1 //===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the Mips implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
15 // Floating Point Instructions
16 // ------------------------
18 // - 32 64-bit registers (default mode)
19 // - 16 even 32-bit registers (32-bit compatible mode) for
20 // single and double access.
22 // - 16 even 32-bit registers - single and double (aliased)
23 // - 32 32-bit registers (within single-only mode)
24 //===----------------------------------------------------------------------===//
26 // Floating Point Compare and Branch
27 def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
28 SDTCisVT<1, OtherVT>]>;
29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>,
31 def SDT_MipsFPSelectCC : SDTypeProfile<1, 4, [SDTCisInt<1>, SDTCisInt<4>,
32 SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
33 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
35 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
36 def MipsFPSelectCC : SDNode<"MipsISD::FPSelectCC", SDT_MipsFPSelectCC>;
38 // Operand for printing out a condition code.
39 let PrintMethod = "printFCCOperand" in
40 def condcode : Operand<i32>;
42 //===----------------------------------------------------------------------===//
43 // Feature predicates.
44 //===----------------------------------------------------------------------===//
46 def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
47 def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
48 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
50 //===----------------------------------------------------------------------===//
51 // Instruction Class Templates
53 // A set of multiclasses is used to address the register usage.
55 // S32 - single precision in 16 32bit even fp registers
56 // single precision in 32 32bit fp registers in SingleOnly mode
57 // S64 - single precision in 32 64bit fp registers (In64BitMode)
58 // D32 - double precision in 16 32bit even fp registers
59 // D64 - double precision in 32 64bit fp registers (In64BitMode)
61 // Only S32 and D32 are supported right now.
62 //===----------------------------------------------------------------------===//
64 multiclass FFR1_1<bits<6> funct, string asmstr>
66 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
67 !strconcat(asmstr, ".s $fd, $fs"), []>;
69 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
70 !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
73 multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
75 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
76 !strconcat(asmstr, ".s $fd, $fs"),
77 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
79 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
80 !strconcat(asmstr, ".d $fd, $fs"),
81 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
84 class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
85 RegisterClass RcDst, string asmstr>:
86 FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
87 !strconcat(asmstr, " $fd, $fs"), []>;
90 multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
91 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
92 (ins FGR32:$fs, FGR32:$ft),
93 !strconcat(asmstr, ".s $fd, $fs, $ft"),
94 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
96 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
97 (ins AFGR64:$fs, AFGR64:$ft),
98 !strconcat(asmstr, ".d $fd, $fs, $ft"),
99 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
100 Requires<[In32BitMode]>;
103 //===----------------------------------------------------------------------===//
104 // Floating Point Instructions
105 //===----------------------------------------------------------------------===//
108 defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
109 defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
110 defm ROUND_W : FFR1_1<0b001100, "round.w">;
111 defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
112 defm CVTW : FFR1_1<0b100100, "cvt.w">;
113 defm FMOV : FFR1_1<0b000110, "mov">;
115 defm FABS : FFR1_2<0b000101, "abs", fabs>;
116 defm FNEG : FFR1_2<0b000111, "neg", fneg>;
117 defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
119 /// Convert to Single Precison
120 def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">;
122 let Predicates = [IsNotSingleFloat] in {
123 /// Ceil to long signed integer
124 def CEIL_LS : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
125 def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
127 /// Round to long signed integer
128 def ROUND_LS : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
129 def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
131 /// Floor to long signed integer
132 def FLOOR_LS : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
133 def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
135 /// Trunc to long signed integer
136 def TRUNC_LS : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
137 def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
139 /// Convert to long signed integer
140 def CVTL_S : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
141 def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
143 /// Convert to Double Precison
144 def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
145 def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
146 def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
148 /// Convert to Single Precison
149 def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
150 def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
154 // The odd-numbered registers are only referenced when doing loads,
155 // stores, and moves between floating-point and integer registers.
156 // When defining instructions, we reference all 32-bit registers,
157 // regardless of register aliasing.
