1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/VectorExtras.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/Support/CommandLine.h"
45 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
47 // Forward declarations.
48 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
51 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
52 : TargetLowering(TM
) {
53 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
54 X86ScalarSSEf64
= Subtarget
->hasSSE2();
55 X86ScalarSSEf32
= Subtarget
->hasSSE1();
56 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
60 RegInfo
= TM
.getRegisterInfo();
63 // Set up the TargetLowering object.
65 // X86 is weird, it always uses i8 for shift amounts and setcc results.
66 setShiftAmountType(MVT::i8
);
67 setBooleanContents(ZeroOrOneBooleanContent
);
68 setSchedulingPreference(SchedulingForRegPressure
);
69 setShiftAmountFlavor(Mask
); // shl X, 32 == shl X, 0
70 setStackPointerRegisterToSaveRestore(X86StackPtr
);
72 if (Subtarget
->isTargetDarwin()) {
73 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
74 setUseUnderscoreSetJmp(false);
75 setUseUnderscoreLongJmp(false);
76 } else if (Subtarget
->isTargetMingw()) {
77 // MS runtime is weird: it exports _setjmp, but longjmp!
78 setUseUnderscoreSetJmp(true);
79 setUseUnderscoreLongJmp(false);
81 setUseUnderscoreSetJmp(true);
82 setUseUnderscoreLongJmp(true);
85 // Set up the register classes.
86 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
87 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
88 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
89 if (Subtarget
->is64Bit())
90 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
92 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
94 // We don't accept any truncstore of integer registers.
95 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
96 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
97 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
98 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
99 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
100 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
102 // SETOEQ and SETUNE require checking two conditions.
103 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
104 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
105 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
106 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
107 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
108 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
110 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
112 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
113 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
114 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
116 if (Subtarget
->is64Bit()) {
117 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
118 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
120 if (!UseSoftFloat
&& !NoImplicitFloat
&& X86ScalarSSEf64
) {
121 // We have an impenetrably clever algorithm for ui64->double only.
122 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
124 // We have faster algorithm for ui32->single only.
125 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
127 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
131 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
133 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
134 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
136 if (!UseSoftFloat
&& !NoImplicitFloat
) {
137 // SSE has no i16 to fp conversion, only i32
138 if (X86ScalarSSEf32
) {
139 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
140 // f32 and f64 cases are Legal, f80 case is not
141 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
143 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
144 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
147 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
148 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
151 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
152 // are Legal, f80 is custom lowered.
153 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
154 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
156 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
158 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
159 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
161 if (X86ScalarSSEf32
) {
162 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
163 // f32 and f64 cases are Legal, f80 case is not
164 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
166 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
167 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
170 // Handle FP_TO_UINT by promoting the destination to a larger signed
172 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
173 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
174 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
176 if (Subtarget
->is64Bit()) {
177 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
178 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
180 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
181 // Expand FP_TO_UINT into a select.
182 // FIXME: We would like to use a Custom expander here eventually to do
183 // the optimal thing for SSE vs. the default expansion in the legalizer.
184 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
186 // With SSE3 we can use fisttpll to convert to a signed i64.
187 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
190 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
191 if (!X86ScalarSSEf64
) {
192 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
193 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
196 // Scalar integer divide and remainder are lowered to use operations that
197 // produce two results, to match the available instructions. This exposes
198 // the two-result form to trivial CSE, which is able to combine x/y and x%y
199 // into a single instruction.
201 // Scalar integer multiply-high is also lowered to use two-result
202 // operations, to match the available instructions. However, plain multiply
203 // (low) operations are left as Legal, as there are single-result
204 // instructions for this in x86. Using the two-result multiply instructions
205 // when both high and low results are needed must be arranged by dagcombine.
206 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
207 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
208 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
209 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
210 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
211 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
212 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
213 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
214 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
215 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
216 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
217 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
218 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
219 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
220 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
221 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
222 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
223 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
224 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
225 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
226 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
227 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
228 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
229 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
231 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
232 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
233 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
234 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
235 if (Subtarget
->is64Bit())
236 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
237 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
238 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
239 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
240 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
241 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
242 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
243 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
244 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
246 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
247 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
248 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
249 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
250 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
251 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
252 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
253 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
254 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
255 if (Subtarget
->is64Bit()) {
256 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
257 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
258 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
261 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
262 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
264 // These should be promoted to a larger select which is supported.
265 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
266 setOperationAction(ISD::SELECT
, MVT::i8
, Promote
);
267 // X86 wants to expand cmov itself.
268 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
269 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
270 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
271 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
272 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
273 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
274 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
275 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
276 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
277 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
278 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
279 if (Subtarget
->is64Bit()) {
280 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
281 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
283 // X86 ret instruction may pop stack.
284 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
285 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
288 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
289 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
290 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
291 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
292 if (Subtarget
->is64Bit())
293 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
294 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
295 if (Subtarget
->is64Bit()) {
296 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
297 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
298 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
299 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
301 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
302 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
303 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
304 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
305 if (Subtarget
->is64Bit()) {
306 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
307 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
308 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
311 if (Subtarget
->hasSSE1())
312 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
314 if (!Subtarget
->hasSSE2())
315 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
317 // Expand certain atomics
318 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
319 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
320 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
321 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
324 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
325 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
326 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
328 if (!Subtarget
->is64Bit()) {
329 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
330 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
331 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
332 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
333 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
334 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
335 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
338 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
339 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
340 // FIXME - use subtarget debug flags
341 if (!Subtarget
->isTargetDarwin() &&
342 !Subtarget
->isTargetELF() &&
343 !Subtarget
->isTargetCygMing()) {
344 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
345 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
348 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
349 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
350 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
351 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
352 if (Subtarget
->is64Bit()) {
353 setExceptionPointerRegister(X86::RAX
);
354 setExceptionSelectorRegister(X86::RDX
);
356 setExceptionPointerRegister(X86::EAX
);
357 setExceptionSelectorRegister(X86::EDX
);
359 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
360 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
362 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
364 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
366 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
367 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
368 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
369 if (Subtarget
->is64Bit()) {
370 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
371 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
373 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
374 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
377 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
378 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
379 if (Subtarget
->is64Bit())
380 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
381 if (Subtarget
->isTargetCygMing())
382 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
384 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
386 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
387 // f32 and f64 use SSE.
388 // Set up the FP register classes.
389 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
390 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
392 // Use ANDPD to simulate FABS.
393 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
394 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
396 // Use XORP to simulate FNEG.
397 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
398 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
400 // Use ANDPD and ORPD to simulate FCOPYSIGN.
401 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
402 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
404 // We don't support sin/cos/fmod
405 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
406 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
407 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
408 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
410 // Expand FP immediates into loads from the stack, except for the special
412 addLegalFPImmediate(APFloat(+0.0)); // xorpd
413 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
415 // Floating truncations from f80 and extensions to f80 go through memory.
416 // If optimizing, we lie about this though and handle it in
417 // InstructionSelectPreprocess so that dagcombine2 can hack on these.
419 setConvertAction(MVT::f32
, MVT::f80
, Expand
);
420 setConvertAction(MVT::f64
, MVT::f80
, Expand
);
421 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
422 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
424 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
425 // Use SSE for f32, x87 for f64.
426 // Set up the FP register classes.
427 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
428 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
430 // Use ANDPS to simulate FABS.
431 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
433 // Use XORP to simulate FNEG.
434 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
436 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
438 // Use ANDPS and ORPS to simulate FCOPYSIGN.
439 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
440 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
442 // We don't support sin/cos/fmod
443 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
444 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
446 // Special cases we handle for FP constants.
447 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
448 addLegalFPImmediate(APFloat(+0.0)); // FLD0
449 addLegalFPImmediate(APFloat(+1.0)); // FLD1
450 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
451 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
453 // SSE <-> X87 conversions go through memory. If optimizing, we lie about
454 // this though and handle it in InstructionSelectPreprocess so that
455 // dagcombine2 can hack on these.
457 setConvertAction(MVT::f32
, MVT::f64
, Expand
);
458 setConvertAction(MVT::f32
, MVT::f80
, Expand
);
459 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
460 setConvertAction(MVT::f64
, MVT::f32
, Expand
);
461 // And x87->x87 truncations also.
462 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
466 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
467 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
469 } else if (!UseSoftFloat
) {
470 // f32 and f64 in x87.
471 // Set up the FP register classes.
472 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
473 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
475 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
476 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
477 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
478 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
480 // Floating truncations go through memory. If optimizing, we lie about
481 // this though and handle it in InstructionSelectPreprocess so that
482 // dagcombine2 can hack on these.
484 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
485 setConvertAction(MVT::f64
, MVT::f32
, Expand
);
486 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
490 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
491 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
493 addLegalFPImmediate(APFloat(+0.0)); // FLD0
494 addLegalFPImmediate(APFloat(+1.0)); // FLD1
495 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
496 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
497 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
498 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
499 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
500 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
503 // Long double always uses X87.
