Register Coalescing");
71 // Declare that we implement the RegisterCoalescer interface
72 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
74 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
76 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
77 AU
.addRequired
<LiveIntervals
>();
78 AU
.addPreserved
<LiveIntervals
>();
79 AU
.addRequired
<MachineLoopInfo
>();
80 AU
.addPreserved
<MachineLoopInfo
>();
81 AU
.addPreservedID(MachineDominatorsID
);
83 AU
.addPreservedID(StrongPHIEliminationID
);
85 AU
.addPreservedID(PHIEliminationID
);
86 AU
.addPreservedID(TwoAddressInstructionPassID
);
87 MachineFunctionPass::getAnalysisUsage(AU
);
90 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
91 /// being the source and IntB being the dest, thus this defines a value number
92 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
93 /// see if we can merge these two pieces of B into a single value number,
94 /// eliminating a copy. For example:
98 /// B1 = A3 <- this copy
100 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
101 /// value number to be replaced with B0 (which simplifies the B liveinterval).
103 /// This returns true if an interval was modified.
105 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
107 MachineInstr
*CopyMI
) {
108 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
110 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
111 // the example above.
112 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
113 assert(BLR
!= IntB
.end() && "Live range not found!");
114 VNInfo
*BValNo
= BLR
->valno
;
116 // Get the location that B is defined at. Two options: either this value has
117 // an unknown definition point or it is defined at CopyIdx. If unknown, we
119 if (!BValNo
->copy
) return false;
120 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
122 // AValNo is the value number in A that defines the copy, A3 in the example.
123 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
124 assert(ALR
!= IntA
.end() && "Live range not found!");
125 VNInfo
*AValNo
= ALR
->valno
;
126 // If it's re-defined by an early clobber somewhere in the live range, then
127 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
129 // 172 %ECX<def> = MOV32rr %reg1039<kill>
130 // 180 INLINEASM <es:subl $5,$1
131 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
132 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
133 // 188 %EAX<def> = MOV32rr %EAX<kill>
134 // 196 %ECX<def> = MOV32rr %ECX<kill>
135 // 204 %ECX<def> = MOV32rr %ECX<kill>
136 // 212 %EAX<def> = MOV32rr %EAX<kill>
137 // 220 %EAX<def> = MOV32rr %EAX
138 // 228 %reg1039<def> = MOV32rr %ECX<kill>
139 // The early clobber operand ties ECX input to the ECX def.
141 // The live interval of ECX is represented as this:
142 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
143 // The coalescer has no idea there was a def in the middle of [174,230].
144 if (AValNo
->redefByEC
)
147 // If AValNo is defined as a copy from IntB, we can potentially process this.
148 // Get the instruction that defines this value number.
149 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
150 if (!SrcReg
) return false; // Not defined by a copy.
152 // If the value number is not defined by a copy instruction, ignore it.
154 // If the source register comes from an interval other than IntB, we can't
156 if (SrcReg
!= IntB
.reg
) return false;
158 // Get the LiveRange in IntB that this value number starts with.
159 LiveInterval::iterator ValLR
= IntB
.FindLiveRangeContaining(AValNo
->def
-1);
160 assert(ValLR
!= IntB
.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
164 MachineInstr
*ValLREndInst
= li_
->getInstructionFromIndex(ValLR
->end
-1);
166 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
168 // Okay, we now know that ValLR ends in the same block that the CopyMI
169 // live-range starts. If there are no intervening live ranges between them in
170 // IntB, we can merge them.
171 if (ValLR
+1 != BLR
) return false;
173 // If a live interval is a physical register, conservatively check if any
174 // of its sub-registers is overlapping the live interval of the virtual
175 // register. If so, do not coalesce.
176 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
177 *tri_
->getSubRegisters(IntB
.reg
)) {
178 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
179 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
180 DOUT
<< "Interfere with sub-register ";
181 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
186 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
188 unsigned FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
189 // We are about to delete CopyMI, so need to remove it as the 'instruction
190 // that defines this value #'. Update the the valnum with the new defining
192 BValNo
->def
= FillerStart
;
195 // Okay, we can merge them. We need to insert a new liverange:
196 // [ValLR.end, BLR.begin) of either value number, then we merge the
197 // two value numbers.
198 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
200 // If the IntB live range is assigned to a physical register, and if that
201 // physreg has sub-registers, update their live intervals as well.
202 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
203 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
204 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
205 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
206 SRLI
.getNextValue(FillerStart
, 0, li_
->getVNInfoAllocator())));
210 // Okay, merge "B1" into the same value number as "B0".
211 if (BValNo
!= ValLR
->valno
) {
212 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
213 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
215 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
218 // If the source instruction was killing the source register before the
219 // merge, unset the isKill marker given the live range has been extended.
220 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
222 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
223 IntB
.removeKill(ValLR
->valno
, FillerStart
);
230 /// HasOtherReachingDefs - Return true if there are definitions of IntB
231 /// other than BValNo val# that can reach uses of AValno val# of IntA.
232 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
236 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
238 if (AI
->valno
!= AValNo
) continue;
239 LiveInterval::Ranges::iterator BI
=
240 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
241 if (BI
!= IntB
.ranges
.begin())
243 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
244 if (BI
->valno
== BValNo
)
246 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
248 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
255 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
256 /// being the source and IntB being the dest, thus this defines a value number
257 /// in IntB. If the source value number (in IntA) is defined by a commutable
258 /// instruction and its other operand is coalesced to the copy dest register,
259 /// see if we can transform the copy into a noop by commuting the definition. For
262 /// A3 = op A2 B0<kill>
264 /// B1 = A3 <- this copy
266 /// = op A3 <- more uses
270 /// B2 = op B0 A2<kill>
272 /// B1 = B2 <- now an identify copy
274 /// = op B2 <- more uses
276 /// This returns true if an interval was modified.
278 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
280 MachineInstr
*CopyMI
) {
281 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
283 // FIXME: For now, only eliminate the copy by commuting its def when the
284 // source register is a virtual register. We want to guard against cases
285 // where the copy is a back edge copy and commuting the def lengthen the
286 // live interval of the source register to the entire loop.
287 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
290 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
291 // the example above.
292 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
293 assert(BLR
!= IntB
.end() && "Live range not found!");
294 VNInfo
*BValNo
= BLR
->valno
;
296 // Get the location that B is defined at. Two options: either this value has
297 // an unknown definition point or it is defined at CopyIdx. If unknown, we
299 if (!BValNo
->copy
) return false;
300 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
302 // AValNo is the value number in A that defines the copy, A3 in the example.
303 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
304 assert(ALR
!= IntA
.end() && "Live range not found!");
305 VNInfo
*AValNo
= ALR
->valno
;
306 // If other defs can reach uses of this def, then it's not safe to perform
308 if (AValNo
->def
== ~0U || AValNo
->def
== ~1U || AValNo
->hasPHIKill
)
310 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
311 const TargetInstrDesc
&TID
= DefMI
->getDesc();
313 if (!TID
.isCommutable() ||
314 !tii_
->CommuteChangesDestination(DefMI
, NewDstIdx
))
317 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
318 unsigned NewReg
= NewDstMO
.getReg();
319 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
322 // Make sure there are no other definitions of IntB that would reach the
323 // uses which the new definition can reach.
324 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
327 // If some of the uses of IntA.reg is already coalesced away, return false.
328 // It's not possible to determine whether it's safe to perform the coalescing.
329 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
330 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
331 MachineInstr
*UseMI
= &*UI
;
332 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
333 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
334 if (ULR
== IntA
.end())
336 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
340 // At this point we have decided that it is legal to do this
341 // transformation. Start by commuting the instruction.
342 MachineBasicBlock
*MBB
= DefMI
->getParent();
343 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
346 if (NewMI
!= DefMI
) {
347 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
348 MBB
->insert(DefMI
, NewMI
);
351 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
352 NewMI
->getOperand(OpIdx
).setIsKill();
354 bool BHasPHIKill
= BValNo
->hasPHIKill
;
355 SmallVector
<VNInfo
*, 4> BDeadValNos
;
356 SmallVector
<unsigned, 4> BKills
;
357 std::map
<unsigned, unsigned> BExtend
;
359 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
368 // then do not add kills of A to the newly created B interval.
369 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
371 BExtend
[ALR
->end
] = BLR
->end
;
373 // Update uses of IntA of the specific Val# with IntB.
374 bool BHasSubRegs
= false;
375 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
376 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
377 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
378 UE
= mri_
->use_end(); UI
!= UE
;) {
379 MachineOperand
&UseMO
= UI
.getOperand();
380 MachineInstr
*UseMI
= &*UI
;
382 if (JoinedCopies
.count(UseMI
))
384 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
385 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
386 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
388 UseMO
.setReg(NewReg
);
391 if (UseMO
.isKill()) {
393 UseMO
.setIsKill(false);
395 BKills
.push_back(li_
->getUseIndex(UseIdx
)+1);
397 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
398 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
400 if (DstReg
== IntB
.reg
) {
401 // This copy will become a noop. If it's defining a new val#,
402 // remove that val# as well. However this live range is being
403 // extended to the end of the existing live range defined by the copy.
