1 //===- Win32/Program.cpp - Win32 Program Implementation ------- -*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file provides the Win32 specific implementation of the Program class.
12 //===----------------------------------------------------------------------===//
20 //===----------------------------------------------------------------------===//
21 //=== WARNING: Implementation here must contain only Win32 specific code
22 //=== and must not be UNIX code
23 //===----------------------------------------------------------------------===//
28 // This function just uses the PATH environment variable to find the program.
30 Program::FindProgramByName(const std::string& progName) {
32 // Check some degenerate cases
33 if (progName.length() == 0) // no program
36 if (!temp.set(progName)) // invalid name
38 if (temp.canExecute()) // already executable as is
41 // At this point, the file name is valid and its not executable.
42 // Let Windows search for it.
43 char buffer[MAX_PATH];
45 DWORD len = SearchPath(NULL, progName.c_str(), ".exe", MAX_PATH,
48 // See if it wasn't found.
52 // See if we got the entire path.
56 // Buffer was too small; grow and retry.
58 char *b = reinterpret_cast<char *>(_alloca(len+1));
59 DWORD len2 = SearchPath(NULL, progName.c_str(), ".exe", len+1, b, &dummy);
61 // It is unlikely the search failed, but it's always possible some file
62 // was added or removed since the last search, so be paranoid...
72 static HANDLE RedirectIO(const Path *path, int fd, std::string* ErrMsg) {
75 DuplicateHandle(GetCurrentProcess(), (HANDLE)_get_osfhandle(fd),
76 GetCurrentProcess(), &h,
77 0, TRUE, DUPLICATE_SAME_ACCESS);
85 fname = path->toString().c_str();
87 SECURITY_ATTRIBUTES sa;
88 sa.nLength = sizeof(sa);
89 sa.lpSecurityDescriptor = 0;
90 sa.bInheritHandle = TRUE;
92 h = CreateFile(fname, fd ? GENERIC_WRITE : GENERIC_READ, FILE_SHARE_READ,
93 &sa, fd == 0 ? OPEN_EXISTING : CREATE_ALWAYS,
94 FILE_ATTRIBUTE_NORMAL, NULL);
95 if (h == INVALID_HANDLE_VALUE) {
96 MakeErrMsg(ErrMsg, std::string(fname) + ": Can't open file for " +
97 (fd ? "input: " : "output: "));
104 // Due to unknown reason, mingw32's w32api doesn't have this declaration.
106 BOOL WINAPI SetInformationJobObject(HANDLE hJob,
107 JOBOBJECTINFOCLASS JobObjectInfoClass,
108 LPVOID lpJobObjectInfo,
109 DWORD cbJobObjectInfoLength);
113 Program::ExecuteAndWait(const Path& path,
116 const Path** redirects,
117 unsigned secondsToWait,
118 unsigned memoryLimit,
119 std::string* ErrMsg) {
120 if (!path.canExecute()) {
122 *ErrMsg = "program not executable";
126 // Windows wants a command line, not an array of args, to pass to the new
127 // process. We have to concatenate them all, while quoting the args that
128 // have embedded spaces.
130 // First, determine the length of the command line.
132 for (unsigned i = 0; args[i]; i++) {
133 len += strlen(args[i]) + 1;
134 if (strchr(args[i], ' '))
138 // Now build the command line.
139 char *command = reinterpret_cast<char *>(_alloca(len+1));
142 for (unsigned i = 0; args[i]; i++) {
143 const char *arg = args[i];
144 size_t len = strlen(arg);
145 bool needsQuoting = strchr(arg, ' ') != 0;
157 // The pointer to the environment block for the new process.
161 // An environment block consists of a null-terminated block of
162 // null-terminated strings. Convert the array of environment variables to
163 // an environment block by concatenating them.
165 // First, determine the length of the environment block.
167 for (unsigned i = 0; envp[i]; i++)
168 len += strlen(envp[i]) + 1;
170 // Now build the environment block.
171 envblock = reinterpret_cast<char *>(_alloca(len+1));
174 for (unsigned i = 0; envp[i]; i++) {
175 const char *ev = envp[i];
176 size_t len = strlen(ev) + 1;
184 // Create a child process.
