1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
31 STATISTIC(NumDynamicInsts
, "Number of dynamic instructions executed");
32 static Interpreter
*TheEE
= 0;
34 static cl::opt
<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden
,
35 cl::desc("make the interpreter print every volatile load and store"));
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
41 static inline uint64_t doSignExtension(uint64_t Val
, const IntegerType
* ITy
) {
42 // Determine if the value is signed or not
43 bool isSigned
= (Val
& (1 << (ITy
->getBitWidth()-1))) != 0;
44 // If its signed, extend the sign bits
46 Val
|= ~ITy
->getBitMask();
50 static void SetValue(Value
*V
, GenericValue Val
, ExecutionContext
&SF
) {
54 void Interpreter::initializeExecutionEngine() {
58 //===----------------------------------------------------------------------===//
59 // Binary Instruction Implementations
60 //===----------------------------------------------------------------------===//
62 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
63 case Type::TY##TyID: \
64 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
67 #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
68 case Type::IntegerTyID: { \
69 Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
74 static void executeAddInst(GenericValue
&Dest
, GenericValue Src1
,
75 GenericValue Src2
, const Type
*Ty
) {
76 switch (Ty
->getTypeID()) {
77 IMPLEMENT_INTEGER_BINOP1(+, Ty
);
78 IMPLEMENT_BINARY_OPERATOR(+, Float
);
79 IMPLEMENT_BINARY_OPERATOR(+, Double
);
81 cerr
<< "Unhandled type for Add instruction: " << *Ty
<< "\n";
86 static void executeSubInst(GenericValue
&Dest
, GenericValue Src1
,
87 GenericValue Src2
, const Type
*Ty
) {
88 switch (Ty
->getTypeID()) {
89 IMPLEMENT_INTEGER_BINOP1(-, Ty
);
90 IMPLEMENT_BINARY_OPERATOR(-, Float
);
91 IMPLEMENT_BINARY_OPERATOR(-, Double
);
93 cerr
<< "Unhandled type for Sub instruction: " << *Ty
<< "\n";
98 static void executeMulInst(GenericValue
&Dest
, GenericValue Src1
,
99 GenericValue Src2
, const Type
*Ty
) {
100 switch (Ty
->getTypeID()) {
101 IMPLEMENT_INTEGER_BINOP1(*, Ty
);
102 IMPLEMENT_BINARY_OPERATOR(*, Float
);
103 IMPLEMENT_BINARY_OPERATOR(*, Double
);
105 cerr
<< "Unhandled type for Mul instruction: " << *Ty
<< "\n";
110 static void executeFDivInst(GenericValue
&Dest
, GenericValue Src1
,
111 GenericValue Src2
, const Type
*Ty
) {
112 switch (Ty
->getTypeID()) {
113 IMPLEMENT_BINARY_OPERATOR(/, Float
);
114 IMPLEMENT_BINARY_OPERATOR(/, Double
);
116 cerr
<< "Unhandled type for FDiv instruction: " << *Ty
<< "\n";
121 static void executeFRemInst(GenericValue
&Dest
, GenericValue Src1
,
122 GenericValue Src2
, const Type
*Ty
) {
123 switch (Ty
->getTypeID()) {
124 case Type::FloatTyID
:
125 Dest
.FloatVal
= fmod(Src1
.FloatVal
, Src2
.FloatVal
);
127 case Type::DoubleTyID
:
128 Dest
.DoubleVal
= fmod(Src1
.DoubleVal
, Src2
.DoubleVal
);
131 cerr
<< "Unhandled type for Rem instruction: " << *Ty
<< "\n";
136 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
137 case Type::IntegerTyID: \
138 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
141 // Handle pointers specially because they must be compared with only as much
142 // width as the host has. We _do not_ want to be comparing 64 bit values when
143 // running on a 32-bit target, otherwise the upper 32 bits might mess up
144 // comparisons if they contain garbage.
145 #define IMPLEMENT_POINTER_ICMP(OP) \
146 case Type::PointerTyID: \
147 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
148 (void*)(intptr_t)Src2.PointerVal); \
151 static GenericValue
executeICMP_EQ(GenericValue Src1
, GenericValue Src2
,
154 switch (Ty
->getTypeID()) {
155 IMPLEMENT_INTEGER_ICMP(eq
,Ty
);
156 IMPLEMENT_POINTER_ICMP(==);
158 cerr
<< "Unhandled type for ICMP_EQ predicate: " << *Ty
<< "\n";
164 static GenericValue
executeICMP_NE(GenericValue Src1
, GenericValue Src2
,
167 switch (Ty
->getTypeID()) {
168 IMPLEMENT_INTEGER_ICMP(ne
,Ty
);
169 IMPLEMENT_POINTER_ICMP(!=);
171 cerr
<< "Unhandled type for ICMP_NE predicate: " << *Ty
<< "\n";
177 static GenericValue
executeICMP_ULT(GenericValue Src1
, GenericValue Src2
,
180 switch (Ty
->getTypeID()) {
181 IMPLEMENT_INTEGER_ICMP(ult
,Ty
);
182 IMPLEMENT_POINTER_ICMP(<);
184 cerr
<< "Unhandled type for ICMP_ULT predicate: " << *Ty
<< "\n";
190 static GenericValue
executeICMP_SLT(GenericValue Src1
, GenericValue Src2
,
193 switch (Ty
->getTypeID()) {
194 IMPLEMENT_INTEGER_ICMP(slt
,Ty
);
195 IMPLEMENT_POINTER_ICMP(<);
197 cerr
<< "Unhandled type for ICMP_SLT predicate: " << *Ty
<< "\n";
203 static GenericValue
executeICMP_UGT(GenericValue Src1
, GenericValue Src2
,
206 switch (Ty
->getTypeID()) {
207 IMPLEMENT_INTEGER_ICMP(ugt
,Ty
);
208 IMPLEMENT_POINTER_ICMP(>);
210 cerr
<< "Unhandled type for ICMP_UGT predicate: " << *Ty
<< "\n";
216 static GenericValue
executeICMP_SGT(GenericValue Src1
, GenericValue Src2
,
219 switch (Ty
->getTypeID()) {
220 IMPLEMENT_INTEGER_ICMP(sgt
,Ty
);
221 IMPLEMENT_POINTER_ICMP(>);
223 cerr
<< "Unhandled type for ICMP_SGT predicate: " << *Ty
<< "\n";
229 static GenericValue
executeICMP_ULE(GenericValue Src1
, GenericValue Src2
,
232 switch (Ty
->getTypeID()) {
233 IMPLEMENT_INTEGER_ICMP(ule
,Ty
);
234 IMPLEMENT_POINTER_ICMP(<=);
236 cerr
<< "Unhandled type for ICMP_ULE predicate: " << *Ty
<< "\n";
242 static GenericValue
executeICMP_SLE(GenericValue Src1
, GenericValue Src2
,
245 switch (Ty
->getTypeID()) {
246 IMPLEMENT_INTEGER_ICMP(sle
,Ty
);
247 IMPLEMENT_POINTER_ICMP(<=);
249 cerr
<< "Unhandled type for ICMP_SLE predicate: " << *Ty
<< "\n";
255 static GenericValue
