Merge branch 'master' into msp430
[llvm/msp430.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blobbb2f92bb029d05861e682a949d13d3c4c6afadc5
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/MachineCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Target/TargetAsmInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetFrameInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetRegisterInfo.h"
31 using namespace llvm;
33 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
36 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
37 MachineCodeEmitter& mce,
38 unsigned char* StartFunction,
39 unsigned char* EndFunction) {
40 const TargetMachine& TM = F.getTarget();
41 TD = TM.getTargetData();
42 needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
43 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
44 RI = TM.getRegisterInfo();
45 MCE = &mce;
47 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
48 EndFunction);
50 unsigned char* Result = 0;
51 unsigned char* EHFramePtr = 0;
53 const std::vector<Function *> Personalities = MMI->getPersonalities();
54 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
56 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
57 StartFunction, EndFunction, ExceptionTable);
59 return Result;
63 void
64 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
65 const std::vector<MachineMove> &Moves) const {
66 unsigned PointerSize = TD->getPointerSize();
67 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
68 PointerSize : -PointerSize;
69 bool IsLocal = false;
70 unsigned BaseLabelID = 0;
72 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
73 const MachineMove &Move = Moves[i];
74 unsigned LabelID = Move.getLabelID();
76 if (LabelID) {
77 LabelID = MMI->MappedLabel(LabelID);
79 // Throw out move if the label is invalid.
80 if (!LabelID) continue;
83 intptr_t LabelPtr = 0;
84 if (LabelID) LabelPtr = MCE->getLabelAddress(LabelID);
86 const MachineLocation &Dst = Move.getDestination();
87 const MachineLocation &Src = Move.getSource();
89 // Advance row if new location.
90 if (BaseLabelPtr && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
91 MCE->emitByte(dwarf::DW_CFA_advance_loc4);
92 MCE->emitInt32(LabelPtr - BaseLabelPtr);
94 BaseLabelID = LabelID;
95 BaseLabelPtr = LabelPtr;
96 IsLocal = true;
99 // If advancing cfa.
100 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
101 if (!Src.isReg()) {
102 if (Src.getReg() == MachineLocation::VirtualFP) {
103 MCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
104 } else {
105 MCE->emitByte(dwarf::DW_CFA_def_cfa);
106 MCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
109 int Offset = -Src.getOffset();
111 MCE->emitULEB128Bytes(Offset);
112 } else {
113 assert(0 && "Machine move no supported yet.");
115 } else if (Src.isReg() &&
116 Src.getReg() == MachineLocation::VirtualFP) {
117 if (Dst.isReg()) {
118 MCE->emitByte(dwarf::DW_CFA_def_cfa_register);
119 MCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
120 } else {
121 assert(0 && "Machine move no supported yet.");
123 } else {
124 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
125 int Offset = Dst.getOffset() / stackGrowth;
127 if (Offset < 0) {
128 MCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
129 MCE->emitULEB128Bytes(Reg);
130 MCE->emitSLEB128Bytes(Offset);
131 } else if (Reg < 64) {
132 MCE->emitByte(dwarf::DW_CFA_offset + Reg);
133 MCE->emitULEB128Bytes(Offset);
134 } else {
135 MCE->emitByte(dwarf::DW_CFA_offset_extended);
136 MCE->emitULEB128Bytes(Reg);
137 MCE->emitULEB128Bytes(Offset);
143 /// SharedTypeIds - How many leading type ids two landing pads have in common.
144 static unsigned SharedTypeIds(const LandingPadInfo *L,
145 const LandingPadInfo *R) {
146 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
147 unsigned LSize = LIds.size(), RSize = RIds.size();
148 unsigned MinSize = LSize < RSize ? LSize : RSize;
149 unsigned Count = 0;
151 for (; Count != MinSize; ++Count)
152 if (LIds[Count] != RIds[Count])
153 return Count;
155 return Count;
159 /// PadLT - Order landing pads lexicographically by type id.
160 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
161 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
162 unsigned LSize = LIds.size(), RSize = RIds.size();
163 unsigned MinSize = LSize < RSize ? LSize : RSize;
165 for (unsigned i = 0; i != MinSize; ++i)
166 if (LIds[i] != RIds[i])
167 return LIds[i] < RIds[i];
169 return LSize < RSize;
172 namespace {
174 struct KeyInfo {
175 static inline unsigned getEmptyKey() { return -1U; }
176 static inline unsigned getTombstoneKey() { return -2U; }
177 static unsigned getHashValue(const unsigned &Key) { return Key; }
178 static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
179 static bool isPod() { return true; }
182 /// ActionEntry - Structure describing an entry in the actions table.