404 unsigned DefIdx
= li_
->getDefIndex(UseIdx
);
405 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
406 BHasPHIKill
|= DLR
->valno
->hasPHIKill
;
407 assert(DLR
->valno
->def
== DefIdx
);
408 BDeadValNos
.push_back(DLR
->valno
);
409 BExtend
[DLR
->start
] = DLR
->end
;
410 JoinedCopies
.insert(UseMI
);
411 // If this is a kill but it's going to be removed, the last use
412 // of the same val# is the new kill.
418 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
419 // simply extend BLR if CopyMI doesn't end the range.
420 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
422 // Remove val#'s defined by copies that will be coalesced away.
423 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
424 VNInfo
*DeadVNI
= BDeadValNos
[i
];
426 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
427 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
428 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
429 SRLI
.removeValNo(SRLR
->valno
);
432 IntB
.removeValNo(BDeadValNos
[i
]);
435 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
436 // is updated. Kills are also updated.
437 VNInfo
*ValNo
= BValNo
;
438 ValNo
->def
= AValNo
->def
;
440 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
441 unsigned Kill
= ValNo
->kills
[j
];
442 if (Kill
!= BLR
->end
)
443 BKills
.push_back(Kill
);
445 ValNo
->kills
.clear();
446 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
448 if (AI
->valno
!= AValNo
) continue;
449 unsigned End
= AI
->end
;
450 std::map
<unsigned, unsigned>::iterator EI
= BExtend
.find(End
);
451 if (EI
!= BExtend
.end())
453 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
455 // If the IntB live range is assigned to a physical register, and if that
456 // physreg has sub-registers, update their live intervals as well.
458 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
459 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
460 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
464 IntB
.addKills(ValNo
, BKills
);
465 ValNo
->hasPHIKill
= BHasPHIKill
;
467 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
470 DOUT
<< "\nShortening: "; IntA
.print(DOUT
, tri_
);
471 IntA
.removeValNo(AValNo
);
472 DOUT
<< " result = "; IntA
.print(DOUT
, tri_
);
479 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
480 /// fallthoughs to SuccMBB.
481 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
482 MachineBasicBlock
*SuccMBB
,
483 const TargetInstrInfo
*tii_
) {
486 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
487 SmallVector
<MachineOperand
, 4> Cond
;
488 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
489 MBB
->isSuccessor(SuccMBB
);
492 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
493 /// from a physical register live interval as well as from the live intervals
494 /// of its sub-registers.
495 static void removeRange(LiveInterval
&li
, unsigned Start
, unsigned End
,
496 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
497 li
.removeRange(Start
, End
, true);
498 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
499 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
500 if (!li_
->hasInterval(*SR
))
502 LiveInterval
&sli
= li_
->getInterval(*SR
);
503 unsigned RemoveEnd
= Start
;
504 while (RemoveEnd
!= End
) {
505 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
508 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
509 sli
.removeRange(Start
, RemoveEnd
, true);
516 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
517 /// as the copy instruction, trim the live interval to the last use and return
520 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx
,
521 MachineBasicBlock
*CopyMBB
,
523 const LiveRange
*LR
) {
524 unsigned MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
526 MachineOperand
*LastUse
= lastRegisterUse(LR
->start
, CopyIdx
-1, li
.reg
,
529 MachineInstr
*LastUseMI
= LastUse
->getParent();
530 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
537 // r1025<dead> = r1024<kill>
538 if (MBBStart
< LR
->end
)
539 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
543 // There are uses before the copy, just shorten the live range to the end
545 LastUse
->setIsKill();
546 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
547 li
.addKill(LR
->valno
, LastUseIdx
+1);
548 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
549 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
551 // Last use is itself an identity code.
552 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
553 LastUseMI
->getOperand(DeadIdx
).setIsDead();
559 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
560 if (LR
->start
== 0) {
561 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
562 // Live-in to the function but dead. Remove it from entry live-in set.
563 mf_
->begin()->removeLiveIn(li
.reg
);
565 // FIXME: Shorten intervals in BBs that reaches this BB.
571 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
572 /// computation, replace the copy by rematerialize the definition.
573 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
575 MachineInstr
*CopyMI
) {
576 unsigned CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
577 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
578 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
579 VNInfo
*ValNo
= SrcLR
->valno
;
580 // If other defs can reach uses of this def, then it's not safe to perform
582 if (ValNo
->def
== ~0U || ValNo
->def
== ~1U || ValNo
->hasPHIKill
)
584 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
585 const TargetInstrDesc
&TID
= DefMI
->getDesc();
586 if (!TID
.isAsCheapAsAMove())
588 if (!DefMI
->getDesc().isRematerializable() ||
589 !tii_
->isTriviallyReMaterializable(DefMI
))
591 bool SawStore
= false;
592 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
595 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
596 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
597 DLR
->valno
->copy
= NULL
;
598 // Don't forget to update sub-register intervals.
599 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
600 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
601 if (!li_
->hasInterval(*SR
))
603 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
604 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
605 DLR
->valno
->copy
= NULL
;
609 // If copy kills the source register, find the last use and propagate
611 bool checkForDeadDef
= false;
612 MachineBasicBlock
*MBB
= CopyMI
->getParent();
613 if (CopyMI
->killsRegister(SrcInt
.reg
))
614 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
615 checkForDeadDef
= true;
618 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
619 CopyMI
->removeFromParent();
620 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DefMI
);
621 MachineInstr
*NewMI
= prior(MII
);
623 if (checkForDeadDef
) {
624 // PR4090 fix: Trim interval failed because there was no use of the
625 // source interval in this MBB. If the def is in this MBB too then we
626 // should mark it dead:
627 if (DefMI
->getParent() == MBB
) {
628 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
629 SrcLR
->end
= SrcLR
->start
+ 1;
634 // CopyMI may have implicit operands, transfer them over to the newly
635 // rematerialized instruction. And update implicit def interval valnos.
636 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
637 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
638 MachineOperand
&MO
= CopyMI
->getOperand(i
);
639 if (MO
.isReg() && MO
.isImplicit())
640 NewMI
->addOperand(MO
);
641 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
642 unsigned Reg
= MO
.getReg();
643 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
644 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
645 DLR
->valno
->copy
= NULL
;
649 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
650 MBB
->getParent()->DeleteMachineInstr(CopyMI
);
651 ReMatCopies
.insert(CopyMI
);
652 ReMatDefs
.insert(DefMI
);
657 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
659 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
660 unsigned DstReg
) const {
661 MachineBasicBlock
*MBB
= CopyMI
->getParent();
662 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
665 if (MBB
!= L
->getLoopLatch())
668 LiveInterval
&LI
= li_
->getInterval(DstReg
);
669 unsigned DefIdx
= li_
->getInstructionIndex(CopyMI
);
670 LiveInterval::const_iterator DstLR
=
671 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
672 if (DstLR
== LI
.end())
674 unsigned KillIdx
= li_
->getMBBEndIdx(MBB
) + 1;
675 if (DstLR
->valno
->kills
.size() == 1 &&
676 DstLR
->valno
->kills
[0] == KillIdx
&& DstLR
->valno
->hasPHIKill
)
681 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
682 /// update the subregister number if it is not zero. If DstReg is a
683 /// physical register and the existing subregister number of the def / use
684 /// being updated is not zero, make sure to set it to the correct physical
687 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
689 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
690 if (DstIsPhys
&& SubIdx
) {
691 // Figure out the real physical register we are updating with.
692 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
696 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
697 E
= mri_
->reg_end(); I
!= E
; ) {
698 MachineOperand
&O
= I
.getOperand();
699 MachineInstr
*UseMI
= &*I
;
701 unsigned OldSubIdx
= O
.getSubReg();
703 unsigned UseDstReg
= DstReg
;
705 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
707 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
708 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
709 CopySrcSubIdx
, CopyDstSubIdx
) &&
710 CopySrcReg
!= CopyDstReg
&&
711 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
712 // If the use is a copy and it won't be coalesced away, and its source
713 // is defined by a trivial computation, try to rematerialize it instead.
714 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,UseMI
))
723 // Sub-register indexes goes from small to large. e.g.
724 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
725 // EAX: 1 -> AL, 2 -> AX
726 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
727 // sub-register 2 is also AX.
728 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
729 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
732 // Remove would-be duplicated kill marker.
733 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
737 // After updating the operand, check if the machine instruction has
738 // become a copy. If so, update its val# information.
739 const TargetInstrDesc
&TID
= UseMI
->getDesc();
740 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
741 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
742 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
743 CopySrcSubIdx
, CopyDstSubIdx
) &&
744 CopySrcReg
!= CopyDstReg
&&
745 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
746 allocatableRegs_
[CopyDstReg
])) {
747 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
748 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
749 const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
);
750 if (DLR
->valno
->def
== DefIdx
)
751 DLR
->valno
->copy
= UseMI
;
756 /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
757 /// registers due to insert_subreg coalescing. e.g.
759 /// r1025 = implicit_def
760 /// r1025 = insert_subreg r1025, r1024
764 /// r1025 = implicit_def
765 /// r1025 = insert_subreg r1025, r1025
768 SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg
, LiveInterval
&LI
) {
769 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
770 E
= mri_
->reg_end(); I
!= E
; ) {
771 MachineOperand
&O
= I
.getOperand();
772 MachineInstr
*DefMI
= &*I
;
776 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
)
778 if (!LI
.liveBeforeAndAt(li_
->getInstructionIndex(DefMI
)))
780 li_
->RemoveMachineInstrFromMaps(DefMI
);
781 DefMI
->eraseFromParent();
785 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
786 /// due to live range lengthening as the result of coalescing.