executeICMP_UGE(GenericValue Src1
, GenericValue Src2
,
258 switch (Ty
->getTypeID()) {
259 IMPLEMENT_INTEGER_ICMP(uge
,Ty
);
260 IMPLEMENT_POINTER_ICMP(>=);
262 cerr
<< "Unhandled type for ICMP_UGE predicate: " << *Ty
<< "\n";
268 static GenericValue
executeICMP_SGE(GenericValue Src1
, GenericValue Src2
,
271 switch (Ty
->getTypeID()) {
272 IMPLEMENT_INTEGER_ICMP(sge
,Ty
);
273 IMPLEMENT_POINTER_ICMP(>=);
275 cerr
<< "Unhandled type for ICMP_SGE predicate: " << *Ty
<< "\n";
281 void Interpreter::visitICmpInst(ICmpInst
&I
) {
282 ExecutionContext
&SF
= ECStack
.back();
283 const Type
*Ty
= I
.getOperand(0)->getType();
284 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
285 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
286 GenericValue R
; // Result
288 switch (I
.getPredicate()) {
289 case ICmpInst::ICMP_EQ
: R
= executeICMP_EQ(Src1
, Src2
, Ty
); break;
290 case ICmpInst::ICMP_NE
: R
= executeICMP_NE(Src1
, Src2
, Ty
); break;
291 case ICmpInst::ICMP_ULT
: R
= executeICMP_ULT(Src1
, Src2
, Ty
); break;
292 case ICmpInst::ICMP_SLT
: R
= executeICMP_SLT(Src1
, Src2
, Ty
); break;
293 case ICmpInst::ICMP_UGT
: R
= executeICMP_UGT(Src1
, Src2
, Ty
); break;
294 case ICmpInst::ICMP_SGT
: R
= executeICMP_SGT(Src1
, Src2
, Ty
); break;
295 case ICmpInst::ICMP_ULE
: R
= executeICMP_ULE(Src1
, Src2
, Ty
); break;
296 case ICmpInst::ICMP_SLE
: R
= executeICMP_SLE(Src1
, Src2
, Ty
); break;
297 case ICmpInst::ICMP_UGE
: R
= executeICMP_UGE(Src1
, Src2
, Ty
); break;
298 case ICmpInst::ICMP_SGE
: R
= executeICMP_SGE(Src1
, Src2
, Ty
); break;
300 cerr
<< "Don't know how to handle this ICmp predicate!\n-->" << I
;
307 #define IMPLEMENT_FCMP(OP, TY) \
308 case Type::TY##TyID: \
309 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
312 static GenericValue
executeFCMP_OEQ(GenericValue Src1
, GenericValue Src2
,
315 switch (Ty
->getTypeID()) {
316 IMPLEMENT_FCMP(==, Float
);
317 IMPLEMENT_FCMP(==, Double
);
319 cerr
<< "Unhandled type for FCmp EQ instruction: " << *Ty
<< "\n";
325 static GenericValue
executeFCMP_ONE(GenericValue Src1
, GenericValue Src2
,
328 switch (Ty
->getTypeID()) {
329 IMPLEMENT_FCMP(!=, Float
);
330 IMPLEMENT_FCMP(!=, Double
);
333 cerr
<< "Unhandled type for FCmp NE instruction: " << *Ty
<< "\n";
339 static GenericValue
executeFCMP_OLE(GenericValue Src1
, GenericValue Src2
,
342 switch (Ty
->getTypeID()) {
343 IMPLEMENT_FCMP(<=, Float
);
344 IMPLEMENT_FCMP(<=, Double
);
346 cerr
<< "Unhandled type for FCmp LE instruction: " << *Ty
<< "\n";
352 static GenericValue
executeFCMP_OGE(GenericValue Src1
, GenericValue Src2
,
355 switch (Ty
->getTypeID()) {
356 IMPLEMENT_FCMP(>=, Float
);
357 IMPLEMENT_FCMP(>=, Double
);
359 cerr
<< "Unhandled type for FCmp GE instruction: " << *Ty
<< "\n";
365 static GenericValue
executeFCMP_OLT(GenericValue Src1
, GenericValue Src2
,
368 switch (Ty
->getTypeID()) {
369 IMPLEMENT_FCMP(<, Float
);
370 IMPLEMENT_FCMP(<, Double
);
372 cerr
<< "Unhandled type for FCmp LT instruction: " << *Ty
<< "\n";
378 static GenericValue
executeFCMP_OGT(GenericValue Src1
, GenericValue Src2
,
381 switch (Ty
->getTypeID()) {
382 IMPLEMENT_FCMP(>, Float
);
383 IMPLEMENT_FCMP(>, Double
);
385 cerr
<< "Unhandled type for FCmp GT instruction: " << *Ty
<< "\n";
391 #define IMPLEMENT_UNORDERED(TY, X,Y) \
392 if (TY == Type::FloatTy) { \
393 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
394 Dest.IntVal = APInt(1,true); \
397 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
398 Dest.IntVal = APInt(1,true); \
403 static GenericValue
executeFCMP_UEQ(GenericValue Src1
, GenericValue Src2
,
406 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
407 return executeFCMP_OEQ(Src1
, Src2
, Ty
);
410 static GenericValue
executeFCMP_UNE(GenericValue Src1
, GenericValue Src2
,
413 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
414 return executeFCMP_ONE(Src1
, Src2
, Ty
);
417 static GenericValue
executeFCMP_ULE(GenericValue Src1
, GenericValue Src2
,
420 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
421 return executeFCMP_OLE(Src1
, Src2
, Ty
);
424 static GenericValue
executeFCMP_UGE(GenericValue Src1
, GenericValue Src2
,
427 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
428 return executeFCMP_OGE(Src1
, Src2
, Ty
);
431 static GenericValue
executeFCMP_ULT(GenericValue Src1
, GenericValue Src2
,
434 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
435 return executeFCMP_OLT(Src1
, Src2
, Ty
);
438 static GenericValue
executeFCMP_UGT(GenericValue Src1
, GenericValue Src2
,
441 IMPLEMENT_UNORDERED(Ty
, Src1
, Src2
)
442 return executeFCMP_OGT(Src1
, Src2
, Ty
);
445 static GenericValue
executeFCMP_ORD(GenericValue Src1
, GenericValue Src2
,
448 if (Ty
== Type::FloatTy
)
449 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
== Src1
.FloatVal
&&
450 Src2
.FloatVal
== Src2
.FloatVal
));
452 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
== Src1
.DoubleVal
&&
453 Src2
.DoubleVal
== Src2
.DoubleVal
));
457 static GenericValue
executeFCMP_UNO(GenericValue Src1
, GenericValue Src2
,
460 if (Ty
== Type::FloatTy
)
461 Dest
.IntVal
= APInt(1,(Src1
.FloatVal
!= Src1
.FloatVal
||
462 Src2
.FloatVal
!= Src2
.FloatVal
));
464 Dest
.IntVal
= APInt(1,(Src1
.DoubleVal
!= Src1
.DoubleVal
||
465 Src2
.DoubleVal
!= Src2
.DoubleVal
));
469 void Interpreter::visitFCmpInst(FCmpInst
&I
) {
470 ExecutionContext
&SF
= ECStack
.back();
471 const Type
*Ty
= I
.getOperand(0)->getType();
472 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
473 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
474 GenericValue R
; // Result
476 switch (I
.getPredicate()) {
