Merge branch 'master' into msp430
[llvm/msp430.git] / lib / ExecutionEngine / Interpreter / Execution.cpp
blob765fed248f9881ab7329840eccd45c3b32a7a4aa
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <cmath>
28 #include <cstring>
29 using namespace llvm;
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32 static Interpreter *TheEE = 0;
34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35 cl::desc("make the interpreter print every volatile load and store"));
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
41 static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
42 // Determine if the value is signed or not
43 bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
44 // If its signed, extend the sign bits
45 if (isSigned)
46 Val |= ~ITy->getBitMask();
47 return Val;
50 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
51 SF.Values[V] = Val;
54 void Interpreter::initializeExecutionEngine() {
55 TheEE = this;
58 //===----------------------------------------------------------------------===//
59 // Binary Instruction Implementations
60 //===----------------------------------------------------------------------===//
62 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
63 case Type::TY##TyID: \
64 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
65 break
67 #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
68 case Type::IntegerTyID: { \
69 Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
70 break; \
74 static void executeAddInst(GenericValue &Dest, GenericValue Src1,
75 GenericValue Src2, const Type *Ty) {
76 switch (Ty->getTypeID()) {
77 IMPLEMENT_INTEGER_BINOP1(+, Ty);
78 IMPLEMENT_BINARY_OPERATOR(+, Float);
79 IMPLEMENT_BINARY_OPERATOR(+, Double);
80 default:
81 cerr << "Unhandled type for Add instruction: " << *Ty << "\n";
82 abort();
86 static void executeSubInst(GenericValue &Dest, GenericValue Src1,
87 GenericValue Src2, const Type *Ty) {
88 switch (Ty->getTypeID()) {
89 IMPLEMENT_INTEGER_BINOP1(-, Ty);
90 IMPLEMENT_BINARY_OPERATOR(-, Float);
91 IMPLEMENT_BINARY_OPERATOR(-, Double);
92 default:
93 cerr << "Unhandled type for Sub instruction: " << *Ty << "\n";
94 abort();
98 static void executeMulInst(GenericValue &Dest, GenericValue Src1,
99 GenericValue Src2, const Type *Ty) {
100 switch (Ty->getTypeID()) {
101 IMPLEMENT_INTEGER_BINOP1(*, Ty);
102 IMPLEMENT_BINARY_OPERATOR(*, Float);
103 IMPLEMENT_BINARY_OPERATOR(*, Double);
104 default:
105 cerr << "Unhandled type for Mul instruction: " << *Ty << "\n";
106 abort();
110 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
111 GenericValue Src2, const Type *Ty) {
112 switch (Ty->getTypeID()) {
113 IMPLEMENT_BINARY_OPERATOR(/, Float);
114 IMPLEMENT_BINARY_OPERATOR(/, Double);
115 default:
116 cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
117 abort();
121 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
122 GenericValue Src2, const Type *Ty) {
123 switch (Ty->getTypeID()) {
124 case Type::FloatTyID:
125 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
126 break;
127 case Type::DoubleTyID:
128 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
129 break;
130 default:
131 cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
132 abort();
136 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
137 case Type::IntegerTyID: \
138 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
139 break;
141 // Handle pointers specially because they must be compared with only as much
142 // width as the host has. We _do not_ want to be comparing 64 bit values when
143 // running on a 32-bit target, otherwise the upper 32 bits might mess up
144 // comparisons if they contain garbage.
