Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Target / X86 / X86CodeEmitter.cpp
blob63bf18d157f18b15003e5dae81a0580ff8b2638d
1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
21 #include "X86.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/Function.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 using namespace llvm;
35 STATISTIC(NumEmitted, "Number of machine instructions emitted");
37 namespace {
38 class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
39 const X86InstrInfo *II;
40 const TargetData *TD;
41 X86TargetMachine &TM;
42 MachineCodeEmitter &MCE;
43 intptr_t PICBaseOffset;
44 bool Is64BitMode;
45 bool IsPIC;
46 public:
47 static char ID;
48 explicit Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce)
49 : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),
50 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
51 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
52 Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce,
53 const X86InstrInfo &ii, const TargetData &td, bool is64)
54 : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),
55 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
56 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
58 bool runOnMachineFunction(MachineFunction &MF);
60 virtual const char *getPassName() const {
61 return "X86 Machine Code Emitter";
64 void emitInstruction(const MachineInstr &MI,
65 const TargetInstrDesc *Desc);
67 void getAnalysisUsage(AnalysisUsage &AU) const {
68 AU.addRequired<MachineModuleInfo>();
69 MachineFunctionPass::getAnalysisUsage(AU);
72 private:
73 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
74 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
75 intptr_t Disp = 0, intptr_t PCAdj = 0,
76 bool NeedStub = false, bool Indirect = false);
77 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
78 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
79 intptr_t PCAdj = 0);
80 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
81 intptr_t PCAdj = 0);
83 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
84 intptr_t PCAdj = 0);
86 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
87 void emitRegModRMByte(unsigned RegOpcodeField);
88 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
89 void emitConstant(uint64_t Val, unsigned Size);
91 void emitMemModRMByte(const MachineInstr &MI,
92 unsigned Op, unsigned RegOpcodeField,
93 intptr_t PCAdj = 0);
95 unsigned getX86RegNum(unsigned RegNo) const;
97 bool gvNeedsNonLazyPtr(const GlobalValue *GV);
99 char Emitter::ID = 0;
102 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
103 /// to the specified MCE object.
104 FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
105 MachineCodeEmitter &MCE) {
106 return new Emitter(TM, MCE);
109 bool Emitter::runOnMachineFunction(MachineFunction &MF) {
111 MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
113 II = TM.getInstrInfo();
114 TD = TM.getTargetData();
115 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
116 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
118 do {
119 DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
120 MCE.startFunction(MF);
121 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
122 MBB != E; ++MBB) {
123 MCE.StartMachineBasicBlock(MBB);
124 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
125 I != E; ++I) {
126 const TargetInstrDesc &Desc = I->getDesc();
127 emitInstruction(*I, &Desc);
128 // MOVPC32r is basically a call plus a pop instruction.
129 if (Desc.getOpcode() == X86::MOVPC32r)
130 emitInstruction(*I, &II->get(X86::POP32r));
131 NumEmitted++; // Keep track of the # of mi's emitted
134 } while (MCE.finishFunction(MF));
136 return false;
139 /// emitPCRelativeBlockAddress - This method keeps track of the information
140 /// necessary to resolve the address of this block later and emits a dummy
141 /// value.
143 void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
144 // Remember where this reference was and where it is to so we can
145 // deal with it later.
146 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
147 X86::reloc_pcrel_word, MBB));
148 MCE.emitWordLE(0);
151 /// emitGlobalAddress - Emit the specified address to the code stream assuming
152 /// this is part of a "take the address of a global" instruction.
154 void Emitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
155 intptr_t Disp /* = 0 */,
156 intptr_t PCAdj /* = 0 */,
157 bool NeedStub /* = false */,
158 bool Indirect /* = false */) {
159 intptr_t RelocCST = 0;
160 if (Reloc == X86::reloc_picrel_word)
161 RelocCST = PICBaseOffset;
162 else if (Reloc == X86::reloc_pcrel_word)
163 RelocCST = PCAdj;
164 MachineRelocation MR = Indirect
165 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
166 GV, RelocCST, NeedStub)
167 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
168 GV, RelocCST, NeedStub);
169 MCE.addRelocation(MR);
170 // The relocated value will be added to the displacement
171 if (Reloc == X86::reloc_absolute_dword)
172 MCE.emitDWordLE(Disp);
173 else
174 MCE.emitWordLE((int32_t)Disp);
177 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
178 /// be emitted to the current location in the function, and allow it to be PC
179 /// relative.