787 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
789 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
790 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
791 MachineOperand
&UseMO
= UI
.getOperand();
792 if (UseMO
.isKill()) {
793 MachineInstr
*UseMI
= UseMO
.getParent();
794 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
795 const LiveRange
*UI
= LI
.getLiveRangeContaining(UseIdx
);
796 if (!UI
|| !LI
.isKill(UI
->valno
, UseIdx
+1))
797 UseMO
.setIsKill(false);
802 /// removeIntervalIfEmpty - Check if the live interval of a physical register
803 /// is empty, if so remove it and also remove the empty intervals of its
804 /// sub-registers. Return true if live interval is removed.
805 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
806 const TargetRegisterInfo
*tri_
) {
808 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
809 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
810 if (!li_
->hasInterval(*SR
))
812 LiveInterval
&sli
= li_
->getInterval(*SR
);
814 li_
->removeInterval(*SR
);
816 li_
->removeInterval(li
.reg
);
822 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
823 /// Return true if live interval is removed.
824 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
825 MachineInstr
*CopyMI
) {
826 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
827 LiveInterval::iterator MLR
=
828 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
830 return false; // Already removed by ShortenDeadCopySrcLiveRange.
831 unsigned RemoveStart
= MLR
->start
;
832 unsigned RemoveEnd
= MLR
->end
;
833 // Remove the liverange that's defined by this.
834 if (RemoveEnd
== li_
->getDefIndex(CopyIdx
)+1) {
835 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
836 return removeIntervalIfEmpty(li
, li_
, tri_
);
841 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
842 /// the val# it defines. If the live interval becomes empty, remove it as well.
843 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
844 MachineInstr
*DefMI
) {
845 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
846 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
847 if (DefIdx
!= MLR
->valno
->def
)
849 li
.removeValNo(MLR
->valno
);
850 return removeIntervalIfEmpty(li
, li_
, tri_
);
853 /// PropagateDeadness - Propagate the dead marker to the instruction which
854 /// defines the val#.
855 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
856 unsigned &LRStart
, LiveIntervals
*li_
,
857 const TargetRegisterInfo
* tri_
) {
858 MachineInstr
*DefMI
=
859 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
860 if (DefMI
&& DefMI
!= CopyMI
) {
861 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
863 DefMI
->getOperand(DeadIdx
).setIsDead();
864 // A dead def should have a single cycle interval.
870 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
871 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
872 /// ends the live range there. If there isn't another use, then this live range
873 /// is dead. Return true if live interval is removed.
875 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
876 MachineInstr
*CopyMI
) {
877 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
879 // FIXME: special case: function live in. It can be a general case if the
880 // first instruction index starts at > 0 value.
881 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
882 // Live-in to the function but dead. Remove it from entry live-in set.
883 if (mf_
->begin()->isLiveIn(li
.reg
))
884 mf_
->begin()->removeLiveIn(li
.reg
);
885 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
886 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
887 return removeIntervalIfEmpty(li
, li_
, tri_
);
890 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
-1);
892 // Livein but defined by a phi.
895 unsigned RemoveStart
= LR
->start
;
896 unsigned RemoveEnd
= li_
->getDefIndex(CopyIdx
)+1;
897 if (LR
->end
> RemoveEnd
)
898 // More uses past this copy? Nothing to do.
901 // If there is a last use in the same bb, we can't remove the live range.
902 // Shorten the live interval and return.
903 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
904 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
907 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
908 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
909 // If the live range starts in another mbb and the copy mbb is not a fall
910 // through mbb, then we can only cut the range from the beginning of the
912 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
) + 1;
914 if (LR
->valno
->def
== RemoveStart
) {
915 // If the def MI defines the val# and this copy is the only kill of the
916 // val#, then propagate the dead marker.
917 if (li
.isOnlyLROfValNo(LR
)) {
918 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
921 if (li
.isKill(LR
->valno
, RemoveEnd
))
922 li
.removeKill(LR
->valno
, RemoveEnd
);
925 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
926 return removeIntervalIfEmpty(li
, li_
, tri_
);
929 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
930 /// from an implicit def to another register can be coalesced away.
931 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
933 LiveInterval
&ImpLi
) const{
934 if (!CopyMI
->killsRegister(ImpLi
.reg
))
936 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
937 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
);
940 if (LR
->valno
->hasPHIKill
)
942 if (LR
->valno
->def
!= CopyIdx
)
944 // Make sure all of val# uses are copies.
945 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(li
.reg
),
946 UE
= mri_
->use_end(); UI
!= UE
;) {
947 MachineInstr
*UseMI
= &*UI
;
949 if (JoinedCopies
.count(UseMI
))
951 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
952 LiveInterval::iterator ULR
= li
.FindLiveRangeContaining(UseIdx
);
953 if (ULR
== li
.end() || ULR
->valno
!= LR
->valno
)
955 // If the use is not a use, then it's not safe to coalesce the move.
956 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
957 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
958 if (UseMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
&&
959 UseMI
->getOperand(1).getReg() == li
.reg
)
968 /// RemoveCopiesFromValNo - The specified value# is defined by an implicit
969 /// def and it is being removed. Turn all copies from this value# into
970 /// identity copies so they will be removed.
971 void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval
&li
,
973 SmallVector
<MachineInstr
*, 4> ImpDefs
;
974 MachineOperand
*LastUse
= NULL
;
975 unsigned LastUseIdx
= li_
->getUseIndex(VNI
->def
);
976 for (MachineRegisterInfo::reg_iterator RI
= mri_
->reg_begin(li
.reg
),
977 RE
= mri_
->reg_end(); RI
!= RE
;) {
978 MachineOperand
*MO
= &RI
.getOperand();
979 MachineInstr
*MI
= &*RI
;
982 if (MI
->getOpcode() == TargetInstrInfo::IMPLICIT_DEF
) {
983 ImpDefs
.push_back(MI
);
987 if (JoinedCopies
.count(MI
))
989 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(MI
));
990 LiveInterval::iterator ULR
= li
.FindLiveRangeContaining(UseIdx
);
991 if (ULR
== li
.end() || ULR
->valno
!= VNI
)
993 // If the use is a copy, turn it into an identity copy.
994 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
995 if (tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
997 // Each use MI may have multiple uses of this register. Change them all.
998 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
999 MachineOperand
&MO
= MI
->getOperand(i
);
1000 if (MO
.isReg() && MO
.getReg() == li
.reg
)
1003 JoinedCopies
.insert(MI
);
1004 } else if (UseIdx
> LastUseIdx
) {
1005 LastUseIdx
= UseIdx
;
1010 LastUse
->setIsKill();
1011 li
.addKill(VNI
, LastUseIdx
+1);
1013 // Remove dead implicit_def's.
1014 while (!ImpDefs
.empty()) {
1015 MachineInstr
*ImpDef
= ImpDefs
.back();
1017 li_
->RemoveMachineInstrFromMaps(ImpDef
);
1018 ImpDef
->eraseFromParent();
1023 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1024 /// a virtual destination register with physical source register.
1026 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
1027 MachineBasicBlock
*CopyMBB
,
1028 LiveInterval
&DstInt
,
1029 LiveInterval
&SrcInt
) {
1030 // If the virtual register live interval is long but it has low use desity,
1031 // do not join them, instead mark the physical register as its allocation
1033 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
1034 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1035 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
1036 if (Length
> Threshold
&&
1037 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
1038 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1041 // If the virtual register live interval extends into a loop, turn down
1043 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1044 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1046 // Let's see if the virtual register live interval extends into the loop.
1047 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1048 assert(DLR
!= DstInt
.end() && "Live range not found!");
1049 DLR
= DstInt
.FindLiveRangeContaining(DLR
->end
+1);
1050 if (DLR
!= DstInt
.end()) {
1051 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1052 L
= loopInfo
->getLoopFor(CopyMBB
);
1056 if (!L
|| Length
<= Threshold
)
1059 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1060 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1061 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1062 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1063 if (!loopInfo
->isLoopHeader(CopyMBB
))
1065 // If vr's live interval extends pass the loop header, do not join.
1066 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1067 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1068 MachineBasicBlock
*SuccMBB
= *SI
;
1069 if (SuccMBB
== CopyMBB
)
1071 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1072 li_
->getMBBEndIdx(SuccMBB
)+1))
1079 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1080 /// copy from a virtual source register to a physical destination register.
1082 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1083 MachineBasicBlock
*CopyMBB
,
1084 LiveInterval
&DstInt
,
1085 LiveInterval
&SrcInt
) {
1086 // If the virtual register live interval is long but it has low use desity,
1087 // do not join them, instead mark the physical register as its allocation
1089 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1090 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1091 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1092 if (Length
> Threshold
&&
1093 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1094 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1098 // Must be implicit_def.
1101 // If the virtual register live interval is defined or cross a loop, turn
1102 // down aggressiveness.