186 memset(&si, 0, sizeof(si));
188 si.hStdInput = INVALID_HANDLE_VALUE;
189 si.hStdOutput = INVALID_HANDLE_VALUE;
190 si.hStdError = INVALID_HANDLE_VALUE;
193 si.dwFlags = STARTF_USESTDHANDLES;
195 si.hStdInput = RedirectIO(redirects[0], 0, ErrMsg);
196 if (si.hStdInput == INVALID_HANDLE_VALUE) {
197 MakeErrMsg(ErrMsg, "can't redirect stdin");
200 si.hStdOutput = RedirectIO(redirects[1], 1, ErrMsg);
201 if (si.hStdOutput == INVALID_HANDLE_VALUE) {
202 CloseHandle(si.hStdInput);
203 MakeErrMsg(ErrMsg, "can't redirect stdout");
206 if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) {
207 // If stdout and stderr should go to the same place, redirect stderr
208 // to the handle already open for stdout.
209 DuplicateHandle(GetCurrentProcess(), si.hStdOutput,
210 GetCurrentProcess(), &si.hStdError,
211 0, TRUE, DUPLICATE_SAME_ACCESS);
213 // Just redirect stderr
214 si.hStdError = RedirectIO(redirects[2], 2, ErrMsg);
215 if (si.hStdError == INVALID_HANDLE_VALUE) {
216 CloseHandle(si.hStdInput);
217 CloseHandle(si.hStdOutput);
218 MakeErrMsg(ErrMsg, "can't redirect stderr");
224 PROCESS_INFORMATION pi;
225 memset(&pi, 0, sizeof(pi));
229 BOOL rc = CreateProcess(path.c_str(), command, NULL, NULL, TRUE, 0,
230 envblock, NULL, &si, &pi);
231 DWORD err = GetLastError();
233 // Regardless of whether the process got created or not, we are done with
234 // the handles we created for it to inherit.
235 CloseHandle(si.hStdInput);
236 CloseHandle(si.hStdOutput);
237 CloseHandle(si.hStdError);
239 // Now return an error if the process didn't get created.
243 MakeErrMsg(ErrMsg, std::string("Couldn't execute program '") +
244 path.toString() + "'");
248 // Make sure these get closed no matter what.
249 AutoHandle hProcess(pi.hProcess);
250 AutoHandle hThread(pi.hThread);
252 // Assign the process to a job if a memory limit is defined.
254 if (memoryLimit != 0) {
255 hJob = CreateJobObject(0, 0);
256 bool success = false;
258 JOBOBJECT_EXTENDED_LIMIT_INFORMATION jeli;
259 memset(&jeli, 0, sizeof(jeli));
260 jeli.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_PROCESS_MEMORY;
261 jeli.ProcessMemoryLimit = uintptr_t(memoryLimit) * 1048576;
262 if (SetInformationJobObject(hJob, JobObjectExtendedLimitInformation,
263 &jeli, sizeof(jeli))) {
264 if (AssignProcessToJobObject(hJob, pi.hProcess))
269 SetLastError(GetLastError());
270 MakeErrMsg(ErrMsg, std::string("Unable to set memory limit"));
271 TerminateProcess(pi.hProcess, 1);
272 WaitForSingleObject(pi.hProcess, INFINITE);
277 // Wait for it to terminate.
278 DWORD millisecondsToWait = INFINITE;
279 if (secondsToWait > 0)
280 millisecondsToWait = secondsToWait * 1000;
282 if (WaitForSingleObject(pi.hProcess, millisecondsToWait) == WAIT_TIMEOUT) {
283 if (!TerminateProcess(pi.hProcess, 1)) {
284 MakeErrMsg(ErrMsg, std::string("Failed to terminate timed-out program '")
285 + path.toString() + "'");
288 WaitForSingleObject(pi.hProcess, INFINITE);
291 // Get its exit status.
293 rc = GetExitCodeProcess(pi.hProcess, &status);
294 err = GetLastError();
298 MakeErrMsg(ErrMsg, std::string("Failed getting status for program '") +
299 path.toString() + "'");
306 bool Program::ChangeStdinToBinary(){
307 int result = _setmode( _fileno(stdin), _O_BINARY );
311 bool Program::ChangeStdoutToBinary(){
312 int result = _setmode( _fileno(stdout), _O_BINARY );