183 struct ActionEntry {
184 int ValueForTypeID; // The value to write - may not be equal to the type id.
185 int NextAction;
186 struct ActionEntry *Previous;
189 /// PadRange - Structure holding a try-range and the associated landing pad.
190 struct PadRange {
191 // The index of the landing pad.
192 unsigned PadIndex;
193 // The index of the begin and end labels in the landing pad's label lists.
194 unsigned RangeIndex;
197 typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
199 /// CallSiteEntry - Structure describing an entry in the call-site table.
200 struct CallSiteEntry {
201 unsigned BeginLabel; // zero indicates the start of the function.
202 unsigned EndLabel; // zero indicates the end of the function.
203 unsigned PadLabel; // zero indicates that there is no landing pad.
204 unsigned Action;
209 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
210 unsigned char* StartFunction,
211 unsigned char* EndFunction) const {
212 // Map all labels and get rid of any dead landing pads.
213 MMI->TidyLandingPads();
215 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
216 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
217 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
218 if (PadInfos.empty()) return 0;
220 // Sort the landing pads in order of their type ids. This is used to fold
221 // duplicate actions.
222 SmallVector<const LandingPadInfo *, 64> LandingPads;
223 LandingPads.reserve(PadInfos.size());
224 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
225 LandingPads.push_back(&PadInfos[i]);
226 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
228 // Negative type ids index into FilterIds, positive type ids index into
229 // TypeInfos. The value written for a positive type id is just the type
230 // id itself. For a negative type id, however, the value written is the
231 // (negative) byte offset of the corresponding FilterIds entry. The byte
232 // offset is usually equal to the type id, because the FilterIds entries
233 // are written using a variable width encoding which outputs one byte per
234 // entry as long as the value written is not too large, but can differ.
235 // This kind of complication does not occur for positive type ids because
236 // type infos are output using a fixed width encoding.
237 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
238 SmallVector<int, 16> FilterOffsets;
239 FilterOffsets.reserve(FilterIds.size());
240 int Offset = -1;
241 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
242 E = FilterIds.end(); I != E; ++I) {
243 FilterOffsets.push_back(Offset);
244 Offset -= TargetAsmInfo::getULEB128Size(*I);
247 // Compute the actions table and gather the first action index for each
248 // landing pad site.
249 SmallVector<ActionEntry, 32> Actions;
250 SmallVector<unsigned, 64> FirstActions;
251 FirstActions.reserve(LandingPads.size());
253 int FirstAction = 0;
254 unsigned SizeActions = 0;
255 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
256 const LandingPadInfo *LP = LandingPads[i];
257 const std::vector<int> &TypeIds = LP->TypeIds;
258 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
259 unsigned SizeSiteActions = 0;
261 if (NumShared < TypeIds.size()) {
262 unsigned SizeAction = 0;
263 ActionEntry *PrevAction = 0;
265 if (NumShared) {
266 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
267 assert(Actions.size());
268 PrevAction = &Actions.back();
269 SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
270 TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
271 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
272 SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
273 SizeAction += -PrevAction->NextAction;
274 PrevAction = PrevAction->Previous;
278 // Compute the actions.
279 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
280 int TypeID = TypeIds[I];
281 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
282 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
283 unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
285 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
286 SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
287 SizeSiteActions += SizeAction;
289 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
290 Actions.push_back(Action);
292 PrevAction = &Actions.back();
295 // Record the first action of the landing pad site.
296 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
297 } // else identical - re-use previous FirstAction
299 FirstActions.push_back(FirstAction);
301 // Compute this sites contribution to size.
302 SizeActions += SizeSiteActions;
305 // Compute the call-site table. Entries must be ordered by address.