477 case FCmpInst::FCMP_FALSE
: R
.IntVal
= APInt(1,false); break;
478 case FCmpInst::FCMP_TRUE
: R
.IntVal
= APInt(1,true); break;
479 case FCmpInst::FCMP_ORD
: R
= executeFCMP_ORD(Src1
, Src2
, Ty
); break;
480 case FCmpInst::FCMP_UNO
: R
= executeFCMP_UNO(Src1
, Src2
, Ty
); break;
481 case FCmpInst::FCMP_UEQ
: R
= executeFCMP_UEQ(Src1
, Src2
, Ty
); break;
482 case FCmpInst::FCMP_OEQ
: R
= executeFCMP_OEQ(Src1
, Src2
, Ty
); break;
483 case FCmpInst::FCMP_UNE
: R
= executeFCMP_UNE(Src1
, Src2
, Ty
); break;
484 case FCmpInst::FCMP_ONE
: R
= executeFCMP_ONE(Src1
, Src2
, Ty
); break;
485 case FCmpInst::FCMP_ULT
: R
= executeFCMP_ULT(Src1
, Src2
, Ty
); break;
486 case FCmpInst::FCMP_OLT
: R
= executeFCMP_OLT(Src1
, Src2
, Ty
); break;
487 case FCmpInst::FCMP_UGT
: R
= executeFCMP_UGT(Src1
, Src2
, Ty
); break;
488 case FCmpInst::FCMP_OGT
: R
= executeFCMP_OGT(Src1
, Src2
, Ty
); break;
489 case FCmpInst::FCMP_ULE
: R
= executeFCMP_ULE(Src1
, Src2
, Ty
); break;
490 case FCmpInst::FCMP_OLE
: R
= executeFCMP_OLE(Src1
, Src2
, Ty
); break;
491 case FCmpInst::FCMP_UGE
: R
= executeFCMP_UGE(Src1
, Src2
, Ty
); break;
492 case FCmpInst::FCMP_OGE
: R
= executeFCMP_OGE(Src1
, Src2
, Ty
); break;
494 cerr
<< "Don't know how to handle this FCmp predicate!\n-->" << I
;
501 static GenericValue
executeCmpInst(unsigned predicate
, GenericValue Src1
,
502 GenericValue Src2
, const Type
*Ty
) {
505 case ICmpInst::ICMP_EQ
: return executeICMP_EQ(Src1
, Src2
, Ty
);
506 case ICmpInst::ICMP_NE
: return executeICMP_NE(Src1
, Src2
, Ty
);
507 case ICmpInst::ICMP_UGT
: return executeICMP_UGT(Src1
, Src2
, Ty
);
508 case ICmpInst::ICMP_SGT
: return executeICMP_SGT(Src1
, Src2
, Ty
);
509 case ICmpInst::ICMP_ULT
: return executeICMP_ULT(Src1
, Src2
, Ty
);
510 case ICmpInst::ICMP_SLT
: return executeICMP_SLT(Src1
, Src2
, Ty
);
511 case ICmpInst::ICMP_UGE
: return executeICMP_UGE(Src1
, Src2
, Ty
);
512 case ICmpInst::ICMP_SGE
: return executeICMP_SGE(Src1
, Src2
, Ty
);
513 case ICmpInst::ICMP_ULE
: return executeICMP_ULE(Src1
, Src2
, Ty
);
514 case ICmpInst::ICMP_SLE
: return executeICMP_SLE(Src1
, Src2
, Ty
);
515 case FCmpInst::FCMP_ORD
: return executeFCMP_ORD(Src1
, Src2
, Ty
);
516 case FCmpInst::FCMP_UNO
: return executeFCMP_UNO(Src1
, Src2
, Ty
);
517 case FCmpInst::FCMP_OEQ
: return executeFCMP_OEQ(Src1
, Src2
, Ty
);
518 case FCmpInst::FCMP_UEQ
: return executeFCMP_UEQ(Src1
, Src2
, Ty
);
519 case FCmpInst::FCMP_ONE
: return executeFCMP_ONE(Src1
, Src2
, Ty
);
520 case FCmpInst::FCMP_UNE
: return executeFCMP_UNE(Src1
, Src2
, Ty
);
521 case FCmpInst::FCMP_OLT
: return executeFCMP_OLT(Src1
, Src2
, Ty
);
522 case FCmpInst::FCMP_ULT
: return executeFCMP_ULT(Src1
, Src2
, Ty
);
523 case FCmpInst::FCMP_OGT
: return executeFCMP_OGT(Src1
, Src2
, Ty
);
524 case FCmpInst::FCMP_UGT
: return executeFCMP_UGT(Src1
, Src2
, Ty
);
525 case FCmpInst::FCMP_OLE
: return executeFCMP_OLE(Src1
, Src2
, Ty
);
526 case FCmpInst::FCMP_ULE
: return executeFCMP_ULE(Src1
, Src2
, Ty
);
527 case FCmpInst::FCMP_OGE
: return executeFCMP_OGE(Src1
, Src2
, Ty
);
528 case FCmpInst::FCMP_UGE
: return executeFCMP_UGE(Src1
, Src2
, Ty
);
529 case FCmpInst::FCMP_FALSE
: {
531 Result
.IntVal
= APInt(1, false);
534 case FCmpInst::FCMP_TRUE
: {
536 Result
.IntVal
= APInt(1, true);
540 cerr
<< "Unhandled Cmp predicate\n";
545 void Interpreter::visitBinaryOperator(BinaryOperator
&I
) {
546 ExecutionContext
&SF
= ECStack
.back();
547 const Type
*Ty
= I
.getOperand(0)->getType();
548 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
549 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
550 GenericValue R
; // Result
552 switch (I
.getOpcode()) {
553 case Instruction::Add
: executeAddInst (R
, Src1
, Src2
, Ty
); break;
554 case Instruction::Sub
: executeSubInst (R
, Src1
, Src2
, Ty
); break;
555 case Instruction::Mul
: executeMulInst (R
, Src1
, Src2
, Ty
); break;
556 case Instruction::FDiv
: executeFDivInst (R
, Src1
, Src2
, Ty
); break;
557 case Instruction::FRem
: executeFRemInst (R
, Src1
, Src2
, Ty
); break;
558 case Instruction::UDiv
: R
.IntVal
= Src1
.IntVal
.udiv(Src2
.IntVal
); break;
559 case Instruction::SDiv
: R
.IntVal
= Src1
.IntVal
.sdiv(Src2
.IntVal
); break;
560 case Instruction::URem
: R
.IntVal
= Src1
.IntVal
.urem(Src2
.IntVal
); break;
561 case Instruction::SRem
: R
.IntVal
= Src1
.IntVal
.srem(Src2
.IntVal
); break;
562 case Instruction::And
: R
.IntVal
= Src1
.IntVal
& Src2
.IntVal
; break;
563 case Instruction::Or
: R
.IntVal
= Src1
.IntVal
| Src2
.IntVal
; break;
564 case Instruction::Xor
: R
.IntVal
= Src1
.IntVal
^ Src2
.IntVal
; break;
566 cerr
<< "Don't know how to handle this binary operator!\n-->" << I
;
573 static GenericValue
executeSelectInst(GenericValue Src1
, GenericValue Src2
,
575 return Src1
.IntVal
== 0 ? Src3
: Src2
;
578 void Interpreter::visitSelectInst(SelectInst
&I
) {
579 ExecutionContext
&SF
= ECStack
.back();
580 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
581 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
582 GenericValue Src3
= getOperandValue(I
.getOperand(2), SF
);
583 GenericValue R
= executeSelectInst(Src1
, Src2
, Src3
);
588 //===----------------------------------------------------------------------===//
589 // Terminator Instruction Implementations
590 //===----------------------------------------------------------------------===//
592 void Interpreter::exitCalled(GenericValue GV
) {
593 // runAtExitHandlers() assumes there are no stack frames, but
594 // if exit() was called, then it had a stack frame. Blow away
595 // the stack before interpreting atexit handlers.