145 #define IMPLEMENT_POINTER_ICMP(OP) \
146 case Type::PointerTyID: \
147 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
148 (void*)(intptr_t)Src2.PointerVal); \
149 break;
151 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
152 const Type *Ty) {
153 GenericValue Dest;
154 switch (Ty->getTypeID()) {
155 IMPLEMENT_INTEGER_ICMP(eq,Ty);
156 IMPLEMENT_POINTER_ICMP(==);
157 default:
158 cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
159 abort();
161 return Dest;
164 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
165 const Type *Ty) {
166 GenericValue Dest;
167 switch (Ty->getTypeID()) {
168 IMPLEMENT_INTEGER_ICMP(ne,Ty);
169 IMPLEMENT_POINTER_ICMP(!=);
170 default:
171 cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
172 abort();
174 return Dest;
177 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
178 const Type *Ty) {
179 GenericValue Dest;
180 switch (Ty->getTypeID()) {
181 IMPLEMENT_INTEGER_ICMP(ult,Ty);
182 IMPLEMENT_POINTER_ICMP(<);
183 default:
184 cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
185 abort();
187 return Dest;
190 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
191 const Type *Ty) {
192 GenericValue Dest;
193 switch (Ty->getTypeID()) {
194 IMPLEMENT_INTEGER_ICMP(slt,Ty);
195 IMPLEMENT_POINTER_ICMP(<);
196 default:
197 cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
198 abort();
200 return Dest;
203 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
204 const Type *Ty) {
205 GenericValue Dest;
206 switch (Ty->getTypeID()) {
207 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
208 IMPLEMENT_POINTER_ICMP(>);
209 default:
210 cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
211 abort();
213 return Dest;
216 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
217 const Type *Ty) {
218 GenericValue Dest;
219 switch (Ty->getTypeID()) {
220 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
221 IMPLEMENT_POINTER_ICMP(>);
222 default:
223 cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
224 abort();
226 return Dest;
229 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
230 const Type *Ty) {
231 GenericValue Dest;
232 switch (Ty->getTypeID()) {
233 IMPLEMENT_INTEGER_ICMP(ule,Ty);
234 IMPLEMENT_POINTER_ICMP(<=);
235 default:
236 cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
237 abort();
239 return Dest;
242 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
243 const Type *Ty) {
244 GenericValue Dest;
245 switch (Ty->getTypeID()) {
246 IMPLEMENT_INTEGER_ICMP(sle,Ty);
247 IMPLEMENT_POINTER_ICMP(<=);
248 default:
249 cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
250 abort();
252 return Dest;
255 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
256 const Type *Ty) {
257 GenericValue Dest;
258 switch (Ty->getTypeID()) {
259 IMPLEMENT_INTEGER_ICMP(uge,Ty);
260 IMPLEMENT_POINTER_ICMP(>=);
261 default:
262 cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
263 abort();
265 return Dest;
268 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
269 const Type *Ty) {
270 GenericValue Dest;
271 switch (Ty->getTypeID()) {
272 IMPLEMENT_INTEGER_ICMP(sge,Ty);
273 IMPLEMENT_POINTER_ICMP(>=);
274 default:
275 cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
276 abort();
278 return Dest;
281 void Interpreter::visitICmpInst(ICmpInst &I) {
282 ExecutionContext &SF = ECStack.back();
283 const Type *Ty = I.getOperand(0)->getType();
284 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
285 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
286 GenericValue R; // Result
288 switch (I.getPredicate()) {
289 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
290 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
291 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
292 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
293 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
294 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
295 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
296 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
297 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
298 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
299 default:
300 cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
301 abort();
304 SetValue(&I, R, SF);
307 #define IMPLEMENT_FCMP(OP, TY) \
308 case Type::TY##TyID: \
309 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
310 break
312 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
313 const Type *Ty) {
314 GenericValue Dest;
315 switch (Ty->getTypeID()) {
316 IMPLEMENT_FCMP(==, Float);
317 IMPLEMENT_FCMP(==, Double);
318 default:
319 cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
320 abort();
322 return Dest;
325 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
326 const Type *Ty) {
327 GenericValue Dest;
328 switch (Ty->getTypeID()) {
329 IMPLEMENT_FCMP(!=, Float);
330 IMPLEMENT_FCMP(!=, Double);
332 default:
333 cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
334 abort();
336 return Dest;
339 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
340 const Type *Ty) {
341 GenericValue Dest;
342 switch (Ty->getTypeID()) {
343 IMPLEMENT_FCMP(<=, Float);
344 IMPLEMENT_FCMP(<=, Double);
345 default:
346 cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
347 abort();
349 return Dest;
352 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
353 const Type *Ty) {
354 GenericValue Dest;
355 switch (Ty->getTypeID()) {
356 IMPLEMENT_FCMP(>=, Float);
357 IMPLEMENT_FCMP(>=, Double);
358 default:
359 cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
360 abort();
362 return Dest;
365 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
366 const Type *Ty) {
367 GenericValue Dest;
368 switch (Ty->getTypeID()) {
369 IMPLEMENT_FCMP(<, Float);
370 IMPLEMENT_FCMP(<, Double);
371 default:
372 cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
373 abort();
375 return Dest;
378 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
379 const Type *Ty) {
380 GenericValue Dest;
381 switch (Ty->getTypeID()) {
382 IMPLEMENT_FCMP(>, Float);
383 IMPLEMENT_FCMP(>, Double);
384 default:
385 cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
386 abort();
388 return Dest;
391 #define IMPLEMENT_UNORDERED(TY, X,Y) \
392 if (TY == Type::FloatTy) { \
393 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
394 Dest.IntVal = APInt(1,true); \
395 return Dest; \
397 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
398 Dest.IntVal = APInt(1,true); \
399 return Dest; \
403 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
404 const Type *Ty) {
405 GenericValue Dest;
406 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
407 return executeFCMP_OEQ(Src1, Src2, Ty);
410 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
411 const Type *Ty) {
412 GenericValue Dest;
413 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