505 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
506 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
507 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
510 APFloat
TmpFlt(+0.0);
511 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
513 addLegalFPImmediate(TmpFlt
); // FLD0
515 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
516 APFloat
TmpFlt2(+1.0);
517 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
519 addLegalFPImmediate(TmpFlt2
); // FLD1
520 TmpFlt2
.changeSign();
521 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
525 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
526 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
530 // Always use a library call for pow.
531 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
532 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
533 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
535 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
536 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
537 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
538 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
539 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
541 // First set operation action for all vector types to either promote
542 // (for widening) or expand (for scalarization). Then we will selectively
543 // turn on ones that can be effectively codegen'd.
544 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
545 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
546 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
547 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
548 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
549 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
560 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
561 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
562 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
563 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
564 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
565 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
567 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
568 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
569 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
570 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
571 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
572 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
573 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
574 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
575 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
576 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
577 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
578 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
579 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
580 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
581 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
582 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
583 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
584 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
585 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
586 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
587 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
588 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
591 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
592 // with -msoft-float, disable use of MMX as well.
593 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
594 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
595 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
596 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
597 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
598 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
600 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
601 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
602 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
603 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
605 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
606 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
607 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
608 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
610 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
611 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
613 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
614 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
615 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
616 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
617 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
618 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
619 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
621 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
622 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
623 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
624 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
625 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
626 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
627 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
629 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
630 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
631 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
632 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
633 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
634 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
635 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
637 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
638 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
639 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
640 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
641 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
642 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
643 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
644 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
645 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
647 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
648 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
649 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
650 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
651 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
653 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
654 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
655 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
656 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
658 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
659 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
660 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
661 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
663 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
665 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
666 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
667 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
668 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
669 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
670 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
673 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
674 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
676 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
677 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
678 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
679 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
680 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
681 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
682 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
683 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
684 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
685 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
686 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
687 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
690 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
691 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
693 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
694 // registers cannot be used even for integer operations.
695 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
696 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
697 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
698 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
700 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
701 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
702 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
703 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
704 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
705 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
706 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
707 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
708 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
709 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
710 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
711 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
712 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
713 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
714 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
715 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
717 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
718 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
719 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
720 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
722 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
723 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
724 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
725 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
726 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
728 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
729 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
730 MVT VT
= (MVT::SimpleValueType
)i
;
731 // Do not attempt to custom lower non-power-of-2 vectors
732 if (!isPowerOf2_32(VT
.getVectorNumElements()))
734 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
735 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
739 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
740 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
741 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
742 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
743 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
744 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
746 if (Subtarget
->is64Bit()) {
747 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
748 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
751 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
752 for (unsigned VT
= (unsigned)MVT::v16i8
; VT
!= (unsigned)MVT::v2i64
; VT
++) {
753 setOperationAction(ISD::AND
, (MVT::SimpleValueType
)VT
, Promote
);
754 AddPromotedToType (ISD::AND
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
755 setOperationAction(ISD::OR
, (MVT::SimpleValueType
)VT
, Promote
);
756 AddPromotedToType (ISD::OR
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
757 setOperationAction(ISD::XOR
, (MVT::SimpleValueType
)VT
, Promote
);
758 AddPromotedToType (ISD::XOR
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
759 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Promote
);
760 AddPromotedToType (ISD::LOAD
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
761 setOperationAction(ISD::SELECT
, (MVT::SimpleValueType
)VT
, Promote
);
762 AddPromotedToType (ISD::SELECT
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
765 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
767 // Custom lower v2i64 and v2f64 selects.
768 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
769 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
770 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
771 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
775 if (Subtarget
->hasSSE41()) {
776 // FIXME: Do we need to handle scalar-to-vector here?
777 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
779 // i8 and i16 vectors are custom , because the source register and source
780 // source memory operand types are not the same width. f32 vectors are
781 // custom since the immediate controlling the insert encodes additional
783 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
784 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
785 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
786 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
788 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
789 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
790 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
791 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
793 if (Subtarget
->is64Bit()) {
794 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
795 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
799 if (Subtarget
->hasSSE42()) {
800 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
803 // We want to custom lower some of our intrinsics.
804 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
806 // Add/Sub/Mul with overflow operations are custom lowered.
807 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
808 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
809 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
810 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
811 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
812 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
813 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
814 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
815 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
816 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
817 setOperationAction(ISD::UMULO
, MVT::i32
, Custom
);
818 setOperationAction(ISD::UMULO
, MVT::i64
, Custom
);
820 if (!Subtarget
->is64Bit()) {
821 // These libcalls are not available in 32-bit.
822 setLibcallName(RTLIB::SHL_I128
, 0);
823 setLibcallName(RTLIB::SRL_I128
, 0);
824 setLibcallName(RTLIB::SRA_I128
, 0);
827 // We have target-specific dag combine patterns for the following nodes:
828 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
829 setTargetDAGCombine(ISD::BUILD_VECTOR
);
830 setTargetDAGCombine(ISD::SELECT
);
831 setTargetDAGCombine(ISD::SHL
);
832 setTargetDAGCombine(ISD::SRA
);
833 setTargetDAGCombine(ISD::SRL
);
834 setTargetDAGCombine(ISD::STORE
);
835 if (Subtarget
->is64Bit())
836 setTargetDAGCombine(ISD::MUL
);
838 computeRegisterProperties();
840 // FIXME: These should be based on subtarget info. Plus, the values should
841 // be smaller when we are in optimizing for size mode.
842 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
843 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
844 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
845 allowUnalignedMemoryAccesses
= true; // x86 supports it!
846 setPrefLoopAlignment(16);
847 benefitFromCodePlacementOpt
= true;
851 MVT
X86TargetLowering::getSetCCResultType(MVT VT
) const {
856 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
857 /// the desired ByVal argument alignment.
858 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
861 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
862 if (VTy
->getBitWidth() == 128)
864 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
865 unsigned EltAlign
= 0;
866 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
867 if (EltAlign
> MaxAlign
)
869 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
870 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
871 unsigned EltAlign
= 0;
872 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
873 if (EltAlign
> MaxAlign
)
882 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
883 /// function arguments in the caller parameter area. For X86, aggregates
884 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
885 /// are at 4-byte boundaries.
886 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
887 if (Subtarget
->is64Bit()) {
888 // Max of 8 and alignment of type.
889 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
896 if (Subtarget
->hasSSE1())
897 getMaxByValAlign(Ty
, Align
);
901 /// getOptimalMemOpType - Returns the target specific optimal type for load
902 /// and store operations as a result of memset, memcpy, and memmove
903 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
906 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
907 bool isSrcConst
, bool isSrcStr
) const {
908 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
909 // linux. This is because the stack realignment code can't handle certain
910 // cases like PR2962. This should be removed when PR2962 is fixed.
911 if (!NoImplicitFloat
&& Subtarget
->getStackAlignment() >= 16) {
912 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
914 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
917 if (Subtarget
->is64Bit() && Size
>= 8)
922 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
924 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
925 SelectionDAG
&DAG
) const {
926 if (usesGlobalOffsetTable())
927 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
928 if (!Subtarget
->isPICStyleRIPRel())
929 // This doesn't have DebugLoc associated with it, but is not really the
930 // same as a Register.
931 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
936 //===----------------------------------------------------------------------===//
937 // Return Value Calling Convention Implementation
938 //===----------------------------------------------------------------------===//
940 #include "X86GenCallingConv.inc"
942 /// LowerRET - Lower an ISD::RET node.
943 SDValue
X86TargetLowering::LowerRET(SDValue Op
, SelectionDAG
&DAG
) {
944 DebugLoc dl
= Op
.getDebugLoc();
945 assert((Op
.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
947 SmallVector
<CCValAssign
, 16> RVLocs
;
948 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
949 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
950 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
);
951 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_X86
);
953 // If this is the first return lowered for this function, add the regs to the
954 // liveout set for the function.
955 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
956 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
957 if (RVLocs
[i
].isRegLoc())
958 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
960 SDValue Chain
= Op
.getOperand(0);
962 // Handle tail call return.
963 Chain
= GetPossiblePreceedingTailCall(Chain
, X86ISD::TAILCALL
);
964 if (Chain
.getOpcode() == X86ISD::TAILCALL
) {
965 SDValue TailCall
= Chain
;
966 SDValue TargetAddress
= TailCall
.getOperand(1);
967 SDValue StackAdjustment
= TailCall
.getOperand(2);
968 assert(((TargetAddress
.getOpcode() == ISD::Register
&&
969 (cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::EAX
||
970 cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::R9
)) ||
971 TargetAddress
.getOpcode() == ISD::TargetExternalSymbol
||
972 TargetAddress
.getOpcode() == ISD::TargetGlobalAddress
) &&
973 "Expecting an global address, external symbol, or register");
974 assert(StackAdjustment
.getOpcode() == ISD::Constant
&&
975 "Expecting a const value");
977 SmallVector
<SDValue
,8> Operands
;
978 Operands
.push_back(Chain
.getOperand(0));
979 Operands
.push_back(TargetAddress
);
980 Operands
.push_back(StackAdjustment
);
981 // Copy registers used by the call. Last operand is a flag so it is not
983 for (unsigned i
=3; i
< TailCall
.getNumOperands()-1; i
++) {
984 Operands
.push_back(Chain
.getOperand(i
));
986 return DAG
.getNode(X86ISD::TC_RETURN
, dl
, MVT::Other
, &Operands
[0],
993 SmallVector
<SDValue
, 6> RetOps
;
994 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
995 // Operand #1 = Bytes To Pop
996 RetOps
.push_back(DAG
.getConstant(getBytesToPopOnReturn(), MVT::i16
));
998 // Copy the result values into the output registers.