597 runAtExitHandlers ();
598 exit (GV
.IntVal
.zextOrTrunc(32).getZExtValue());
601 /// Pop the last stack frame off of ECStack and then copy the result
602 /// back into the result variable if we are not returning void. The
603 /// result variable may be the ExitValue, or the Value of the calling
604 /// CallInst if there was a previous stack frame. This method may
605 /// invalidate any ECStack iterators you have. This method also takes
606 /// care of switching to the normal destination BB, if we are returning
609 void Interpreter::popStackAndReturnValueToCaller (const Type
*RetTy
,
610 GenericValue Result
) {
611 // Pop the current stack frame.
614 if (ECStack
.empty()) { // Finished main. Put result into exit code...
615 if (RetTy
&& RetTy
->isInteger()) { // Nonvoid return type?
616 ExitValue
= Result
; // Capture the exit value of the program
618 memset(&ExitValue
.Untyped
, 0, sizeof(ExitValue
.Untyped
));
621 // If we have a previous stack frame, and we have a previous call,
622 // fill in the return value...
623 ExecutionContext
&CallingSF
= ECStack
.back();
624 if (Instruction
*I
= CallingSF
.Caller
.getInstruction()) {
625 if (CallingSF
.Caller
.getType() != Type::VoidTy
) // Save result...
626 SetValue(I
, Result
, CallingSF
);
627 if (InvokeInst
*II
= dyn_cast
<InvokeInst
> (I
))
628 SwitchToNewBasicBlock (II
->getNormalDest (), CallingSF
);
629 CallingSF
.Caller
= CallSite(); // We returned from the call...
634 void Interpreter::visitReturnInst(ReturnInst
&I
) {
635 ExecutionContext
&SF
= ECStack
.back();
636 const Type
*RetTy
= Type::VoidTy
;
639 // Save away the return value... (if we are not 'ret void')
640 if (I
.getNumOperands()) {
641 RetTy
= I
.getReturnValue()->getType();
642 Result
= getOperandValue(I
.getReturnValue(), SF
);
645 popStackAndReturnValueToCaller(RetTy
, Result
);
648 void Interpreter::visitUnwindInst(UnwindInst
&I
) {
653 if (ECStack
.empty ())
655 Inst
= ECStack
.back ().Caller
.getInstruction ();
656 } while (!(Inst
&& isa
<InvokeInst
> (Inst
)));
658 // Return from invoke
659 ExecutionContext
&InvokingSF
= ECStack
.back ();
660 InvokingSF
.Caller
= CallSite ();
662 // Go to exceptional destination BB of invoke instruction
663 SwitchToNewBasicBlock(cast
<InvokeInst
>(Inst
)->getUnwindDest(), InvokingSF
);
666 void Interpreter::visitUnreachableInst(UnreachableInst
&I
) {
667 cerr
<< "ERROR: Program executed an 'unreachable' instruction!\n";
671 void Interpreter::visitBranchInst(BranchInst
&I
) {
672 ExecutionContext
&SF
= ECStack
.back();
675 Dest
= I
.getSuccessor(0); // Uncond branches have a fixed dest...
676 if (!I
.isUnconditional()) {
677 Value
*Cond
= I
.getCondition();
678 if (getOperandValue(Cond
, SF
).IntVal
== 0) // If false cond...
679 Dest
= I
.getSuccessor(1);
681 SwitchToNewBasicBlock(Dest
, SF
);
684 void Interpreter::visitSwitchInst(SwitchInst
&I
) {
685 ExecutionContext
&SF
= ECStack
.back();
686 GenericValue CondVal
= getOperandValue(I
.getOperand(0), SF
);
687 const Type
*ElTy
= I
.getOperand(0)->getType();
689 // Check to see if any of the cases match...
690 BasicBlock
*Dest
= 0;
691 for (unsigned i
= 2, e
= I
.getNumOperands(); i
!= e
; i
+= 2)
692 if (executeICMP_EQ(CondVal
, getOperandValue(I
.getOperand(i
), SF
), ElTy
)
694 Dest
= cast
<BasicBlock
>(I
.getOperand(i
+1));
698 if (!Dest
) Dest
= I
.getDefaultDest(); // No cases matched: use default
699 SwitchToNewBasicBlock(Dest
, SF
);
702 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
703 // This function handles the actual updating of block and instruction iterators
704 // as well as execution of all of the PHI nodes in the destination block.
706 // This method does this because all of the PHI nodes must be executed
707 // atomically, reading their inputs before any of the results are updated. Not
708 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
709 // their inputs. If the input PHI node is updated before it is read, incorrect
710 // results can happen. Thus we use a two phase approach.
712 void Interpreter::SwitchToNewBasicBlock(BasicBlock
*Dest
, ExecutionContext
&SF
){
713 BasicBlock
*PrevBB
= SF
.CurBB
; // Remember where we came from...
714 SF
.CurBB
= Dest
; // Update CurBB to branch destination
715 SF
.CurInst
= SF
.CurBB
->begin(); // Update new instruction ptr...
717 if (!isa
<PHINode
>(SF
.CurInst
)) return; // Nothing fancy to do
719 // Loop over all of the PHI nodes in the current block, reading their inputs.
720 std::vector
<GenericValue
> ResultValues
;
722 for (; PHINode
*PN
= dyn_cast
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
) {
723 // Search for the value corresponding to this previous bb...
724 int i
= PN
->getBasicBlockIndex(PrevBB
);
725 assert(i
!= -1 && "PHINode doesn't contain entry for predecessor??");
726 Value
*IncomingValue
= PN
->getIncomingValue(i
);
728 // Save the incoming value for this PHI node...
729 ResultValues
.push_back(getOperandValue(IncomingValue
, SF
));
732 // Now loop over all of the PHI nodes setting their values...
