Merge branch 'master' into msp430
[llvm/msp430.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
bloba7807f130e48da5e73f222963a0a185e9a2af38e
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include <algorithm>
35 #include <cmath>
36 using namespace llvm;
38 STATISTIC(numJoins , "Number of interval joins performed");
39 STATISTIC(numCrossRCs , "Number of cross class joins performed");
40 STATISTIC(numCommutes , "Number of instruction commuting performed");
41 STATISTIC(numExtends , "Number of copies extended");
42 STATISTIC(NumReMats , "Number of instructions re-materialized");
43 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
44 STATISTIC(numAborts , "Number of times interval joining aborted");
45 STATISTIC(numDeadValNo, "Number of valno def marked dead");
47 char SimpleRegisterCoalescing::ID = 0;
48 static cl::opt<bool>
49 EnableJoining("join-liveintervals",
50 cl::desc("Coalesce copies (default=true)"),
51 cl::init(true));
53 static cl::opt<bool>
54 NewHeuristic("new-coalescer-heuristic",
55 cl::desc("Use new coalescer heuristic"),
56 cl::init(false), cl::Hidden);
58 static cl::opt<bool>
59 CrossClassJoin("join-cross-class-copies",
60 cl::desc("Coalesce cross register class copies"),
61 cl::init(false), cl::Hidden);
63 static cl::opt<bool>
64 PhysJoinTweak("tweak-phys-join-heuristics",
65 cl::desc("Tweak heuristics for joining phys reg with vr"),
66 cl::init(false), cl::Hidden);
68 static RegisterPass<SimpleRegisterCoalescing>
69 X("simple-register-coalescing", "Simple Register Coalescing");
71 // Declare that we implement the RegisterCoalescer interface
72 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
74 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
76 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
77 AU.addRequired<LiveIntervals>();
78 AU.addPreserved<LiveIntervals>();
79 AU.addRequired<MachineLoopInfo>();
80 AU.addPreserved<MachineLoopInfo>();
81 AU.addPreservedID(MachineDominatorsID);
82 if (StrongPHIElim)
83 AU.addPreservedID(StrongPHIEliminationID);
84 else
85 AU.addPreservedID(PHIEliminationID);
86 AU.addPreservedID(TwoAddressInstructionPassID);
87 MachineFunctionPass::getAnalysisUsage(AU);
90 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
91 /// being the source and IntB being the dest, thus this defines a value number
92 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
93 /// see if we can merge these two pieces of B into a single value number,
94 /// eliminating a copy. For example:
95 ///
96 /// A3 = B0
97 /// ...
98 /// B1 = A3 <- this copy
99 ///
100 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
101 /// value number to be replaced with B0 (which simplifies the B liveinterval).
103 /// This returns true if an interval was modified.
105 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
106 LiveInterval &IntB,
107 MachineInstr *CopyMI) {
108 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
110 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
111 // the example above.
112 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
113 assert(BLR != IntB.end() && "Live range not found!");
114 VNInfo *BValNo = BLR->valno;
116 // Get the location that B is defined at. Two options: either this value has
117 // an unknown definition point or it is defined at CopyIdx. If unknown, we
118 // can't process it.
119 if (!BValNo->copy) return false;
120 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
122 // AValNo is the value number in A that defines the copy, A3 in the example.
123 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
124 assert(ALR != IntA.end() && "Live range not found!");
125 VNInfo *AValNo = ALR->valno;
126 // If it's re-defined by an early clobber somewhere in the live range, then
127 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
128 // See PR3149:
129 // 172 %ECX<def> = MOV32rr %reg1039<kill>
130 // 180 INLINEASM <es:subl $5,$1
131 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
132 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
133 // 188 %EAX<def> = MOV32rr %EAX<kill>
134 // 196 %ECX<def> = MOV32rr %ECX<kill>
135 // 204 %ECX<def> = MOV32rr %ECX<kill>
136 // 212 %EAX<def> = MOV32rr %EAX<kill>
137 // 220 %EAX<def> = MOV32rr %EAX
138 // 228 %reg1039<def> = MOV32rr %ECX<kill>
139 // The early clobber operand ties ECX input to the ECX def.
141 // The live interval of ECX is represented as this:
142 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
143 // The coalescer has no idea there was a def in the middle of [174,230].
144 if (AValNo->redefByEC)
145 return false;
147 // If AValNo is defined as a copy from IntB, we can potentially process this.
148 // Get the instruction that defines this value number.
149 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
150 if (!SrcReg) return false; // Not defined by a copy.
152 // If the value number is not defined by a copy instruction, ignore it.
154 // If the source register comes from an interval other than IntB, we can't
155 // handle this.
156 if (SrcReg != IntB.reg) return false;
158 // Get the LiveRange in IntB that this value number starts with.
159 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
160 assert(ValLR != IntB.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
163 // CopyMI.
164 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
165 if (!ValLREndInst ||
166 ValLREndInst->getParent() != CopyMI->getParent()) return false;
168 // Okay, we now know that ValLR ends in the same block that the CopyMI
169 // live-range starts. If there are no intervening live ranges between them in
170 // IntB, we can merge them.
171 if (ValLR+1 != BLR) return false;
173 // If a live interval is a physical register, conservatively check if any
174 // of its sub-registers is overlapping the live interval of the virtual
175 // register. If so, do not coalesce.
176 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
177 *tri_->getSubRegisters(IntB.reg)) {
178 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
179 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
180 DOUT << "Interfere with sub-register ";
181 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
182 return false;
186 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
188 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
189 // We are about to delete CopyMI, so need to remove it as the 'instruction
190 // that defines this value #'. Update the the valnum with the new defining
191 // instruction #.
192 BValNo->def = FillerStart;
193 BValNo->copy = NULL;
195 // Okay, we can merge them. We need to insert a new liverange:
196 // [ValLR.end, BLR.begin) of either value number, then we merge the
197 // two value numbers.
198 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
200 // If the IntB live range is assigned to a physical register, and if that
201 // physreg has sub-registers, update their live intervals as well.
202 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
203 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
204 LiveInterval &SRLI = li_->getInterval(*SR);
205 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
206 SRLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
210 // Okay, merge "B1" into the same value number as "B0".
211 if (BValNo != ValLR->valno) {
212 IntB.addKills(ValLR->valno, BValNo->kills);
213 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
215 DOUT << " result = "; IntB.print(DOUT, tri_);
216 DOUT << "\n";
218 // If the source instruction was killing the source register before the
219 // merge, unset the isKill marker given the live range has been extended.
220 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
221 if (UIdx != -1) {
222 ValLREndInst->getOperand(UIdx).setIsKill(false);
223 IntB.removeKill(ValLR->valno, FillerStart);
226 ++numExtends;
227 return true;
230 /// HasOtherReachingDefs - Return true if there are definitions of IntB
231 /// other than BValNo val# that can reach uses of AValno val# of IntA.
232 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
233 LiveInterval &IntB,
234 VNInfo *AValNo,
235 VNInfo *BValNo) {
236 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
237 AI != AE; ++AI) {
238 if (AI->valno != AValNo) continue;
239 LiveInterval::Ranges::iterator BI =
240 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
241 if (BI != IntB.ranges.begin())
242 --BI;
243 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
244 if (BI->valno == BValNo)
245 continue;
246 if (BI->start <= AI->start && BI->end > AI->start)
247 return true;
248 if (BI->start > AI->start && BI->start < AI->end)
249 return true;
252 return false;
255 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
256 /// being the source and IntB being the dest, thus this defines a value number
257 /// in IntB. If the source value number (in IntA) is defined by a commutable
258 /// instruction and its other operand is coalesced to the copy dest register,
259 /// see if we can transform the copy into a noop by commuting the definition. For
260 /// example,
262 /// A3 = op A2 B0<kill>
263 /// ...
264 /// B1 = A3 <- this copy
265 /// ...
266 /// = op A3 <- more uses
268 /// ==>
270 /// B2 = op B0 A2<kill>
271 /// ...
272 /// B1 = B2 <- now an identify copy
273 /// ...
274 /// = op B2 <- more uses
276 /// This returns true if an interval was modified.
278 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
279 LiveInterval &IntB,
280 MachineInstr *CopyMI) {
281 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
283 // FIXME: For now, only eliminate the copy by commuting its def when the
284 // source register is a virtual register. We want to guard against cases
285 // where the copy is a back edge copy and commuting the def lengthen the
286 // live interval of the source register to the entire loop.
287 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
288 return false;
290 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
291 // the example above.
292 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
293 assert(BLR != IntB.end() && "Live range not found!");
294 VNInfo *BValNo = BLR->valno;
296 // Get the location that B is defined at. Two options: either this value has
297 // an unknown definition point or it is defined at CopyIdx. If unknown, we
298 // can't process it.
299 if (!BValNo->copy) return false;
300 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
302 // AValNo is the value number in A that defines the copy, A3 in the example.
303 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
304 assert(ALR != IntA.end() && "Live range not found!");
305 VNInfo *AValNo = ALR->valno;
306 // If other defs can reach uses of this def, then it's not safe to perform
307 // the optimization.
308 if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill)
309 return false;
310 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
311 const TargetInstrDesc &TID = DefMI->getDesc();
312 unsigned NewDstIdx;
313 if (!TID.isCommutable() ||
314 !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
315 return false;
317 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
318 unsigned NewReg = NewDstMO.getReg();
319 if (NewReg != IntB.reg || !NewDstMO.isKill())
320 return false;
322 // Make sure there are no other definitions of IntB that would reach the
323 // uses which the new definition can reach.
324 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
325 return false;
327 // If some of the uses of IntA.reg is already coalesced away, return false.
328 // It's not possible to determine whether it's safe to perform the coalescing.
329 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
330 UE = mri_->use_end(); UI != UE; ++UI) {
331 MachineInstr *UseMI = &*UI;
332 unsigned UseIdx = li_->getInstructionIndex(UseMI);
333 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
334 if (ULR == IntA.end())
335 continue;
336 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
337 return false;
340 // At this point we have decided that it is legal to do this
341 // transformation. Start by commuting the instruction.
342 MachineBasicBlock *MBB = DefMI->getParent();
343 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
344 if (!NewMI)
345 return false;
346 if (NewMI != DefMI) {
347 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
348 MBB->insert(DefMI, NewMI);
349 MBB->erase(DefMI);
351 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
352 NewMI->getOperand(OpIdx).setIsKill();
354 bool BHasPHIKill = BValNo->hasPHIKill;
355 SmallVector<VNInfo*, 4> BDeadValNos;
356 SmallVector<unsigned, 4> BKills;
357 std::map<unsigned, unsigned> BExtend;
359 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
360 // A = or A, B
361 // ...