1103 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1104 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1105 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1106 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1107 SLR
= SrcInt
.FindLiveRangeContaining(SLR
->start
-1);
1108 if (SLR
== SrcInt
.end())
1110 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1111 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1113 if (!L
|| Length
<= Threshold
)
1116 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1117 if (SMBB
!= L
->getLoopLatch())
1119 // If vr's live interval is extended from before the loop latch, do not
1121 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1122 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1123 MachineBasicBlock
*PredMBB
= *PI
;
1124 if (PredMBB
== SMBB
)
1126 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1127 li_
->getMBBEndIdx(PredMBB
)+1))
1134 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1135 /// two virtual registers from different register classes.
1137 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1139 unsigned Threshold
) {
1140 // Then make sure the intervals are *short*.
1141 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1142 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1143 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1144 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1145 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1146 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1147 mri_
->use_end()) / SmallSize
<
1148 (float)std::distance(mri_
->use_begin(LargeReg
),
1149 mri_
->use_end()) / LargeSize
)
1154 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1155 /// register with a physical register, check if any of the virtual register
1156 /// operand is a sub-register use or def. If so, make sure it won't result
1157 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1158 /// vr1024 = extract_subreg vr1025, 1
1160 /// vr1024 = mov8rr AH
1161 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1162 /// AH does not have a super-reg whose sub-register 1 is AH.
1164 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1167 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1168 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1169 MachineOperand
&O
= I
.getOperand();
1170 MachineInstr
*MI
= &*I
;
1171 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1173 unsigned SubIdx
= O
.getSubReg();
1174 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1176 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1177 SubIdx
= MI
->getOperand(2).getImm();
1178 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1181 unsigned SrcReg
= MI
->getOperand(1).getReg();
1182 const TargetRegisterClass
*RC
=
1183 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1184 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1185 : mri_
->getRegClass(SrcReg
);
1186 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1190 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1191 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1192 SubIdx
= MI
->getOperand(3).getImm();
1193 if (VirtReg
== MI
->getOperand(0).getReg()) {
1194 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1197 unsigned DstReg
= MI
->getOperand(0).getReg();
1198 const TargetRegisterClass
*RC
=
1199 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1200 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1201 : mri_
->getRegClass(DstReg
);
1202 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1211 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1212 /// an extract_subreg where dst is a physical register, e.g.
1213 /// cl = EXTRACT_SUBREG reg1024, 1
1215 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1216 unsigned SrcReg
, unsigned SubIdx
,
1217 unsigned &RealDstReg
) {
1218 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1219 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1220 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1222 // For this type of EXTRACT_SUBREG, conservatively
1223 // check if the live interval of the source register interfere with the
1224 // actual super physical register we are trying to coalesce with.
1225 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1226 if (li_
->hasInterval(RealDstReg
) &&
1227 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1228 DOUT
<< "Interfere with register ";
1229 DEBUG(li_
->getInterval(RealDstReg
).print(DOUT
, tri_
));
1230 return false; // Not coalescable
1232 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1233 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1234 DOUT
<< "Interfere with sub-register ";
1235 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1236 return false; // Not coalescable
1241 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1242 /// an insert_subreg where src is a physical register, e.g.
1243 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1245 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1246 unsigned SrcReg
, unsigned SubIdx
,
1247 unsigned &RealSrcReg
) {
1248 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1249 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1250 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1252 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1253 if (li_
->hasInterval(RealSrcReg
) &&
1254 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1255 DOUT
<< "Interfere with register ";
1256 DEBUG(li_
->getInterval(RealSrcReg
).print(DOUT
, tri_
));
1257 return false; // Not coalescable
1259 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1260 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1261 DOUT
<< "Interfere with sub-register ";
1262 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1263 return false; // Not coalescable
1268 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1269 /// which are the src/dst of the copy instruction CopyMI. This returns true
1270 /// if the copy was successfully coalesced away. If it is not currently
1271 /// possible to coalesce this interval, but it may be possible if other
1272 /// things get coalesced, then it returns true by reference in 'Again'.
1273 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1274 MachineInstr
*CopyMI
= TheCopy
.MI
;
1277 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1278 return false; // Already done.
1280 DOUT
<< li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
;
1282 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1283 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1284 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1285 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1286 unsigned SubIdx
= 0;
1288 DstReg
= CopyMI
->getOperand(0).getReg();
1289 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1290 SrcReg
= CopyMI
->getOperand(1).getReg();
1291 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1292 } else if (isInsSubReg
|| isSubRegToReg
) {
1293 if (CopyMI
->getOperand(2).getSubReg()) {
1294 DOUT
<< "\tSource of insert_subreg is already coalesced "
1295 << "to another register.\n";
1296 return false; // Not coalescable.
1298 DstReg
= CopyMI
->getOperand(0).getReg();
1299 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1300 SrcReg
= CopyMI
->getOperand(2).getReg();
1301 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1302 assert(0 && "Unrecognized copy instruction!");
1306 // If they are already joined we continue.
1307 if (SrcReg
== DstReg
) {
1308 DOUT
<< "\tCopy already coalesced.\n";
1309 return false; // Not coalescable.
1312 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1313 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1315 // If they are both physical registers, we cannot join them.
1316 if (SrcIsPhys
&& DstIsPhys
) {
1317 DOUT
<< "\tCan not coalesce physregs.\n";
1318 return false; // Not coalescable.
1321 // We only join virtual registers with allocatable physical registers.
1322 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1323 DOUT
<< "\tSrc reg is unallocatable physreg.\n";
1324 return false; // Not coalescable.
1326 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1327 DOUT
<< "\tDst reg is unallocatable physreg.\n";
1328 return false; // Not coalescable.
1331 // Check that a physical source register is compatible with dst regclass
1333 unsigned SrcSubReg
= SrcSubIdx
?
1334 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1335 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1336 const TargetRegisterClass
*DstSubRC
= DstRC
;
1338 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1339 assert(DstSubRC
&& "Illegal subregister index");
1340 if (!DstSubRC
->contains(SrcSubReg
)) {
1341 DOUT
<< "\tIncompatible destination regclass: "
1342 << tri_
->getName(SrcSubReg
) << " not in " << DstSubRC
->getName()
1344 return false; // Not coalescable.
1348 // Check that a physical dst register is compatible with source regclass
1350 unsigned DstSubReg
= DstSubIdx
?
1351 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1352 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1353 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1355 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1356 assert(SrcSubRC
&& "Illegal subregister index");
1357 if (!SrcSubRC
->contains(DstReg
)) {
1358 DOUT
<< "\tIncompatible source regclass: "
1359 << tri_
->getName(DstSubReg
) << " not in " << SrcSubRC
->getName()
1361 return false; // Not coalescable.
1365 // Should be non-null only when coalescing to a sub-register class.
1366 bool CrossRC
= false;
1367 const TargetRegisterClass
*NewRC
= NULL
;
1368 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1369 unsigned RealDstReg
= 0;
1370 unsigned RealSrcReg
= 0;
1371 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1372 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1373 if (SrcIsPhys
&& isExtSubReg
) {
1374 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1375 // coalesced with AX.
1376 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1378 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1379 // coalesced to a larger register so the subreg indices cancel out.
1380 if (DstSubIdx
!= SubIdx
) {
1381 DOUT
<< "\t Sub-register indices mismatch.\n";
1382 return false; // Not coalescable.
1385 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1387 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1388 // EAX = INSERT_SUBREG EAX, r1024, 0
1389 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1391 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1392 // coalesced to a larger register so the subreg indices cancel out.
1393 if (SrcSubIdx
!= SubIdx
) {
1394 DOUT
<< "\t Sub-register indices mismatch.\n";
1395 return false; // Not coalescable.
1398 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1400 } else if ((DstIsPhys
&& isExtSubReg
) ||
1401 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1402 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1403 DOUT
<< "\tSrc of extract_subreg already coalesced with reg"
1404 << " of a super-class.\n";
1405 return false; // Not coalescable.
1409 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1410 return false; // Not coalescable
1412 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1413 return false; // Not coalescable
1417 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1418 : CopyMI
->getOperand(2).getSubReg();
1420 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1421 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1422 // coalesced to a larger register so the subreg indices cancel out.
1423 // Also check if the other larger register is of the same register
1424 // class as the would be resulting register.
1427 DOUT
<< "\t Sub-register indices mismatch.\n";
1428 return false; // Not coalescable.
1432 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1433 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1434 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1435 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1436 Again
= true; // May be possible to coalesce later.
1441 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1442 if (!CrossClassJoin
)
1446 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1447 // with another? If it's the resulting destination register, then
1448 // the subidx must be propagated to uses (but only those defined
1449 // by the EXTRACT_SUBREG). If it's being coalesced into another
1450 // register, it should be safe because register is assumed to have
1451 // the register class of the super-register.
1453 // Process moves where one of the registers have a sub-register index.
1454 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1455 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1456 SubIdx
= DstMO
->getSubReg();
1458 if (SrcMO
->getSubReg())
1459 // FIXME: can we handle this?
1461 // This is not an insert_subreg but it looks like one.
1462 // e.g. %reg1024:4 = MOV32rr %EAX
1465 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1466 return false; // Not coalescable
1470 SubIdx
= SrcMO
->getSubReg();
1472 // This is not a extract_subreg but it looks like one.
1473 // e.g. %cl = MOV16rr %reg1024:1
1476 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1477 return false; // Not coalescable
1483 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1484 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1485 unsigned LargeReg
= SrcReg
;
1486 unsigned SmallReg
= DstReg
;
1489 // Now determine the register class of the joined register.