414 return executeFCMP_ONE(Src1, Src2, Ty);
417 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
418 const Type *Ty) {
419 GenericValue Dest;
420 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
421 return executeFCMP_OLE(Src1, Src2, Ty);
424 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
425 const Type *Ty) {
426 GenericValue Dest;
427 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
428 return executeFCMP_OGE(Src1, Src2, Ty);
431 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
432 const Type *Ty) {
433 GenericValue Dest;
434 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
435 return executeFCMP_OLT(Src1, Src2, Ty);
438 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
439 const Type *Ty) {
440 GenericValue Dest;
441 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
442 return executeFCMP_OGT(Src1, Src2, Ty);
445 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
446 const Type *Ty) {
447 GenericValue Dest;
448 if (Ty == Type::FloatTy)
449 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
450 Src2.FloatVal == Src2.FloatVal));
451 else
452 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
453 Src2.DoubleVal == Src2.DoubleVal));
454 return Dest;
457 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
458 const Type *Ty) {
459 GenericValue Dest;
460 if (Ty == Type::FloatTy)
461 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
462 Src2.FloatVal != Src2.FloatVal));
463 else
464 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
465 Src2.DoubleVal != Src2.DoubleVal));
466 return Dest;
469 void Interpreter::visitFCmpInst(FCmpInst &I) {
470 ExecutionContext &SF = ECStack.back();
471 const Type *Ty = I.getOperand(0)->getType();
472 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
473 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
474 GenericValue R; // Result
476 switch (I.getPredicate()) {
477 case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
478 case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
479 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
480 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
481 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
482 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
483 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
484 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
485 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
486 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
487 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
488 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
489 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
490 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
491 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
492 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
493 default:
494 cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
495 abort();
498 SetValue(&I, R, SF);
501 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
502 GenericValue Src2, const Type *Ty) {
503 GenericValue Result;
504 switch (predicate) {
505 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
506 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
507 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
508 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
509 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
510 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
511 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
512 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
513 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
514 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
515 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
516 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
517 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
518 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
519 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
520 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
521 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
522 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
523 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
524 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
525 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
526 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
527 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
528 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
529 case FCmpInst::FCMP_FALSE: {
530 GenericValue Result;
531 Result.IntVal = APInt(1, false);
532 return Result;
534 case FCmpInst::FCMP_TRUE: {
535 GenericValue Result;
536 Result.IntVal = APInt(1, true);
537 return Result;
539 default:
540 cerr << "Unhandled Cmp predicate\n";
541 abort();
545 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
546 ExecutionContext &SF = ECStack.back();
547 const Type *Ty = I.getOperand(0)->getType();
548 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
549 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
550 GenericValue R; // Result
552 switch (I.getOpcode()) {
553 case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break;
554 case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break;
555 case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break;
556 case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break;
557 case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break;
558 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
559 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
560 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
561 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
562 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
563 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
564 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
565 default:
566 cerr << "Don't know how to handle this binary operator!\n-->" << I;
567 abort();
570 SetValue(&I, R, SF);
573 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
574 GenericValue Src3) {
575 return Src1.IntVal == 0 ? Src3 : Src2;
578 void Interpreter::visitSelectInst(SelectInst &I) {
579 ExecutionContext &SF = ECStack.back();
580 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
581 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
582 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
583 GenericValue R = executeSelectInst(Src1, Src2, Src3);
584 SetValue(&I, R, SF);
588 //===----------------------------------------------------------------------===//
589 // Terminator Instruction Implementations
590 //===----------------------------------------------------------------------===//
592 void Interpreter::exitCalled(GenericValue GV) {
593 // runAtExitHandlers() assumes there are no stack frames, but
594 // if exit() was called, then it had a stack frame. Blow away
595 // the stack before interpreting atexit handlers.