362 // B = A
363 // ...
364 // C = A<kill>
365 // ...
366 // = B
368 // then do not add kills of A to the newly created B interval.
369 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
370 if (Extended)
371 BExtend[ALR->end] = BLR->end;
373 // Update uses of IntA of the specific Val# with IntB.
374 bool BHasSubRegs = false;
375 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
376 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
377 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
378 UE = mri_->use_end(); UI != UE;) {
379 MachineOperand &UseMO = UI.getOperand();
380 MachineInstr *UseMI = &*UI;
381 ++UI;
382 if (JoinedCopies.count(UseMI))
383 continue;
384 unsigned UseIdx = li_->getInstructionIndex(UseMI);
385 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
386 if (ULR == IntA.end() || ULR->valno != AValNo)
387 continue;
388 UseMO.setReg(NewReg);
389 if (UseMI == CopyMI)
390 continue;
391 if (UseMO.isKill()) {
392 if (Extended)
393 UseMO.setIsKill(false);
394 else
395 BKills.push_back(li_->getUseIndex(UseIdx)+1);
397 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
398 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
399 continue;
400 if (DstReg == IntB.reg) {
401 // This copy will become a noop. If it's defining a new val#,
402 // remove that val# as well. However this live range is being
403 // extended to the end of the existing live range defined by the copy.
404 unsigned DefIdx = li_->getDefIndex(UseIdx);
405 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
406 BHasPHIKill |= DLR->valno->hasPHIKill;
407 assert(DLR->valno->def == DefIdx);
408 BDeadValNos.push_back(DLR->valno);
409 BExtend[DLR->start] = DLR->end;
410 JoinedCopies.insert(UseMI);
411 // If this is a kill but it's going to be removed, the last use
412 // of the same val# is the new kill.
413 if (UseMO.isKill())
414 BKills.pop_back();
418 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
419 // simply extend BLR if CopyMI doesn't end the range.
420 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
422 // Remove val#'s defined by copies that will be coalesced away.
423 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
424 VNInfo *DeadVNI = BDeadValNos[i];
425 if (BHasSubRegs) {
426 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
427 LiveInterval &SRLI = li_->getInterval(*SR);
428 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
429 SRLI.removeValNo(SRLR->valno);
432 IntB.removeValNo(BDeadValNos[i]);
435 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
436 // is updated. Kills are also updated.
437 VNInfo *ValNo = BValNo;
438 ValNo->def = AValNo->def;
439 ValNo->copy = NULL;
440 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
441 unsigned Kill = ValNo->kills[j];
442 if (Kill != BLR->end)
443 BKills.push_back(Kill);
445 ValNo->kills.clear();
446 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
447 AI != AE; ++AI) {
448 if (AI->valno != AValNo) continue;
449 unsigned End = AI->end;
450 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
451 if (EI != BExtend.end())
452 End = EI->second;
453 IntB.addRange(LiveRange(AI->start, End, ValNo));
455 // If the IntB live range is assigned to a physical register, and if that
456 // physreg has sub-registers, update their live intervals as well.
457 if (BHasSubRegs) {
458 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
459 LiveInterval &SRLI = li_->getInterval(*SR);
460 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
464 IntB.addKills(ValNo, BKills);
465 ValNo->hasPHIKill = BHasPHIKill;
467 DOUT << " result = "; IntB.print(DOUT, tri_);
468 DOUT << "\n";
470 DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
471 IntA.removeValNo(AValNo);
472 DOUT << " result = "; IntA.print(DOUT, tri_);
473 DOUT << "\n";
475 ++numCommutes;
476 return true;
479 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
480 /// fallthoughs to SuccMBB.
481 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
482 MachineBasicBlock *SuccMBB,
483 const TargetInstrInfo *tii_) {
484 if (MBB == SuccMBB)
485 return true;
486 MachineBasicBlock *TBB = 0, *FBB = 0;
487 SmallVector<MachineOperand, 4> Cond;
488 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
489 MBB->isSuccessor(SuccMBB);
492 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
493 /// from a physical register live interval as well as from the live intervals
494 /// of its sub-registers.
495 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
496 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
497 li.removeRange(Start, End, true);
498 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
499 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
500 if (!li_->hasInterval(*SR))
501 continue;
502 LiveInterval &sli = li_->getInterval(*SR);
503 unsigned RemoveEnd = Start;
504 while (RemoveEnd != End) {
505 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
506 if (LR == sli.end())
507 break;
508 RemoveEnd = (LR->end < End) ? LR->end : End;
509 sli.removeRange(Start, RemoveEnd, true);
510 Start = RemoveEnd;
516 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
517 /// as the copy instruction, trim the live interval to the last use and return
518 /// true.
519 bool
520 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
521 MachineBasicBlock *CopyMBB,
522 LiveInterval &li,
523 const LiveRange *LR) {
524 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
525 unsigned LastUseIdx;
526 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
527 LastUseIdx);
528 if (LastUse) {
529 MachineInstr *LastUseMI = LastUse->getParent();
530 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
531 // r1024 = op
532 // ...
533 // BB1:
534 // = r1024
536 // BB2:
537 // r1025<dead> = r1024<kill>
538 if (MBBStart < LR->end)
539 removeRange(li, MBBStart, LR->end, li_, tri_);
540 return true;
543 // There are uses before the copy, just shorten the live range to the end
544 // of last use.
545 LastUse->setIsKill();
546 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
547 li.addKill(LR->valno, LastUseIdx+1);
548 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
549 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
550 DstReg == li.reg) {
551 // Last use is itself an identity code.
552 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
553 LastUseMI->getOperand(DeadIdx).setIsDead();
555 return true;
558 // Is it livein?
559 if (LR->start <= MBBStart && LR->end > MBBStart) {
560 if (LR->start == 0) {
561 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
562 // Live-in to the function but dead. Remove it from entry live-in set.
563 mf_->begin()->removeLiveIn(li.reg);
565 // FIXME: Shorten intervals in BBs that reaches this BB.
568 return false;
571 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
572 /// computation, replace the copy by rematerialize the definition.
573 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
574 unsigned DstReg,
575 MachineInstr *CopyMI) {
576 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
577 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
578 assert(SrcLR != SrcInt.end() && "Live range not found!");
579 VNInfo *ValNo = SrcLR->valno;
580 // If other defs can reach uses of this def, then it's not safe to perform
581 // the optimization.
582 if (ValNo->def == ~0U || ValNo->def == ~1U || ValNo->hasPHIKill)
583 return false;
584 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
585 const TargetInstrDesc &TID = DefMI->getDesc();
586 if (!TID.isAsCheapAsAMove())
587 return false;
588 if (!DefMI->getDesc().isRematerializable() ||
589 !tii_->isTriviallyReMaterializable(DefMI))
590 return false;
591 bool SawStore = false;
592 if (!DefMI->isSafeToMove(tii_, SawStore))
593 return false;
595 unsigned DefIdx = li_->getDefIndex(CopyIdx);
596 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
597 DLR->valno->copy = NULL;
598 // Don't forget to update sub-register intervals.
599 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
600 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
601 if (!li_->hasInterval(*SR))
602 continue;
603 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
604 if (DLR && DLR->valno->copy == CopyMI)
605 DLR->valno->copy = NULL;
609 // If copy kills the source register, find the last use and propagate
610 // kill.
611 bool checkForDeadDef = false;
612 MachineBasicBlock *MBB = CopyMI->getParent();
613 if (CopyMI->killsRegister(SrcInt.reg))
614 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
615 checkForDeadDef = true;
618 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
619 CopyMI->removeFromParent();
620 tii_->reMaterialize(*MBB, MII, DstReg, DefMI);
621 MachineInstr *NewMI = prior(MII);
623 if (checkForDeadDef) {
624 // PR4090 fix: Trim interval failed because there was no use of the
625 // source interval in this MBB. If the def is in this MBB too then we
626 // should mark it dead:
627 if (DefMI->getParent() == MBB) {
628 DefMI->addRegisterDead(SrcInt.reg, tri_);
629 SrcLR->end = SrcLR->start + 1;
634 // CopyMI may have implicit operands, transfer them over to the newly
635 // rematerialized instruction. And update implicit def interval valnos.
636 for (unsigned i = CopyMI->getDesc().getNumOperands(),
637 e = CopyMI->getNumOperands(); i != e; ++i) {
638 MachineOperand &MO = CopyMI->getOperand(i);
639 if (MO.isReg() && MO.isImplicit())
640 NewMI->addOperand(MO);
641 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
642 unsigned Reg = MO.getReg();
643 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
644 if (DLR && DLR->valno->copy == CopyMI)
645 DLR->valno->copy = NULL;
649 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
650 MBB->getParent()->DeleteMachineInstr(CopyMI);
651 ReMatCopies.insert(CopyMI);
652 ReMatDefs.insert(DefMI);
653 ++NumReMats;
654 return true;
657 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
659 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
660 unsigned DstReg) const {
661 MachineBasicBlock *MBB = CopyMI->getParent();
662 const MachineLoop *L = loopInfo->getLoopFor(MBB);
663 if (!L)
664 return false;
665 if (MBB != L->getLoopLatch())
666 return false;
668 LiveInterval &LI = li_->getInterval(DstReg);
669 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
670 LiveInterval::const_iterator DstLR =
671 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
672 if (DstLR == LI.end())
673 return false;
674 unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1;
675 if (DstLR->valno->kills.size() == 1 &&
676 DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill)
677 return true;
678 return false;
681 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
682 /// update the subregister number if it is not zero. If DstReg is a
683 /// physical register and the existing subregister number of the def / use
684 /// being updated is not zero, make sure to set it to the correct physical
685 /// subregister.
686 void
687 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
688 unsigned SubIdx) {
689 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
690 if (DstIsPhys && SubIdx) {
691 // Figure out the real physical register we are updating with.
692 DstReg = tri_->getSubReg(DstReg, SubIdx);
693 SubIdx = 0;
696 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
697 E = mri_->reg_end(); I != E; ) {
698 MachineOperand &O = I.getOperand();
699 MachineInstr *UseMI = &*I;
700 ++I;
701 unsigned OldSubIdx = O.getSubReg();
702 if (DstIsPhys) {
703 unsigned UseDstReg = DstReg;
704 if (OldSubIdx)
705 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
707 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
708 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
709 CopySrcSubIdx, CopyDstSubIdx) &&
710 CopySrcReg != CopyDstReg &&
711 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
712 // If the use is a copy and it won't be coalesced away, and its source
713 // is defined by a trivial computation, try to rematerialize it instead.
714 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI))
715 continue;
718 O.setReg(UseDstReg);
719 O.setSubReg(0);
720 continue;
723 // Sub-register indexes goes from small to large. e.g.