999 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1000 CCValAssign
&VA
= RVLocs
[i
];
1001 assert(VA
.isRegLoc() && "Can only return in registers!");
1002 SDValue ValToCopy
= Op
.getOperand(i
*2+1);
1004 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1005 // the RET instruction and handled by the FP Stackifier.
1006 if (VA
.getLocReg() == X86::ST0
||
1007 VA
.getLocReg() == X86::ST1
) {
1008 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1009 // change the value to the FP stack register class.
1010 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1011 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1012 RetOps
.push_back(ValToCopy
);
1013 // Don't emit a copytoreg.
1017 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1018 // which is returned in RAX / RDX.
1019 if (Subtarget
->is64Bit()) {
1020 MVT ValVT
= ValToCopy
.getValueType();
1021 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1022 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1023 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1024 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1028 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1029 Flag
= Chain
.getValue(1);
1032 // The x86-64 ABI for returning structs by value requires that we copy
1033 // the sret argument into %rax for the return. We saved the argument into
1034 // a virtual register in the entry block, so now we copy the value out
1036 if (Subtarget
->is64Bit() &&
1037 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1038 MachineFunction
&MF
= DAG
.getMachineFunction();
1039 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1040 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1042 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1043 FuncInfo
->setSRetReturnReg(Reg
);
1045 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1047 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1048 Flag
= Chain
.getValue(1);
1051 RetOps
[0] = Chain
; // Update chain.
1053 // Add the flag if we have it.
1055 RetOps
.push_back(Flag
);
1057 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1058 MVT::Other
, &RetOps
[0], RetOps
.size());
1062 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1063 /// appropriate copies out of appropriate physical registers. This assumes that
1064 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1065 /// being lowered. The returns a SDNode with the same number of values as the
1067 SDNode
*X86TargetLowering::
1068 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
1069 unsigned CallingConv
, SelectionDAG
&DAG
) {
1071 DebugLoc dl
= TheCall
->getDebugLoc();
1072 // Assign locations to each value returned by this call.
1073 SmallVector
<CCValAssign
, 16> RVLocs
;
1074 bool isVarArg
= TheCall
->isVarArg();
1075 bool Is64Bit
= Subtarget
->is64Bit();
1076 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(), RVLocs
);
1077 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_X86
);
1079 SmallVector
<SDValue
, 8> ResultVals
;
1081 // Copy all of the result registers out of their specified physreg.
1082 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1083 CCValAssign
&VA
= RVLocs
[i
];
1084 MVT CopyVT
= VA
.getValVT();
1086 // If this is x86-64, and we disabled SSE, we can't return FP values
1087 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1088 ((Is64Bit
|| TheCall
->isInreg()) && !Subtarget
->hasSSE1())) {
1089 cerr
<< "SSE register return with SSE disabled\n";
1093 // If this is a call to a function that returns an fp value on the floating
1094 // point stack, but where we prefer to use the value in xmm registers, copy
1095 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1096 if ((VA
.getLocReg() == X86::ST0
||
1097 VA
.getLocReg() == X86::ST1
) &&
1098 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1103 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1104 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1105 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1106 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1107 MVT::v2i64
, InFlag
).getValue(1);
1108 Val
= Chain
.getValue(0);
1109 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1110 Val
, DAG
.getConstant(0, MVT::i64
));
1112 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1113 MVT::i64
, InFlag
).getValue(1);
1114 Val
= Chain
.getValue(0);
1116 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1118 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1119 CopyVT
, InFlag
).getValue(1);
1120 Val
= Chain
.getValue(0);
1122 InFlag
= Chain
.getValue(2);
1124 if (CopyVT
!= VA
.getValVT()) {
1125 // Round the F80 the right size, which also moves to the appropriate xmm
1127 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1128 // This truncation won't change the value.
1129 DAG
.getIntPtrConstant(1));
1132 ResultVals
.push_back(Val
);
1135 // Merge everything together with a MERGE_VALUES node.
1136 ResultVals
.push_back(Chain
);
1137 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
1138 &ResultVals
[0], ResultVals
.size()).getNode();
1142 //===----------------------------------------------------------------------===//
1143 // C & StdCall & Fast Calling Convention implementation
1144 //===----------------------------------------------------------------------===//
1145 // StdCall calling convention seems to be standard for many Windows' API
1146 // routines and around. It differs from C calling convention just a little:
1147 // callee should clean up the stack, not caller. Symbols should be also
1148 // decorated in some fancy way :) It doesn't support any vector arguments.
1149 // For info on fast calling convention see Fast Calling Convention (tail call)
1150 // implementation LowerX86_32FastCCCallTo.
1152 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1154 static bool CallIsStructReturn(CallSDNode
*TheCall
) {
1155 unsigned NumOps
= TheCall
->getNumArgs();
1159 return TheCall
->getArgFlags(0).isSRet();
1162 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1163 /// return semantics.
1164 static bool ArgsAreStructReturn(SDValue Op
) {
1165 unsigned NumArgs
= Op
.getNode()->getNumValues() - 1;
1169 return cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3))->getArgFlags().isSRet();
1172 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1173 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1175 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, unsigned CallingConv
) {
1179 switch (CallingConv
) {
1182 case CallingConv::X86_StdCall
:
1183 return !Subtarget
->is64Bit();
1184 case CallingConv::X86_FastCall
:
1185 return !Subtarget
->is64Bit();
1186 case CallingConv::Fast
:
1187 return PerformTailCallOpt
;
1191 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1192 /// given CallingConvention value.
1193 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(unsigned CC
) const {
1194 if (Subtarget
->is64Bit()) {
1195 if (Subtarget
->isTargetWin64())
1196 return CC_X86_Win64_C
;
1197 else if (CC
== CallingConv::Fast
&& PerformTailCallOpt
)
1198 return CC_X86_64_TailCall
;
1203 if (CC
== CallingConv::X86_FastCall
)
1204 return CC_X86_32_FastCall
;
1205 else if (CC
== CallingConv::Fast
)
1206 return CC_X86_32_FastCC
;
1211 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1212 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1214 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op
) {
1215 unsigned CC
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1216 if (CC
== CallingConv::X86_FastCall
)
1218 else if (CC
== CallingConv::X86_StdCall
)
1224 /// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1225 /// in a register before calling.
1226 bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit
, bool IsTailCall
) {
1227 return !IsTailCall
&& !Is64Bit
&&
1228 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1229 Subtarget
->isPICStyleGOT();
1232 /// CallRequiresFnAddressInReg - Check whether the call requires the function
1233 /// address to be loaded in a register.
1235 X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit
, bool IsTailCall
) {
1236 return !Is64Bit
&& IsTailCall
&&
1237 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1238 Subtarget
->isPICStyleGOT();
1241 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1242 /// by "Src" to address "Dst" with size and alignment information specified by
1243 /// the specific parameter attribute. The copy will be passed as a byval
1244 /// function parameter.
1246 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1247 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1249 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1250 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1251 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1254 SDValue
X86TargetLowering::LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
1255 const CCValAssign
&VA
,
1256 MachineFrameInfo
*MFI
,
1258 SDValue Root
, unsigned i
) {
1259 // Create the nodes corresponding to a load from this parameter slot.
1260 ISD::ArgFlagsTy Flags
=
1261 cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3 + i
))->getArgFlags();
1262 bool AlwaysUseMutable
= (CC
==CallingConv::Fast
) && PerformTailCallOpt
;
1263 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1265 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1266 // changed with more analysis.
1267 // In case of tail call optimization mark all arguments mutable. Since they
1268 // could be overwritten by lowering of arguments in case of a tail call.
1269 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
1270 VA
.getLocMemOffset(), isImmutable
);
1271 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1272 if (Flags
.isByVal())
1274 return DAG
.getLoad(VA
.getValVT(), Op
.getDebugLoc(), Root
, FIN
,
1275 PseudoSourceValue::getFixedStack(FI
), 0);
1279 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
) {
1280 MachineFunction
&MF
= DAG
.getMachineFunction();
1281 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1282 DebugLoc dl
= Op
.getDebugLoc();
1284 const Function
* Fn
= MF
.getFunction();
1285 if (Fn
->hasExternalLinkage() &&
1286 Subtarget
->isTargetCygMing() &&
1287 Fn
->getName() == "main")
1288 FuncInfo
->setForceFramePointer(true);
1290 // Decorate the function name.