1491 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1492 // This is a move to a sub-register class. However, the source is a
1493 // sub-register of a larger register class. We don't know what should
1494 // the register class be. FIXME.
1498 Limit
= allocatableRCRegs_
[DstRC
].count();
1499 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1500 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1502 DOUT
<< "\tDisjoint regclasses: "
1503 << SrcRC
->getName() << ", "
1504 << DstRC
->getName() << ".\n";
1505 return false; // Not coalescable.
1507 if (DstRC
->getSize() > SrcRC
->getSize())
1508 std::swap(LargeReg
, SmallReg
);
1511 // If we are joining two virtual registers and the resulting register
1512 // class is more restrictive (fewer register, smaller size). Check if it's
1513 // worth doing the merge.
1514 if (!SrcIsPhys
&& !DstIsPhys
&&
1515 (isExtSubReg
|| DstRC
->isASubClass()) &&
1516 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1517 allocatableRCRegs_
[NewRC
].count())) {
1518 DOUT
<< "\tSrc/Dest are different register classes.\n";
1519 // Allow the coalescer to try again in case either side gets coalesced to
1520 // a physical register that's compatible with the other side. e.g.
1521 // r1024 = MOV32to32_ r1025
1522 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1523 Again
= true; // May be possible to coalesce later.
1528 // Will it create illegal extract_subreg / insert_subreg?
1529 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1531 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1534 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1535 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1536 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1537 "Register mapping is horribly broken!");
1539 DOUT
<< "\t\tInspecting "; SrcInt
.print(DOUT
, tri_
);
1540 DOUT
<< " and "; DstInt
.print(DOUT
, tri_
);
1543 // Save a copy of the virtual register live interval. We'll manually
1544 // merge this into the "real" physical register live interval this is
1546 LiveInterval
*SavedLI
= 0;
1548 SavedLI
= li_
->dupInterval(&SrcInt
);
1549 else if (RealSrcReg
)
1550 SavedLI
= li_
->dupInterval(&DstInt
);
1552 // Check if it is necessary to propagate "isDead" property.
1553 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1554 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1555 bool isDead
= mopd
->isDead();
1557 // We need to be careful about coalescing a source physical register with a
1558 // virtual register. Once the coalescing is done, it cannot be broken and
1559 // these are not spillable! If the destination interval uses are far away,
1560 // think twice about coalescing them!
1561 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1562 // If the copy is in a loop, take care not to coalesce aggressively if the
1563 // src is coming in from outside the loop (or the dst is out of the loop).
1564 // If it's not in a loop, then determine whether to join them base purely
1565 // by the length of the interval.
1566 if (PhysJoinTweak
) {
1568 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1569 DstInt
.preference
= SrcReg
;
1571 DOUT
<< "\tMay tie down a physical register, abort!\n";
1572 Again
= true; // May be possible to coalesce later.
1576 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1577 SrcInt
.preference
= DstReg
;
1579 DOUT
<< "\tMay tie down a physical register, abort!\n";
1580 Again
= true; // May be possible to coalesce later.
1585 // If the virtual register live interval is long but it has low use desity,
1586 // do not join them, instead mark the physical register as its allocation
1588 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1589 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1590 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1591 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1592 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1593 if (TheCopy
.isBackEdge
)
1594 Threshold
*= 2; // Favors back edge copies.
1596 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1597 float Ratio
= 1.0 / Threshold
;
1598 if (Length
> Threshold
&&
1599 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1600 mri_
->use_end()) / Length
) < Ratio
)) {
1601 JoinVInt
.preference
= JoinPReg
;
1603 DOUT
<< "\tMay tie down a physical register, abort!\n";
1604 Again
= true; // May be possible to coalesce later.
1611 // Okay, attempt to join these two intervals. On failure, this returns false.
1612 // Otherwise, if one of the intervals being joined is a physreg, this method
1613 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1614 // been modified, so we can use this information below to update aliases.
1615 bool Swapped
= false;
1616 // If SrcInt is implicitly defined, it's safe to coalesce.
1617 bool isEmpty
= SrcInt
.empty();
1618 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1619 // Only coalesce an empty interval (defined by implicit_def) with
1620 // another interval which has a valno defined by the CopyMI and the CopyMI
1621 // is a kill of the implicit def.
1622 DOUT
<< "Not profitable!\n";
1626 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1627 // Coalescing failed.
1629 // If definition of source is defined by trivial computation, try
1630 // rematerializing it.
1631 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1632 ReMaterializeTrivialDef(SrcInt
, DstInt
.reg
, CopyMI
))
1635 // If we can eliminate the copy without merging the live ranges, do so now.
1636 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1637 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1638 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1639 JoinedCopies
.insert(CopyMI
);
1643 // Otherwise, we are unable to join the intervals.
1644 DOUT
<< "Interference!\n";
1645 Again
= true; // May be possible to coalesce later.
1649 LiveInterval
*ResSrcInt
= &SrcInt
;
1650 LiveInterval
*ResDstInt
= &DstInt
;
1652 std::swap(SrcReg
, DstReg
);
1653 std::swap(ResSrcInt
, ResDstInt
);
1655 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1656 "LiveInterval::join didn't work right!");
1658 // If we're about to merge live ranges into a physical register live interval,
1659 // we have to update any aliased register's live ranges to indicate that they
1660 // have clobbered values for this range.
1661 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1662 // If this is a extract_subreg where dst is a physical register, e.g.
1663 // cl = EXTRACT_SUBREG reg1024, 1
1664 // then create and update the actual physical register allocated to RHS.
1665 if (RealDstReg
|| RealSrcReg
) {
1666 LiveInterval
&RealInt
=
1667 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1668 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1669 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1670 const VNInfo
*ValNo
= *I
;
1671 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->copy
,
1672 li_
->getVNInfoAllocator());
1673 NewValNo
->hasPHIKill
= ValNo
->hasPHIKill
;
1674 NewValNo
->redefByEC
= ValNo
->redefByEC
;
1675 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1676 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1678 RealInt
.weight
+= SavedLI
->weight
;
1679 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1682 // Update the liveintervals of sub-registers.
1683 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1684 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1685 li_
->getVNInfoAllocator());
1688 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1689 // larger super-register.
1690 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1691 !SrcIsPhys
&& !DstIsPhys
) {
1692 if ((isExtSubReg
&& !Swapped
) ||
1693 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1694 ResSrcInt
->Copy(*ResDstInt
, li_
->getVNInfoAllocator());
1695 std::swap(SrcReg
, DstReg
);
1696 std::swap(ResSrcInt
, ResDstInt
);
1700 // Coalescing to a virtual register that is of a sub-register class of the
1701 // other. Make sure the resulting register is set to the right register class.
1705 mri_
->setRegClass(DstReg
, NewRC
);
1709 // Add all copies that define val# in the source interval into the queue.
1710 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1711 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1712 const VNInfo
*vni
= *i
;
1713 if (!vni
->def
|| vni
->def
== ~1U || vni
->def
== ~0U)
1715 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1716 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1718 JoinedCopies
.count(CopyMI
) == 0 &&
1719 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1720 NewSrcSubIdx
, NewDstSubIdx
)) {
1721 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1722 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1723 isBackEdgeCopy(CopyMI
, DstReg
)));
1728 // Remember to delete the copy instruction.
1729 JoinedCopies
.insert(CopyMI
);
1731 // Some live range has been lengthened due to colaescing, eliminate the
1732 // unnecessary kills.
1733 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1734 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1735 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1740 // r1024 = implicit_def
1743 RemoveDeadImpDef(DstReg
, *ResDstInt
);
1744 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1746 // SrcReg is guarateed to be the register whose live interval that is
1748 li_
->removeInterval(SrcReg
);
1750 // Manually deleted the live interval copy.
1757 // Now the copy is being coalesced away, the val# previously defined
1758 // by the copy is being defined by an IMPLICIT_DEF which defines a zero
1759 // length interval. Remove the val#.
1760 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1761 const LiveRange
*LR
= ResDstInt
->getLiveRangeContaining(CopyIdx
);
1762 VNInfo
*ImpVal
= LR
->valno
;
1763 assert(ImpVal
->def
== CopyIdx
);
1764 unsigned NextDef
= LR
->end
;
1765 RemoveCopiesFromValNo(*ResDstInt
, ImpVal
);
1766 ResDstInt
->removeValNo(ImpVal
);
1767 LR
= ResDstInt
->FindLiveRangeContaining(NextDef
);
1768 if (LR
!= ResDstInt
->end() && LR
->valno
->def
== NextDef
) {
1769 // Special case: vr1024 = implicit_def
1770 // vr1024 = insert_subreg vr1024, vr1025, c
1771 // The insert_subreg becomes a "copy" that defines a val# which can itself
1772 // be coalesced away.
1773 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(NextDef
);
1774 if (DefMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
)
1775 LR
->valno
->copy
= DefMI
;
1779 // If resulting interval has a preference that no longer fits because of subreg
1780 // coalescing, just clear the preference.
1781 if (ResDstInt
->preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1782 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1783 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1784 if (!RC
->contains(ResDstInt
->preference
))
1785 ResDstInt
->preference
= 0;
1788 DOUT
<< "\n\t\tJoined. Result = "; ResDstInt
->print(DOUT
, tri_
);
1795 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1796 /// compute what the resultant value numbers for each value in the input two
1797 /// ranges will be. This is complicated by copies between the two which can
1798 /// and will commonly cause multiple value numbers to be merged into one.