306 SmallVector<CallSiteEntry, 64> CallSites;
308 RangeMapType PadMap;
309 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
310 const LandingPadInfo *LandingPad = LandingPads[i];
311 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
312 unsigned BeginLabel = LandingPad->BeginLabels[j];
313 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
314 PadRange P = { i, j };
315 PadMap[BeginLabel] = P;
319 bool MayThrow = false;
320 unsigned LastLabel = 0;
321 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
322 I != E; ++I) {
323 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
324 MI != E; ++MI) {
325 if (!MI->isLabel()) {
326 MayThrow |= MI->getDesc().isCall();
327 continue;
330 unsigned BeginLabel = MI->getOperand(0).getImm();
331 assert(BeginLabel && "Invalid label!");
333 if (BeginLabel == LastLabel)
334 MayThrow = false;
336 RangeMapType::iterator L = PadMap.find(BeginLabel);
338 if (L == PadMap.end())
339 continue;
341 PadRange P = L->second;
342 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
344 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
345 "Inconsistent landing pad map!");
347 // If some instruction between the previous try-range and this one may
348 // throw, create a call-site entry with no landing pad for the region
349 // between the try-ranges.
350 if (MayThrow) {
351 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
352 CallSites.push_back(Site);
355 LastLabel = LandingPad->EndLabels[P.RangeIndex];
356 CallSiteEntry Site = {BeginLabel, LastLabel,
357 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
359 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
360 "Invalid landing pad!");
362 // Try to merge with the previous call-site.
363 if (CallSites.size()) {
364 CallSiteEntry &Prev = CallSites.back();
365 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
366 // Extend the range of the previous entry.
367 Prev.EndLabel = Site.EndLabel;
368 continue;
372 // Otherwise, create a new call-site.
373 CallSites.push_back(Site);
376 // If some instruction between the previous try-range and the end of the
377 // function may throw, create a call-site entry with no landing pad for the
378 // region following the try-range.
379 if (MayThrow) {
380 CallSiteEntry Site = {LastLabel, 0, 0, 0};
381 CallSites.push_back(Site);
384 // Final tallies.
385 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
386 sizeof(int32_t) + // Site length.
387 sizeof(int32_t)); // Landing pad.
388 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
389 SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
391 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
393 unsigned TypeOffset = sizeof(int8_t) + // Call site format
394 // Call-site table length
395 TargetAsmInfo::getULEB128Size(SizeSites) +
396 SizeSites + SizeActions + SizeTypes;
398 unsigned TotalSize = sizeof(int8_t) + // LPStart format
399 sizeof(int8_t) + // TType format
400 TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
401 TypeOffset;
403 unsigned SizeAlign = (4 - TotalSize) & 3;
405 // Begin the exception table.
406 MCE->emitAlignment(4);
407 for (unsigned i = 0; i != SizeAlign; ++i) {
408 MCE->emitByte(0);
409 // Asm->EOL("Padding");
412 unsigned char* DwarfExceptionTable = (unsigned char*)MCE->getCurrentPCValue();
414 // Emit the header.
415 MCE->emitByte(dwarf::DW_EH_PE_omit);
416 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
417 MCE->emitByte(dwarf::DW_EH_PE_absptr);
418 // Asm->EOL("TType format (DW_EH_PE_absptr)");
419 MCE->emitULEB128Bytes(TypeOffset);
420 // Asm->EOL("TType base offset");
421 MCE->emitByte(dwarf::DW_EH_PE_udata4);
422 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
423 MCE->emitULEB128Bytes(SizeSites);
424 // Asm->EOL("Call-site table length");
426 // Emit the landing pad site information.
427 for (unsigned i = 0; i < CallSites.size(); ++i) {
428 CallSiteEntry &S = CallSites[i];
429 intptr_t BeginLabelPtr = 0;
430 intptr_t EndLabelPtr = 0;
432 if (!S.BeginLabel) {
433 BeginLabelPtr = (intptr_t)StartFunction;
434 MCE->emitInt32(0);
435 } else {
436 BeginLabelPtr = MCE->getLabelAddress(S.BeginLabel);
437 MCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
440 // Asm->EOL("Region start");
442 if (!S.EndLabel) {
443 EndLabelPtr = (intptr_t)EndFunction;
444 MCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr);
445 } else {
446 EndLabelPtr = MCE->getLabelAddress(S.EndLabel);
447 MCE->emitInt32(EndLabelPtr - BeginLabelPtr);
449 //Asm->EOL("Region length");
451 if (!S.PadLabel) {
452 MCE->emitInt32(0);
453 } else {
454 unsigned PadLabelPtr = MCE->getLabelAddress(S.PadLabel);
455 MCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
457 // Asm->EOL("Landing pad");
459 MCE->emitULEB128Bytes(S.Action);
460 // Asm->EOL("Action");
463 // Emit the actions.