1291 FuncInfo
->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op
));
1293 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1294 SDValue Root
= Op
.getOperand(0);
1295 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
1296 unsigned CC
= MF
.getFunction()->getCallingConv();
1297 bool Is64Bit
= Subtarget
->is64Bit();
1298 bool IsWin64
= Subtarget
->isTargetWin64();
1300 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1301 "Var args not supported with calling convention fastcc");
1303 // Assign locations to all of the incoming arguments.
1304 SmallVector
<CCValAssign
, 16> ArgLocs
;
1305 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
1306 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CCAssignFnForNode(CC
));
1308 SmallVector
<SDValue
, 8> ArgValues
;
1309 unsigned LastVal
= ~0U;
1310 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1311 CCValAssign
&VA
= ArgLocs
[i
];
1312 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1314 assert(VA
.getValNo() != LastVal
&&
1315 "Don't support value assigned to multiple locs yet");
1316 LastVal
= VA
.getValNo();
1318 if (VA
.isRegLoc()) {
1319 MVT RegVT
= VA
.getLocVT();
1320 TargetRegisterClass
*RC
= NULL
;
1321 if (RegVT
== MVT::i32
)
1322 RC
= X86::GR32RegisterClass
;
1323 else if (Is64Bit
&& RegVT
== MVT::i64
)
1324 RC
= X86::GR64RegisterClass
;
1325 else if (RegVT
== MVT::f32
)
1326 RC
= X86::FR32RegisterClass
;
1327 else if (RegVT
== MVT::f64
)
1328 RC
= X86::FR64RegisterClass
;
1329 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1330 RC
= X86::VR128RegisterClass
;
1331 else if (RegVT
.isVector()) {
1332 assert(RegVT
.getSizeInBits() == 64);
1334 RC
= X86::VR64RegisterClass
; // MMX values are passed in MMXs.
1336 // Darwin calling convention passes MMX values in either GPRs or
1337 // XMMs in x86-64. Other targets pass them in memory.
1338 if (RegVT
!= MVT::v1i64
&& Subtarget
->hasSSE2()) {
1339 RC
= X86::VR128RegisterClass
; // MMX values are passed in XMMs.
1342 RC
= X86::GR64RegisterClass
; // v1i64 values are passed in GPRs.
1347 assert(0 && "Unknown argument type!");
1350 unsigned Reg
= DAG
.getMachineFunction().addLiveIn(VA
.getLocReg(), RC
);
1351 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
1353 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1354 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1356 if (VA
.getLocInfo() == CCValAssign::SExt
)
1357 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1358 DAG
.getValueType(VA
.getValVT()));
1359 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1360 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1361 DAG
.getValueType(VA
.getValVT()));
1363 if (VA
.getLocInfo() != CCValAssign::Full
)
1364 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1366 // Handle MMX values passed in GPRs.
1367 if (Is64Bit
&& RegVT
!= VA
.getLocVT()) {
1368 if (RegVT
.getSizeInBits() == 64 && RC
== X86::GR64RegisterClass
)
1369 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1370 else if (RC
== X86::VR128RegisterClass
) {
1371 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1372 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1373 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1377 ArgValues
.push_back(ArgValue
);
1379 assert(VA
.isMemLoc());
1380 ArgValues
.push_back(LowerMemArgument(Op
, DAG
, VA
, MFI
, CC
, Root
, i
));
1384 // The x86-64 ABI for returning structs by value requires that we copy
1385 // the sret argument into %rax for the return. Save the argument into
1386 // a virtual register so that we can access it from the return points.
1387 if (Is64Bit
&& DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1388 MachineFunction
&MF
= DAG
.getMachineFunction();
1389 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1390 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1392 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1393 FuncInfo
->setSRetReturnReg(Reg
);
1395 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1396 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1399 unsigned StackSize
= CCInfo
.getNextStackOffset();
1400 // align stack specially for tail calls
1401 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1402 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1404 // If the function takes variable number of arguments, make a frame index for
1405 // the start of the first vararg value... for expansion of llvm.va_start.
1407 if (Is64Bit
|| CC
!= CallingConv::X86_FastCall
) {
1408 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1411 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1413 // FIXME: We should really autogenerate these arrays
1414 static const unsigned GPR64ArgRegsWin64
[] = {
1415 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1417 static const unsigned XMMArgRegsWin64
[] = {
1418 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1420 static const unsigned GPR64ArgRegs64Bit
[] = {
1421 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1423 static const unsigned XMMArgRegs64Bit
[] = {
1424 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1425 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1427 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1430 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1431 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1432 XMMArgRegs
= XMMArgRegsWin64
;
1434 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1435 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1436 XMMArgRegs
= XMMArgRegs64Bit
;
1438 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1440 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1443 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1444 "SSE register cannot be used when SSE is disabled!");
1445 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloat
) &&
1446 "SSE register cannot be used when SSE is disabled!");
1447 if (UseSoftFloat
|| NoImplicitFloat
|| !Subtarget
->hasSSE1())
1448 // Kernel mode asks for SSE to be disabled, so don't push them
1450 TotalNumXMMRegs
= 0;
1452 // For X86-64, if there are vararg parameters that are passed via
1453 // registers, then we must store them to their spots on the stack so they
1454 // may be loaded by deferencing the result of va_next.
1455 VarArgsGPOffset
= NumIntRegs
* 8;
1456 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1457 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1458 TotalNumXMMRegs
* 16, 16);
1460 // Store the integer parameter registers.
1461 SmallVector
<SDValue
, 8> MemOps
;
1462 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1463 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1464 DAG
.getIntPtrConstant(VarArgsGPOffset
));
1465 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1466 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1467 X86::GR64RegisterClass
);
1468 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::i64
);
1470 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1471 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1472 MemOps
.push_back(Store
);
1473 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1474 DAG
.getIntPtrConstant(8));
1477 // Now store the XMM (fp + vector) parameter registers.
1478 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1479 DAG
.getIntPtrConstant(VarArgsFPOffset
));
1480 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1481 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1482 X86::VR128RegisterClass
);
1483 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::v4f32
);
1485 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1486 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1487 MemOps
.push_back(Store
);
1488 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1489 DAG
.getIntPtrConstant(16));
1491 if (!MemOps
.empty())
1492 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1493 &MemOps
[0], MemOps
.size());
1497 ArgValues
.push_back(Root
);
1499 // Some CCs need callee pop.
1500 if (IsCalleePop(isVarArg
, CC
)) {
1501 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1502 BytesCallerReserves
= 0;
1504 BytesToPopOnReturn
= 0; // Callee pops nothing.
1505 // If this is an sret function, the return should pop the hidden pointer.
1506 if (!Is64Bit
&& CC
!= CallingConv::Fast
&& ArgsAreStructReturn(Op
))
1507 BytesToPopOnReturn
= 4;
1508 BytesCallerReserves
= StackSize
;
1512 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1513 if (CC
== CallingConv::X86_FastCall
)
1514 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1517 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1519 // Return the new list of results.
1520 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1521 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1525 X86TargetLowering::LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
1526 const SDValue
&StackPtr
,
1527 const CCValAssign
&VA
,
1529 SDValue Arg
, ISD::ArgFlagsTy Flags
) {
1530 DebugLoc dl
= TheCall
->getDebugLoc();
1531 unsigned LocMemOffset
= VA
.getLocMemOffset();
1532 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1533 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1534 if (Flags
.isByVal()) {
1535 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1537 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1538 PseudoSourceValue::getStack(), LocMemOffset
);
1541 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1542 /// optimization is performed and it is required.
1544 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1545 SDValue
&OutRetAddr
,
1551 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1553 // Adjust the Return address stack slot.
1554 MVT VT
= getPointerTy();
1555 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1557 // Load the "old" Return address.
1558 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1559 return SDValue(OutRetAddr
.getNode(), 1);
1562 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1563 /// optimization is performed and it is required (FPDiff!=0).
1565 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1566 SDValue Chain
, SDValue RetAddrFrIdx
,
1567 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1568 // Store the return address to the appropriate stack slot.
1569 if (!FPDiff
) return Chain
;
1570 // Calculate the new stack slot for the return address.
1571 int SlotSize
= Is64Bit
? 8 : 4;
1572 int NewReturnAddrFI
=
1573 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1574 MVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1575 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1576 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1577 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1581 SDValue
X86TargetLowering::LowerCALL(SDValue Op
, SelectionDAG
&DAG
) {
1582 MachineFunction
&MF
= DAG
.getMachineFunction();
1583 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
1584 SDValue Chain
= TheCall
->getChain();
1585 unsigned CC
= TheCall
->getCallingConv();
1586 bool isVarArg
= TheCall
->isVarArg();
1587 bool IsTailCall
= TheCall
->isTailCall() &&
1588 CC
== CallingConv::Fast
&& PerformTailCallOpt
;
1589 SDValue Callee
= TheCall
->getCallee();
1590 bool Is64Bit
= Subtarget
->is64Bit();
1591 bool IsStructRet
= CallIsStructReturn(TheCall
);
1592 DebugLoc dl
= TheCall
->getDebugLoc();
1594 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1595 "Var args not supported with calling convention fastcc");
1597 // Analyze operands of the call, assigning locations to each operand.