724 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
725 // EAX: 1 -> AL, 2 -> AX
726 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
727 // sub-register 2 is also AX.
728 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
729 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
730 else if (SubIdx)
731 O.setSubReg(SubIdx);
732 // Remove would-be duplicated kill marker.
733 if (O.isKill() && UseMI->killsRegister(DstReg))
734 O.setIsKill(false);
735 O.setReg(DstReg);
737 // After updating the operand, check if the machine instruction has
738 // become a copy. If so, update its val# information.
739 const TargetInstrDesc &TID = UseMI->getDesc();
740 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
741 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
742 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
743 CopySrcSubIdx, CopyDstSubIdx) &&
744 CopySrcReg != CopyDstReg &&
745 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
746 allocatableRegs_[CopyDstReg])) {
747 LiveInterval &LI = li_->getInterval(CopyDstReg);
748 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
749 const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx);
750 if (DLR->valno->def == DefIdx)
751 DLR->valno->copy = UseMI;
756 /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
757 /// registers due to insert_subreg coalescing. e.g.
758 /// r1024 = op
759 /// r1025 = implicit_def
760 /// r1025 = insert_subreg r1025, r1024
761 /// = op r1025
762 /// =>
763 /// r1025 = op
764 /// r1025 = implicit_def
765 /// r1025 = insert_subreg r1025, r1025
766 /// = op r1025
767 void
768 SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
769 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
770 E = mri_->reg_end(); I != E; ) {
771 MachineOperand &O = I.getOperand();
772 MachineInstr *DefMI = &*I;
773 ++I;
774 if (!O.isDef())
775 continue;
776 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
777 continue;
778 if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
779 continue;
780 li_->RemoveMachineInstrFromMaps(DefMI);
781 DefMI->eraseFromParent();
785 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
786 /// due to live range lengthening as the result of coalescing.
787 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
788 LiveInterval &LI) {
789 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
790 UE = mri_->use_end(); UI != UE; ++UI) {
791 MachineOperand &UseMO = UI.getOperand();
792 if (UseMO.isKill()) {
793 MachineInstr *UseMI = UseMO.getParent();
794 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
795 const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
796 if (!UI || !LI.isKill(UI->valno, UseIdx+1))
797 UseMO.setIsKill(false);
802 /// removeIntervalIfEmpty - Check if the live interval of a physical register
803 /// is empty, if so remove it and also remove the empty intervals of its
804 /// sub-registers. Return true if live interval is removed.
805 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
806 const TargetRegisterInfo *tri_) {
807 if (li.empty()) {
808 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
809 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
810 if (!li_->hasInterval(*SR))
811 continue;
812 LiveInterval &sli = li_->getInterval(*SR);
813 if (sli.empty())
814 li_->removeInterval(*SR);
816 li_->removeInterval(li.reg);
817 return true;
819 return false;
822 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
823 /// Return true if live interval is removed.
824 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
825 MachineInstr *CopyMI) {
826 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
827 LiveInterval::iterator MLR =
828 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
829 if (MLR == li.end())
830 return false; // Already removed by ShortenDeadCopySrcLiveRange.
831 unsigned RemoveStart = MLR->start;
832 unsigned RemoveEnd = MLR->end;
833 // Remove the liverange that's defined by this.
834 if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
835 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
836 return removeIntervalIfEmpty(li, li_, tri_);
838 return false;
841 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
842 /// the val# it defines. If the live interval becomes empty, remove it as well.
843 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
844 MachineInstr *DefMI) {
845 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
846 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
847 if (DefIdx != MLR->valno->def)
848 return false;
849 li.removeValNo(MLR->valno);
850 return removeIntervalIfEmpty(li, li_, tri_);
853 /// PropagateDeadness - Propagate the dead marker to the instruction which
854 /// defines the val#.
855 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
856 unsigned &LRStart, LiveIntervals *li_,
857 const TargetRegisterInfo* tri_) {
858 MachineInstr *DefMI =
859 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
860 if (DefMI && DefMI != CopyMI) {
861 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
862 if (DeadIdx != -1) {
863 DefMI->getOperand(DeadIdx).setIsDead();
864 // A dead def should have a single cycle interval.
865 ++LRStart;
870 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
871 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
872 /// ends the live range there. If there isn't another use, then this live range
873 /// is dead. Return true if live interval is removed.
874 bool
875 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
876 MachineInstr *CopyMI) {
877 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
878 if (CopyIdx == 0) {
879 // FIXME: special case: function live in. It can be a general case if the
880 // first instruction index starts at > 0 value.
881 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
882 // Live-in to the function but dead. Remove it from entry live-in set.
883 if (mf_->begin()->isLiveIn(li.reg))
884 mf_->begin()->removeLiveIn(li.reg);
885 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
886 removeRange(li, LR->start, LR->end, li_, tri_);
887 return removeIntervalIfEmpty(li, li_, tri_);
890 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
891 if (LR == li.end())
892 // Livein but defined by a phi.
893 return false;
895 unsigned RemoveStart = LR->start;
896 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
897 if (LR->end > RemoveEnd)
898 // More uses past this copy? Nothing to do.
899 return false;
901 // If there is a last use in the same bb, we can't remove the live range.
902 // Shorten the live interval and return.
903 MachineBasicBlock *CopyMBB = CopyMI->getParent();
904 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
905 return false;
907 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
908 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
909 // If the live range starts in another mbb and the copy mbb is not a fall
910 // through mbb, then we can only cut the range from the beginning of the
911 // copy mbb.
912 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
914 if (LR->valno->def == RemoveStart) {
915 // If the def MI defines the val# and this copy is the only kill of the
916 // val#, then propagate the dead marker.
917 if (li.isOnlyLROfValNo(LR)) {
918 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
919 ++numDeadValNo;
921 if (li.isKill(LR->valno, RemoveEnd))
922 li.removeKill(LR->valno, RemoveEnd);
925 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
926 return removeIntervalIfEmpty(li, li_, tri_);
929 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
930 /// from an implicit def to another register can be coalesced away.
931 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
932 LiveInterval &li,
933 LiveInterval &ImpLi) const{
934 if (!CopyMI->killsRegister(ImpLi.reg))
935 return false;
936 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
937 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
938 if (LR == li.end())
939 return false;
940 if (LR->valno->hasPHIKill)
941 return false;
942 if (LR->valno->def != CopyIdx)
943 return false;
944 // Make sure all of val# uses are copies.
945 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
946 UE = mri_->use_end(); UI != UE;) {
947 MachineInstr *UseMI = &*UI;
948 ++UI;
949 if (JoinedCopies.count(UseMI))
950 continue;
951 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
952 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
953 if (ULR == li.end() || ULR->valno != LR->valno)
954 continue;
955 // If the use is not a use, then it's not safe to coalesce the move.
956 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
957 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
958 if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
959 UseMI->getOperand(1).getReg() == li.reg)
960 continue;
961 return false;
964 return true;
968 /// RemoveCopiesFromValNo - The specified value# is defined by an implicit
969 /// def and it is being removed. Turn all copies from this value# into
970 /// identity copies so they will be removed.
971 void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li,
972 VNInfo *VNI) {
973 SmallVector<MachineInstr*, 4> ImpDefs;
974 MachineOperand *LastUse = NULL;
975 unsigned LastUseIdx = li_->getUseIndex(VNI->def);
976 for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
977 RE = mri_->reg_end(); RI != RE;) {
978 MachineOperand *MO = &RI.getOperand();
979 MachineInstr *MI = &*RI;
980 ++RI;
981 if (MO->isDef()) {
982 if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
983 ImpDefs.push_back(MI);
985 continue;
987 if (JoinedCopies.count(MI))
988 continue;
989 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
990 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
991 if (ULR == li.end() || ULR->valno != VNI)
992 continue;
993 // If the use is a copy, turn it into an identity copy.
994 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
995 if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
996 SrcReg == li.reg) {
997 // Each use MI may have multiple uses of this register. Change them all.
998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
999 MachineOperand &MO = MI->getOperand(i);
1000 if (MO.isReg() && MO.getReg() == li.reg)
1001 MO.setReg(DstReg);
1003 JoinedCopies.insert(MI);
1004 } else if (UseIdx > LastUseIdx) {
1005 LastUseIdx = UseIdx;
1006 LastUse = MO;
1009 if (LastUse) {
1010 LastUse->setIsKill();
1011 li.addKill(VNI, LastUseIdx+1);
1012 } else {
1013 // Remove dead implicit_def's.
1014 while (!ImpDefs.empty()) {
1015 MachineInstr *ImpDef = ImpDefs.back();
1016 ImpDefs.pop_back();
1017 li_->RemoveMachineInstrFromMaps(ImpDef);
1018 ImpDef->eraseFromParent();
1023 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1024 /// a virtual destination register with physical source register.
1025 bool
1026 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
1027 MachineBasicBlock *CopyMBB,
1028 LiveInterval &DstInt,
1029 LiveInterval &SrcInt) {
1030 // If the virtual register live interval is long but it has low use desity,
1031 // do not join them, instead mark the physical register as its allocation
1032 // preference.
1033 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
1034 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1035 unsigned Length = li_->getApproximateInstructionCount(DstInt);
1036 if (Length > Threshold &&
1037 (((float)std::distance(mri_->use_begin(DstInt.reg),
1038 mri_->use_end()) / Length) < (1.0 / Threshold)))
1039 return false;
1041 // If the virtual register live interval extends into a loop, turn down
1042 // aggressiveness.
1043 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1044 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1045 if (!L) {
1046 // Let's see if the virtual register live interval extends into the loop.
1047 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1048 assert(DLR != DstInt.end() && "Live range not found!");
1049 DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
1050 if (DLR != DstInt.end()) {
1051 CopyMBB = li_->getMBBFromIndex(DLR->start);
1052 L = loopInfo->getLoopFor(CopyMBB);
1056 if (!L || Length <= Threshold)
1057 return true;
1059 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1060 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1061 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1062 if (loopInfo->getLoopFor(SMBB) != L) {
1063 if (!loopInfo->isLoopHeader(CopyMBB))
1064 return false;
1065 // If vr's live interval extends pass the loop header, do not join.
1066 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1067 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1068 MachineBasicBlock *SuccMBB = *SI;
1069 if (SuccMBB == CopyMBB)
1070 continue;
1071 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1072 li_->getMBBEndIdx(SuccMBB)+1))
1073 return false;
1076 return true;
1079 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1080 /// copy from a virtual source register to a physical destination register.
1081 bool
1082 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1083 MachineBasicBlock *CopyMBB,
1084 LiveInterval &DstInt,
1085 LiveInterval &SrcInt) {
1086 // If the virtual register live interval is long but it has low use desity,
1087 // do not join them, instead mark the physical register as its allocation
1088 // preference.