1800 /// VN is the value number that we're trying to resolve. InstDefiningValue
1801 /// keeps track of the new InstDefiningValue assignment for the result
1802 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1803 /// whether a value in this or other is a copy from the opposite set.
1804 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1805 /// already been assigned.
1807 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1808 /// contains the value number the copy is from.
1810 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1811 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1812 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1813 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1814 SmallVector
<int, 16> &ThisValNoAssignments
,
1815 SmallVector
<int, 16> &OtherValNoAssignments
) {
1816 unsigned VN
= VNI
->id
;
1818 // If the VN has already been computed, just return it.
1819 if (ThisValNoAssignments
[VN
] >= 0)
1820 return ThisValNoAssignments
[VN
];
1821 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1823 // If this val is not a copy from the other val, then it must be a new value
1824 // number in the destination.
1825 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1826 if (I
== ThisFromOther
.end()) {
1827 NewVNInfo
.push_back(VNI
);
1828 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1830 VNInfo
*OtherValNo
= I
->second
;
1832 // Otherwise, this *is* a copy from the RHS. If the other side has already
1833 // been computed, return it.
1834 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1835 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1837 // Mark this value number as currently being computed, then ask what the
1838 // ultimate value # of the other value is.
1839 ThisValNoAssignments
[VN
] = -2;
1840 unsigned UltimateVN
=
1841 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1842 OtherValNoAssignments
, ThisValNoAssignments
);
1843 return ThisValNoAssignments
[VN
] = UltimateVN
;
1846 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1847 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1850 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1851 /// the specified live interval is defined by a copy from the specified
1853 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1856 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1859 if (LR
->valno
->def
== ~0U &&
1860 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1861 *tri_
->getSuperRegisters(li
.reg
)) {
1862 // It's a sub-register live interval, we may not have precise information.
1864 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1865 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1867 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1868 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1869 // Cache computed info.
1870 LR
->valno
->def
= LR
->start
;
1871 LR
->valno
->copy
= DefMI
;
1878 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1879 /// caller of this method must guarantee that the RHS only contains a single
1880 /// value number and that the RHS is not defined by a copy from this
1881 /// interval. This returns false if the intervals are not joinable, or it
1882 /// joins them and returns true.
1883 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1884 assert(RHS
.containsOneValue());
1886 // Some number (potentially more than one) value numbers in the current
1887 // interval may be defined as copies from the RHS. Scan the overlapping
1888 // portions of the LHS and RHS, keeping track of this and looking for
1889 // overlapping live ranges that are NOT defined as copies. If these exist, we
1892 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1893 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1895 if (LHSIt
->start
< RHSIt
->start
) {
1896 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1897 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1898 } else if (RHSIt
->start
< LHSIt
->start
) {
1899 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1900 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1903 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1906 // Determine if these live intervals overlap.
1907 bool Overlaps
= false;
1908 if (LHSIt
->start
<= RHSIt
->start
)
1909 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1911 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1913 // If the live intervals overlap, there are two interesting cases: if the
1914 // LHS interval is defined by a copy from the RHS, it's ok and we record
1915 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1916 // coalesce these live ranges and we bail out.
1918 // If we haven't already recorded that this value # is safe, check it.
1919 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1920 // Copy from the RHS?
1921 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1922 return false; // Nope, bail out.
1924 if (LHSIt
->contains(RHSIt
->valno
->def
))
1925 // Here is an interesting situation:
1927 // vr1025 = copy vr1024
1932 // Even though vr1025 is copied from vr1024, it's not safe to
1933 // coalesce them since the live range of vr1025 intersects the
1934 // def of vr1024. This happens because vr1025 is assigned the
1935 // value of the previous iteration of vr1024.
1937 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1940 // We know this entire LHS live range is okay, so skip it now.
1941 if (++LHSIt
== LHSEnd
) break;
1945 if (LHSIt
->end
< RHSIt
->end
) {
1946 if (++LHSIt
== LHSEnd
) break;
1948 // One interesting case to check here. It's possible that we have
1949 // something like "X3 = Y" which defines a new value number in the LHS,
1950 // and is the last use of this liverange of the RHS. In this case, we
1951 // want to notice this copy (so that it gets coalesced away) even though
1952 // the live ranges don't actually overlap.
1953 if (LHSIt
->start
== RHSIt
->end
) {
1954 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1955 // We already know that this value number is going to be merged in
1956 // if coalescing succeeds. Just skip the liverange.
1957 if (++LHSIt
== LHSEnd
) break;
1959 // Otherwise, if this is a copy from the RHS, mark it as being merged
1961 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1962 if (LHSIt
->contains(RHSIt
->valno
->def
))
1963 // Here is an interesting situation:
1965 // vr1025 = copy vr1024
1970 // Even though vr1025 is copied from vr1024, it's not safe to
1971 // coalesced them since live range of vr1025 intersects the
1972 // def of vr1024. This happens because vr1025 is assigned the
1973 // value of the previous iteration of vr1024.
1975 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1977 // We know this entire LHS live range is okay, so skip it now.
1978 if (++LHSIt
== LHSEnd
) break;
1983 if (++RHSIt
== RHSEnd
) break;
1987 // If we got here, we know that the coalescing will be successful and that
1988 // the value numbers in EliminatedLHSVals will all be merged together. Since
1989 // the most common case is that EliminatedLHSVals has a single number, we
1990 // optimize for it: if there is more than one value, we merge them all into
1991 // the lowest numbered one, then handle the interval as if we were merging
1992 // with one value number.
1993 VNInfo
*LHSValNo
= NULL
;
1994 if (EliminatedLHSVals
.size() > 1) {
1995 // Loop through all the equal value numbers merging them into the smallest
1997 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1998 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1999 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
2000 // Merge the current notion of the smallest into the smaller one.
2001 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
2002 Smallest
= EliminatedLHSVals
[i
];
2004 // Merge into the smallest.
2005 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
2008 LHSValNo
= Smallest
;
2009 } else if (EliminatedLHSVals
.empty()) {
2010 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2011 *tri_
->getSuperRegisters(LHS
.reg
))
2012 // Imprecise sub-register information. Can't handle it.
2014 assert(0 && "No copies from the RHS?");
2016 LHSValNo
= EliminatedLHSVals
[0];
2019 // Okay, now that there is a single LHS value number that we're merging the
2020 // RHS into, update the value number info for the LHS to indicate that the
2021 // value number is defined where the RHS value number was.
2022 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
2023 LHSValNo
->def
= VNI
->def
;
2024 LHSValNo
->copy
= VNI
->copy
;
2026 // Okay, the final step is to loop over the RHS live intervals, adding them to
2028 LHSValNo
->hasPHIKill
|= VNI
->hasPHIKill
;
2029 LHS
.addKills(LHSValNo
, VNI
->kills
);
2030 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
2031 LHS
.weight
+= RHS
.weight
;
2032 if (RHS
.preference
&& !LHS
.preference
)
2033 LHS
.preference
= RHS
.preference
;
2035 // Update the liveintervals of sub-registers.
2036 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2037 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2038 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2039 li_
->getVNInfoAllocator());
2044 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2045 /// returns false. Otherwise, if one of the intervals being joined is a
2046 /// physreg, this method always canonicalizes LHS to be it. The output
2047 /// "RHS" will not have been modified, so we can use this information
2048 /// below to update aliases.
2050 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2052 // Compute the final value assignment, assuming that the live ranges can be
2054 SmallVector
<int, 16> LHSValNoAssignments
;
2055 SmallVector
<int, 16> RHSValNoAssignments
;
2056 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2057 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2058 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2060 // If a live interval is a physical register, conservatively check if any
2061 // of its sub-registers is overlapping the live interval of the virtual
2062 // register. If so, do not coalesce.
2063 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2064 *tri_
->getSubRegisters(LHS
.reg
)) {
2065 // If it's coalescing a virtual register to a physical register, estimate
2066 // its live interval length. This is the *cost* of scanning an entire live
2067 // interval. If the cost is low, we'll do an exhaustive check instead.
2069 // If this is something like this:
2077 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2078 // less conservative check. It's possible a sub-register is defined before
2079 // v1024 (or live in) and live out of BB1.
2080 if (RHS
.containsOneValue() &&
2081 li_
->intervalIsInOneMBB(RHS
) &&
2082 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2087 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2088 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2089 DOUT
<< "Interfere with sub-register ";
2090 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2094 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2095 *tri_
->getSubRegisters(RHS
.reg
)) {
2096 if (LHS
.containsOneValue() &&
2097 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2098 // Perform a more exhaustive check for some common cases.
2099 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2102 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2103 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2104 DOUT
<< "Interfere with sub-register ";
2105 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2111 // Compute ultimate value numbers for the LHS and RHS values.
2112 if (RHS
.containsOneValue()) {
2113 // Copies from a liveinterval with a single value are simple to handle and
2114 // very common, handle the special case here. This is important, because
2115 // often RHS is small and LHS is large (e.g. a physreg).
2117 // Find out if the RHS is defined as a copy from some value in the LHS.
2118 int RHSVal0DefinedFromLHS
= -1;
2120 VNInfo
*RHSValNoInfo
= NULL
;
2121 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2122 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2123 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2124 // If RHS is not defined as a copy from the LHS, we can use simpler and
2125 // faster checks to see if the live ranges are coalescable. This joiner
2126 // can't swap the LHS/RHS intervals though.