180 void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
181 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
182 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
183 Reloc, ES, RelocCST));
184 if (Reloc == X86::reloc_absolute_dword)
185 MCE.emitDWordLE(0);
186 else
187 MCE.emitWordLE(0);
190 /// emitConstPoolAddress - Arrange for the address of an constant pool
191 /// to be emitted to the current location in the function, and allow it to be PC
192 /// relative.
193 void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
194 intptr_t Disp /* = 0 */,
195 intptr_t PCAdj /* = 0 */) {
196 intptr_t RelocCST = 0;
197 if (Reloc == X86::reloc_picrel_word)
198 RelocCST = PICBaseOffset;
199 else if (Reloc == X86::reloc_pcrel_word)
200 RelocCST = PCAdj;
201 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
202 Reloc, CPI, RelocCST));
203 // The relocated value will be added to the displacement
204 if (Reloc == X86::reloc_absolute_dword)
205 MCE.emitDWordLE(Disp);
206 else
207 MCE.emitWordLE((int32_t)Disp);
210 /// emitJumpTableAddress - Arrange for the address of a jump table to
211 /// be emitted to the current location in the function, and allow it to be PC
212 /// relative.
213 void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
214 intptr_t PCAdj /* = 0 */) {
215 intptr_t RelocCST = 0;
216 if (Reloc == X86::reloc_picrel_word)
217 RelocCST = PICBaseOffset;
218 else if (Reloc == X86::reloc_pcrel_word)
219 RelocCST = PCAdj;
220 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
221 Reloc, JTI, RelocCST));
222 // The relocated value will be added to the displacement
223 if (Reloc == X86::reloc_absolute_dword)
224 MCE.emitDWordLE(0);
225 else
226 MCE.emitWordLE(0);
229 unsigned Emitter::getX86RegNum(unsigned RegNo) const {
230 return II->getRegisterInfo().getX86RegNum(RegNo);
233 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
234 unsigned RM) {
235 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
236 return RM | (RegOpcode << 3) | (Mod << 6);
239 void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
240 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
243 void Emitter::emitRegModRMByte(unsigned RegOpcodeFld) {
244 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
247 void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
248 // SIB byte is in the same format as the ModRMByte...
249 MCE.emitByte(ModRMByte(SS, Index, Base));
252 void Emitter::emitConstant(uint64_t Val, unsigned Size) {
253 // Output the constant in little endian byte order...
254 for (unsigned i = 0; i != Size; ++i) {
255 MCE.emitByte(Val & 255);
256 Val >>= 8;
260 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
261 /// sign-extended field.
262 static bool isDisp8(int Value) {
263 return Value == (signed char)Value;
266 bool Emitter::gvNeedsNonLazyPtr(const GlobalValue *GV) {
267 // For Darwin, simulate the linktime GOT by using the same non-lazy-pointer
268 // mechanism as 32-bit mode.
269 return (!Is64BitMode || TM.getSubtarget<X86Subtarget>().isTargetDarwin()) &&
270 TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
273 void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
274 int DispVal, intptr_t PCAdj) {
275 // If this is a simple integer displacement that doesn't require a relocation,
276 // emit it now.
277 if (!RelocOp) {
278 emitConstant(DispVal, 4);
279 return;
282 // Otherwise, this is something that requires a relocation. Emit it as such
283 // now.
284 if (RelocOp->isGlobal()) {
285 // In 64-bit static small code model, we could potentially emit absolute.
286 // But it's probably not beneficial.
287 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
288 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
289 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
290 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
291 bool NeedStub = isa<Function>(RelocOp->getGlobal());
292 bool Indirect = gvNeedsNonLazyPtr(RelocOp->getGlobal());
293 emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
294 PCAdj, NeedStub, Indirect);
295 } else if (RelocOp->isCPI()) {
296 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
297 emitConstPoolAddress(RelocOp->getIndex(), rt,
298 RelocOp->getOffset(), PCAdj);
299 } else if (RelocOp->isJTI()) {
300 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
301 emitJumpTableAddress(RelocOp->getIndex(), rt, PCAdj);
302 } else {
303 assert(0 && "Unknown value to relocate!");
307 void Emitter::emitMemModRMByte(const MachineInstr &MI,
308 unsigned Op, unsigned RegOpcodeField,
309 intptr_t PCAdj) {
310 const MachineOperand &Op3 = MI.getOperand(Op+3);
311 int DispVal = 0;
312 const MachineOperand *DispForReloc = 0;
314 // Figure out what sort of displacement we have to handle here.