1089 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1090 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1091 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1092 if (Length > Threshold &&
1093 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1094 mri_->use_end()) / Length) < (1.0 / Threshold)))
1095 return false;
1097 if (SrcInt.empty())
1098 // Must be implicit_def.
1099 return false;
1101 // If the virtual register live interval is defined or cross a loop, turn
1102 // down aggressiveness.
1103 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1104 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1105 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1106 assert(SLR != SrcInt.end() && "Live range not found!");
1107 SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
1108 if (SLR == SrcInt.end())
1109 return true;
1110 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1111 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1113 if (!L || Length <= Threshold)
1114 return true;
1116 if (loopInfo->getLoopFor(CopyMBB) != L) {
1117 if (SMBB != L->getLoopLatch())
1118 return false;
1119 // If vr's live interval is extended from before the loop latch, do not
1120 // join.
1121 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1122 PE = SMBB->pred_end(); PI != PE; ++PI) {
1123 MachineBasicBlock *PredMBB = *PI;
1124 if (PredMBB == SMBB)
1125 continue;
1126 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1127 li_->getMBBEndIdx(PredMBB)+1))
1128 return false;
1131 return true;
1134 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1135 /// two virtual registers from different register classes.
1136 bool
1137 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1138 unsigned SmallReg,
1139 unsigned Threshold) {
1140 // Then make sure the intervals are *short*.
1141 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1142 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1143 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1144 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1145 if (SmallSize > Threshold || LargeSize > Threshold)
1146 if ((float)std::distance(mri_->use_begin(SmallReg),
1147 mri_->use_end()) / SmallSize <
1148 (float)std::distance(mri_->use_begin(LargeReg),
1149 mri_->use_end()) / LargeSize)
1150 return false;
1151 return true;
1154 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1155 /// register with a physical register, check if any of the virtual register
1156 /// operand is a sub-register use or def. If so, make sure it won't result
1157 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1158 /// vr1024 = extract_subreg vr1025, 1
1159 /// ...
1160 /// vr1024 = mov8rr AH
1161 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1162 /// AH does not have a super-reg whose sub-register 1 is AH.
1163 bool
1164 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1165 unsigned VirtReg,
1166 unsigned PhysReg) {
1167 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1168 E = mri_->reg_end(); I != E; ++I) {
1169 MachineOperand &O = I.getOperand();
1170 MachineInstr *MI = &*I;
1171 if (MI == CopyMI || JoinedCopies.count(MI))
1172 continue;
1173 unsigned SubIdx = O.getSubReg();
1174 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1175 return true;
1176 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1177 SubIdx = MI->getOperand(2).getImm();
1178 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1179 return true;
1180 if (O.isDef()) {
1181 unsigned SrcReg = MI->getOperand(1).getReg();
1182 const TargetRegisterClass *RC =
1183 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1184 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1185 : mri_->getRegClass(SrcReg);
1186 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1187 return true;
1190 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1191 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1192 SubIdx = MI->getOperand(3).getImm();
1193 if (VirtReg == MI->getOperand(0).getReg()) {
1194 if (!tri_->getSubReg(PhysReg, SubIdx))
1195 return true;
1196 } else {
1197 unsigned DstReg = MI->getOperand(0).getReg();
1198 const TargetRegisterClass *RC =
1199 TargetRegisterInfo::isPhysicalRegister(DstReg)
1200 ? tri_->getPhysicalRegisterRegClass(DstReg)
1201 : mri_->getRegClass(DstReg);
1202 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1203 return true;
1207 return false;
1211 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1212 /// an extract_subreg where dst is a physical register, e.g.
1213 /// cl = EXTRACT_SUBREG reg1024, 1
1214 bool
1215 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1216 unsigned SrcReg, unsigned SubIdx,
1217 unsigned &RealDstReg) {
1218 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1219 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1220 assert(RealDstReg && "Invalid extract_subreg instruction!");
1222 // For this type of EXTRACT_SUBREG, conservatively
1223 // check if the live interval of the source register interfere with the
1224 // actual super physical register we are trying to coalesce with.
1225 LiveInterval &RHS = li_->getInterval(SrcReg);
1226 if (li_->hasInterval(RealDstReg) &&
1227 RHS.overlaps(li_->getInterval(RealDstReg))) {
1228 DOUT << "Interfere with register ";
1229 DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
1230 return false; // Not coalescable
1232 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1233 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1234 DOUT << "Interfere with sub-register ";
1235 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1236 return false; // Not coalescable
1238 return true;
1241 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1242 /// an insert_subreg where src is a physical register, e.g.
1243 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1244 bool
1245 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1246 unsigned SrcReg, unsigned SubIdx,
1247 unsigned &RealSrcReg) {
1248 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1249 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1250 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1252 LiveInterval &RHS = li_->getInterval(DstReg);
1253 if (li_->hasInterval(RealSrcReg) &&
1254 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1255 DOUT << "Interfere with register ";
1256 DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
1257 return false; // Not coalescable
1259 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1260 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1261 DOUT << "Interfere with sub-register ";
1262 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1263 return false; // Not coalescable
1265 return true;
1268 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1269 /// which are the src/dst of the copy instruction CopyMI. This returns true
1270 /// if the copy was successfully coalesced away. If it is not currently
1271 /// possible to coalesce this interval, but it may be possible if other
1272 /// things get coalesced, then it returns true by reference in 'Again'.
1273 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1274 MachineInstr *CopyMI = TheCopy.MI;
1276 Again = false;
1277 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1278 return false; // Already done.
1280 DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
1282 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1283 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1284 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1285 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1286 unsigned SubIdx = 0;
1287 if (isExtSubReg) {
1288 DstReg = CopyMI->getOperand(0).getReg();
1289 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1290 SrcReg = CopyMI->getOperand(1).getReg();
1291 SrcSubIdx = CopyMI->getOperand(2).getImm();
1292 } else if (isInsSubReg || isSubRegToReg) {
1293 if (CopyMI->getOperand(2).getSubReg()) {
1294 DOUT << "\tSource of insert_subreg is already coalesced "
1295 << "to another register.\n";
1296 return false; // Not coalescable.
1298 DstReg = CopyMI->getOperand(0).getReg();
1299 DstSubIdx = CopyMI->getOperand(3).getImm();
1300 SrcReg = CopyMI->getOperand(2).getReg();
1301 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1302 assert(0 && "Unrecognized copy instruction!");
1303 return false;
1306 // If they are already joined we continue.
1307 if (SrcReg == DstReg) {
1308 DOUT << "\tCopy already coalesced.\n";
1309 return false; // Not coalescable.
1312 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1313 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1315 // If they are both physical registers, we cannot join them.
1316 if (SrcIsPhys && DstIsPhys) {
1317 DOUT << "\tCan not coalesce physregs.\n";
1318 return false; // Not coalescable.
1321 // We only join virtual registers with allocatable physical registers.
1322 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1323 DOUT << "\tSrc reg is unallocatable physreg.\n";
1324 return false; // Not coalescable.
1326 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1327 DOUT << "\tDst reg is unallocatable physreg.\n";
1328 return false; // Not coalescable.
1331 // Check that a physical source register is compatible with dst regclass
1332 if (SrcIsPhys) {
1333 unsigned SrcSubReg = SrcSubIdx ?
1334 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1335 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1336 const TargetRegisterClass *DstSubRC = DstRC;
1337 if (DstSubIdx)
1338 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1339 assert(DstSubRC && "Illegal subregister index");
1340 if (!DstSubRC->contains(SrcSubReg)) {
1341 DOUT << "\tIncompatible destination regclass: "
1342 << tri_->getName(SrcSubReg) << " not in " << DstSubRC->getName()
1343 << ".\n";
1344 return false; // Not coalescable.
1348 // Check that a physical dst register is compatible with source regclass
1349 if (DstIsPhys) {
1350 unsigned DstSubReg = DstSubIdx ?
1351 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1352 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1353 const TargetRegisterClass *SrcSubRC = SrcRC;
1354 if (SrcSubIdx)
1355 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1356 assert(SrcSubRC && "Illegal subregister index");
1357 if (!SrcSubRC->contains(DstReg)) {
1358 DOUT << "\tIncompatible source regclass: "
1359 << tri_->getName(DstSubReg) << " not in " << SrcSubRC->getName()
1360 << ".\n";
1361 return false; // Not coalescable.
1365 // Should be non-null only when coalescing to a sub-register class.
1366 bool CrossRC = false;
1367 const TargetRegisterClass *NewRC = NULL;
1368 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1369 unsigned RealDstReg = 0;
1370 unsigned RealSrcReg = 0;
1371 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1372 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1373 if (SrcIsPhys && isExtSubReg) {
1374 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1375 // coalesced with AX.
1376 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1377 if (DstSubIdx) {
1378 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1379 // coalesced to a larger register so the subreg indices cancel out.
1380 if (DstSubIdx != SubIdx) {
1381 DOUT << "\t Sub-register indices mismatch.\n";
1382 return false; // Not coalescable.
1384 } else
1385 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1386 SubIdx = 0;
1387 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1388 // EAX = INSERT_SUBREG EAX, r1024, 0
1389 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1390 if (SrcSubIdx) {
1391 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1392 // coalesced to a larger register so the subreg indices cancel out.
1393 if (SrcSubIdx != SubIdx) {
1394 DOUT << "\t Sub-register indices mismatch.\n";
1395 return false; // Not coalescable.
1397 } else
1398 DstReg = tri_->getSubReg(DstReg, SubIdx);
1399 SubIdx = 0;
1400 } else if ((DstIsPhys && isExtSubReg) ||
1401 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1402 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1403 DOUT << "\tSrc of extract_subreg already coalesced with reg"
1404 << " of a super-class.\n";
1405 return false; // Not coalescable.
1408 if (isExtSubReg) {
1409 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1410 return false; // Not coalescable
1411 } else {
1412 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1413 return false; // Not coalescable
1415 SubIdx = 0;
1416 } else {
1417 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1418 : CopyMI->getOperand(2).getSubReg();
1419 if (OldSubIdx) {
1420 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1421 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1422 // coalesced to a larger register so the subreg indices cancel out.
1423 // Also check if the other larger register is of the same register
1424 // class as the would be resulting register.
1425 SubIdx = 0;
1426 else {
1427 DOUT << "\t Sub-register indices mismatch.\n";
1428 return false; // Not coalescable.
1431 if (SubIdx) {
1432 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1433 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1434 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1435 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1436 Again = true; // May be possible to coalesce later.