596 ECStack.clear ();
597 runAtExitHandlers ();
598 exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
601 /// Pop the last stack frame off of ECStack and then copy the result
602 /// back into the result variable if we are not returning void. The
603 /// result variable may be the ExitValue, or the Value of the calling
604 /// CallInst if there was a previous stack frame. This method may
605 /// invalidate any ECStack iterators you have. This method also takes
606 /// care of switching to the normal destination BB, if we are returning
607 /// from an invoke.
609 void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
610 GenericValue Result) {
611 // Pop the current stack frame.
612 ECStack.pop_back();
614 if (ECStack.empty()) { // Finished main. Put result into exit code...
615 if (RetTy && RetTy->isInteger()) { // Nonvoid return type?
616 ExitValue = Result; // Capture the exit value of the program
617 } else {
618 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
620 } else {
621 // If we have a previous stack frame, and we have a previous call,
622 // fill in the return value...
623 ExecutionContext &CallingSF = ECStack.back();
624 if (Instruction *I = CallingSF.Caller.getInstruction()) {
625 if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
626 SetValue(I, Result, CallingSF);
627 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
628 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
629 CallingSF.Caller = CallSite(); // We returned from the call...
634 void Interpreter::visitReturnInst(ReturnInst &I) {
635 ExecutionContext &SF = ECStack.back();
636 const Type *RetTy = Type::VoidTy;
637 GenericValue Result;
639 // Save away the return value... (if we are not 'ret void')
640 if (I.getNumOperands()) {
641 RetTy = I.getReturnValue()->getType();
642 Result = getOperandValue(I.getReturnValue(), SF);
645 popStackAndReturnValueToCaller(RetTy, Result);
648 void Interpreter::visitUnwindInst(UnwindInst &I) {
649 // Unwind stack
650 Instruction *Inst;
651 do {
652 ECStack.pop_back ();
653 if (ECStack.empty ())
654 abort ();
655 Inst = ECStack.back ().Caller.getInstruction ();
656 } while (!(Inst && isa<InvokeInst> (Inst)));
658 // Return from invoke
659 ExecutionContext &InvokingSF = ECStack.back ();
660 InvokingSF.Caller = CallSite ();
662 // Go to exceptional destination BB of invoke instruction
663 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
666 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
667 cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
668 abort();
671 void Interpreter::visitBranchInst(BranchInst &I) {
672 ExecutionContext &SF = ECStack.back();
673 BasicBlock *Dest;
675 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
676 if (!I.isUnconditional()) {
677 Value *Cond = I.getCondition();
678 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
679 Dest = I.getSuccessor(1);
681 SwitchToNewBasicBlock(Dest, SF);
684 void Interpreter::visitSwitchInst(SwitchInst &I) {
685 ExecutionContext &SF = ECStack.back();
686 GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
687 const Type *ElTy = I.getOperand(0)->getType();
689 // Check to see if any of the cases match...
690 BasicBlock *Dest = 0;
691 for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
692 if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
693 .IntVal != 0) {
694 Dest = cast<BasicBlock>(I.getOperand(i+1));
695 break;
698 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
699 SwitchToNewBasicBlock(Dest, SF);
702 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
703 // This function handles the actual updating of block and instruction iterators
704 // as well as execution of all of the PHI nodes in the destination block.
706 // This method does this because all of the PHI nodes must be executed
707 // atomically, reading their inputs before any of the results are updated. Not
708 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
709 // their inputs. If the input PHI node is updated before it is read, incorrect
710 // results can happen. Thus we use a two phase approach.
712 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
713 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
714 SF.CurBB = Dest; // Update CurBB to branch destination
715 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
717 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
719 // Loop over all of the PHI nodes in the current block, reading their inputs.
720 std::vector<GenericValue> ResultValues;
722 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
723 // Search for the value corresponding to this previous bb...
724 int i = PN->getBasicBlockIndex(PrevBB);
725 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
726 Value *IncomingValue = PN->getIncomingValue(i);
728 // Save the incoming value for this PHI node...
729 ResultValues.push_back(getOperandValue(IncomingValue, SF));
732 // Now loop over all of the PHI nodes setting their values...
733 SF.CurInst = SF.CurBB->begin();
734 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
735 PHINode *PN = cast<PHINode>(SF.CurInst);
736 SetValue(PN, ResultValues[i], SF);
740 //===----------------------------------------------------------------------===//
741 // Memory Instruction Implementations
742 //===----------------------------------------------------------------------===//
744 void Interpreter::visitAllocationInst(AllocationInst &I) {
745 ExecutionContext &SF = ECStack.back();
747 const Type *Ty = I.getType()->getElementType(); // Type to be allocated
749 // Get the number of elements being allocated by the array...