464 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
465 ActionEntry &Action = Actions[I];
467 MCE->emitSLEB128Bytes(Action.ValueForTypeID);
468 //Asm->EOL("TypeInfo index");
469 MCE->emitSLEB128Bytes(Action.NextAction);
470 //Asm->EOL("Next action");
473 // Emit the type ids.
474 for (unsigned M = TypeInfos.size(); M; --M) {
475 GlobalVariable *GV = TypeInfos[M - 1];
477 if (GV) {
478 if (TD->getPointerSize() == sizeof(int32_t)) {
479 MCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
480 } else {
481 MCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
483 } else {
484 if (TD->getPointerSize() == sizeof(int32_t))
485 MCE->emitInt32(0);
486 else
487 MCE->emitInt64(0);
489 // Asm->EOL("TypeInfo");
492 // Emit the filter typeids.
493 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
494 unsigned TypeID = FilterIds[j];
495 MCE->emitULEB128Bytes(TypeID);
496 //Asm->EOL("Filter TypeInfo index");
499 MCE->emitAlignment(4);
501 return DwarfExceptionTable;
504 unsigned char*
505 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
506 unsigned PointerSize = TD->getPointerSize();
507 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
508 PointerSize : -PointerSize;
510 unsigned char* StartCommonPtr = (unsigned char*)MCE->getCurrentPCValue();
511 // EH Common Frame header
512 MCE->allocateSpace(4, 0);
513 unsigned char* FrameCommonBeginPtr = (unsigned char*)MCE->getCurrentPCValue();
514 MCE->emitInt32((int)0);
515 MCE->emitByte(dwarf::DW_CIE_VERSION);
516 MCE->emitString(Personality ? "zPLR" : "zR");
517 MCE->emitULEB128Bytes(1);
518 MCE->emitSLEB128Bytes(stackGrowth);
519 MCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
521 if (Personality) {
522 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
523 // function which size is PointerSize.
524 MCE->emitULEB128Bytes(3 + PointerSize);
526 // We set the encoding of the personality as direct encoding because we use
527 // the function pointer. The encoding is not relative because the current
528 // PC value may be bigger than the personality function pointer.
529 if (PointerSize == 4) {
530 MCE->emitByte(dwarf::DW_EH_PE_sdata4);
531 MCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
532 } else {
533 MCE->emitByte(dwarf::DW_EH_PE_sdata8);
534 MCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
537 MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
538 MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
540 } else {
541 MCE->emitULEB128Bytes(1);
542 MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
545 std::vector<MachineMove> Moves;
546 RI->getInitialFrameState(Moves);
547 EmitFrameMoves(0, Moves);
548 MCE->emitAlignment(PointerSize);
550 MCE->emitInt32At((uintptr_t*)StartCommonPtr,
551 (uintptr_t)((unsigned char*)MCE->getCurrentPCValue() -
552 FrameCommonBeginPtr));
554 return StartCommonPtr;
558 unsigned char*
559 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
560 unsigned char* StartCommonPtr,
561 unsigned char* StartFunction,
562 unsigned char* EndFunction,
563 unsigned char* ExceptionTable) const {
564 unsigned PointerSize = TD->getPointerSize();
566 // EH frame header.
567 unsigned char* StartEHPtr = (unsigned char*)MCE->getCurrentPCValue();
568 MCE->allocateSpace(4, 0);
569 unsigned char* FrameBeginPtr = (unsigned char*)MCE->getCurrentPCValue();
570 // FDE CIE Offset
571 MCE->emitInt32(FrameBeginPtr - StartCommonPtr);
572 MCE->emitInt32(StartFunction - (unsigned char*)MCE->getCurrentPCValue());
573 MCE->emitInt32(EndFunction - StartFunction);
575 // If there is a personality and landing pads then point to the language
576 // specific data area in the exception table.
577 if (MMI->getPersonalityIndex()) {
578 MCE->emitULEB128Bytes(4);
580 if (!MMI->getLandingPads().empty()) {
581 MCE->emitInt32(ExceptionTable - (unsigned char*)MCE->getCurrentPCValue());
582 } else {
583 MCE->emitInt32((int)0);
585 } else {
586 MCE->emitULEB128Bytes(0);
589 // Indicate locations of function specific callee saved registers in
590 // frame.