1437 return false;
1441 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1442 if (!CrossClassJoin)
1443 return false;
1444 CrossRC = true;
1446 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1447 // with another? If it's the resulting destination register, then
1448 // the subidx must be propagated to uses (but only those defined
1449 // by the EXTRACT_SUBREG). If it's being coalesced into another
1450 // register, it should be safe because register is assumed to have
1451 // the register class of the super-register.
1453 // Process moves where one of the registers have a sub-register index.
1454 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1455 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1456 SubIdx = DstMO->getSubReg();
1457 if (SubIdx) {
1458 if (SrcMO->getSubReg())
1459 // FIXME: can we handle this?
1460 return false;
1461 // This is not an insert_subreg but it looks like one.
1462 // e.g. %reg1024:4 = MOV32rr %EAX
1463 isInsSubReg = true;
1464 if (SrcIsPhys) {
1465 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1466 return false; // Not coalescable
1467 SubIdx = 0;
1469 } else {
1470 SubIdx = SrcMO->getSubReg();
1471 if (SubIdx) {
1472 // This is not a extract_subreg but it looks like one.
1473 // e.g. %cl = MOV16rr %reg1024:1
1474 isExtSubReg = true;
1475 if (DstIsPhys) {
1476 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1477 return false; // Not coalescable
1478 SubIdx = 0;
1483 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1484 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1485 unsigned LargeReg = SrcReg;
1486 unsigned SmallReg = DstReg;
1487 unsigned Limit = 0;
1489 // Now determine the register class of the joined register.
1490 if (isExtSubReg) {
1491 if (SubIdx && DstRC && DstRC->isASubClass()) {
1492 // This is a move to a sub-register class. However, the source is a
1493 // sub-register of a larger register class. We don't know what should
1494 // the register class be. FIXME.
1495 Again = true;
1496 return false;
1498 Limit = allocatableRCRegs_[DstRC].count();
1499 } else if (!SrcIsPhys && !DstIsPhys) {
1500 NewRC = getCommonSubClass(SrcRC, DstRC);
1501 if (!NewRC) {
1502 DOUT << "\tDisjoint regclasses: "
1503 << SrcRC->getName() << ", "
1504 << DstRC->getName() << ".\n";
1505 return false; // Not coalescable.
1507 if (DstRC->getSize() > SrcRC->getSize())
1508 std::swap(LargeReg, SmallReg);
1511 // If we are joining two virtual registers and the resulting register
1512 // class is more restrictive (fewer register, smaller size). Check if it's
1513 // worth doing the merge.
1514 if (!SrcIsPhys && !DstIsPhys &&
1515 (isExtSubReg || DstRC->isASubClass()) &&
1516 !isWinToJoinCrossClass(LargeReg, SmallReg,
1517 allocatableRCRegs_[NewRC].count())) {
1518 DOUT << "\tSrc/Dest are different register classes.\n";
1519 // Allow the coalescer to try again in case either side gets coalesced to
1520 // a physical register that's compatible with the other side. e.g.
1521 // r1024 = MOV32to32_ r1025
1522 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1523 Again = true; // May be possible to coalesce later.
1524 return false;
1528 // Will it create illegal extract_subreg / insert_subreg?
1529 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1530 return false;
1531 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1532 return false;
1534 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1535 LiveInterval &DstInt = li_->getInterval(DstReg);
1536 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1537 "Register mapping is horribly broken!");
1539 DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
1540 DOUT << " and "; DstInt.print(DOUT, tri_);
1541 DOUT << ": ";
1543 // Save a copy of the virtual register live interval. We'll manually
1544 // merge this into the "real" physical register live interval this is
1545 // coalesced with.
1546 LiveInterval *SavedLI = 0;
1547 if (RealDstReg)
1548 SavedLI = li_->dupInterval(&SrcInt);
1549 else if (RealSrcReg)
1550 SavedLI = li_->dupInterval(&DstInt);
1552 // Check if it is necessary to propagate "isDead" property.
1553 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1554 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1555 bool isDead = mopd->isDead();
1557 // We need to be careful about coalescing a source physical register with a
1558 // virtual register. Once the coalescing is done, it cannot be broken and
1559 // these are not spillable! If the destination interval uses are far away,
1560 // think twice about coalescing them!
1561 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1562 // If the copy is in a loop, take care not to coalesce aggressively if the
1563 // src is coming in from outside the loop (or the dst is out of the loop).
1564 // If it's not in a loop, then determine whether to join them base purely
1565 // by the length of the interval.
1566 if (PhysJoinTweak) {
1567 if (SrcIsPhys) {
1568 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1569 DstInt.preference = SrcReg;
1570 ++numAborts;
1571 DOUT << "\tMay tie down a physical register, abort!\n";
1572 Again = true; // May be possible to coalesce later.
1573 return false;
1575 } else {
1576 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1577 SrcInt.preference = DstReg;
1578 ++numAborts;
1579 DOUT << "\tMay tie down a physical register, abort!\n";
1580 Again = true; // May be possible to coalesce later.
1581 return false;
1584 } else {
1585 // If the virtual register live interval is long but it has low use desity,
1586 // do not join them, instead mark the physical register as its allocation
1587 // preference.
1588 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1589 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1590 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1591 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1592 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1593 if (TheCopy.isBackEdge)
1594 Threshold *= 2; // Favors back edge copies.
1596 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1597 float Ratio = 1.0 / Threshold;
1598 if (Length > Threshold &&
1599 (((float)std::distance(mri_->use_begin(JoinVReg),
1600 mri_->use_end()) / Length) < Ratio)) {
1601 JoinVInt.preference = JoinPReg;
1602 ++numAborts;
1603 DOUT << "\tMay tie down a physical register, abort!\n";
1604 Again = true; // May be possible to coalesce later.
1605 return false;
1611 // Okay, attempt to join these two intervals. On failure, this returns false.
1612 // Otherwise, if one of the intervals being joined is a physreg, this method
1613 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1614 // been modified, so we can use this information below to update aliases.
1615 bool Swapped = false;
1616 // If SrcInt is implicitly defined, it's safe to coalesce.
1617 bool isEmpty = SrcInt.empty();
1618 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1619 // Only coalesce an empty interval (defined by implicit_def) with
1620 // another interval which has a valno defined by the CopyMI and the CopyMI
1621 // is a kill of the implicit def.
1622 DOUT << "Not profitable!\n";
1623 return false;
1626 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1627 // Coalescing failed.
1629 // If definition of source is defined by trivial computation, try
1630 // rematerializing it.
1631 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1632 ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI))
1633 return true;
1635 // If we can eliminate the copy without merging the live ranges, do so now.
1636 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1637 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1638 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1639 JoinedCopies.insert(CopyMI);
1640 return true;
1643 // Otherwise, we are unable to join the intervals.
1644 DOUT << "Interference!\n";
1645 Again = true; // May be possible to coalesce later.
1646 return false;
1649 LiveInterval *ResSrcInt = &SrcInt;
1650 LiveInterval *ResDstInt = &DstInt;
1651 if (Swapped) {
1652 std::swap(SrcReg, DstReg);
1653 std::swap(ResSrcInt, ResDstInt);
1655 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1656 "LiveInterval::join didn't work right!");
1658 // If we're about to merge live ranges into a physical register live interval,
1659 // we have to update any aliased register's live ranges to indicate that they
1660 // have clobbered values for this range.
1661 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1662 // If this is a extract_subreg where dst is a physical register, e.g.
1663 // cl = EXTRACT_SUBREG reg1024, 1
1664 // then create and update the actual physical register allocated to RHS.
1665 if (RealDstReg || RealSrcReg) {
1666 LiveInterval &RealInt =
1667 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1668 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1669 E = SavedLI->vni_end(); I != E; ++I) {
1670 const VNInfo *ValNo = *I;
1671 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->copy,
1672 li_->getVNInfoAllocator());
1673 NewValNo->hasPHIKill = ValNo->hasPHIKill;
1674 NewValNo->redefByEC = ValNo->redefByEC;
1675 RealInt.addKills(NewValNo, ValNo->kills);
1676 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1678 RealInt.weight += SavedLI->weight;
1679 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1682 // Update the liveintervals of sub-registers.
1683 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1684 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1685 li_->getVNInfoAllocator());
1688 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1689 // larger super-register.
1690 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1691 !SrcIsPhys && !DstIsPhys) {
1692 if ((isExtSubReg && !Swapped) ||
1693 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1694 ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
1695 std::swap(SrcReg, DstReg);
1696 std::swap(ResSrcInt, ResDstInt);
1700 // Coalescing to a virtual register that is of a sub-register class of the
1701 // other. Make sure the resulting register is set to the right register class.
1702 if (CrossRC) {
1703 ++numCrossRCs;
1704 if (NewRC)
1705 mri_->setRegClass(DstReg, NewRC);
1708 if (NewHeuristic) {
1709 // Add all copies that define val# in the source interval into the queue.
1710 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1711 e = ResSrcInt->vni_end(); i != e; ++i) {
1712 const VNInfo *vni = *i;
1713 if (!vni->def || vni->def == ~1U || vni->def == ~0U)
1714 continue;
1715 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1716 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1717 if (CopyMI &&
1718 JoinedCopies.count(CopyMI) == 0 &&
1719 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1720 NewSrcSubIdx, NewDstSubIdx)) {
1721 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1722 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1723 isBackEdgeCopy(CopyMI, DstReg)));
1728 // Remember to delete the copy instruction.
1729 JoinedCopies.insert(CopyMI);
1731 // Some live range has been lengthened due to colaescing, eliminate the
1732 // unnecessary kills.
1733 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1734 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1735 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1737 if (isInsSubReg)
1738 // Avoid:
1739 // r1024 = op
1740 // r1024 = implicit_def
1741 // ...
1742 // = r1024
1743 RemoveDeadImpDef(DstReg, *ResDstInt);
1744 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1746 // SrcReg is guarateed to be the register whose live interval that is
1747 // being merged.
1748 li_->removeInterval(SrcReg);
1750 // Manually deleted the live interval copy.
1751 if (SavedLI) {
1752 SavedLI->clear();
1753 delete SavedLI;
1756 if (isEmpty) {
1757 // Now the copy is being coalesced away, the val# previously defined
1758 // by the copy is being defined by an IMPLICIT_DEF which defines a zero
1759 // length interval. Remove the val#.
1760 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1761 const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
1762 VNInfo *ImpVal = LR->valno;
1763 assert(ImpVal->def == CopyIdx);
1764 unsigned NextDef = LR->end;
1765 RemoveCopiesFromValNo(*ResDstInt, ImpVal);
1766 ResDstInt->removeValNo(ImpVal);
1767 LR = ResDstInt->FindLiveRangeContaining(NextDef);
1768 if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
1769 // Special case: vr1024 = implicit_def
1770 // vr1024 = insert_subreg vr1024, vr1025, c
1771 // The insert_subreg becomes a "copy" that defines a val# which can itself
1772 // be coalesced away.