750 unsigned NumElements =
751 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
753 unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
755 // Avoid malloc-ing zero bytes, use max()...
756 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
758 // Allocate enough memory to hold the type...
759 void *Memory = malloc(MemToAlloc);
761 DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
762 << NumElements << " (Total: " << MemToAlloc << ") at "
763 << uintptr_t(Memory) << '\n';
765 GenericValue Result = PTOGV(Memory);
766 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
767 SetValue(&I, Result, SF);
769 if (I.getOpcode() == Instruction::Alloca)
770 ECStack.back().Allocas.add(Memory);
773 void Interpreter::visitFreeInst(FreeInst &I) {
774 ExecutionContext &SF = ECStack.back();
775 assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
776 GenericValue Value = getOperandValue(I.getOperand(0), SF);
777 // TODO: Check to make sure memory is allocated
778 free(GVTOP(Value)); // Free memory
781 // getElementOffset - The workhorse for getelementptr.
783 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
784 gep_type_iterator E,
785 ExecutionContext &SF) {
786 assert(isa<PointerType>(Ptr->getType()) &&
787 "Cannot getElementOffset of a nonpointer type!");
789 uint64_t Total = 0;
791 for (; I != E; ++I) {
792 if (const StructType *STy = dyn_cast<StructType>(*I)) {
793 const StructLayout *SLO = TD.getStructLayout(STy);
795 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
796 unsigned Index = unsigned(CPU->getZExtValue());
798 Total += SLO->getElementOffset(Index);
799 } else {
800 const SequentialType *ST = cast<SequentialType>(*I);
801 // Get the index number for the array... which must be long type...
802 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
804 int64_t Idx;
805 unsigned BitWidth =
806 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
807 if (BitWidth == 32)
808 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
809 else {
810 assert(BitWidth == 64 && "Invalid index type for getelementptr");
811 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
813 Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
817 GenericValue Result;
818 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
819 DOUT << "GEP Index " << Total << " bytes.\n";
820 return Result;
823 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
824 ExecutionContext &SF = ECStack.back();
825 SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
826 gep_type_begin(I), gep_type_end(I), SF), SF);
829 void Interpreter::visitLoadInst(LoadInst &I) {
830 ExecutionContext &SF = ECStack.back();
831 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
832 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
833 GenericValue Result;
834 LoadValueFromMemory(Result, Ptr, I.getType());
835 SetValue(&I, Result, SF);
836 if (I.isVolatile() && PrintVolatile)
837 cerr << "Volatile load " << I;
840 void Interpreter::visitStoreInst(StoreInst &I) {
841 ExecutionContext &SF = ECStack.back();
842 GenericValue Val = getOperandValue(I.getOperand(0), SF);
843 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
844 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
845 I.getOperand(0)->getType());
846 if (I.isVolatile() && PrintVolatile)
847 cerr << "Volatile store: " << I;
850 //===----------------------------------------------------------------------===//
851 // Miscellaneous Instruction Implementations
852 //===----------------------------------------------------------------------===//
854 void Interpreter::visitCallSite(CallSite CS) {
855 ExecutionContext &SF = ECStack.back();
857 // Check to see if this is an intrinsic function call...
858 Function *F = CS.getCalledFunction();
859 if (F && F->isDeclaration ())
860 switch (F->getIntrinsicID()) {
861 case Intrinsic::not_intrinsic:
862 break;
863 case Intrinsic::vastart: { // va_start
864 GenericValue ArgIndex;
865 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
866 ArgIndex.UIntPairVal.second = 0;
867 SetValue(CS.getInstruction(), ArgIndex, SF);
868 return;
870 case Intrinsic::vaend: // va_end is a noop for the interpreter
871 return;
872 case Intrinsic::vacopy: // va_copy: dest = src
873 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
874 return;
875 default:
876 // If it is an unknown intrinsic function, use the intrinsic lowering
877 // class to transform it into hopefully tasty LLVM code.
879 BasicBlock::iterator me(CS.getInstruction());
880 BasicBlock *Parent = CS.getInstruction()->getParent();
881 bool atBegin(Parent->begin() == me);
882 if (!atBegin)
883 --me;
884 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
886 // Restore the CurInst pointer to the first instruction newly inserted, if
887 // any.