591 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
593 MCE->emitAlignment(PointerSize);
595 // Indicate the size of the table
596 MCE->emitInt32At((uintptr_t*)StartEHPtr,
597 (uintptr_t)((unsigned char*)MCE->getCurrentPCValue() -
598 StartEHPtr));
600 // Double zeroes for the unwind runtime
601 if (PointerSize == 8) {
602 MCE->emitInt64(0);
603 MCE->emitInt64(0);
604 } else {
605 MCE->emitInt32(0);
606 MCE->emitInt32(0);
610 return StartEHPtr;
613 unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
614 MachineCodeEmitter& mce,
615 unsigned char* StartFunction,
616 unsigned char* EndFunction) {
617 const TargetMachine& TM = F.getTarget();
618 TD = TM.getTargetData();
619 needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
620 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
621 RI = TM.getRegisterInfo();
622 MCE = &mce;
623 unsigned FinalSize = 0;
625 FinalSize += GetExceptionTableSizeInBytes(&F);
627 const std::vector<Function *> Personalities = MMI->getPersonalities();
628 FinalSize +=
629 GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]);
631 FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
632 StartFunction);
634 return FinalSize;
637 /// RoundUpToAlign - Add the specified alignment to FinalSize and returns
638 /// the new value.
639 static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) {
640 if (Alignment == 0) Alignment = 1;
641 // Since we do not know where the buffer will be allocated, be pessimistic.
642 return FinalSize + Alignment;
645 unsigned
646 JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
647 unsigned char* StartFunction) const {
648 unsigned PointerSize = TD->getPointerSize();
649 unsigned FinalSize = 0;
650 // EH frame header.
651 FinalSize += PointerSize;
652 // FDE CIE Offset
653 FinalSize += 3 * PointerSize;
654 // If there is a personality and landing pads then point to the language
655 // specific data area in the exception table.
656 if (MMI->getPersonalityIndex()) {
657 FinalSize += TargetAsmInfo::getULEB128Size(4);
658 FinalSize += PointerSize;
659 } else {
660 FinalSize += TargetAsmInfo::getULEB128Size(0);
663 // Indicate locations of function specific callee saved registers in
664 // frame.
665 FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction,
666 MMI->getFrameMoves());
668 FinalSize = RoundUpToAlign(FinalSize, 4);
670 // Double zeroes for the unwind runtime
671 FinalSize += 2 * PointerSize;
673 return FinalSize;
676 unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality)
677 const {
679 unsigned PointerSize = TD->getPointerSize();
680 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
681 PointerSize : -PointerSize;
682 unsigned FinalSize = 0;
683 // EH Common Frame header
684 FinalSize += PointerSize;
685 FinalSize += 4;
686 FinalSize += 1;
687 FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
688 FinalSize += TargetAsmInfo::getULEB128Size(1);
689 FinalSize += TargetAsmInfo::getSLEB128Size(stackGrowth);
690 FinalSize += 1;
692 if (Personality) {
693 FinalSize += TargetAsmInfo::getULEB128Size(7);
695 // Encoding
696 FinalSize+= 1;
697 //Personality
698 FinalSize += PointerSize;
700 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
701 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
703 } else {
704 FinalSize += TargetAsmInfo::getULEB128Size(1);
705 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
708 std::vector<MachineMove> Moves;
709 RI->getInitialFrameState(Moves);
710 FinalSize += GetFrameMovesSizeInBytes(0, Moves);
711 FinalSize = RoundUpToAlign(FinalSize, 4);
712 return FinalSize;
715 unsigned
716 JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
717 const std::vector<MachineMove> &Moves) const {
718 unsigned PointerSize = TD->getPointerSize();
719 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
720 PointerSize : -PointerSize;
721 bool IsLocal = BaseLabelPtr;
722 unsigned FinalSize = 0;
724 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
725 const MachineMove &Move = Moves[i];
726 unsigned LabelID = Move.getLabelID();
728 if (LabelID) {
729 LabelID = MMI->MappedLabel(LabelID);
731 // Throw out move if the label is invalid.
732 if (!LabelID) continue;
735 intptr_t LabelPtr = 0;
736 if (LabelID) LabelPtr = MCE->getLabelAddress(LabelID);
738 const MachineLocation &Dst = Move.getDestination();
739 const MachineLocation &Src = Move.getSource();
741 // Advance row if new location.
742 if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) {
743 FinalSize++;
744 FinalSize += PointerSize;
745 BaseLabelPtr = LabelPtr;
746 IsLocal = true;
749 // If advancing cfa.