1598 SmallVector
<CCValAssign
, 16> ArgLocs
;
1599 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
1600 CCInfo
.AnalyzeCallOperands(TheCall
, CCAssignFnForNode(CC
));
1602 // Get a count of how many bytes are to be pushed on the stack.
1603 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1604 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1605 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1609 // Lower arguments at fp - stackoffset + fpdiff.
1610 unsigned NumBytesCallerPushed
=
1611 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1612 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1614 // Set the delta of movement of the returnaddr stackslot.
1615 // But only set if delta is greater than previous delta.
1616 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1617 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1620 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1622 SDValue RetAddrFrIdx
;
1623 // Load return adress for tail calls.
1624 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, IsTailCall
, Is64Bit
,
1627 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1628 SmallVector
<SDValue
, 8> MemOpChains
;
1631 // Walk the register/memloc assignments, inserting copies/loads. In the case
1632 // of tail call optimization arguments are handle later.
1633 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1634 CCValAssign
&VA
= ArgLocs
[i
];
1635 SDValue Arg
= TheCall
->getArg(i
);
1636 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1637 bool isByVal
= Flags
.isByVal();
1639 // Promote the value if needed.
1640 switch (VA
.getLocInfo()) {
1641 default: assert(0 && "Unknown loc info!");
1642 case CCValAssign::Full
: break;
1643 case CCValAssign::SExt
:
1644 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1646 case CCValAssign::ZExt
:
1647 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1649 case CCValAssign::AExt
:
1650 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1654 if (VA
.isRegLoc()) {
1656 MVT RegVT
= VA
.getLocVT();
1657 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1658 switch (VA
.getLocReg()) {
1661 case X86::RDI
: case X86::RSI
: case X86::RDX
: case X86::RCX
:
1663 // Special case: passing MMX values in GPR registers.
1664 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1667 case X86::XMM0
: case X86::XMM1
: case X86::XMM2
: case X86::XMM3
:
1668 case X86::XMM4
: case X86::XMM5
: case X86::XMM6
: case X86::XMM7
: {
1669 // Special case: passing MMX values in XMM registers.
1670 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1671 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1672 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1677 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1679 if (!IsTailCall
|| (IsTailCall
&& isByVal
)) {
1680 assert(VA
.isMemLoc());
1681 if (StackPtr
.getNode() == 0)
1682 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1684 MemOpChains
.push_back(LowerMemOpCallTo(TheCall
, DAG
, StackPtr
, VA
,
1685 Chain
, Arg
, Flags
));
1690 if (!MemOpChains
.empty())
1691 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1692 &MemOpChains
[0], MemOpChains
.size());
1694 // Build a sequence of copy-to-reg nodes chained together with token chain
1695 // and flag operands which copy the outgoing args into registers.
1697 // Tail call byval lowering might overwrite argument registers so in case of
1698 // tail call optimization the copies to registers are lowered later.
1700 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1701 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1702 RegsToPass
[i
].second
, InFlag
);
1703 InFlag
= Chain
.getValue(1);
1706 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1708 if (CallRequiresGOTPtrInReg(Is64Bit
, IsTailCall
)) {
1709 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1710 DAG
.getNode(X86ISD::GlobalBaseReg
,
1711 DebugLoc::getUnknownLoc(),
1714 InFlag
= Chain
.getValue(1);
1716 // If we are tail calling and generating PIC/GOT style code load the address
1717 // of the callee into ecx. The value in ecx is used as target of the tail
1718 // jump. This is done to circumvent the ebx/callee-saved problem for tail
1719 // calls on PIC/GOT architectures. Normally we would just put the address of
1720 // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1721 // restored (since ebx is callee saved) before jumping to the target@PLT.
1722 if (CallRequiresFnAddressInReg(Is64Bit
, IsTailCall
)) {
1723 // Note: The actual moving to ecx is done further down.
1724 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1725 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1726 !G
->getGlobal()->hasProtectedVisibility())
1727 Callee
= LowerGlobalAddress(Callee
, DAG
);
1728 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1729 Callee
= LowerExternalSymbol(Callee
,DAG
);
1732 if (Is64Bit
&& isVarArg
) {
1733 // From AMD64 ABI document:
1734 // For calls that may call functions that use varargs or stdargs
1735 // (prototype-less calls or calls to functions containing ellipsis (...) in
1736 // the declaration) %al is used as hidden argument to specify the number
1737 // of SSE registers used. The contents of %al do not need to match exactly
1738 // the number of registers, but must be an ubound on the number of SSE
1739 // registers used and is in the range 0 - 8 inclusive.
1741 // FIXME: Verify this on Win64
1742 // Count the number of XMM registers allocated.
1743 static const unsigned XMMArgRegs
[] = {
1744 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1745 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1747 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1748 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1749 && "SSE registers cannot be used when SSE is disabled");
1751 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1752 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1753 InFlag
= Chain
.getValue(1);
1757 // For tail calls lower the arguments to the 'real' stack slot.
1759 SmallVector
<SDValue
, 8> MemOpChains2
;
1762 // Do not flag preceeding copytoreg stuff together with the following stuff.
1764 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1765 CCValAssign
&VA
= ArgLocs
[i
];
1766 if (!VA
.isRegLoc()) {
1767 assert(VA
.isMemLoc());
1768 SDValue Arg
= TheCall
->getArg(i
);
1769 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1770 // Create frame index.
1771 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1772 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1773 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1774 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1776 if (Flags
.isByVal()) {
1777 // Copy relative to framepointer.
1778 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1779 if (StackPtr
.getNode() == 0)
1780 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1782 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1784 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
, Chain
,
1787 // Store relative to framepointer.
1788 MemOpChains2
.push_back(
1789 DAG
.getStore(Chain
, dl
, Arg
, FIN
,
1790 PseudoSourceValue::getFixedStack(FI
), 0));
1795 if (!MemOpChains2
.empty())
1796 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1797 &MemOpChains2
[0], MemOpChains2
.size());
1799 // Copy arguments to their registers.
1800 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1801 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1802 RegsToPass
[i
].second
, InFlag
);
1803 InFlag
= Chain
.getValue(1);
1807 // Store the return address to the appropriate stack slot.
1808 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1812 // If the callee is a GlobalAddress node (quite common, every direct call is)
1813 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1814 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1815 // We should use extra load for direct calls to dllimported functions in
1817 if (!Subtarget
->GVRequiresExtraLoad(G
->getGlobal(),
1818 getTargetMachine(), true))
1819 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), getPointerTy(),
1821 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1822 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy());
1823 } else if (IsTailCall
) {
1824 unsigned Opc
= Is64Bit
? X86::R9
: X86::EAX
;
1826 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1827 DAG
.getRegister(Opc
, getPointerTy()),
1829 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1830 // Add register as live out.
1831 DAG
.getMachineFunction().getRegInfo().addLiveOut(Opc
);
1834 // Returns a chain & a flag for retval copy to use.
1835 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1836 SmallVector
<SDValue
, 8> Ops
;
1839 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1840 DAG
.getIntPtrConstant(0, true), InFlag
);
1841 InFlag
= Chain
.getValue(1);
1843 // Returns a chain & a flag for retval copy to use.
1844 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1848 Ops
.push_back(Chain
);
1849 Ops
.push_back(Callee
);
1852 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1854 // Add argument registers to the end of the list so that they are known live
1856 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1857 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1858 RegsToPass
[i
].second
.getValueType()));
1860 // Add an implicit use GOT pointer in EBX.
1861 if (!IsTailCall
&& !Is64Bit
&&
1862 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1863 Subtarget
->isPICStyleGOT())
1864 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
1866 // Add an implicit use of AL for x86 vararg functions.
1867 if (Is64Bit
&& isVarArg
)
1868 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
1870 if (InFlag
.getNode())
1871 Ops
.push_back(InFlag
);
1874 assert(InFlag
.getNode() &&
1875 "Flag must be set. Depend on flag being set in LowerRET");
1876 Chain
= DAG
.getNode(X86ISD::TAILCALL
, dl
,
1877 TheCall
->getVTList(), &Ops
[0], Ops
.size());
1879 return SDValue(Chain
.getNode(), Op
.getResNo());
1882 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
1883 InFlag
= Chain
.getValue(1);
1885 // Create the CALLSEQ_END node.
1886 unsigned NumBytesForCalleeToPush
;
1887 if (IsCalleePop(isVarArg
, CC
))
1888 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
1889 else if (!Is64Bit
&& CC
!= CallingConv::Fast
&& IsStructRet
)
1890 // If this is is a call to a struct-return function, the callee
1891 // pops the hidden struct pointer, so we have to push it back.
1892 // This is common for Darwin/X86, Linux & Mingw32 targets.