733 SF
.CurInst
= SF
.CurBB
->begin();
734 for (unsigned i
= 0; isa
<PHINode
>(SF
.CurInst
); ++SF
.CurInst
, ++i
) {
735 PHINode
*PN
= cast
<PHINode
>(SF
.CurInst
);
736 SetValue(PN
, ResultValues
[i
], SF
);
740 //===----------------------------------------------------------------------===//
741 // Memory Instruction Implementations
742 //===----------------------------------------------------------------------===//
744 void Interpreter::visitAllocationInst(AllocationInst
&I
) {
745 ExecutionContext
&SF
= ECStack
.back();
747 const Type
*Ty
= I
.getType()->getElementType(); // Type to be allocated
749 // Get the number of elements being allocated by the array...
750 unsigned NumElements
=
751 getOperandValue(I
.getOperand(0), SF
).IntVal
.getZExtValue();
753 unsigned TypeSize
= (size_t)TD
.getTypeAllocSize(Ty
);
755 // Avoid malloc-ing zero bytes, use max()...
756 unsigned MemToAlloc
= std::max(1U, NumElements
* TypeSize
);
758 // Allocate enough memory to hold the type...
759 void *Memory
= malloc(MemToAlloc
);
761 DOUT
<< "Allocated Type: " << *Ty
<< " (" << TypeSize
<< " bytes) x "
762 << NumElements
<< " (Total: " << MemToAlloc
<< ") at "
763 << uintptr_t(Memory
) << '\n';
765 GenericValue Result
= PTOGV(Memory
);
766 assert(Result
.PointerVal
!= 0 && "Null pointer returned by malloc!");
767 SetValue(&I
, Result
, SF
);
769 if (I
.getOpcode() == Instruction::Alloca
)
770 ECStack
.back().Allocas
.add(Memory
);
773 void Interpreter::visitFreeInst(FreeInst
&I
) {
774 ExecutionContext
&SF
= ECStack
.back();
775 assert(isa
<PointerType
>(I
.getOperand(0)->getType()) && "Freeing nonptr?");
776 GenericValue Value
= getOperandValue(I
.getOperand(0), SF
);
777 // TODO: Check to make sure memory is allocated
778 free(GVTOP(Value
)); // Free memory
781 // getElementOffset - The workhorse for getelementptr.
783 GenericValue
Interpreter::executeGEPOperation(Value
*Ptr
, gep_type_iterator I
,
785 ExecutionContext
&SF
) {
786 assert(isa
<PointerType
>(Ptr
->getType()) &&
787 "Cannot getElementOffset of a nonpointer type!");
791 for (; I
!= E
; ++I
) {
792 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
793 const StructLayout
*SLO
= TD
.getStructLayout(STy
);
795 const ConstantInt
*CPU
= cast
<ConstantInt
>(I
.getOperand());
796 unsigned Index
= unsigned(CPU
->getZExtValue());
798 Total
+= SLO
->getElementOffset(Index
);
800 const SequentialType
*ST
= cast
<SequentialType
>(*I
);
801 // Get the index number for the array... which must be long type...
802 GenericValue IdxGV
= getOperandValue(I
.getOperand(), SF
);
806 cast
<IntegerType
>(I
.getOperand()->getType())->getBitWidth();
808 Idx
= (int64_t)(int32_t)IdxGV
.IntVal
.getZExtValue();
810 assert(BitWidth
== 64 && "Invalid index type for getelementptr");
811 Idx
= (int64_t)IdxGV
.IntVal
.getZExtValue();
813 Total
+= TD
.getTypeAllocSize(ST
->getElementType())*Idx
;
818 Result
.PointerVal
= ((char*)getOperandValue(Ptr
, SF
).PointerVal
) + Total
;
819 DOUT
<< "GEP Index " << Total
<< " bytes.\n";
823 void Interpreter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
824 ExecutionContext
&SF
= ECStack
.back();
825 SetValue(&I
, TheEE
->executeGEPOperation(I
.getPointerOperand(),
826 gep_type_begin(I
), gep_type_end(I
), SF
), SF
);
829 void Interpreter::visitLoadInst(LoadInst
&I
) {
830 ExecutionContext
&SF
= ECStack
.back();
831 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
832 GenericValue
*Ptr
= (GenericValue
*)GVTOP(SRC
);
834 LoadValueFromMemory(Result
, Ptr
, I
.getType());
835 SetValue(&I
, Result
, SF
);
836 if (I
.isVolatile() && PrintVolatile
)
837 cerr
<< "Volatile load " << I
;
840 void Interpreter::visitStoreInst(StoreInst
&I
) {
841 ExecutionContext
&SF
= ECStack
.back();
842 GenericValue Val
= getOperandValue(I
.getOperand(0), SF
);
843 GenericValue SRC
= getOperandValue(I
.getPointerOperand(), SF
);
844 StoreValueToMemory(Val
, (GenericValue
*)GVTOP(SRC
),
845 I
.getOperand(0)->getType());
846 if (I
.isVolatile() && PrintVolatile
)
847 cerr
<< "Volatile store: " << I
;
850 //===----------------------------------------------------------------------===//
851 // Miscellaneous Instruction Implementations
852 //===----------------------------------------------------------------------===//
854 void Interpreter::visitCallSite(CallSite CS
) {
855 ExecutionContext
&SF
= ECStack
.back();
857 // Check to see if this is an intrinsic function call...
858 Function
*F
= CS
.getCalledFunction();
859 if (F
&& F
->isDeclaration ())
860 switch (F
->getIntrinsicID()) {
861 case Intrinsic::not_intrinsic
:
863 case Intrinsic::vastart
: { // va_start
864 GenericValue ArgIndex
;
865 ArgIndex
.UIntPairVal
.first
= ECStack
.size() - 1;
866 ArgIndex
.UIntPairVal
.second
= 0;
867 SetValue(CS
.getInstruction(), ArgIndex
, SF
);
870 case Intrinsic::vaend
: // va_end is a noop for the interpreter
872 case Intrinsic::vacopy
: // va_copy: dest = src
873 SetValue(CS
.getInstruction(), getOperandValue(*CS
.arg_begin(), SF
), SF
);
876 // If it is an unknown intrinsic function, use the intrinsic lowering
877 // class to transform it into hopefully tasty LLVM code.
879 BasicBlock::iterator
me(CS
.getInstruction());
880 BasicBlock
*Parent
= CS
.getInstruction()->getParent();
881 bool atBegin(Parent
->begin() == me
);
884 IL
->LowerIntrinsicCall(cast
<CallInst
>(CS
.getInstruction()));
886 // Restore the CurInst pointer to the first instruction newly inserted, if
889 SF
.CurInst
= Parent
->begin();
899 std::vector
<GenericValue
> ArgVals
;
900 const unsigned NumArgs
= SF
.Caller
.arg_size();
901 ArgVals
.reserve(NumArgs
);
903 for (CallSite::arg_iterator i
= SF
.Caller
.arg_begin(),
904 e
= SF
.Caller
.arg_end(); i
!= e
; ++i
, ++pNum
) {
906 ArgVals
.push_back(getOperandValue(V
, SF
));
907 // Promote all integral types whose size is < sizeof(i32) into i32.