2127 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2128 return SimpleJoin(LHS
, RHS
);
2130 RHSValNoInfo
= RHSValNoInfo0
;
2133 // It was defined as a copy from the LHS, find out what value # it is.
2134 RHSValNoInfo
= LHS
.getLiveRangeContaining(RHSValNoInfo0
->def
-1)->valno
;
2135 RHSValID
= RHSValNoInfo
->id
;
2136 RHSVal0DefinedFromLHS
= RHSValID
;
2139 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2140 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2141 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2143 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2144 // should now get updated.
2145 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2148 unsigned VN
= VNI
->id
;
2149 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2150 if (LHSSrcReg
!= RHS
.reg
) {
2151 // If this is not a copy from the RHS, its value number will be
2152 // unmodified by the coalescing.
2153 NewVNInfo
[VN
] = VNI
;
2154 LHSValNoAssignments
[VN
] = VN
;
2155 } else if (RHSValID
== -1) {
2156 // Otherwise, it is a copy from the RHS, and we don't already have a
2157 // value# for it. Keep the current value number, but remember it.
2158 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2159 NewVNInfo
[VN
] = RHSValNoInfo
;
2160 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2162 // Otherwise, use the specified value #.
2163 LHSValNoAssignments
[VN
] = RHSValID
;
2164 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2165 NewVNInfo
[VN
] = RHSValNoInfo
;
2166 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2170 NewVNInfo
[VN
] = VNI
;
2171 LHSValNoAssignments
[VN
] = VN
;
2175 assert(RHSValID
!= -1 && "Didn't find value #?");
2176 RHSValNoAssignments
[0] = RHSValID
;
2177 if (RHSVal0DefinedFromLHS
!= -1) {
2178 // This path doesn't go through ComputeUltimateVN so just set
2180 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2183 // Loop over the value numbers of the LHS, seeing if any are defined from
2185 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2188 if (VNI
->def
== ~1U || VNI
->copy
== 0) // Src not defined by a copy?
2191 // DstReg is known to be a register in the LHS interval. If the src is
2192 // from the RHS interval, we can use its value #.
2193 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2196 // Figure out the value # from the RHS.
2197 LHSValsDefinedFromRHS
[VNI
]=RHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2200 // Loop over the value numbers of the RHS, seeing if any are defined from
2202 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2205 if (VNI
->def
== ~1U || VNI
->copy
== 0) // Src not defined by a copy?
2208 // DstReg is known to be a register in the RHS interval. If the src is
2209 // from the LHS interval, we can use its value #.
2210 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2213 // Figure out the value # from the LHS.
2214 RHSValsDefinedFromLHS
[VNI
]=LHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2217 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2218 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2219 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2221 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2224 unsigned VN
= VNI
->id
;
2225 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->def
== ~1U)
2227 ComputeUltimateVN(VNI
, NewVNInfo
,
2228 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2229 LHSValNoAssignments
, RHSValNoAssignments
);
2231 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2234 unsigned VN
= VNI
->id
;
2235 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->def
== ~1U)
2237 // If this value number isn't a copy from the LHS, it's a new number.
2238 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2239 NewVNInfo
.push_back(VNI
);
2240 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2244 ComputeUltimateVN(VNI
, NewVNInfo
,
2245 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2246 RHSValNoAssignments
, LHSValNoAssignments
);
2250 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2251 // interval lists to see if these intervals are coalescable.
2252 LiveInterval::const_iterator I
= LHS
.begin();
2253 LiveInterval::const_iterator IE
= LHS
.end();
2254 LiveInterval::const_iterator J
= RHS
.begin();
2255 LiveInterval::const_iterator JE
= RHS
.end();
2257 // Skip ahead until the first place of potential sharing.
2258 if (I
->start
< J
->start
) {
2259 I
= std::upper_bound(I
, IE
, J
->start
);
2260 if (I
!= LHS
.begin()) --I
;
2261 } else if (J
->start
< I
->start
) {
2262 J
= std::upper_bound(J
, JE
, I
->start
);
2263 if (J
!= RHS
.begin()) --J
;
2267 // Determine if these two live ranges overlap.
2269 if (I
->start
< J
->start
) {
2270 Overlaps
= I
->end
> J
->start
;
2272 Overlaps
= J
->end
> I
->start
;
2275 // If so, check value # info to determine if they are really different.
2277 // If the live range overlap will map to the same value number in the
2278 // result liverange, we can still coalesce them. If not, we can't.
2279 if (LHSValNoAssignments
[I
->valno
->id
] !=
2280 RHSValNoAssignments
[J
->valno
->id
])
2284 if (I
->end
< J
->end
) {
2293 // Update kill info. Some live ranges are extended due to copy coalescing.
2294 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2295 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2296 VNInfo
*VNI
= I
->first
;
2297 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2298 LiveInterval::removeKill(NewVNInfo
[LHSValID
], VNI
->def
);
2299 NewVNInfo
[LHSValID
]->hasPHIKill
|= VNI
->hasPHIKill
;
2300 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2303 // Update kill info. Some live ranges are extended due to copy coalescing.
2304 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2305 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2306 VNInfo
*VNI
= I
->first
;
2307 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2308 LiveInterval::removeKill(NewVNInfo
[RHSValID
], VNI
->def
);
2309 NewVNInfo
[RHSValID
]->hasPHIKill
|= VNI
->hasPHIKill
;
2310 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2313 // If we get here, we know that we can coalesce the live ranges. Ask the
2314 // intervals to coalesce themselves now.
2315 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2316 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2317 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2318 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
);
2321 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
);
2328 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2329 // depth of the basic block (the unsigned), and then on the MBB number.
2330 struct DepthMBBCompare
{
2331 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2332 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2333 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2334 return LHS
.first
== RHS
.first
&&
2335 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2340 /// getRepIntervalSize - Returns the size of the interval that represents the
2341 /// specified register.
2343 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2344 return Rc
->getRepIntervalSize(Reg
);
2347 /// CopyRecSort::operator - Join priority queue sorting function.
2349 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2350 // Inner loops first.
2351 if (left
.LoopDepth
> right
.LoopDepth
)
2353 else if (left
.LoopDepth
== right
.LoopDepth
)
2354 if (left
.isBackEdge
&& !right
.isBackEdge
)
2359 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2360 std::vector
<CopyRec
> &TryAgain
) {
2361 DOUT
<< ((Value
*)MBB
->getBasicBlock())->getName() << ":\n";
2363 std::vector
<CopyRec
> VirtCopies
;
2364 std::vector
<CopyRec
> PhysCopies
;
2365 std::vector
<CopyRec
> ImpDefCopies
;
2366 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2367 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2369 MachineInstr
*Inst
= MII
++;
2371 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2372 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2373 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2374 DstReg
= Inst
->getOperand(0).getReg();
2375 SrcReg
= Inst
->getOperand(1).getReg();
2376 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2377 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2378 DstReg
= Inst
->getOperand(0).getReg();
2379 SrcReg
= Inst
->getOperand(2).getReg();
2380 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2383 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2384 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2386 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2388 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2389 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2390 else if (SrcIsPhys
|| DstIsPhys
)
2391 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2393 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2400 // Try coalescing implicit copies first, followed by copies to / from
2401 // physical registers, then finally copies from virtual registers to
2402 // virtual registers.
2403 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2404 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2406 if (!JoinCopy(TheCopy
, Again
))
2408 TryAgain
.push_back(TheCopy
);
2410 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2411 CopyRec
&TheCopy
= PhysCopies
[i
];
2413 if (!JoinCopy(TheCopy
, Again
))
2415 TryAgain
.push_back(TheCopy
);
2417 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2418 CopyRec
&TheCopy
= VirtCopies
[i
];
2420 if (!JoinCopy(TheCopy
, Again
))
2422 TryAgain
.push_back(TheCopy
);
2426 void SimpleRegisterCoalescing::joinIntervals() {
2427 DOUT
<< "********** JOINING INTERVALS ***********\n";
2430 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2432 std::vector
<CopyRec
> TryAgainList
;
2433 if (loopInfo
->empty()) {
2434 // If there are no loops in the function, join intervals in function order.
2435 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2437 CopyCoalesceInMBB(I
, TryAgainList
);
2439 // Otherwise, join intervals in inner loops before other intervals.
2440 // Unfortunately we can't just iterate over loop hierarchy here because
2441 // there may be more MBB's than BB's. Collect MBB's for sorting.
2443 // Join intervals in the function prolog first. We want to join physical
2444 // registers with virtual registers before the intervals got too long.
2445 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2446 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2447 MachineBasicBlock
*MBB
= I
;
2448 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2451 // Sort by loop depth.
2452 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2454 // Finally, join intervals in loop nest order.
2455 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2456 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2459 // Joining intervals can allow other intervals to be joined. Iteratively join
2460 // until we make no progress.