1893 NumBytesForCalleeToPush
= 4;
1895 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
1897 // Returns a flag for retval copy to use.
1898 Chain
= DAG
.getCALLSEQ_END(Chain
,
1899 DAG
.getIntPtrConstant(NumBytes
, true),
1900 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
1903 InFlag
= Chain
.getValue(1);
1905 // Handle result values, copying them out of physregs into vregs that we
1907 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
),
1912 //===----------------------------------------------------------------------===//
1913 // Fast Calling Convention (tail call) implementation
1914 //===----------------------------------------------------------------------===//
1916 // Like std call, callee cleans arguments, convention except that ECX is
1917 // reserved for storing the tail called function address. Only 2 registers are
1918 // free for argument passing (inreg). Tail call optimization is performed
1920 // * tailcallopt is enabled
1921 // * caller/callee are fastcc
1922 // On X86_64 architecture with GOT-style position independent code only local
1923 // (within module) calls are supported at the moment.
1924 // To keep the stack aligned according to platform abi the function
1925 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
1926 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1927 // If a tail called function callee has more arguments than the caller the
1928 // caller needs to make sure that there is room to move the RETADDR to. This is
1929 // achieved by reserving an area the size of the argument delta right after the
1930 // original REtADDR, but before the saved framepointer or the spilled registers
1931 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1943 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1944 /// for a 16 byte align requirement.
1945 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
1946 SelectionDAG
& DAG
) {
1947 MachineFunction
&MF
= DAG
.getMachineFunction();
1948 const TargetMachine
&TM
= MF
.getTarget();
1949 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
1950 unsigned StackAlignment
= TFI
.getStackAlignment();
1951 uint64_t AlignMask
= StackAlignment
- 1;
1952 int64_t Offset
= StackSize
;
1953 uint64_t SlotSize
= TD
->getPointerSize();
1954 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
1955 // Number smaller than 12 so just add the difference.
1956 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
1958 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1959 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
1960 (StackAlignment
-SlotSize
);
1965 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
1966 /// following the call is a return. A function is eligible if caller/callee
1967 /// calling conventions match, currently only fastcc supports tail calls, and
1968 /// the function CALL is immediatly followed by a RET.
1969 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
1971 SelectionDAG
& DAG
) const {
1972 if (!PerformTailCallOpt
)
1975 if (CheckTailCallReturnConstraints(TheCall
, Ret
)) {
1976 MachineFunction
&MF
= DAG
.getMachineFunction();
1977 unsigned CallerCC
= MF
.getFunction()->getCallingConv();
1978 unsigned CalleeCC
= TheCall
->getCallingConv();
1979 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
1980 SDValue Callee
= TheCall
->getCallee();
1981 // On x86/32Bit PIC/GOT tail calls are supported.
1982 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
||
1983 !Subtarget
->isPICStyleGOT()|| !Subtarget
->is64Bit())
1986 // Can only do local tail calls (in same module, hidden or protected) on
1987 // x86_64 PIC/GOT at the moment.
1988 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1989 return G
->getGlobal()->hasHiddenVisibility()
1990 || G
->getGlobal()->hasProtectedVisibility();
1998 X86TargetLowering::createFastISel(MachineFunction
&mf
,
1999 MachineModuleInfo
*mmo
,
2001 DenseMap
<const Value
*, unsigned> &vm
,
2002 DenseMap
<const BasicBlock
*,
2003 MachineBasicBlock
*> &bm
,
2004 DenseMap
<const AllocaInst
*, int> &am
2006 , SmallSet
<Instruction
*, 8> &cil
2009 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2017 //===----------------------------------------------------------------------===//
2018 // Other Lowering Hooks
2019 //===----------------------------------------------------------------------===//
2022 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2023 MachineFunction
&MF
= DAG
.getMachineFunction();
2024 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2025 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2027 if (ReturnAddrIndex
== 0) {
2028 // Set up a frame object for the return address.
2029 uint64_t SlotSize
= TD
->getPointerSize();
2030 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2031 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2034 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2038 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2039 /// specific condition code, returning the condition code and the LHS/RHS of the
2040 /// comparison to make.
2041 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2042 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2044 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2045 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2046 // X > -1 -> X == 0, jump !sign.
2047 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2048 return X86::COND_NS
;
2049 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2050 // X < 0 -> X == 0, jump on sign.
2052 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2054 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2055 return X86::COND_LE
;
2059 switch (SetCCOpcode
) {
2060 default: assert(0 && "Invalid integer condition!");
2061 case ISD::SETEQ
: return X86::COND_E
;
2062 case ISD::SETGT
: return X86::COND_G
;
2063 case ISD::SETGE
: return X86::COND_GE
;
2064 case ISD::SETLT
: return X86::COND_L
;
2065 case ISD::SETLE
: return X86::COND_LE
;
2066 case ISD::SETNE
: return X86::COND_NE
;
2067 case ISD::SETULT
: return X86::COND_B
;
2068 case ISD::SETUGT
: return X86::COND_A
;
2069 case ISD::SETULE
: return X86::COND_BE
;
2070 case ISD::SETUGE
: return X86::COND_AE
;
2074 // First determine if it is required or is profitable to flip the operands.
2076 // If LHS is a foldable load, but RHS is not, flip the condition.
2077 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2078 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2079 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2080 std::swap(LHS
, RHS
);
2083 switch (SetCCOpcode
) {
2089 std::swap(LHS
, RHS
);
2093 // On a floating point condition, the flags are set as follows:
2095 // 0 | 0 | 0 | X > Y
2096 // 0 | 0 | 1 | X < Y
2097 // 1 | 0 | 0 | X == Y
2098 // 1 | 1 | 1 | unordered
2099 switch (SetCCOpcode
) {
2100 default: assert(0 && "Condcode should be pre-legalized away");
2102 case ISD::SETEQ
: return X86::COND_E
;
2103 case ISD::SETOLT
: // flipped
2105 case ISD::SETGT
: return X86::COND_A
;
2106 case ISD::SETOLE
: // flipped
2108 case ISD::SETGE
: return X86::COND_AE
;
2109 case ISD::SETUGT
: // flipped
2111 case ISD::SETLT
: return X86::COND_B
;
2112 case ISD::SETUGE
: // flipped
2114 case ISD::SETLE
: return X86::COND_BE
;
2116 case ISD::SETNE
: return X86::COND_NE
;
2117 case ISD::SETUO
: return X86::COND_P
;
2118 case ISD::SETO
: return X86::COND_NP
;
2122 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2123 /// code. Current x86 isa includes the following FP cmov instructions:
2124 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2125 static bool hasFPCMov(unsigned X86CC
) {
2141 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2142 /// the specified range (L, H].
2143 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2144 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2147 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2148 /// specified value.
2149 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2150 if (Val
< 0 || Val
== CmpVal
)
2155 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2156 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2157 /// the second operand.
2158 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2159 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2160 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2161 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2162 return (Mask
[0] < 2 && Mask
[1] < 2);
2166 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2167 SmallVector
<int, 8> M
;
2169 return ::isPSHUFDMask(M
, N
->getValueType(0));
2172 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2173 /// is suitable for input to PSHUFHW.
2174 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2175 if (VT
!= MVT::v8i16
)
2178 // Lower quadword copied in order or undef.
2179 for (int i
= 0; i
!= 4; ++i
)
2180 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2183 // Upper quadword shuffled.
2184 for (int i
= 4; i
!= 8; ++i
)
2185 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2191 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2192 SmallVector
<int, 8> M
;
2194 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2197 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2198 /// is suitable for input to PSHUFLW.
2199 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2200 if (VT
!= MVT::v8i16
)
2203 // Upper quadword copied in order.
2204 for (int i
= 4; i
!= 8; ++i
)
2205 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2208 // Lower quadword shuffled.
2209 for (int i
= 0; i
!= 4; ++i
)
2216 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2217 SmallVector
<int, 8> M
;
2219 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2222 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2223 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2224 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2225 int NumElems
= VT
.getVectorNumElements();
2226 if (NumElems
!= 2 && NumElems
!= 4)
2229 int Half
= NumElems
/ 2;
2230 for (int i
= 0; i
< Half
; ++i
)
2231 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2233 for (int i
= Half
; i
< NumElems
; ++i
)
2234 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2240 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2241 SmallVector
<int, 8> M
;
2243 return ::isSHUFPMask(M
, N
->getValueType(0));
2246 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2247 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2248 /// half elements to come from vector 1 (which would equal the dest.) and
2249 /// the upper half to come from vector 2.