908 // We do this by zero or sign extending the value as appropriate
909 // according to the parameter attributes
910 const Type
*Ty
= V
->getType();
911 if (Ty
->isInteger() && (ArgVals
.back().IntVal
.getBitWidth() < 32)) {
912 if (CS
.paramHasAttr(pNum
, Attribute::ZExt
))
913 ArgVals
.back().IntVal
= ArgVals
.back().IntVal
.zext(32);
914 else if (CS
.paramHasAttr(pNum
, Attribute::SExt
))
915 ArgVals
.back().IntVal
= ArgVals
.back().IntVal
.sext(32);
919 // To handle indirect calls, we must get the pointer value from the argument
920 // and treat it as a function pointer.
921 GenericValue SRC
= getOperandValue(SF
.Caller
.getCalledValue(), SF
);
922 callFunction((Function
*)GVTOP(SRC
), ArgVals
);
925 void Interpreter::visitShl(BinaryOperator
&I
) {
926 ExecutionContext
&SF
= ECStack
.back();
927 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
928 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
930 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
931 Dest
.IntVal
= Src1
.IntVal
.shl(Src2
.IntVal
.getZExtValue());
933 Dest
.IntVal
= Src1
.IntVal
;
935 SetValue(&I
, Dest
, SF
);
938 void Interpreter::visitLShr(BinaryOperator
&I
) {
939 ExecutionContext
&SF
= ECStack
.back();
940 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
941 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
943 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
944 Dest
.IntVal
= Src1
.IntVal
.lshr(Src2
.IntVal
.getZExtValue());
946 Dest
.IntVal
= Src1
.IntVal
;
948 SetValue(&I
, Dest
, SF
);
951 void Interpreter::visitAShr(BinaryOperator
&I
) {
952 ExecutionContext
&SF
= ECStack
.back();
953 GenericValue Src1
= getOperandValue(I
.getOperand(0), SF
);
954 GenericValue Src2
= getOperandValue(I
.getOperand(1), SF
);
956 if (Src2
.IntVal
.getZExtValue() < Src1
.IntVal
.getBitWidth())
957 Dest
.IntVal
= Src1
.IntVal
.ashr(Src2
.IntVal
.getZExtValue());
959 Dest
.IntVal
= Src1
.IntVal
;
961 SetValue(&I
, Dest
, SF
);
964 GenericValue
Interpreter::executeTruncInst(Value
*SrcVal
, const Type
*DstTy
,
965 ExecutionContext
&SF
) {
966 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
967 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
968 unsigned DBitWidth
= DITy
->getBitWidth();
969 Dest
.IntVal
= Src
.IntVal
.trunc(DBitWidth
);
973 GenericValue
Interpreter::executeSExtInst(Value
*SrcVal
, const Type
*DstTy
,
974 ExecutionContext
&SF
) {
975 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
976 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
977 unsigned DBitWidth
= DITy
->getBitWidth();
978 Dest
.IntVal
= Src
.IntVal
.sext(DBitWidth
);
982 GenericValue
Interpreter::executeZExtInst(Value
*SrcVal
, const Type
*DstTy
,
983 ExecutionContext
&SF
) {
984 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
985 const IntegerType
*DITy
= cast
<IntegerType
>(DstTy
);
986 unsigned DBitWidth
= DITy
->getBitWidth();
987 Dest
.IntVal
= Src
.IntVal
.zext(DBitWidth
);
991 GenericValue
Interpreter::executeFPTruncInst(Value
*SrcVal
, const Type
*DstTy
,
992 ExecutionContext
&SF
) {
993 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
994 assert(SrcVal
->getType() == Type::DoubleTy
&& DstTy
== Type::FloatTy
&&
995 "Invalid FPTrunc instruction");
996 Dest
.FloatVal
= (float) Src
.DoubleVal
;
1000 GenericValue
Interpreter::executeFPExtInst(Value
*SrcVal
, const Type
*DstTy
,
1001 ExecutionContext
&SF
) {
1002 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1003 assert(SrcVal
->getType() == Type::FloatTy
&& DstTy
== Type::DoubleTy
&&
1004 "Invalid FPTrunc instruction");
1005 Dest
.DoubleVal
= (double) Src
.FloatVal
;
1009 GenericValue
Interpreter::executeFPToUIInst(Value
*SrcVal
, const Type
*DstTy
,
1010 ExecutionContext
&SF
) {
1011 const Type
*SrcTy
= SrcVal
->getType();
1012 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1013 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1014 assert(SrcTy
->isFloatingPoint() && "Invalid FPToUI instruction");
1016 if (SrcTy
->getTypeID() == Type::FloatTyID
)
1017 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1019 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1023 GenericValue
Interpreter::executeFPToSIInst(Value
*SrcVal
, const Type
*DstTy
,
1024 ExecutionContext
&SF
) {
1025 const Type
*SrcTy
= SrcVal
->getType();
1026 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1027 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1028 assert(SrcTy
->isFloatingPoint() && "Invalid FPToSI instruction");
1030 if (SrcTy
->getTypeID() == Type::FloatTyID
)
1031 Dest
.IntVal
= APIntOps::RoundFloatToAPInt(Src
.FloatVal
, DBitWidth
);
1033 Dest
.IntVal
= APIntOps::RoundDoubleToAPInt(Src
.DoubleVal
, DBitWidth
);
1037 GenericValue
Interpreter::executeUIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1038 ExecutionContext
&SF
) {
1039 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1040 assert(DstTy
->isFloatingPoint() && "Invalid UIToFP instruction");
1042 if (DstTy
->getTypeID() == Type::FloatTyID
)
1043 Dest
.FloatVal
= APIntOps::RoundAPIntToFloat(Src
.IntVal
);
1045 Dest
.DoubleVal
= APIntOps::RoundAPIntToDouble(Src
.IntVal
);
1049 GenericValue
Interpreter::executeSIToFPInst(Value
*SrcVal
, const Type
*DstTy
,
1050 ExecutionContext
&SF
) {
1051 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1052 assert(DstTy
->isFloatingPoint() && "Invalid SIToFP instruction");
1054 if (DstTy
->getTypeID() == Type::FloatTyID
)
1055 Dest
.FloatVal
= APIntOps::RoundSignedAPIntToFloat(Src
.IntVal
);
1057 Dest
.DoubleVal
= APIntOps::RoundSignedAPIntToDouble(Src
.IntVal
);
1062 GenericValue
Interpreter::executePtrToIntInst(Value
*SrcVal
, const Type
*DstTy
,
1063 ExecutionContext
&SF
) {
1064 uint32_t DBitWidth
= cast
<IntegerType
>(DstTy
)->getBitWidth();
1065 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1066 assert(isa
<PointerType
>(SrcVal
->getType()) && "Invalid PtrToInt instruction");
1068 Dest
.IntVal
= APInt(DBitWidth
, (intptr_t) Src
.PointerVal
);
1072 GenericValue
Interpreter::executeIntToPtrInst(Value
*SrcVal
, const Type
*DstTy
,
1073 ExecutionContext
&SF
) {
1074 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1075 assert(isa
<PointerType
>(DstTy
) && "Invalid PtrToInt instruction");
1077 uint32_t PtrSize
= TD
.getPointerSizeInBits();
1078 if (PtrSize
!= Src
.IntVal
.getBitWidth())
1079 Src
.IntVal
= Src
.IntVal
.zextOrTrunc(PtrSize
);
1081 Dest
.PointerVal
= PointerTy(intptr_t(Src
.IntVal
.getZExtValue()));
1085 GenericValue