159 /// Move Control Registers From/To CPU Registers
160 ///def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins FGR32:$fs),
161 /// "cfc1 $rt, $fs", []>;
163 ///def CTC1 : FFR<0x11, 0x0, 0x6, (outs CPURegs:$rt), (ins FGR32:$fs),
164 /// "ctc1 $rt, $fs", []>;
166 def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
167 "mfc1 $rt, $fs", []>;
169 def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
170 "mtc1 $rt, $fs", []>;
173 /// Floating Point Memory Instructions
174 let Predicates = [IsNotSingleFloat] in {
175 def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
176 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
178 def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
179 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
182 // LWC1 and SWC1 can always be emited with odd registers.
183 def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
184 [(set FGR32:$ft, (load addr:$addr))]>;
185 def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
186 [(store FGR32:$ft, addr:$addr)]>;
188 /// Floating-point Aritmetic
189 defm FADD : FFR1_4<0x10, "add", fadd>;
190 defm FDIV : FFR1_4<0x03, "div", fdiv>;
191 defm FMUL : FFR1_4<0x02, "mul", fmul>;
192 defm FSUB : FFR1_4<0x01, "sub", fsub>;
194 //===----------------------------------------------------------------------===//
195 // Floating Point Branch Codes
196 //===----------------------------------------------------------------------===//
197 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
198 // They must be kept in synch.
199 def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
200 def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
201 def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
202 def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
204 /// Floating Point Branch of False/True (Likely)
205 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
206 class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
207 (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
208 [(MipsFPBrcond op, bb:$dst, FCR31)]>;
210 def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
211 def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
212 def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
213 def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
215 //===----------------------------------------------------------------------===//
216 // Floating Point Flag Conditions
217 //===----------------------------------------------------------------------===//
218 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
219 // They must be kept in synch.
220 def MIPS_FCOND_F : PatLeaf<(i32 0)>;
221 def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
222 def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
223 def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
224 def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
225 def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
226 def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
227 def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
228 def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
229 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
230 def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
231 def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
232 def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
233 def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
234 def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
235 def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
237 /// Floating Point Compare
238 let hasDelaySlot = 1, Defs=[FCR31] in {
239 def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
240 "c.$cc.s $fs, $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc),
243 def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
244 "c.$cc.d $fs, $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
245 (implicit FCR31)]>, Requires<[In32BitMode]>;
248 //===----------------------------------------------------------------------===//
249 // Floating Point Pseudo-Instructions
250 //===----------------------------------------------------------------------===//
252 // For some explanation, see Select_CC at MipsInstrInfo.td. We also embedd a
253 // condiciton code to enable easy handling by the Custom Inserter.
254 let usesCustomDAGSchedInserter = 1, Uses=[FCR31] in {
255 class PseudoFPSelCC<RegisterClass RC, string asmstr> :
256 MipsPseudo<(outs RC:$dst),
257 (ins CPURegs:$CmpRes, RC:$T, RC:$F, condcode:$cc), asmstr,
258 [(set RC:$dst, (MipsFPSelectCC CPURegs:$CmpRes, RC:$T, RC:$F,
262 // The values to be selected are fp but the condition test is with integers.
263 def Select_CC_S32 : PseudoSelCC<FGR32, "# MipsSelect_CC_S32_f32">;
264 def Select_CC_D32 : PseudoSelCC<AFGR64, "# MipsSelect_CC_D32_f32">,
265 Requires<[In32BitMode]>;
267 // The values to be selected are int but the condition test is done with fp.
268 def Select_FCC : PseudoFPSelCC<CPURegs, "# MipsSelect_FCC">;
270 // The values to be selected and the condition test is done with fp.
271 def Select_FCC_S32 : PseudoFPSelCC<FGR32, "# MipsSelect_FCC_S32_f32">;
272 def Select_FCC_D32 : PseudoFPSelCC<AFGR64, "# MipsSelect_FCC_D32_f32">,
273 Requires<[In32BitMode]>;
275 //===----------------------------------------------------------------------===//
276 // Floating Point Patterns
277 //===----------------------------------------------------------------------===//
278 def fpimm0 : PatLeaf<(fpimm), [{
279 return N->isExactlyValue(+0.0);
282 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
284 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
285 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
287 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
289 def : Pat<(i32 (bitconvert FGR32:$src)), (MFC1 FGR32:$src)>;
290 def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;