750 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
751 if (!Src.isReg()) {
752 if (Src.getReg() == MachineLocation::VirtualFP) {
753 ++FinalSize;
754 } else {
755 ++FinalSize;
756 unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
757 FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
760 int Offset = -Src.getOffset();
762 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
763 } else {
764 assert(0 && "Machine move no supported yet.");
766 } else if (Src.isReg() &&
767 Src.getReg() == MachineLocation::VirtualFP) {
768 if (Dst.isReg()) {
769 ++FinalSize;
770 unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
771 FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
772 } else {
773 assert(0 && "Machine move no supported yet.");
775 } else {
776 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
777 int Offset = Dst.getOffset() / stackGrowth;
779 if (Offset < 0) {
780 ++FinalSize;
781 FinalSize += TargetAsmInfo::getULEB128Size(Reg);
782 FinalSize += TargetAsmInfo::getSLEB128Size(Offset);
783 } else if (Reg < 64) {
784 ++FinalSize;
785 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
786 } else {
787 ++FinalSize;
788 FinalSize += TargetAsmInfo::getULEB128Size(Reg);
789 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
793 return FinalSize;
796 unsigned
797 JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
798 unsigned FinalSize = 0;
800 // Map all labels and get rid of any dead landing pads.
801 MMI->TidyLandingPads();
803 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
804 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
805 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
806 if (PadInfos.empty()) return 0;
808 // Sort the landing pads in order of their type ids. This is used to fold
809 // duplicate actions.
810 SmallVector<const LandingPadInfo *, 64> LandingPads;
811 LandingPads.reserve(PadInfos.size());
812 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
813 LandingPads.push_back(&PadInfos[i]);
814 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
816 // Negative type ids index into FilterIds, positive type ids index into
817 // TypeInfos. The value written for a positive type id is just the type
818 // id itself. For a negative type id, however, the value written is the
819 // (negative) byte offset of the corresponding FilterIds entry. The byte
820 // offset is usually equal to the type id, because the FilterIds entries
821 // are written using a variable width encoding which outputs one byte per
822 // entry as long as the value written is not too large, but can differ.
823 // This kind of complication does not occur for positive type ids because
824 // type infos are output using a fixed width encoding.
825 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
826 SmallVector<int, 16> FilterOffsets;
827 FilterOffsets.reserve(FilterIds.size());
828 int Offset = -1;
829 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
830 E = FilterIds.end(); I != E; ++I) {
831 FilterOffsets.push_back(Offset);
832 Offset -= TargetAsmInfo::getULEB128Size(*I);
835 // Compute the actions table and gather the first action index for each
836 // landing pad site.
837 SmallVector<ActionEntry, 32> Actions;
838 SmallVector<unsigned, 64> FirstActions;
839 FirstActions.reserve(LandingPads.size());
841 int FirstAction = 0;
842 unsigned SizeActions = 0;
843 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
844 const LandingPadInfo *LP = LandingPads[i];
845 const std::vector<int> &TypeIds = LP->TypeIds;
846 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
847 unsigned SizeSiteActions = 0;
849 if (NumShared < TypeIds.size()) {
850 unsigned SizeAction = 0;
851 ActionEntry *PrevAction = 0;
853 if (NumShared) {
854 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
855 assert(Actions.size());
856 PrevAction = &Actions.back();
857 SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
858 TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
859 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
860 SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
861 SizeAction += -PrevAction->NextAction;
862 PrevAction = PrevAction->Previous;
866 // Compute the actions.
867 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
868 int TypeID = TypeIds[I];
869 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
870 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
871 unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
873 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
874 SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
875 SizeSiteActions += SizeAction;
877 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
878 Actions.push_back(Action);
880 PrevAction = &Actions.back();
883 // Record the first action of the landing pad site.
884 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
885 } // else identical - re-use previous FirstAction
887 FirstActions.push_back(FirstAction);
889 // Compute this sites contribution to size.
890 SizeActions += SizeSiteActions;
893 // Compute the call-site table. Entries must be ordered by address.