888 if (atBegin) {
889 SF.CurInst = Parent->begin();
890 } else {
891 SF.CurInst = me;
892 ++SF.CurInst;
894 return;
898 SF.Caller = CS;
899 std::vector<GenericValue> ArgVals;
900 const unsigned NumArgs = SF.Caller.arg_size();
901 ArgVals.reserve(NumArgs);
902 uint16_t pNum = 1;
903 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
904 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
905 Value *V = *i;
906 ArgVals.push_back(getOperandValue(V, SF));
907 // Promote all integral types whose size is < sizeof(i32) into i32.
908 // We do this by zero or sign extending the value as appropriate
909 // according to the parameter attributes
910 const Type *Ty = V->getType();
911 if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) {
912 if (CS.paramHasAttr(pNum, Attribute::ZExt))
913 ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
914 else if (CS.paramHasAttr(pNum, Attribute::SExt))
915 ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
919 // To handle indirect calls, we must get the pointer value from the argument
920 // and treat it as a function pointer.
921 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
922 callFunction((Function*)GVTOP(SRC), ArgVals);
925 void Interpreter::visitShl(BinaryOperator &I) {
926 ExecutionContext &SF = ECStack.back();
927 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
928 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
929 GenericValue Dest;
930 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
931 Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
932 else
933 Dest.IntVal = Src1.IntVal;
935 SetValue(&I, Dest, SF);
938 void Interpreter::visitLShr(BinaryOperator &I) {
939 ExecutionContext &SF = ECStack.back();
940 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
941 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
942 GenericValue Dest;
943 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
944 Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
945 else
946 Dest.IntVal = Src1.IntVal;
948 SetValue(&I, Dest, SF);
951 void Interpreter::visitAShr(BinaryOperator &I) {
952 ExecutionContext &SF = ECStack.back();
953 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
954 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
955 GenericValue Dest;
956 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
957 Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
958 else
959 Dest.IntVal = Src1.IntVal;
961 SetValue(&I, Dest, SF);
964 GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
965 ExecutionContext &SF) {
966 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
967 const IntegerType *DITy = cast<IntegerType>(DstTy);
968 unsigned DBitWidth = DITy->getBitWidth();
969 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
970 return Dest;
973 GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
974 ExecutionContext &SF) {
975 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
976 const IntegerType *DITy = cast<IntegerType>(DstTy);
977 unsigned DBitWidth = DITy->getBitWidth();
978 Dest.IntVal = Src.IntVal.sext(DBitWidth);
979 return Dest;
982 GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
983 ExecutionContext &SF) {
984 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
985 const IntegerType *DITy = cast<IntegerType>(DstTy);
986 unsigned DBitWidth = DITy->getBitWidth();
987 Dest.IntVal = Src.IntVal.zext(DBitWidth);
988 return Dest;
991 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
992 ExecutionContext &SF) {
993 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
994 assert(SrcVal->getType() == Type::DoubleTy && DstTy == Type::FloatTy &&
995 "Invalid FPTrunc instruction");
996 Dest.FloatVal = (float) Src.DoubleVal;
997 return Dest;
1000 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
1001 ExecutionContext &SF) {
1002 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1003 assert(SrcVal->getType() == Type::FloatTy && DstTy == Type::DoubleTy &&
1004 "Invalid FPTrunc instruction");
1005 Dest.DoubleVal = (double) Src.FloatVal;
1006 return Dest;
1009 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
1010 ExecutionContext &SF) {
1011 const Type *SrcTy = SrcVal->getType();
1012 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1013 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1014 assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
1016 if (SrcTy->getTypeID() == Type::FloatTyID)
1017 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1018 else
1019 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1020 return Dest;
1023 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
1024 ExecutionContext &SF) {
1025 const Type *SrcTy = SrcVal->getType();
1026 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1027 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1028 assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
1030 if (SrcTy->getTypeID() == Type::FloatTyID)
1031 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1032 else
1033 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1034 return Dest;
1037 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
1038 ExecutionContext &SF) {
1039 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1040 assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
1042 if (DstTy->getTypeID() == Type::FloatTyID)
1043 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1044 else
1045 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1046 return Dest;
1049 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
1050 ExecutionContext &SF) {
1051 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1052 assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
1054 if (DstTy->getTypeID() == Type::FloatTyID)
1055 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1056 else
1057 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1058 return Dest;
1062 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
1063 ExecutionContext &SF) {
1064 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1065 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1066 assert(isa<PointerType>(SrcVal->getType()) && "Invalid PtrToInt instruction");
1068 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1069 return Dest;
1072 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
1073 ExecutionContext &SF) {