315 if (Op3.isGlobal()) {
316 DispForReloc = &Op3;
317 } else if (Op3.isCPI()) {
318 if (Is64BitMode || IsPIC) {
319 DispForReloc = &Op3;
320 } else {
321 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
322 DispVal += Op3.getOffset();
324 } else if (Op3.isJTI()) {
325 if (Is64BitMode || IsPIC) {
326 DispForReloc = &Op3;
327 } else {
328 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
330 } else {
331 DispVal = Op3.getImm();
334 const MachineOperand &Base = MI.getOperand(Op);
335 const MachineOperand &Scale = MI.getOperand(Op+1);
336 const MachineOperand &IndexReg = MI.getOperand(Op+2);
338 unsigned BaseReg = Base.getReg();
340 // Is a SIB byte needed?
341 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
342 IndexReg.getReg() == 0 &&
343 (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
344 if (BaseReg == 0) { // Just a displacement?
345 // Emit special case [disp32] encoding
346 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
348 emitDisplacementField(DispForReloc, DispVal, PCAdj);
349 } else {
350 unsigned BaseRegNo = getX86RegNum(BaseReg);
351 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
352 // Emit simple indirect register encoding... [EAX] f.e.
353 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
354 } else if (!DispForReloc && isDisp8(DispVal)) {
355 // Emit the disp8 encoding... [REG+disp8]
356 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
357 emitConstant(DispVal, 1);
358 } else {
359 // Emit the most general non-SIB encoding: [REG+disp32]
360 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
361 emitDisplacementField(DispForReloc, DispVal, PCAdj);
365 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
366 assert(IndexReg.getReg() != X86::ESP &&
367 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
369 bool ForceDisp32 = false;
370 bool ForceDisp8 = false;
371 if (BaseReg == 0) {
372 // If there is no base register, we emit the special case SIB byte with
373 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
374 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
375 ForceDisp32 = true;
376 } else if (DispForReloc) {
377 // Emit the normal disp32 encoding.
378 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
379 ForceDisp32 = true;
380 } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
381 // Emit no displacement ModR/M byte
382 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
383 } else if (isDisp8(DispVal)) {
384 // Emit the disp8 encoding...
385 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
386 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
387 } else {
388 // Emit the normal disp32 encoding...
389 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
392 // Calculate what the SS field value should be...
393 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
394 unsigned SS = SSTable[Scale.getImm()];
396 if (BaseReg == 0) {
397 // Handle the SIB byte for the case where there is no base. The
398 // displacement has already been output.
399 unsigned IndexRegNo;
400 if (IndexReg.getReg())
401 IndexRegNo = getX86RegNum(IndexReg.getReg());
402 else
403 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
404 emitSIBByte(SS, IndexRegNo, 5);
405 } else {
406 unsigned BaseRegNo = getX86RegNum(BaseReg);
407 unsigned IndexRegNo;
408 if (IndexReg.getReg())
409 IndexRegNo = getX86RegNum(IndexReg.getReg());
410 else
411 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
412 emitSIBByte(SS, IndexRegNo, BaseRegNo);
415 // Do we need to output a displacement?
416 if (ForceDisp8) {
417 emitConstant(DispVal, 1);
418 } else if (DispVal != 0 || ForceDisp32) {
419 emitDisplacementField(DispForReloc, DispVal, PCAdj);
424 void Emitter::emitInstruction(const MachineInstr &MI,
425 const TargetInstrDesc *Desc) {
426 DOUT << MI;
428 unsigned Opcode = Desc->Opcode;
430 // Emit the lock opcode prefix as needed.
431 if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0);
433 // Emit segment override opcode prefix as needed.
434 switch (Desc->TSFlags & X86II::SegOvrMask) {
435 case X86II::FS:
436 MCE.emitByte(0x64);
437 break;
438 case X86II::GS:
439 MCE.emitByte(0x65);
440 break;
441 default: assert(0 && "Invalid segment!");
442 case 0: break; // No segment override!
445 // Emit the repeat opcode prefix as needed.
446 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
448 // Emit the operand size opcode prefix as needed.
449 if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
451 // Emit the address size opcode prefix as needed.
452 if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
454 bool Need0FPrefix = false;
455 switch (Desc->TSFlags & X86II::Op0Mask) {
456 case X86II::TB: // Two-byte opcode prefix
457 case X86II::T8: // 0F 38
458 case X86II::TA: // 0F 3A
459 Need0FPrefix = true;
460 break;
461 case X86II::REP: break; // already handled.
462 case X86II::XS: // F3 0F
463 MCE.emitByte(0xF3);
464 Need0FPrefix = true;
465 break;
466 case X86II::XD: // F2 0F
467 MCE.emitByte(0xF2);
468 Need0FPrefix = true;
469 break;
470 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
471 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
472 MCE.emitByte(0xD8+
473 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
474 >> X86II::Op0Shift));
475 break; // Two-byte opcode prefix
476 default: assert(0 && "Invalid prefix!");
477 case 0: break; // No prefix!