2250 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2251 int NumElems
= VT
.getVectorNumElements();
2253 if (NumElems
!= 2 && NumElems
!= 4)
2256 int Half
= NumElems
/ 2;
2257 for (int i
= 0; i
< Half
; ++i
)
2258 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2260 for (int i
= Half
; i
< NumElems
; ++i
)
2261 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2266 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2267 SmallVector
<int, 8> M
;
2269 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2272 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2273 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2274 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2275 if (N
->getValueType(0).getVectorNumElements() != 4)
2278 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2279 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2280 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2281 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2282 isUndefOrEqual(N
->getMaskElt(3), 3);
2285 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2286 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2287 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2288 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2290 if (NumElems
!= 2 && NumElems
!= 4)
2293 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2294 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2297 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2298 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2304 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2305 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2307 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2308 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2310 if (NumElems
!= 2 && NumElems
!= 4)
2313 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2314 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2317 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2318 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2324 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2325 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2327 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2328 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2333 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2334 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2335 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2336 isUndefOrEqual(N
->getMaskElt(3), 3);
2339 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2340 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2341 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2342 bool V2IsSplat
= false) {
2343 int NumElts
= VT
.getVectorNumElements();
2344 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2347 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2349 int BitI1
= Mask
[i
+1];
2350 if (!isUndefOrEqual(BitI
, j
))
2353 if (!isUndefOrEqual(BitI1
, NumElts
))
2356 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2363 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2364 SmallVector
<int, 8> M
;
2366 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2369 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2370 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2371 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2372 bool V2IsSplat
= false) {
2373 int NumElts
= VT
.getVectorNumElements();
2374 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2377 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2379 int BitI1
= Mask
[i
+1];
2380 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2383 if (isUndefOrEqual(BitI1
, NumElts
))
2386 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2393 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2394 SmallVector
<int, 8> M
;
2396 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2399 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2400 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2402 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2403 int NumElems
= VT
.getVectorNumElements();
2404 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2407 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2409 int BitI1
= Mask
[i
+1];
2410 if (!isUndefOrEqual(BitI
, j
))
2412 if (!isUndefOrEqual(BitI1
, j
))
2418 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2419 SmallVector
<int, 8> M
;
2421 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2424 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2425 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2427 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2428 int NumElems
= VT
.getVectorNumElements();
2429 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2432 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2434 int BitI1
= Mask
[i
+1];
2435 if (!isUndefOrEqual(BitI
, j
))
2437 if (!isUndefOrEqual(BitI1
, j
))
2443 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2444 SmallVector
<int, 8> M
;
2446 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2449 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2450 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2451 /// MOVSD, and MOVD, i.e. setting the lowest element.
2452 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2453 int NumElts
= VT
.getVectorNumElements();
2454 if (NumElts
!= 2 && NumElts
!= 4)
2457 if (!isUndefOrEqual(Mask
[0], NumElts
))
2460 for (int i
= 1; i
< NumElts
; ++i
)
2461 if (!isUndefOrEqual(Mask
[i
], i
))
2467 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2468 SmallVector
<int, 8> M
;
2470 return ::isMOVLMask(M
, N
->getValueType(0));
2473 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2474 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2475 /// element of vector 2 and the other elements to come from vector 1 in order.
2476 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2477 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2478 int NumOps
= VT
.getVectorNumElements();
2479 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2482 if (!isUndefOrEqual(Mask
[0], 0))
2485 for (int i
= 1; i
< NumOps
; ++i
)
2486 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2487 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2488 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2494 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2495 bool V2IsUndef
= false) {
2496 SmallVector
<int, 8> M
;
2498 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2501 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2502 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2503 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2504 if (N
->getValueType(0).getVectorNumElements() != 4)
2507 // Expect 1, 1, 3, 3
2508 for (unsigned i
= 0; i
< 2; ++i
) {
2509 int Elt
= N
->getMaskElt(i
);
2510 if (Elt
>= 0 && Elt
!= 1)
2515 for (unsigned i
= 2; i
< 4; ++i
) {
2516 int Elt
= N
->getMaskElt(i
);
2517 if (Elt
>= 0 && Elt
!= 3)
2522 // Don't use movshdup if it can be done with a shufps.
2523 // FIXME: verify that matching u, u, 3, 3 is what we want.
2527 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2528 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2529 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2530 if (N
->getValueType(0).getVectorNumElements() != 4)
2533 // Expect 0, 0, 2, 2
2534 for (unsigned i
= 0; i
< 2; ++i
)
2535 if (N
->getMaskElt(i
) > 0)
2539 for (unsigned i
= 2; i
< 4; ++i
) {
2540 int Elt
= N
->getMaskElt(i
);
2541 if (Elt
>= 0 && Elt
!= 2)
2546 // Don't use movsldup if it can be done with a shufps.
2550 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2551 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2552 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2553 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2555 for (int i
= 0; i
< e
; ++i
)
2556 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2558 for (int i
= 0; i
< e
; ++i
)
2559 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2564 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2565 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2567 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2568 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2569 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2571 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2573 for (int i
= 0; i
< NumOperands
; ++i
) {
2574 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2575 if (Val
< 0) Val
= 0;
2576 if (Val
>= NumOperands
) Val
-= NumOperands
;
2578 if (i
!= NumOperands
- 1)
2584 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2585 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2587 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2588 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2590 // 8 nodes, but we only care about the last 4.
2591 for (unsigned i
= 7; i
>= 4; --i
) {
2592 int Val
= SVOp
->getMaskElt(i
);
2601 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2602 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2604 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2605 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2607 // 8 nodes, but we only care about the first 4.
2608 for (int i
= 3; i
>= 0; --i
) {
2609 int Val
= SVOp
->getMaskElt(i
);
2618 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2619 /// their permute mask.
2620 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2621 SelectionDAG
&DAG
) {
2622 MVT VT
= SVOp
->getValueType(0);
2623 unsigned NumElems
= VT
.getVectorNumElements();
2624 SmallVector
<int, 8> MaskVec
;
2626 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2627 int idx
= SVOp
->getMaskElt(i
);
2629 MaskVec
.push_back(idx
);
2630 else if (idx
< (int)NumElems
)
2631 MaskVec
.push_back(idx
+ NumElems
);
2633 MaskVec
.push_back(idx
- NumElems
);
2635 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2636 SVOp
->getOperand(0), &MaskVec
[0]);
2639 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2640 /// the two vector operands have swapped position.
2641 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, MVT VT
) {
2642 unsigned NumElems
= VT
.getVectorNumElements();
2643 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2647 else if (idx
< (int)NumElems
)
2648 Mask
[i
] = idx
+ NumElems
;
2650 Mask
[i
] = idx
- NumElems
;
2654 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2655 /// match movhlps. The lower half elements should come from upper half of
2656 /// V1 (and in order), and the upper half elements should come from the upper
2657 /// half of V2 (and in order).
2658 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2659 if (Op
->getValueType(0).getVectorNumElements() != 4)
2661 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2662 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2664 for (unsigned i
= 2; i
!= 4; ++i
)
2665 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2670 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2671 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2673 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2674 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2676 N
= N
->getOperand(0).getNode();
2677 if (!ISD::isNON_EXTLoad(N
))
2680 *LD
= cast
<LoadSDNode
>(N
);
2684 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2685 /// match movlp{s|d}. The lower half elements should come from lower half of
2686 /// V1 (and in order), and the upper half elements should come from the upper
2687 /// half of V2 (and in order). And since V1 will become the source of the
2688 /// MOVLP, it must be either a vector load or a scalar load to vector.
2689 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2690 ShuffleVectorSDNode
*Op
) {
2691 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2693 // Is V2 is a vector load, don't do this transformation. We will try to use
2694 // load folding shufps op.
2695 if (ISD::isNON_EXTLoad(V2
))
2698 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2700 if (NumElems
!= 2 && NumElems
!= 4)
2702 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2703 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2705 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2706 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2711 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2713 static bool isSplatVector(SDNode
*N
) {
2714 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2717 SDValue SplatValue
= N
->getOperand(0);
2718 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2719 if (N
->getOperand(i
) != SplatValue
)
2724 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2726 static inline bool isZeroNode(SDValue Elt
) {
2727 return ((isa
<ConstantSDNode
>(Elt
) &&
2728 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2729 (isa
<ConstantFPSDNode
>(Elt
) &&
2730 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2733 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2734 /// to an zero vector.
2735 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2736 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2737 SDValue V1
= N
->getOperand(0);
2738 SDValue V2
= N
->getOperand(1);
2739 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2740 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2741 int Idx
= N
->getMaskElt(i
);
2742 if (Idx
>= (int)NumElems
) {
2743 unsigned Opc
= V2
.getOpcode();
2744 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2746 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2748 } else if (Idx
>= 0) {
2749 unsigned Opc
= V1
.getOpcode();
2750 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2752 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V1
.getOperand(Idx
)))
2759 /// getZeroVector - Returns a vector of specified type with all zero elements.
2761 static SDValue
getZeroVector(MVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2763 assert(VT
.isVector() && "Expected a vector type");
2765 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2766 // type. This ensures they get CSE'd.
2768 if (VT
.getSizeInBits() == 64) { // MMX
2769 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2770 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2771 } else if (HasSSE2
) { // SSE2
2772 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2773 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2775 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2776 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2778 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2781 /// getOnesVector - Returns a vector of specified type with all bits set.