1074 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1075 assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
1077 uint32_t PtrSize = TD.getPointerSizeInBits();
1078 if (PtrSize != Src.IntVal.getBitWidth())
1079 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1081 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1082 return Dest;
1085 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
1086 ExecutionContext &SF) {
1088 const Type *SrcTy = SrcVal->getType();
1089 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1090 if (isa<PointerType>(DstTy)) {
1091 assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
1092 Dest.PointerVal = Src.PointerVal;
1093 } else if (DstTy->isInteger()) {
1094 if (SrcTy == Type::FloatTy) {
1095 Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT);
1096 Dest.IntVal.floatToBits(Src.FloatVal);
1097 } else if (SrcTy == Type::DoubleTy) {
1098 Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT);
1099 Dest.IntVal.doubleToBits(Src.DoubleVal);
1100 } else if (SrcTy->isInteger()) {
1101 Dest.IntVal = Src.IntVal;
1102 } else
1103 assert(0 && "Invalid BitCast");
1104 } else if (DstTy == Type::FloatTy) {
1105 if (SrcTy->isInteger())
1106 Dest.FloatVal = Src.IntVal.bitsToFloat();
1107 else
1108 Dest.FloatVal = Src.FloatVal;
1109 } else if (DstTy == Type::DoubleTy) {
1110 if (SrcTy->isInteger())
1111 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1112 else
1113 Dest.DoubleVal = Src.DoubleVal;
1114 } else
1115 assert(0 && "Invalid Bitcast");
1117 return Dest;
1120 void Interpreter::visitTruncInst(TruncInst &I) {
1121 ExecutionContext &SF = ECStack.back();
1122 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1125 void Interpreter::visitSExtInst(SExtInst &I) {
1126 ExecutionContext &SF = ECStack.back();
1127 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1130 void Interpreter::visitZExtInst(ZExtInst &I) {
1131 ExecutionContext &SF = ECStack.back();
1132 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1135 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1136 ExecutionContext &SF = ECStack.back();
1137 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1140 void Interpreter::visitFPExtInst(FPExtInst &I) {
1141 ExecutionContext &SF = ECStack.back();
1142 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1145 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1146 ExecutionContext &SF = ECStack.back();
1147 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1150 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1151 ExecutionContext &SF = ECStack.back();
1152 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1155 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1156 ExecutionContext &SF = ECStack.back();
1157 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1160 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1161 ExecutionContext &SF = ECStack.back();
1162 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1165 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1166 ExecutionContext &SF = ECStack.back();
1167 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1170 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1171 ExecutionContext &SF = ECStack.back();
1172 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1175 void Interpreter::visitBitCastInst(BitCastInst &I) {
1176 ExecutionContext &SF = ECStack.back();
1177 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1180 #define IMPLEMENT_VAARG(TY) \
1181 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1183 void Interpreter::visitVAArgInst(VAArgInst &I) {
1184 ExecutionContext &SF = ECStack.back();
1186 // Get the incoming valist parameter. LLI treats the valist as a
1187 // (ec-stack-depth var-arg-index) pair.
1188 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1189 GenericValue Dest;
1190 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1191 .VarArgs[VAList.UIntPairVal.second];
1192 const Type *Ty = I.getType();
1193 switch (Ty->getTypeID()) {
1194 case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
1195 IMPLEMENT_VAARG(Pointer);
1196 IMPLEMENT_VAARG(Float);
1197 IMPLEMENT_VAARG(Double);
1198 default:
1199 cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1200 abort();
1203 // Set the Value of this Instruction.
1204 SetValue(&I, Dest, SF);
1206 // Move the pointer to the next vararg.
1207 ++VAList.UIntPairVal.second;
1210 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1211 ExecutionContext &SF) {
1212 switch (CE->getOpcode()) {
1213 case Instruction::Trunc:
1214 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1215 case Instruction::ZExt:
1216 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1217 case Instruction::SExt:
1218 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1219 case Instruction::FPTrunc:
1220 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1221 case Instruction::FPExt:
1222 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1223 case Instruction::UIToFP:
1224 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1225 case Instruction::SIToFP:
1226 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1227 case Instruction::FPToUI:
1228 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1229 case Instruction::FPToSI:
1230 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1231 case Instruction::PtrToInt:
1232 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1233 case Instruction::IntToPtr:
1234 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1235 case Instruction::BitCast:
1236 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1237 case Instruction::GetElementPtr:
1238 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1239 gep_type_end(CE), SF);
1240 case Instruction::FCmp:
1241 case Instruction::ICmp:
1242 return executeCmpInst(CE->getPredicate(),
1243 getOperandValue(CE->getOperand(0), SF),
1244 getOperandValue(CE->getOperand(1), SF),
1245 CE->getOperand(0)->getType());
1246 case Instruction::Select:
1247 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1248 getOperandValue(CE->getOperand(1), SF),
1249 getOperandValue(CE->getOperand(2), SF));
1250 default :
1251 break;
1254 // The cases below here require a GenericValue parameter for the result
1255 // so we initialize one, compute it and then return it.