1773 MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
1774 if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
1775 LR->valno->copy = DefMI;
1779 // If resulting interval has a preference that no longer fits because of subreg
1780 // coalescing, just clear the preference.
1781 if (ResDstInt->preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1782 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1783 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1784 if (!RC->contains(ResDstInt->preference))
1785 ResDstInt->preference = 0;
1788 DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
1789 DOUT << "\n";
1791 ++numJoins;
1792 return true;
1795 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1796 /// compute what the resultant value numbers for each value in the input two
1797 /// ranges will be. This is complicated by copies between the two which can
1798 /// and will commonly cause multiple value numbers to be merged into one.
1800 /// VN is the value number that we're trying to resolve. InstDefiningValue
1801 /// keeps track of the new InstDefiningValue assignment for the result
1802 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1803 /// whether a value in this or other is a copy from the opposite set.
1804 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1805 /// already been assigned.
1807 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1808 /// contains the value number the copy is from.
1810 static unsigned ComputeUltimateVN(VNInfo *VNI,
1811 SmallVector<VNInfo*, 16> &NewVNInfo,
1812 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1813 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1814 SmallVector<int, 16> &ThisValNoAssignments,
1815 SmallVector<int, 16> &OtherValNoAssignments) {
1816 unsigned VN = VNI->id;
1818 // If the VN has already been computed, just return it.
1819 if (ThisValNoAssignments[VN] >= 0)
1820 return ThisValNoAssignments[VN];
1821 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1823 // If this val is not a copy from the other val, then it must be a new value
1824 // number in the destination.
1825 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1826 if (I == ThisFromOther.end()) {
1827 NewVNInfo.push_back(VNI);
1828 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1830 VNInfo *OtherValNo = I->second;
1832 // Otherwise, this *is* a copy from the RHS. If the other side has already
1833 // been computed, return it.
1834 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1835 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1837 // Mark this value number as currently being computed, then ask what the
1838 // ultimate value # of the other value is.
1839 ThisValNoAssignments[VN] = -2;
1840 unsigned UltimateVN =
1841 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1842 OtherValNoAssignments, ThisValNoAssignments);
1843 return ThisValNoAssignments[VN] = UltimateVN;
1846 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1847 return std::find(V.begin(), V.end(), Val) != V.end();
1850 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1851 /// the specified live interval is defined by a copy from the specified
1852 /// register.
1853 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1854 LiveRange *LR,
1855 unsigned Reg) {
1856 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1857 if (SrcReg == Reg)
1858 return true;
1859 if (LR->valno->def == ~0U &&
1860 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1861 *tri_->getSuperRegisters(li.reg)) {
1862 // It's a sub-register live interval, we may not have precise information.
1863 // Re-compute it.
1864 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1865 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1866 if (DefMI &&
1867 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1868 DstReg == li.reg && SrcReg == Reg) {
1869 // Cache computed info.
1870 LR->valno->def = LR->start;
1871 LR->valno->copy = DefMI;
1872 return true;
1875 return false;
1878 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1879 /// caller of this method must guarantee that the RHS only contains a single
1880 /// value number and that the RHS is not defined by a copy from this
1881 /// interval. This returns false if the intervals are not joinable, or it
1882 /// joins them and returns true.
1883 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1884 assert(RHS.containsOneValue());
1886 // Some number (potentially more than one) value numbers in the current
1887 // interval may be defined as copies from the RHS. Scan the overlapping
1888 // portions of the LHS and RHS, keeping track of this and looking for
1889 // overlapping live ranges that are NOT defined as copies. If these exist, we
1890 // cannot coalesce.
1892 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1893 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1895 if (LHSIt->start < RHSIt->start) {
1896 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1897 if (LHSIt != LHS.begin()) --LHSIt;
1898 } else if (RHSIt->start < LHSIt->start) {
1899 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1900 if (RHSIt != RHS.begin()) --RHSIt;
1903 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1905 while (1) {
1906 // Determine if these live intervals overlap.
1907 bool Overlaps = false;
1908 if (LHSIt->start <= RHSIt->start)
1909 Overlaps = LHSIt->end > RHSIt->start;
1910 else
1911 Overlaps = RHSIt->end > LHSIt->start;
1913 // If the live intervals overlap, there are two interesting cases: if the
1914 // LHS interval is defined by a copy from the RHS, it's ok and we record
1915 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1916 // coalesce these live ranges and we bail out.
1917 if (Overlaps) {
1918 // If we haven't already recorded that this value # is safe, check it.
1919 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1920 // Copy from the RHS?
1921 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1922 return false; // Nope, bail out.
1924 if (LHSIt->contains(RHSIt->valno->def))
1925 // Here is an interesting situation:
1926 // BB1:
1927 // vr1025 = copy vr1024
1928 // ..
1929 // BB2:
1930 // vr1024 = op
1931 // = vr1025
1932 // Even though vr1025 is copied from vr1024, it's not safe to
1933 // coalesce them since the live range of vr1025 intersects the
1934 // def of vr1024. This happens because vr1025 is assigned the
1935 // value of the previous iteration of vr1024.
1936 return false;
1937 EliminatedLHSVals.push_back(LHSIt->valno);
1940 // We know this entire LHS live range is okay, so skip it now.
1941 if (++LHSIt == LHSEnd) break;
1942 continue;
1945 if (LHSIt->end < RHSIt->end) {
1946 if (++LHSIt == LHSEnd) break;
1947 } else {
1948 // One interesting case to check here. It's possible that we have
1949 // something like "X3 = Y" which defines a new value number in the LHS,
1950 // and is the last use of this liverange of the RHS. In this case, we
1951 // want to notice this copy (so that it gets coalesced away) even though
1952 // the live ranges don't actually overlap.
1953 if (LHSIt->start == RHSIt->end) {
1954 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1955 // We already know that this value number is going to be merged in
1956 // if coalescing succeeds. Just skip the liverange.
1957 if (++LHSIt == LHSEnd) break;
1958 } else {
1959 // Otherwise, if this is a copy from the RHS, mark it as being merged
1960 // in.
1961 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1962 if (LHSIt->contains(RHSIt->valno->def))
1963 // Here is an interesting situation:
1964 // BB1:
1965 // vr1025 = copy vr1024
1966 // ..
1967 // BB2:
1968 // vr1024 = op
1969 // = vr1025
1970 // Even though vr1025 is copied from vr1024, it's not safe to
1971 // coalesced them since live range of vr1025 intersects the
1972 // def of vr1024. This happens because vr1025 is assigned the
1973 // value of the previous iteration of vr1024.
1974 return false;
1975 EliminatedLHSVals.push_back(LHSIt->valno);
1977 // We know this entire LHS live range is okay, so skip it now.
1978 if (++LHSIt == LHSEnd) break;
1983 if (++RHSIt == RHSEnd) break;
1987 // If we got here, we know that the coalescing will be successful and that
1988 // the value numbers in EliminatedLHSVals will all be merged together. Since
1989 // the most common case is that EliminatedLHSVals has a single number, we
1990 // optimize for it: if there is more than one value, we merge them all into
1991 // the lowest numbered one, then handle the interval as if we were merging
1992 // with one value number.
1993 VNInfo *LHSValNo = NULL;
1994 if (EliminatedLHSVals.size() > 1) {
1995 // Loop through all the equal value numbers merging them into the smallest
1996 // one.
1997 VNInfo *Smallest = EliminatedLHSVals[0];
1998 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1999 if (EliminatedLHSVals[i]->id < Smallest->id) {
2000 // Merge the current notion of the smallest into the smaller one.
2001 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
2002 Smallest = EliminatedLHSVals[i];
2003 } else {
2004 // Merge into the smallest.
2005 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
2008 LHSValNo = Smallest;
2009 } else if (EliminatedLHSVals.empty()) {
2010 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2011 *tri_->getSuperRegisters(LHS.reg))
2012 // Imprecise sub-register information. Can't handle it.
2013 return false;
2014 assert(0 && "No copies from the RHS?");
2015 } else {
2016 LHSValNo = EliminatedLHSVals[0];
2019 // Okay, now that there is a single LHS value number that we're merging the
2020 // RHS into, update the value number info for the LHS to indicate that the
2021 // value number is defined where the RHS value number was.
2022 const VNInfo *VNI = RHS.getValNumInfo(0);
2023 LHSValNo->def = VNI->def;
2024 LHSValNo->copy = VNI->copy;
2026 // Okay, the final step is to loop over the RHS live intervals, adding them to
2027 // the LHS.
2028 LHSValNo->hasPHIKill |= VNI->hasPHIKill;
2029 LHS.addKills(LHSValNo, VNI->kills);
2030 LHS.MergeRangesInAsValue(RHS, LHSValNo);
2031 LHS.weight += RHS.weight;
2032 if (RHS.preference && !LHS.preference)
2033 LHS.preference = RHS.preference;
2035 // Update the liveintervals of sub-registers.
2036 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2037 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2038 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2039 li_->getVNInfoAllocator());
2041 return true;
2044 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2045 /// returns false. Otherwise, if one of the intervals being joined is a
2046 /// physreg, this method always canonicalizes LHS to be it. The output
2047 /// "RHS" will not have been modified, so we can use this information
2048 /// below to update aliases.
2049 bool
2050 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2051 bool &Swapped) {
2052 // Compute the final value assignment, assuming that the live ranges can be
2053 // coalesced.
2054 SmallVector<int, 16> LHSValNoAssignments;
2055 SmallVector<int, 16> RHSValNoAssignments;
2056 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2057 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2058 SmallVector<VNInfo*, 16> NewVNInfo;
2060 // If a live interval is a physical register, conservatively check if any
2061 // of its sub-registers is overlapping the live interval of the virtual
2062 // register. If so, do not coalesce.
2063 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2064 *tri_->getSubRegisters(LHS.reg)) {
2065 // If it's coalescing a virtual register to a physical register, estimate
2066 // its live interval length. This is the *cost* of scanning an entire live
2067 // interval. If the cost is low, we'll do an exhaustive check instead.
2069 // If this is something like this:
2070 // BB1:
2071 // v1024 = op
2072 // ...
2073 // BB2:
2074 // ...
2075 // RAX = v1024
2077 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2078 // less conservative check. It's possible a sub-register is defined before
2079 // v1024 (or live in) and live out of BB1.