Interpreter::executeBitCastInst(Value
*SrcVal
, const Type
*DstTy
,
1086 ExecutionContext
&SF
) {
1088 const Type
*SrcTy
= SrcVal
->getType();
1089 GenericValue Dest
, Src
= getOperandValue(SrcVal
, SF
);
1090 if (isa
<PointerType
>(DstTy
)) {
1091 assert(isa
<PointerType
>(SrcTy
) && "Invalid BitCast");
1092 Dest
.PointerVal
= Src
.PointerVal
;
1093 } else if (DstTy
->isInteger()) {
1094 if (SrcTy
== Type::FloatTy
) {
1095 Dest
.IntVal
.zext(sizeof(Src
.FloatVal
) * CHAR_BIT
);
1096 Dest
.IntVal
.floatToBits(Src
.FloatVal
);
1097 } else if (SrcTy
== Type::DoubleTy
) {
1098 Dest
.IntVal
.zext(sizeof(Src
.DoubleVal
) * CHAR_BIT
);
1099 Dest
.IntVal
.doubleToBits(Src
.DoubleVal
);
1100 } else if (SrcTy
->isInteger()) {
1101 Dest
.IntVal
= Src
.IntVal
;
1103 assert(0 && "Invalid BitCast");
1104 } else if (DstTy
== Type::FloatTy
) {
1105 if (SrcTy
->isInteger())
1106 Dest
.FloatVal
= Src
.IntVal
.bitsToFloat();
1108 Dest
.FloatVal
= Src
.FloatVal
;
1109 } else if (DstTy
== Type::DoubleTy
) {
1110 if (SrcTy
->isInteger())
1111 Dest
.DoubleVal
= Src
.IntVal
.bitsToDouble();
1113 Dest
.DoubleVal
= Src
.DoubleVal
;
1115 assert(0 && "Invalid Bitcast");
1120 void Interpreter::visitTruncInst(TruncInst
&I
) {
1121 ExecutionContext
&SF
= ECStack
.back();
1122 SetValue(&I
, executeTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1125 void Interpreter::visitSExtInst(SExtInst
&I
) {
1126 ExecutionContext
&SF
= ECStack
.back();
1127 SetValue(&I
, executeSExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1130 void Interpreter::visitZExtInst(ZExtInst
&I
) {
1131 ExecutionContext
&SF
= ECStack
.back();
1132 SetValue(&I
, executeZExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1135 void Interpreter::visitFPTruncInst(FPTruncInst
&I
) {
1136 ExecutionContext
&SF
= ECStack
.back();
1137 SetValue(&I
, executeFPTruncInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1140 void Interpreter::visitFPExtInst(FPExtInst
&I
) {
1141 ExecutionContext
&SF
= ECStack
.back();
1142 SetValue(&I
, executeFPExtInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1145 void Interpreter::visitUIToFPInst(UIToFPInst
&I
) {
1146 ExecutionContext
&SF
= ECStack
.back();
1147 SetValue(&I
, executeUIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1150 void Interpreter::visitSIToFPInst(SIToFPInst
&I
) {
1151 ExecutionContext
&SF
= ECStack
.back();
1152 SetValue(&I
, executeSIToFPInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1155 void Interpreter::visitFPToUIInst(FPToUIInst
&I
) {
1156 ExecutionContext
&SF
= ECStack
.back();
1157 SetValue(&I
, executeFPToUIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1160 void Interpreter::visitFPToSIInst(FPToSIInst
&I
) {
1161 ExecutionContext
&SF
= ECStack
.back();
1162 SetValue(&I
, executeFPToSIInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1165 void Interpreter::visitPtrToIntInst(PtrToIntInst
&I
) {
1166 ExecutionContext
&SF
= ECStack
.back();
1167 SetValue(&I
, executePtrToIntInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1170 void Interpreter::visitIntToPtrInst(IntToPtrInst
&I
) {
1171 ExecutionContext
&SF
= ECStack
.back();
1172 SetValue(&I
, executeIntToPtrInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1175 void Interpreter::visitBitCastInst(BitCastInst
&I
) {
1176 ExecutionContext
&SF
= ECStack
.back();
1177 SetValue(&I
, executeBitCastInst(I
.getOperand(0), I
.getType(), SF
), SF
);
1180 #define IMPLEMENT_VAARG(TY) \
1181 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1183 void Interpreter::visitVAArgInst(VAArgInst
&I
) {
1184 ExecutionContext
&SF
= ECStack
.back();
1186 // Get the incoming valist parameter. LLI treats the valist as a
1187 // (ec-stack-depth var-arg-index) pair.
1188 GenericValue VAList
= getOperandValue(I
.getOperand(0), SF
);
1190 GenericValue Src
= ECStack
[VAList
.UIntPairVal
.first
]
1191 .VarArgs
[VAList
.UIntPairVal
.second
];
1192 const Type
*Ty
= I
.getType();
1193 switch (Ty
->getTypeID()) {
1194 case Type::IntegerTyID
: Dest
.IntVal
= Src
.IntVal
;
1195 IMPLEMENT_VAARG(Pointer
);
1196 IMPLEMENT_VAARG(Float
);
1197 IMPLEMENT_VAARG(Double
);
1199 cerr
<< "Unhandled dest type for vaarg instruction: " << *Ty
<< "\n";
1203 // Set the Value of this Instruction.
1204 SetValue(&I
, Dest
, SF
);
1206 // Move the pointer to the next vararg.
1207 ++VAList
.UIntPairVal
.second
;
1210 GenericValue
Interpreter::getConstantExprValue (ConstantExpr
*CE
,
1211 ExecutionContext
&SF
) {
1212 switch (CE
->getOpcode()) {
1213 case Instruction::Trunc
:
1214 return executeTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1215 case Instruction::ZExt
:
1216 return executeZExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1217 case Instruction::SExt
:
1218 return executeSExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1219 case Instruction::FPTrunc
:
1220 return executeFPTruncInst(CE
->getOperand(0), CE
->getType(), SF
);
1221 case Instruction::FPExt
:
1222 return executeFPExtInst(CE
->getOperand(0), CE
->getType(), SF
);
1223 case Instruction::UIToFP
:
1224 return executeUIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1225 case Instruction::SIToFP
:
1226 return executeSIToFPInst(CE
->getOperand(0), CE
->getType(), SF
);
1227 case Instruction::FPToUI
:
1228 return executeFPToUIInst(CE
->getOperand(0), CE
->getType(), SF
);
1229 case Instruction::FPToSI
:
1230 return executeFPToSIInst(CE
->getOperand(0), CE
->getType(), SF
);
1231 case Instruction::PtrToInt
:
1232 return executePtrToIntInst(CE
->getOperand(0), CE
->getType(), SF
);
1233 case Instruction::IntToPtr
:
1234 return executeIntToPtrInst(CE
->getOperand(0), CE
->getType(), SF
);
1235 case Instruction::BitCast
:
1236 return executeBitCastInst(CE
->getOperand(0), CE
->getType(), SF
);
1237 case Instruction::GetElementPtr
:
1238 return executeGEPOperation(CE
->getOperand(0), gep_type_begin(CE
),
1239 gep_type_end(CE
), SF
);
1240 case Instruction::FCmp
:
1241 case Instruction::ICmp
:
1242 return executeCmpInst(CE
->getPredicate(),
1243 getOperandValue(CE
->getOperand(0), SF
),
1244 getOperandValue(CE
->getOperand(1), SF
),
1245 CE
->getOperand(0)->getType());
1246 case Instruction::Select
:
1247 return executeSelectInst(getOperandValue(CE
->getOperand(0), SF
),
1248 getOperandValue(CE
->getOperand(1), SF
),
1249 getOperandValue(CE
->getOperand(2), SF
));
1254 // The cases below here require a GenericValue parameter for the result
1255 // so we initialize one, compute it and then return it.