1256 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1257 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1258 GenericValue Dest;
1259 const Type * Ty = CE->getOperand(0)->getType();
1260 switch (CE->getOpcode()) {
1261 case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break;
1262 case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break;
1263 case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break;
1264 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1265 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1266 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1267 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1268 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1269 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
1270 case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break;
1271 case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break;
1272 case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break;
1273 case Instruction::Shl:
1274 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1275 break;
1276 case Instruction::LShr:
1277 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1278 break;
1279 case Instruction::AShr:
1280 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1281 break;
1282 default:
1283 cerr << "Unhandled ConstantExpr: " << *CE << "\n";
1284 abort();
1285 return GenericValue();
1287 return Dest;
1290 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1291 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1292 return getConstantExprValue(CE, SF);
1293 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1294 return getConstantValue(CPV);
1295 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1296 return PTOGV(getPointerToGlobal(GV));
1297 } else {
1298 return SF.Values[V];
1302 //===----------------------------------------------------------------------===//
1303 // Dispatch and Execution Code
1304 //===----------------------------------------------------------------------===//
1306 //===----------------------------------------------------------------------===//
1307 // callFunction - Execute the specified function...
1309 void Interpreter::callFunction(Function *F,
1310 const std::vector<GenericValue> &ArgVals) {
1311 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1312 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1313 "Incorrect number of arguments passed into function call!");
1314 // Make a new stack frame... and fill it in.
1315 ECStack.push_back(ExecutionContext());
1316 ExecutionContext &StackFrame = ECStack.back();
1317 StackFrame.CurFunction = F;
1319 // Special handling for external functions.
1320 if (F->isDeclaration()) {
1321 GenericValue Result = callExternalFunction (F, ArgVals);
1322 // Simulate a 'ret' instruction of the appropriate type.
1323 popStackAndReturnValueToCaller (F->getReturnType (), Result);
1324 return;
1327 // Get pointers to first LLVM BB & Instruction in function.
1328 StackFrame.CurBB = F->begin();
1329 StackFrame.CurInst = StackFrame.CurBB->begin();
1331 // Run through the function arguments and initialize their values...
1332 assert((ArgVals.size() == F->arg_size() ||
1333 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1334 "Invalid number of values passed to function invocation!");
1336 // Handle non-varargs arguments...
1337 unsigned i = 0;
1338 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1339 AI != E; ++AI, ++i)
1340 SetValue(AI, ArgVals[i], StackFrame);
1342 // Handle varargs arguments...
1343 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1347 void Interpreter::run() {
1348 while (!ECStack.empty()) {
1349 // Interpret a single instruction & increment the "PC".
1350 ExecutionContext &SF = ECStack.back(); // Current stack frame
1351 Instruction &I = *SF.CurInst++; // Increment before execute
1353 // Track the number of dynamic instructions executed.
1354 ++NumDynamicInsts;
1356 DOUT << "About to interpret: " << I;
1357 visit(I); // Dispatch to one of the visit* methods...
1358 #if 0
1359 // This is not safe, as visiting the instruction could lower it and free I.
1360 #ifndef NDEBUG
1361 if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
1362 I.getType() != Type::VoidTy) {
1363 DOUT << " --> ";
1364 const GenericValue &Val = SF.Values[&I];
1365 switch (I.getType()->getTypeID()) {
1366 default: assert(0 && "Invalid GenericValue Type");
1367 case Type::VoidTyID: DOUT << "void"; break;
1368 case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
1369 case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
1370 case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal);
1371 break;
1372 case Type::IntegerTyID:
1373 DOUT << "i" << Val.IntVal.getBitWidth() << " "
1374 << Val.IntVal.toStringUnsigned(10)
1375 << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1376 break;
1379 #endif
1380 #endif