2080 if (RHS.containsOneValue() &&
2081 li_->intervalIsInOneMBB(RHS) &&
2082 li_->getApproximateInstructionCount(RHS) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2085 return false;
2086 } else {
2087 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2088 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2089 DOUT << "Interfere with sub-register ";
2090 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2091 return false;
2094 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2095 *tri_->getSubRegisters(RHS.reg)) {
2096 if (LHS.containsOneValue() &&
2097 li_->getApproximateInstructionCount(LHS) <= 10) {
2098 // Perform a more exhaustive check for some common cases.
2099 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2100 return false;
2101 } else {
2102 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2103 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2104 DOUT << "Interfere with sub-register ";
2105 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2106 return false;
2111 // Compute ultimate value numbers for the LHS and RHS values.
2112 if (RHS.containsOneValue()) {
2113 // Copies from a liveinterval with a single value are simple to handle and
2114 // very common, handle the special case here. This is important, because
2115 // often RHS is small and LHS is large (e.g. a physreg).
2117 // Find out if the RHS is defined as a copy from some value in the LHS.
2118 int RHSVal0DefinedFromLHS = -1;
2119 int RHSValID = -1;
2120 VNInfo *RHSValNoInfo = NULL;
2121 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2122 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2123 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2124 // If RHS is not defined as a copy from the LHS, we can use simpler and
2125 // faster checks to see if the live ranges are coalescable. This joiner
2126 // can't swap the LHS/RHS intervals though.
2127 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2128 return SimpleJoin(LHS, RHS);
2129 } else {
2130 RHSValNoInfo = RHSValNoInfo0;
2132 } else {
2133 // It was defined as a copy from the LHS, find out what value # it is.
2134 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
2135 RHSValID = RHSValNoInfo->id;
2136 RHSVal0DefinedFromLHS = RHSValID;
2139 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2140 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2141 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2143 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2144 // should now get updated.
2145 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2146 i != e; ++i) {
2147 VNInfo *VNI = *i;
2148 unsigned VN = VNI->id;
2149 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2150 if (LHSSrcReg != RHS.reg) {
2151 // If this is not a copy from the RHS, its value number will be
2152 // unmodified by the coalescing.
2153 NewVNInfo[VN] = VNI;
2154 LHSValNoAssignments[VN] = VN;
2155 } else if (RHSValID == -1) {
2156 // Otherwise, it is a copy from the RHS, and we don't already have a
2157 // value# for it. Keep the current value number, but remember it.
2158 LHSValNoAssignments[VN] = RHSValID = VN;
2159 NewVNInfo[VN] = RHSValNoInfo;
2160 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2161 } else {
2162 // Otherwise, use the specified value #.
2163 LHSValNoAssignments[VN] = RHSValID;
2164 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2165 NewVNInfo[VN] = RHSValNoInfo;
2166 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2169 } else {
2170 NewVNInfo[VN] = VNI;
2171 LHSValNoAssignments[VN] = VN;
2175 assert(RHSValID != -1 && "Didn't find value #?");
2176 RHSValNoAssignments[0] = RHSValID;
2177 if (RHSVal0DefinedFromLHS != -1) {
2178 // This path doesn't go through ComputeUltimateVN so just set
2179 // it to anything.
2180 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2182 } else {
2183 // Loop over the value numbers of the LHS, seeing if any are defined from
2184 // the RHS.
2185 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2186 i != e; ++i) {
2187 VNInfo *VNI = *i;
2188 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2189 continue;
2191 // DstReg is known to be a register in the LHS interval. If the src is
2192 // from the RHS interval, we can use its value #.
2193 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2194 continue;
2196 // Figure out the value # from the RHS.
2197 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2200 // Loop over the value numbers of the RHS, seeing if any are defined from
2201 // the LHS.
2202 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2203 i != e; ++i) {
2204 VNInfo *VNI = *i;
2205 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2206 continue;
2208 // DstReg is known to be a register in the RHS interval. If the src is
2209 // from the LHS interval, we can use its value #.
2210 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2211 continue;
2213 // Figure out the value # from the LHS.
2214 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2217 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2218 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2219 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2221 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2222 i != e; ++i) {
2223 VNInfo *VNI = *i;
2224 unsigned VN = VNI->id;
2225 if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2226 continue;
2227 ComputeUltimateVN(VNI, NewVNInfo,
2228 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2229 LHSValNoAssignments, RHSValNoAssignments);
2231 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2232 i != e; ++i) {
2233 VNInfo *VNI = *i;
2234 unsigned VN = VNI->id;
2235 if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2236 continue;
2237 // If this value number isn't a copy from the LHS, it's a new number.
2238 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2239 NewVNInfo.push_back(VNI);
2240 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2241 continue;
2244 ComputeUltimateVN(VNI, NewVNInfo,
2245 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2246 RHSValNoAssignments, LHSValNoAssignments);
2250 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2251 // interval lists to see if these intervals are coalescable.
2252 LiveInterval::const_iterator I = LHS.begin();
2253 LiveInterval::const_iterator IE = LHS.end();
2254 LiveInterval::const_iterator J = RHS.begin();
2255 LiveInterval::const_iterator JE = RHS.end();
2257 // Skip ahead until the first place of potential sharing.
2258 if (I->start < J->start) {
2259 I = std::upper_bound(I, IE, J->start);
2260 if (I != LHS.begin()) --I;
2261 } else if (J->start < I->start) {
2262 J = std::upper_bound(J, JE, I->start);
2263 if (J != RHS.begin()) --J;
2266 while (1) {
2267 // Determine if these two live ranges overlap.
2268 bool Overlaps;
2269 if (I->start < J->start) {
2270 Overlaps = I->end > J->start;
2271 } else {
2272 Overlaps = J->end > I->start;
2275 // If so, check value # info to determine if they are really different.
2276 if (Overlaps) {
2277 // If the live range overlap will map to the same value number in the
2278 // result liverange, we can still coalesce them. If not, we can't.
2279 if (LHSValNoAssignments[I->valno->id] !=
2280 RHSValNoAssignments[J->valno->id])
2281 return false;
2284 if (I->end < J->end) {
2285 ++I;
2286 if (I == IE) break;
2287 } else {
2288 ++J;
2289 if (J == JE) break;
2293 // Update kill info. Some live ranges are extended due to copy coalescing.
2294 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2295 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2296 VNInfo *VNI = I->first;
2297 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2298 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2299 NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
2300 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2303 // Update kill info. Some live ranges are extended due to copy coalescing.
2304 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2305 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2306 VNInfo *VNI = I->first;
2307 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2308 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2309 NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
2310 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2313 // If we get here, we know that we can coalesce the live ranges. Ask the
2314 // intervals to coalesce themselves now.
2315 if ((RHS.ranges.size() > LHS.ranges.size() &&
2316 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2317 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2318 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
2319 Swapped = true;
2320 } else {
2321 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
2322 Swapped = false;
2324 return true;
2327 namespace {
2328 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2329 // depth of the basic block (the unsigned), and then on the MBB number.
2330 struct DepthMBBCompare {
2331 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2332 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2333 if (LHS.first > RHS.first) return true; // Deeper loops first
2334 return LHS.first == RHS.first &&
2335 LHS.second->getNumber() < RHS.second->getNumber();
2340 /// getRepIntervalSize - Returns the size of the interval that represents the
2341 /// specified register.
2342 template<class SF>
2343 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2344 return Rc->getRepIntervalSize(Reg);
2347 /// CopyRecSort::operator - Join priority queue sorting function.
2349 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2350 // Inner loops first.
2351 if (left.LoopDepth > right.LoopDepth)
2352 return false;
2353 else if (left.LoopDepth == right.LoopDepth)
2354 if (left.isBackEdge && !right.isBackEdge)
2355 return false;
2356 return true;
2359 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2360 std::vector<CopyRec> &TryAgain) {
2361 DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
2363 std::vector<CopyRec> VirtCopies;
2364 std::vector<CopyRec> PhysCopies;
2365 std::vector<CopyRec> ImpDefCopies;
2366 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2367 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2368 MII != E;) {
2369 MachineInstr *Inst = MII++;
2371 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2372 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2373 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2374 DstReg = Inst->getOperand(0).getReg();
2375 SrcReg = Inst->getOperand(1).getReg();
2376 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2377 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2378 DstReg = Inst->getOperand(0).getReg();
2379 SrcReg = Inst->getOperand(2).getReg();
2380 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2381 continue;
2383 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2384 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2385 if (NewHeuristic) {
2386 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2387 } else {
2388 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2389 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2390 else if (SrcIsPhys || DstIsPhys)
2391 PhysCopies.push_back(CopyRec(Inst, 0, false));
2392 else
2393 VirtCopies.push_back(CopyRec(Inst, 0, false));
2397 if (NewHeuristic)
2398 return;
2400 // Try coalescing implicit copies first, followed by copies to / from
2401 // physical registers, then finally copies from virtual registers to
2402 // virtual registers.
2403 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2404 CopyRec &TheCopy = ImpDefCopies[i];
2405 bool Again = false;
2406 if (!JoinCopy(TheCopy, Again))
2407 if (Again)
2408 TryAgain.push_back(TheCopy);
2410 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2411 CopyRec &TheCopy = PhysCopies[i];
2412 bool Again = false;
2413 if (!JoinCopy(TheCopy, Again))
2414 if (Again)
2415 TryAgain.push_back(TheCopy);
2417 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2418 CopyRec &TheCopy = VirtCopies[i];
2419 bool Again = false;
2420 if (!JoinCopy(TheCopy, Again))
2421 if (Again)
2422 TryAgain.push_back(TheCopy);
2426 void SimpleRegisterCoalescing::joinIntervals() {
2427 DOUT << "********** JOINING INTERVALS ***********\n";
2429 if (NewHeuristic)
2430 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2432 std::vector<CopyRec> TryAgainList;
2433 if (loopInfo->empty()) {
2434 // If there are no loops in the function, join intervals in function order.
2435 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2436 I != E; ++I)
2437 CopyCoalesceInMBB(I, TryAgainList);
2438 } else {
2439 // Otherwise, join intervals in inner loops before other intervals.
2440 // Unfortunately we can't just iterate over loop hierarchy here because
2441 // there may be more MBB's than BB's. Collect MBB's for sorting.
2443 // Join intervals in the function prolog first. We want to join physical
2444 // registers with virtual registers before the intervals got too long.
2445 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2446 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2447 MachineBasicBlock *MBB = I;
2448 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2451 // Sort by loop depth.
2452 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2454 // Finally, join intervals in loop nest order.
2455 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2456 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2459 // Joining intervals can allow other intervals to be joined. Iteratively join
2460 // until we make no progress.