480 if (Is64BitMode) {
481 // REX prefix
482 unsigned REX = X86InstrInfo::determineREX(MI);
483 if (REX)
484 MCE.emitByte(0x40 | REX);
487 // 0x0F escape code must be emitted just before the opcode.
488 if (Need0FPrefix)
489 MCE.emitByte(0x0F);
491 switch (Desc->TSFlags & X86II::Op0Mask) {
492 case X86II::T8: // 0F 38
493 MCE.emitByte(0x38);
494 break;
495 case X86II::TA: // 0F 3A
496 MCE.emitByte(0x3A);
497 break;
500 // If this is a two-address instruction, skip one of the register operands.
501 unsigned NumOps = Desc->getNumOperands();
502 unsigned CurOp = 0;
503 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
504 ++CurOp;
505 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
506 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
507 --NumOps;
509 unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
510 switch (Desc->TSFlags & X86II::FormMask) {
511 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
512 case X86II::Pseudo:
513 // Remember the current PC offset, this is the PIC relocation
514 // base address.
515 switch (Opcode) {
516 default:
517 assert(0 && "psuedo instructions should be removed before code emission");
518 break;
519 case TargetInstrInfo::INLINEASM: {
520 // We allow inline assembler nodes with empty bodies - they can
521 // implicitly define registers, which is ok for JIT.
522 if (MI.getOperand(0).getSymbolName()[0]) {
523 assert(0 && "JIT does not support inline asm!\n");
524 abort();
526 break;
528 case TargetInstrInfo::DBG_LABEL:
529 case TargetInstrInfo::EH_LABEL:
530 MCE.emitLabel(MI.getOperand(0).getImm());
531 break;
532 case TargetInstrInfo::IMPLICIT_DEF:
533 case TargetInstrInfo::DECLARE:
534 case X86::DWARF_LOC:
535 case X86::FP_REG_KILL:
536 break;
537 case X86::MOVPC32r: {
538 // This emits the "call" portion of this pseudo instruction.
539 MCE.emitByte(BaseOpcode);
540 emitConstant(0, X86InstrInfo::sizeOfImm(Desc));
541 // Remember PIC base.
542 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
543 X86JITInfo *JTI = TM.getJITInfo();
544 JTI->setPICBase(MCE.getCurrentPCValue());
545 break;
548 CurOp = NumOps;
549 break;
550 case X86II::RawFrm:
551 MCE.emitByte(BaseOpcode);
553 if (CurOp != NumOps) {
554 const MachineOperand &MO = MI.getOperand(CurOp++);
556 DOUT << "RawFrm CurOp " << CurOp << "\n";
557 DOUT << "isMBB " << MO.isMBB() << "\n";
558 DOUT << "isGlobal " << MO.isGlobal() << "\n";
559 DOUT << "isSymbol " << MO.isSymbol() << "\n";
560 DOUT << "isImm " << MO.isImm() << "\n";
562 if (MO.isMBB()) {
563 emitPCRelativeBlockAddress(MO.getMBB());
564 } else if (MO.isGlobal()) {
565 // Assume undefined functions may be outside the Small codespace.
566 bool NeedStub =
567 (Is64BitMode &&
568 (TM.getCodeModel() == CodeModel::Large ||
569 TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
570 Opcode == X86::TAILJMPd;
571 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
572 MO.getOffset(), 0, NeedStub);
573 } else if (MO.isSymbol()) {
574 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
575 } else if (MO.isImm()) {
576 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
577 // Fix up immediate operand for pc relative calls.
578 intptr_t Imm = (intptr_t)MO.getImm();
579 Imm = Imm - MCE.getCurrentPCValue() - 4;
580 emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
581 } else
582 emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
583 } else {
584 assert(0 && "Unknown RawFrm operand!");
587 break;
589 case X86II::AddRegFrm:
590 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
592 if (CurOp != NumOps) {
593 const MachineOperand &MO1 = MI.getOperand(CurOp++);
594 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
595 if (MO1.isImm())
596 emitConstant(MO1.getImm(), Size);
597 else {
598 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
599 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
600 // This should not occur on Darwin for relocatable objects.