894 SmallVector<CallSiteEntry, 64> CallSites;
896 RangeMapType PadMap;
897 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
898 const LandingPadInfo *LandingPad = LandingPads[i];
899 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
900 unsigned BeginLabel = LandingPad->BeginLabels[j];
901 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
902 PadRange P = { i, j };
903 PadMap[BeginLabel] = P;
907 bool MayThrow = false;
908 unsigned LastLabel = 0;
909 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
910 I != E; ++I) {
911 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
912 MI != E; ++MI) {
913 if (!MI->isLabel()) {
914 MayThrow |= MI->getDesc().isCall();
915 continue;
918 unsigned BeginLabel = MI->getOperand(0).getImm();
919 assert(BeginLabel && "Invalid label!");
921 if (BeginLabel == LastLabel)
922 MayThrow = false;
924 RangeMapType::iterator L = PadMap.find(BeginLabel);
926 if (L == PadMap.end())
927 continue;
929 PadRange P = L->second;
930 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
932 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
933 "Inconsistent landing pad map!");
935 // If some instruction between the previous try-range and this one may
936 // throw, create a call-site entry with no landing pad for the region
937 // between the try-ranges.
938 if (MayThrow) {
939 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
940 CallSites.push_back(Site);
943 LastLabel = LandingPad->EndLabels[P.RangeIndex];
944 CallSiteEntry Site = {BeginLabel, LastLabel,
945 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
947 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
948 "Invalid landing pad!");
950 // Try to merge with the previous call-site.
951 if (CallSites.size()) {
952 CallSiteEntry &Prev = CallSites.back();
953 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
954 // Extend the range of the previous entry.
955 Prev.EndLabel = Site.EndLabel;
956 continue;
960 // Otherwise, create a new call-site.
961 CallSites.push_back(Site);
964 // If some instruction between the previous try-range and the end of the
965 // function may throw, create a call-site entry with no landing pad for the
966 // region following the try-range.
967 if (MayThrow) {
968 CallSiteEntry Site = {LastLabel, 0, 0, 0};
969 CallSites.push_back(Site);
972 // Final tallies.
973 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
974 sizeof(int32_t) + // Site length.
975 sizeof(int32_t)); // Landing pad.
976 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
977 SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
979 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
981 unsigned TypeOffset = sizeof(int8_t) + // Call site format
982 // Call-site table length
983 TargetAsmInfo::getULEB128Size(SizeSites) +
984 SizeSites + SizeActions + SizeTypes;
986 unsigned TotalSize = sizeof(int8_t) + // LPStart format
987 sizeof(int8_t) + // TType format
988 TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
989 TypeOffset;
991 unsigned SizeAlign = (4 - TotalSize) & 3;
993 // Begin the exception table.
994 FinalSize = RoundUpToAlign(FinalSize, 4);
995 for (unsigned i = 0; i != SizeAlign; ++i) {
996 ++FinalSize;
999 unsigned PointerSize = TD->getPointerSize();
1001 // Emit the header.
1002 ++FinalSize;
1003 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
1004 ++FinalSize;
1005 // Asm->EOL("TType format (DW_EH_PE_absptr)");
1006 ++FinalSize;
1007 // Asm->EOL("TType base offset");
1008 ++FinalSize;
1009 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
1010 ++FinalSize;
1011 // Asm->EOL("Call-site table length");
1013 // Emit the landing pad site information.
1014 for (unsigned i = 0; i < CallSites.size(); ++i) {
1015 CallSiteEntry &S = CallSites[i];
1017 // Asm->EOL("Region start");
1018 FinalSize += PointerSize;
1020 //Asm->EOL("Region length");
1021 FinalSize += PointerSize;
1023 // Asm->EOL("Landing pad");
1024 FinalSize += PointerSize;
1026 FinalSize += TargetAsmInfo::getULEB128Size(S.Action);
1027 // Asm->EOL("Action");
1030 // Emit the actions.
1031 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
1032 ActionEntry &Action = Actions[I];
1034 //Asm->EOL("TypeInfo index");
1035 FinalSize += TargetAsmInfo::getSLEB128Size(Action.ValueForTypeID);
1036 //Asm->EOL("Next action");
1037 FinalSize += TargetAsmInfo::getSLEB128Size(Action.NextAction);
1040 // Emit the type ids.
1041 for (unsigned M = TypeInfos.size(); M; --M) {
1042 // Asm->EOL("TypeInfo");
1043 FinalSize += PointerSize;
1046 // Emit the filter typeids.
1047 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
1048 unsigned TypeID = FilterIds[j];
1049 FinalSize += TargetAsmInfo::getULEB128Size(TypeID);
1050 //Asm->EOL("Filter TypeInfo index");
1053 FinalSize = RoundUpToAlign(FinalSize, 4);
1055 return FinalSize;