2461 if (NewHeuristic) {
2462 SmallVector<CopyRec, 16> TryAgain;
2463 bool ProgressMade = true;
2464 while (ProgressMade) {
2465 ProgressMade = false;
2466 while (!JoinQueue->empty()) {
2467 CopyRec R = JoinQueue->pop();
2468 bool Again = false;
2469 bool Success = JoinCopy(R, Again);
2470 if (Success)
2471 ProgressMade = true;
2472 else if (Again)
2473 TryAgain.push_back(R);
2476 if (ProgressMade) {
2477 while (!TryAgain.empty()) {
2478 JoinQueue->push(TryAgain.back());
2479 TryAgain.pop_back();
2483 } else {
2484 bool ProgressMade = true;
2485 while (ProgressMade) {
2486 ProgressMade = false;
2488 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2489 CopyRec &TheCopy = TryAgainList[i];
2490 if (TheCopy.MI) {
2491 bool Again = false;
2492 bool Success = JoinCopy(TheCopy, Again);
2493 if (Success || !Again) {
2494 TheCopy.MI = 0; // Mark this one as done.
2495 ProgressMade = true;
2502 if (NewHeuristic)
2503 delete JoinQueue;
2506 /// Return true if the two specified registers belong to different register
2507 /// classes. The registers may be either phys or virt regs.
2508 bool
2509 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2510 unsigned RegB) const {
2511 // Get the register classes for the first reg.
2512 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2513 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2514 "Shouldn't consider two physregs!");
2515 return !mri_->getRegClass(RegB)->contains(RegA);
2518 // Compare against the regclass for the second reg.
2519 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2520 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2521 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2522 return RegClassA != RegClassB;
2524 return !RegClassA->contains(RegB);
2527 /// lastRegisterUse - Returns the last use of the specific register between
2528 /// cycles Start and End or NULL if there are no uses.
2529 MachineOperand *
2530 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2531 unsigned Reg, unsigned &UseIdx) const{
2532 UseIdx = 0;
2533 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2534 MachineOperand *LastUse = NULL;
2535 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2536 E = mri_->use_end(); I != E; ++I) {
2537 MachineOperand &Use = I.getOperand();
2538 MachineInstr *UseMI = Use.getParent();
2539 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2540 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2541 SrcReg == DstReg)
2542 // Ignore identity copies.
2543 continue;
2544 unsigned Idx = li_->getInstructionIndex(UseMI);
2545 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2546 LastUse = &Use;
2547 UseIdx = li_->getUseIndex(Idx);
2550 return LastUse;
2553 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2554 int s = Start;
2555 while (e >= s) {
2556 // Skip deleted instructions
2557 MachineInstr *MI = li_->getInstructionFromIndex(e);
2558 while ((e - InstrSlots::NUM) >= s && !MI) {
2559 e -= InstrSlots::NUM;
2560 MI = li_->getInstructionFromIndex(e);
2562 if (e < s || MI == NULL)
2563 return NULL;
2565 // Ignore identity copies.
2566 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2567 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2568 SrcReg == DstReg))
2569 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2570 MachineOperand &Use = MI->getOperand(i);
2571 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2572 tri_->regsOverlap(Use.getReg(), Reg)) {
2573 UseIdx = li_->getUseIndex(e);
2574 return &Use;
2578 e -= InstrSlots::NUM;
2581 return NULL;
2585 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2586 if (TargetRegisterInfo::isPhysicalRegister(reg))
2587 cerr << tri_->getName(reg);
2588 else
2589 cerr << "%reg" << reg;
2592 void SimpleRegisterCoalescing::releaseMemory() {
2593 JoinedCopies.clear();
2594 ReMatCopies.clear();
2595 ReMatDefs.clear();
2598 static bool isZeroLengthInterval(LiveInterval *li) {
2599 for (LiveInterval::Ranges::const_iterator
2600 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2601 if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
2602 return false;
2603 return true;
2606 /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
2607 /// turn the copy into an implicit def.
2608 bool
2609 SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
2610 MachineBasicBlock *MBB,
2611 unsigned DstReg, unsigned SrcReg) {
2612 MachineInstr *CopyMI = &*I;
2613 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
2614 if (!li_->hasInterval(SrcReg))
2615 return false;
2616 LiveInterval &SrcInt = li_->getInterval(SrcReg);
2617 if (!SrcInt.empty())
2618 return false;
2619 if (!li_->hasInterval(DstReg))
2620 return false;
2621 LiveInterval &DstInt = li_->getInterval(DstReg);
2622 const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
2623 DstInt.removeValNo(DstLR->valno);
2624 CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
2625 for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
2626 CopyMI->RemoveOperand(i);
2627 bool NoUse = mri_->use_empty(SrcReg);
2628 if (NoUse) {
2629 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
2630 E = mri_->reg_end(); I != E; ) {
2631 assert(I.getOperand().isDef());
2632 MachineInstr *DefMI = &*I;
2633 ++I;
2634 // The implicit_def source has no other uses, delete it.
2635 assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
2636 li_->RemoveMachineInstrFromMaps(DefMI);
2637 DefMI->eraseFromParent();
2640 ++I;
2641 return true;
2645 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2646 mf_ = &fn;
2647 mri_ = &fn.getRegInfo();
2648 tm_ = &fn.getTarget();
2649 tri_ = tm_->getRegisterInfo();
2650 tii_ = tm_->getInstrInfo();
2651 li_ = &getAnalysis<LiveIntervals>();
2652 loopInfo = &getAnalysis<MachineLoopInfo>();
2654 DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
2655 << "********** Function: "
2656 << ((Value*)mf_->getFunction())->getName() << '\n';
2658 allocatableRegs_ = tri_->getAllocatableSet(fn);
2659 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2660 E = tri_->regclass_end(); I != E; ++I)
2661 allocatableRCRegs_.insert(std::make_pair(*I,
2662 tri_->getAllocatableSet(fn, *I)));
2664 // Join (coalesce) intervals if requested.
2665 if (EnableJoining) {
2666 joinIntervals();
2667 DEBUG({
2668 DOUT << "********** INTERVALS POST JOINING **********\n";
2669 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2670 I->second->print(DOUT, tri_);
2671 DOUT << "\n";
2676 // Perform a final pass over the instructions and compute spill weights
2677 // and remove identity moves.
2678 SmallVector<unsigned, 4> DeadDefs;
2679 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2680 mbbi != mbbe; ++mbbi) {
2681 MachineBasicBlock* mbb = mbbi;
2682 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2684 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2685 mii != mie; ) {
2686 MachineInstr *MI = mii;
2687 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2688 if (JoinedCopies.count(MI)) {
2689 // Delete all coalesced copies.
2690 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2691 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2692 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2693 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2694 "Unrecognized copy instruction");
2695 DstReg = MI->getOperand(0).getReg();
2697 if (MI->registerDefIsDead(DstReg)) {
2698 LiveInterval &li = li_->getInterval(DstReg);
2699 if (!ShortenDeadCopySrcLiveRange(li, MI))
2700 ShortenDeadCopyLiveRange(li, MI);
2702 li_->RemoveMachineInstrFromMaps(MI);
2703 mii = mbbi->erase(mii);
2704 ++numPeep;
2705 continue;
2708 // Now check if this is a remat'ed def instruction which is now dead.
2709 if (ReMatDefs.count(MI)) {
2710 bool isDead = true;
2711 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2712 const MachineOperand &MO = MI->getOperand(i);
2713 if (!MO.isReg())
2714 continue;
2715 unsigned Reg = MO.getReg();
2716 if (!Reg)
2717 continue;
2718 if (TargetRegisterInfo::isVirtualRegister(Reg))
2719 DeadDefs.push_back(Reg);
2720 if (MO.isDead())
2721 continue;
2722 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2723 !mri_->use_empty(Reg)) {
2724 isDead = false;
2725 break;
2728 if (isDead) {
2729 while (!DeadDefs.empty()) {
2730 unsigned DeadDef = DeadDefs.back();
2731 DeadDefs.pop_back();
2732 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2734 li_->RemoveMachineInstrFromMaps(mii);
2735 mii = mbbi->erase(mii);
2736 continue;
2737 } else
2738 DeadDefs.clear();
2741 // If the move will be an identity move delete it
2742 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2743 if (isMove && SrcReg == DstReg) {
2744 if (li_->hasInterval(SrcReg)) {
2745 LiveInterval &RegInt = li_->getInterval(SrcReg);
2746 // If def of this move instruction is dead, remove its live range
2747 // from the dstination register's live interval.
2748 if (MI->registerDefIsDead(DstReg)) {
2749 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2750 ShortenDeadCopyLiveRange(RegInt, MI);
2753 li_->RemoveMachineInstrFromMaps(MI);
2754 mii = mbbi->erase(mii);
2755 ++numPeep;
2756 } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
2757 SmallSet<unsigned, 4> UniqueUses;
2758 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2759 const MachineOperand &mop = MI->getOperand(i);
2760 if (mop.isReg() && mop.getReg() &&
2761 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2762 unsigned reg = mop.getReg();
2763 // Multiple uses of reg by the same instruction. It should not
2764 // contribute to spill weight again.
2765 if (UniqueUses.count(reg) != 0)
2766 continue;
2767 LiveInterval &RegInt = li_->getInterval(reg);
2768 RegInt.weight +=
2769 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2770 UniqueUses.insert(reg);
2773 ++mii;
2778 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2779 LiveInterval &LI = *I->second;
2780 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2781 // If the live interval length is essentially zero, i.e. in every live
2782 // range the use follows def immediately, it doesn't make sense to spill
2783 // it and hope it will be easier to allocate for this li.
2784 if (isZeroLengthInterval(&LI))
2785 LI.weight = HUGE_VALF;
2786 else {
2787 bool isLoad = false;
2788 SmallVector<LiveInterval*, 4> SpillIs;
2789 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2790 // If all of the definitions of the interval are re-materializable,
2791 // it is a preferred candidate for spilling. If non of the defs are
2792 // loads, then it's potentially very cheap to re-materialize.
2793 // FIXME: this gets much more complicated once we support non-trivial
2794 // re-materialization.
2795 if (isLoad)
2796 LI.weight *= 0.9F;
2797 else
2798 LI.weight *= 0.5F;
2802 // Slightly prefer live interval that has been assigned a preferred reg.
2803 if (LI.preference)
2804 LI.weight *= 1.01F;
2806 // Divide the weight of the interval by its size. This encourages
2807 // spilling of intervals that are large and have few uses, and
2808 // discourages spilling of small intervals with many uses.
2809 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2813 DEBUG(dump());
2814 return true;
2817 /// print - Implement the dump method.
2818 void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
2819 li_->print(O, m);
2822 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2823 return new SimpleRegisterCoalescing();
2826 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2827 DEFINING_FILE_FOR(SimpleRegisterCoalescing)