2462 SmallVector
<CopyRec
, 16> TryAgain
;
2463 bool ProgressMade
= true;
2464 while (ProgressMade
) {
2465 ProgressMade
= false;
2466 while (!JoinQueue
->empty()) {
2467 CopyRec R
= JoinQueue
->pop();
2469 bool Success
= JoinCopy(R
, Again
);
2471 ProgressMade
= true;
2473 TryAgain
.push_back(R
);
2477 while (!TryAgain
.empty()) {
2478 JoinQueue
->push(TryAgain
.back());
2479 TryAgain
.pop_back();
2484 bool ProgressMade
= true;
2485 while (ProgressMade
) {
2486 ProgressMade
= false;
2488 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2489 CopyRec
&TheCopy
= TryAgainList
[i
];
2492 bool Success
= JoinCopy(TheCopy
, Again
);
2493 if (Success
|| !Again
) {
2494 TheCopy
.MI
= 0; // Mark this one as done.
2495 ProgressMade
= true;
2506 /// Return true if the two specified registers belong to different register
2507 /// classes. The registers may be either phys or virt regs.
2509 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2510 unsigned RegB
) const {
2511 // Get the register classes for the first reg.
2512 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2513 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2514 "Shouldn't consider two physregs!");
2515 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2518 // Compare against the regclass for the second reg.
2519 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2520 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2521 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2522 return RegClassA
!= RegClassB
;
2524 return !RegClassA
->contains(RegB
);
2527 /// lastRegisterUse - Returns the last use of the specific register between
2528 /// cycles Start and End or NULL if there are no uses.
2530 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start
, unsigned End
,
2531 unsigned Reg
, unsigned &UseIdx
) const{
2533 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2534 MachineOperand
*LastUse
= NULL
;
2535 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2536 E
= mri_
->use_end(); I
!= E
; ++I
) {
2537 MachineOperand
&Use
= I
.getOperand();
2538 MachineInstr
*UseMI
= Use
.getParent();
2539 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2540 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2542 // Ignore identity copies.
2544 unsigned Idx
= li_
->getInstructionIndex(UseMI
);
2545 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2547 UseIdx
= li_
->getUseIndex(Idx
);
2553 int e
= (End
-1) / InstrSlots::NUM
* InstrSlots::NUM
;
2556 // Skip deleted instructions
2557 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2558 while ((e
- InstrSlots::NUM
) >= s
&& !MI
) {
2559 e
-= InstrSlots::NUM
;
2560 MI
= li_
->getInstructionFromIndex(e
);
2562 if (e
< s
|| MI
== NULL
)
2565 // Ignore identity copies.
2566 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2567 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2569 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2570 MachineOperand
&Use
= MI
->getOperand(i
);
2571 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2572 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2573 UseIdx
= li_
->getUseIndex(e
);
2578 e
-= InstrSlots::NUM
;
2585 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2586 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2587 cerr
<< tri_
->getName(reg
);
2589 cerr
<< "%reg" << reg
;
2592 void SimpleRegisterCoalescing::releaseMemory() {
2593 JoinedCopies
.clear();
2594 ReMatCopies
.clear();
2598 static bool isZeroLengthInterval(LiveInterval
*li
) {
2599 for (LiveInterval::Ranges::const_iterator
2600 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2601 if (i
->end
- i
->start
> LiveIntervals::InstrSlots::NUM
)
2606 /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
2607 /// turn the copy into an implicit def.
2609 SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator
&I
,
2610 MachineBasicBlock
*MBB
,
2611 unsigned DstReg
, unsigned SrcReg
) {
2612 MachineInstr
*CopyMI
= &*I
;
2613 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
2614 if (!li_
->hasInterval(SrcReg
))
2616 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
2617 if (!SrcInt
.empty())
2619 if (!li_
->hasInterval(DstReg
))
2621 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
2622 const LiveRange
*DstLR
= DstInt
.getLiveRangeContaining(CopyIdx
);
2623 DstInt
.removeValNo(DstLR
->valno
);
2624 CopyMI
->setDesc(tii_
->get(TargetInstrInfo::IMPLICIT_DEF
));
2625 for (int i
= CopyMI
->getNumOperands() - 1, e
= 0; i
> e
; --i
)
2626 CopyMI
->RemoveOperand(i
);
2627 bool NoUse
= mri_
->use_empty(SrcReg
);
2629 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
2630 E
= mri_
->reg_end(); I
!= E
; ) {
2631 assert(I
.getOperand().isDef());
2632 MachineInstr
*DefMI
= &*I
;
2634 // The implicit_def source has no other uses, delete it.
2635 assert(DefMI
->getOpcode() == TargetInstrInfo::IMPLICIT_DEF
);
2636 li_
->RemoveMachineInstrFromMaps(DefMI
);
2637 DefMI
->eraseFromParent();
2645 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2647 mri_
= &fn
.getRegInfo();
2648 tm_
= &fn
.getTarget();
2649 tri_
= tm_
->getRegisterInfo();
2650 tii_
= tm_
->getInstrInfo();
2651 li_
= &getAnalysis
<LiveIntervals
>();
2652 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2654 DOUT
<< "********** SIMPLE REGISTER COALESCING **********\n"
2655 << "********** Function: "
2656 << ((Value
*)mf_
->getFunction())->getName() << '\n';
2658 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2659 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2660 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2661 allocatableRCRegs_
.insert(std::make_pair(*I
,
2662 tri_
->getAllocatableSet(fn
, *I
)));
2664 // Join (coalesce) intervals if requested.
2665 if (EnableJoining
) {
2668 DOUT
<< "********** INTERVALS POST JOINING **********\n";
2669 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2670 I
->second
->print(DOUT
, tri_
);
2676 // Perform a final pass over the instructions and compute spill weights
2677 // and remove identity moves.
2678 SmallVector
<unsigned, 4> DeadDefs
;
2679 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2680 mbbi
!= mbbe
; ++mbbi
) {
2681 MachineBasicBlock
* mbb
= mbbi
;
2682 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2684 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2686 MachineInstr
*MI
= mii
;
2687 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2688 if (JoinedCopies
.count(MI
)) {
2689 // Delete all coalesced copies.
2690 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2691 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2692 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2693 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2694 "Unrecognized copy instruction");
2695 DstReg
= MI
->getOperand(0).getReg();
2697 if (MI
->registerDefIsDead(DstReg
)) {
2698 LiveInterval
&li
= li_
->getInterval(DstReg
);
2699 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2700 ShortenDeadCopyLiveRange(li
, MI
);
2702 li_
->RemoveMachineInstrFromMaps(MI
);
2703 mii
= mbbi
->erase(mii
);
2708 // Now check if this is a remat'ed def instruction which is now dead.
2709 if (ReMatDefs
.count(MI
)) {
2711 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2712 const MachineOperand
&MO
= MI
->getOperand(i
);
2715 unsigned Reg
= MO
.getReg();
2718 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2719 DeadDefs
.push_back(Reg
);
2722 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2723 !mri_
->use_empty(Reg
)) {
2729 while (!DeadDefs
.empty()) {
2730 unsigned DeadDef
= DeadDefs
.back();
2731 DeadDefs
.pop_back();
2732 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2734 li_
->RemoveMachineInstrFromMaps(mii
);
2735 mii
= mbbi
->erase(mii
);
2741 // If the move will be an identity move delete it
2742 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2743 if (isMove
&& SrcReg
== DstReg
) {
2744 if (li_
->hasInterval(SrcReg
)) {
2745 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2746 // If def of this move instruction is dead, remove its live range
2747 // from the dstination register's live interval.
2748 if (MI
->registerDefIsDead(DstReg
)) {
2749 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2750 ShortenDeadCopyLiveRange(RegInt
, MI
);
2753 li_
->RemoveMachineInstrFromMaps(MI
);
2754 mii
= mbbi
->erase(mii
);
2756 } else if (!isMove
|| !TurnCopyIntoImpDef(mii
, mbb
, DstReg
, SrcReg
)) {
2757 SmallSet
<unsigned, 4> UniqueUses
;
2758 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2759 const MachineOperand
&mop
= MI
->getOperand(i
);
2760 if (mop
.isReg() && mop
.getReg() &&
2761 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2762 unsigned reg
= mop
.getReg();
2763 // Multiple uses of reg by the same instruction. It should not
2764 // contribute to spill weight again.
2765 if (UniqueUses
.count(reg
) != 0)
2767 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2769 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2770 UniqueUses
.insert(reg
);
2778 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2779 LiveInterval
&LI
= *I
->second
;
2780 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2781 // If the live interval length is essentially zero, i.e. in every live
2782 // range the use follows def immediately, it doesn't make sense to spill
2783 // it and hope it will be easier to allocate for this li.
2784 if (isZeroLengthInterval(&LI
))
2785 LI
.weight
= HUGE_VALF
;
2787 bool isLoad
= false;
2788 SmallVector
<LiveInterval
*, 4> SpillIs
;
2789 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2790 // If all of the definitions of the interval are re-materializable,
2791 // it is a preferred candidate for spilling. If non of the defs are
2792 // loads, then it's potentially very cheap to re-materialize.
2793 // FIXME: this gets much more complicated once we support non-trivial
2794 // re-materialization.
2802 // Slightly prefer live interval that has been assigned a preferred reg.
2806 // Divide the weight of the interval by its size. This encourages
2807 // spilling of intervals that are large and have few uses, and
2808 // discourages spilling of small intervals with many uses.
2809 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2817 /// print - Implement the dump method.
2818 void SimpleRegisterCoalescing::print(std::ostream
&O
, const Module
* m
) const {
2822 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2823 return new SimpleRegisterCoalescing();
2826 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2827 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)