601 if (Opcode == X86::MOV64ri)
602 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
603 if (MO1.isGlobal()) {
604 bool NeedStub = isa<Function>(MO1.getGlobal());
605 bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
606 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
607 NeedStub, Indirect);
608 } else if (MO1.isSymbol())
609 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
610 else if (MO1.isCPI())
611 emitConstPoolAddress(MO1.getIndex(), rt);
612 else if (MO1.isJTI())
613 emitJumpTableAddress(MO1.getIndex(), rt);
616 break;
618 case X86II::MRMDestReg: {
619 MCE.emitByte(BaseOpcode);
620 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
621 getX86RegNum(MI.getOperand(CurOp+1).getReg()));
622 CurOp += 2;
623 if (CurOp != NumOps)
624 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
625 break;
627 case X86II::MRMDestMem: {
628 MCE.emitByte(BaseOpcode);
629 emitMemModRMByte(MI, CurOp,
630 getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)
631 .getReg()));
632 CurOp += X86AddrNumOperands + 1;
633 if (CurOp != NumOps)
634 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
635 break;
638 case X86II::MRMSrcReg:
639 MCE.emitByte(BaseOpcode);
640 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
641 getX86RegNum(MI.getOperand(CurOp).getReg()));
642 CurOp += 2;
643 if (CurOp != NumOps)
644 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
645 break;
647 case X86II::MRMSrcMem: {
648 // FIXME: Maybe lea should have its own form?
649 int AddrOperands;
650 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
651 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
652 AddrOperands = X86AddrNumOperands - 1; // No segment register
653 else
654 AddrOperands = X86AddrNumOperands;
656 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
657 X86InstrInfo::sizeOfImm(Desc) : 0;
659 MCE.emitByte(BaseOpcode);
660 emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
661 PCAdj);
662 CurOp += AddrOperands + 1;
663 if (CurOp != NumOps)
664 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
665 break;
668 case X86II::MRM0r: case X86II::MRM1r:
669 case X86II::MRM2r: case X86II::MRM3r:
670 case X86II::MRM4r: case X86II::MRM5r:
671 case X86II::MRM6r: case X86II::MRM7r: {
672 MCE.emitByte(BaseOpcode);
674 // Special handling of lfence and mfence.
675 if (Desc->getOpcode() == X86::LFENCE ||
676 Desc->getOpcode() == X86::MFENCE)
677 emitRegModRMByte((Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
678 else
679 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
680 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
682 if (CurOp != NumOps) {
683 const MachineOperand &MO1 = MI.getOperand(CurOp++);
684 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
685 if (MO1.isImm())
686 emitConstant(MO1.getImm(), Size);
687 else {
688 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
689 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
690 if (Opcode == X86::MOV64ri32)
691 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
692 if (MO1.isGlobal()) {
693 bool NeedStub = isa<Function>(MO1.getGlobal());
694 bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
695 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
696 NeedStub, Indirect);
697 } else if (MO1.isSymbol())
698 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
699 else if (MO1.isCPI())
700 emitConstPoolAddress(MO1.getIndex(), rt);
701 else if (MO1.isJTI())
702 emitJumpTableAddress(MO1.getIndex(), rt);
705 break;
708 case X86II::MRM0m: case X86II::MRM1m:
709 case X86II::MRM2m: case X86II::MRM3m:
710 case X86II::MRM4m: case X86II::MRM5m:
711 case X86II::MRM6m: case X86II::MRM7m: {
712 intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ?
713 (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?
714 X86InstrInfo::sizeOfImm(Desc) : 4) : 0;
716 MCE.emitByte(BaseOpcode);
717 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
718 PCAdj);
719 CurOp += X86AddrNumOperands;
721 if (CurOp != NumOps) {
722 const MachineOperand &MO = MI.getOperand(CurOp++);
723 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
724 if (MO.isImm())
725 emitConstant(MO.getImm(), Size);
726 else {
727 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
728 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
729 if (Opcode == X86::MOV64mi32)
730 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
731 if (MO.isGlobal()) {
732 bool NeedStub = isa<Function>(MO.getGlobal());
733 bool Indirect = gvNeedsNonLazyPtr(MO.getGlobal());
734 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
735 NeedStub, Indirect);
736 } else if (MO.isSymbol())
737 emitExternalSymbolAddress(MO.getSymbolName(), rt);
738 else if (MO.isCPI())
739 emitConstPoolAddress(MO.getIndex(), rt);
740 else if (MO.isJTI())
741 emitJumpTableAddress(MO.getIndex(), rt);
744 break;
747 case X86II::MRMInitReg:
748 MCE.emitByte(BaseOpcode);
749 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
750 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
751 getX86RegNum(MI.getOperand(CurOp).getReg()));
752 ++CurOp;
753 break;
756 if (!Desc->isVariadic() && CurOp != NumOps) {
757 cerr << "Cannot encode: ";
758 MI.dump();
759 cerr << '\n';
760 abort();