1256 GenericValue Op0
= getOperandValue(CE
->getOperand(0), SF
);
1257 GenericValue Op1
= getOperandValue(CE
->getOperand(1), SF
);
1259 const Type
* Ty
= CE
->getOperand(0)->getType();
1260 switch (CE
->getOpcode()) {
1261 case Instruction::Add
: executeAddInst (Dest
, Op0
, Op1
, Ty
); break;
1262 case Instruction::Sub
: executeSubInst (Dest
, Op0
, Op1
, Ty
); break;
1263 case Instruction::Mul
: executeMulInst (Dest
, Op0
, Op1
, Ty
); break;
1264 case Instruction::FDiv
: executeFDivInst(Dest
, Op0
, Op1
, Ty
); break;
1265 case Instruction::FRem
: executeFRemInst(Dest
, Op0
, Op1
, Ty
); break;
1266 case Instruction::SDiv
: Dest
.IntVal
= Op0
.IntVal
.sdiv(Op1
.IntVal
); break;
1267 case Instruction::UDiv
: Dest
.IntVal
= Op0
.IntVal
.udiv(Op1
.IntVal
); break;
1268 case Instruction::URem
: Dest
.IntVal
= Op0
.IntVal
.urem(Op1
.IntVal
); break;
1269 case Instruction::SRem
: Dest
.IntVal
= Op0
.IntVal
.srem(Op1
.IntVal
); break;
1270 case Instruction::And
: Dest
.IntVal
= Op0
.IntVal
.And(Op1
.IntVal
); break;
1271 case Instruction::Or
: Dest
.IntVal
= Op0
.IntVal
.Or(Op1
.IntVal
); break;
1272 case Instruction::Xor
: Dest
.IntVal
= Op0
.IntVal
.Xor(Op1
.IntVal
); break;
1273 case Instruction::Shl
:
1274 Dest
.IntVal
= Op0
.IntVal
.shl(Op1
.IntVal
.getZExtValue());
1276 case Instruction::LShr
:
1277 Dest
.IntVal
= Op0
.IntVal
.lshr(Op1
.IntVal
.getZExtValue());
1279 case Instruction::AShr
:
1280 Dest
.IntVal
= Op0
.IntVal
.ashr(Op1
.IntVal
.getZExtValue());
1283 cerr
<< "Unhandled ConstantExpr: " << *CE
<< "\n";
1285 return GenericValue();
1290 GenericValue
Interpreter::getOperandValue(Value
*V
, ExecutionContext
&SF
) {
1291 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1292 return getConstantExprValue(CE
, SF
);
1293 } else if (Constant
*CPV
= dyn_cast
<Constant
>(V
)) {
1294 return getConstantValue(CPV
);
1295 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1296 return PTOGV(getPointerToGlobal(GV
));
1298 return SF
.Values
[V
];
1302 //===----------------------------------------------------------------------===//
1303 // Dispatch and Execution Code
1304 //===----------------------------------------------------------------------===//
1306 //===----------------------------------------------------------------------===//
1307 // callFunction - Execute the specified function...
1309 void Interpreter::callFunction(Function
*F
,
1310 const std::vector
<GenericValue
> &ArgVals
) {
1311 assert((ECStack
.empty() || ECStack
.back().Caller
.getInstruction() == 0 ||
1312 ECStack
.back().Caller
.arg_size() == ArgVals
.size()) &&
1313 "Incorrect number of arguments passed into function call!");
1314 // Make a new stack frame... and fill it in.
1315 ECStack
.push_back(ExecutionContext());
1316 ExecutionContext
&StackFrame
= ECStack
.back();
1317 StackFrame
.CurFunction
= F
;
1319 // Special handling for external functions.
1320 if (F
->isDeclaration()) {
1321 GenericValue Result
= callExternalFunction (F
, ArgVals
);
1322 // Simulate a 'ret' instruction of the appropriate type.
1323 popStackAndReturnValueToCaller (F
->getReturnType (), Result
);
1327 // Get pointers to first LLVM BB & Instruction in function.
1328 StackFrame
.CurBB
= F
->begin();
1329 StackFrame
.CurInst
= StackFrame
.CurBB
->begin();
1331 // Run through the function arguments and initialize their values...
1332 assert((ArgVals
.size() == F
->arg_size() ||
1333 (ArgVals
.size() > F
->arg_size() && F
->getFunctionType()->isVarArg()))&&
1334 "Invalid number of values passed to function invocation!");
1336 // Handle non-varargs arguments...
1338 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1340 SetValue(AI
, ArgVals
[i
], StackFrame
);
1342 // Handle varargs arguments...
1343 StackFrame
.VarArgs
.assign(ArgVals
.begin()+i
, ArgVals
.end());
1347 void Interpreter::run() {
1348 while (!ECStack
.empty()) {
1349 // Interpret a single instruction & increment the "PC".
1350 ExecutionContext
&SF
= ECStack
.back(); // Current stack frame
1351 Instruction
&I
= *SF
.CurInst
++; // Increment before execute
1353 // Track the number of dynamic instructions executed.
1356 DOUT
<< "About to interpret: " << I
;
1357 visit(I
); // Dispatch to one of the visit* methods...
1359 // This is not safe, as visiting the instruction could lower it and free I.
1361 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
) &&
1362 I
.getType() != Type::VoidTy
) {
1364 const GenericValue
&Val
= SF
.Values
[&I
];
1365 switch (I
.getType()->getTypeID()) {
1366 default: assert(0 && "Invalid GenericValue Type");
1367 case Type::VoidTyID
: DOUT
<< "void"; break;
1368 case Type::FloatTyID
: DOUT
<< "float " << Val
.FloatVal
; break;
1369 case Type::DoubleTyID
: DOUT
<< "double " << Val
.DoubleVal
; break;
1370 case Type::PointerTyID
: DOUT
<< "void* " << intptr_t(Val
.PointerVal
);
1372 case Type::IntegerTyID
:
1373 DOUT
<< "i" << Val
.IntVal
.getBitWidth() << " "
1374 << Val
.IntVal
.toStringUnsigned(10)
1375 << " (0x" << Val
.IntVal
.toStringUnsigned(16) << ")\n";