2783 static SDValue
getOnesVector(MVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2784 assert(VT
.isVector() && "Expected a vector type");
2786 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2787 // type. This ensures they get CSE'd.
2788 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2790 if (VT
.getSizeInBits() == 64) // MMX
2791 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2793 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2794 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2798 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2799 /// that point to V2 points to its first element.
2800 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2801 MVT VT
= SVOp
->getValueType(0);
2802 unsigned NumElems
= VT
.getVectorNumElements();
2804 bool Changed
= false;
2805 SmallVector
<int, 8> MaskVec
;
2806 SVOp
->getMask(MaskVec
);
2808 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2809 if (MaskVec
[i
] > (int)NumElems
) {
2810 MaskVec
[i
] = NumElems
;
2815 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2816 SVOp
->getOperand(1), &MaskVec
[0]);
2817 return SDValue(SVOp
, 0);
2820 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2821 /// operation of specified width.
2822 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2824 unsigned NumElems
= VT
.getVectorNumElements();
2825 SmallVector
<int, 8> Mask
;
2826 Mask
.push_back(NumElems
);
2827 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2829 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2832 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2833 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2835 unsigned NumElems
= VT
.getVectorNumElements();
2836 SmallVector
<int, 8> Mask
;
2837 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
2839 Mask
.push_back(i
+ NumElems
);
2841 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2844 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2845 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2847 unsigned NumElems
= VT
.getVectorNumElements();
2848 unsigned Half
= NumElems
/2;
2849 SmallVector
<int, 8> Mask
;
2850 for (unsigned i
= 0; i
!= Half
; ++i
) {
2851 Mask
.push_back(i
+ Half
);
2852 Mask
.push_back(i
+ NumElems
+ Half
);
2854 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2857 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2858 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
2860 if (SV
->getValueType(0).getVectorNumElements() <= 4)
2861 return SDValue(SV
, 0);
2863 MVT PVT
= MVT::v4f32
;
2864 MVT VT
= SV
->getValueType(0);
2865 DebugLoc dl
= SV
->getDebugLoc();
2866 SDValue V1
= SV
->getOperand(0);
2867 int NumElems
= VT
.getVectorNumElements();
2868 int EltNo
= SV
->getSplatIndex();
2870 // unpack elements to the correct location
2871 while (NumElems
> 4) {
2872 if (EltNo
< NumElems
/2) {
2873 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
2875 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
2876 EltNo
-= NumElems
/2;
2881 // Perform the splat.
2882 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
2883 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
2884 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
2885 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
2888 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2889 /// vector of zero or undef vector. This produces a shuffle where the low
2890 /// element of V2 is swizzled into the zero/undef vector, landing at element
2891 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
2892 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
2893 bool isZero
, bool HasSSE2
,
2894 SelectionDAG
&DAG
) {
2895 MVT VT
= V2
.getValueType();
2897 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
2898 unsigned NumElems
= VT
.getVectorNumElements();
2899 SmallVector
<int, 16> MaskVec
;
2900 for (unsigned i
= 0; i
!= NumElems
; ++i
)
2901 // If this is the insertion idx, put the low elt of V2 here.
2902 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
2903 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
2906 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
2907 /// a shuffle that is zero.
2909 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
2910 bool Low
, SelectionDAG
&DAG
) {
2911 unsigned NumZeros
= 0;
2912 for (int i
= 0; i
< NumElems
; ++i
) {
2913 unsigned Index
= Low
? i
: NumElems
-i
-1;
2914 int Idx
= SVOp
->getMaskElt(Index
);
2919 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
2920 if (Elt
.getNode() && isZeroNode(Elt
))
2928 /// isVectorShift - Returns true if the shuffle can be implemented as a
2929 /// logical left or right shift of a vector.
2930 /// FIXME: split into pslldqi, psrldqi, palignr variants.
2931 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
2932 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
2933 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
2936 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
2939 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
2943 bool SeenV1
= false;
2944 bool SeenV2
= false;
2945 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
2946 int Val
= isLeft
? (i
- NumZeros
) : i
;
2947 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
2959 if (SeenV1
&& SeenV2
)
2962 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
2968 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2970 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
2971 unsigned NumNonZero
, unsigned NumZero
,
2972 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
2976 DebugLoc dl
= Op
.getDebugLoc();
2979 for (unsigned i
= 0; i
< 16; ++i
) {
2980 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
2981 if (ThisIsNonZero
&& First
) {
2983 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
2985 V
= DAG
.getUNDEF(MVT::v8i16
);
2990 SDValue
ThisElt(0, 0), LastElt(0, 0);
2991 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
2992 if (LastIsNonZero
) {
2993 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
2994 MVT::i16
, Op
.getOperand(i
-1));
2996 if (ThisIsNonZero
) {
2997 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
2998 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
2999 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3001 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3005 if (ThisElt
.getNode())
3006 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3007 DAG
.getIntPtrConstant(i
/2));
3011 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3014 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3016 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3017 unsigned NumNonZero
, unsigned NumZero
,
3018 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3022 DebugLoc dl
= Op
.getDebugLoc();
3025 for (unsigned i
= 0; i
< 8; ++i
) {
3026 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3030 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3032 V
= DAG
.getUNDEF(MVT::v8i16
);
3035 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3036 MVT::v8i16
, V
, Op
.getOperand(i
),
3037 DAG
.getIntPtrConstant(i
));
3044 /// getVShift - Return a vector logical shift node.
3046 static SDValue
getVShift(bool isLeft
, MVT VT
, SDValue SrcOp
,
3047 unsigned NumBits
, SelectionDAG
&DAG
,
3048 const TargetLowering
&TLI
, DebugLoc dl
) {
3049 bool isMMX
= VT
.getSizeInBits() == 64;
3050 MVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3051 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3052 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3053 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3054 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3055 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3059 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3060 DebugLoc dl
= Op
.getDebugLoc();
3061 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3062 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3063 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3064 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3065 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3066 // eliminated on x86-32 hosts.
3067 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3070 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3071 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3072 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3075 MVT VT
= Op
.getValueType();
3076 MVT EVT
= VT
.getVectorElementType();
3077 unsigned EVTBits
= EVT
.getSizeInBits();
3079 unsigned NumElems
= Op
.getNumOperands();
3080 unsigned NumZero
= 0;
3081 unsigned NumNonZero
= 0;
3082 unsigned NonZeros
= 0;
3083 bool IsAllConstants
= true;
3084 SmallSet
<SDValue
, 8> Values
;
3085 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3086 SDValue Elt
= Op
.getOperand(i
);
3087 if (Elt
.getOpcode() == ISD::UNDEF
)
3090 if (Elt
.getOpcode() != ISD::Constant
&&
3091 Elt
.getOpcode() != ISD::ConstantFP
)
3092 IsAllConstants
= false;
3093 if (isZeroNode(Elt
))
3096 NonZeros
|= (1 << i
);
3101 if (NumNonZero
== 0) {
3102 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3103 return DAG
.getUNDEF(VT
);
3106 // Special case for single non-zero, non-undef, element.
3107 if (NumNonZero
== 1 && NumElems
<= 4) {
3108 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3109 SDValue Item
= Op
.getOperand(Idx
);
3111 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3112 // the value are obviously zero, truncate the value to i32 and do the
3113 // insertion that way. Only do this if the value is non-constant or if the
3114 // value is a constant being inserted into element 0. It is cheaper to do
3115 // a constant pool load than it is to do a movd + shuffle.
3116 if (EVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3117 (!IsAllConstants
|| Idx
== 0)) {
3118 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3119 // Handle MMX and SSE both.
3120 MVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3121 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3123 // Truncate the value (which may itself be a constant) to i32, and
3124 // convert it to a vector with movd (S2V+shuffle to zero extend).
3125 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3126 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3127 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3128 Subtarget
->hasSSE2(), DAG
);
3130 // Now we have our 32-bit value zero extended in the low element of
3131 // a vector. If Idx != 0, swizzle it into place.
3133 SmallVector
<int, 4> Mask
;
3134 Mask
.push_back(Idx
);
3135 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3137 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3138 DAG
.getUNDEF(Item
.getValueType()),
3141 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3145 // If we have a constant or non-constant insertion into the low element of
3146 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3147 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3148 // depending on what the source datatype is. Because we can only get here
3149 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3151 // Don't do this for i64 values on x86-32.
3152 (EVT
!= MVT::i64
|| Subtarget
->is64Bit())) {
3153 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3154 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3155 return getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3156 Subtarget
->hasSSE2(), DAG
);
3159 // Is it a vector logical left shift?
3160 if (NumElems
== 2 && Idx
== 1 &&
3161 isZeroNode(Op
.getOperand(0)) && !isZeroNode(Op
.getOperand(1))) {
3162 unsigned NumBits
= VT
.getSizeInBits();
3163 return getVShift(true, VT
,
3164 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3165 VT
, Op
.getOperand(1)),
3166 NumBits
/2, DAG
, *this, dl
);
3169 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3172 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3173 // is a non-constant being inserted into an element other than the low one,
3174 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3175 // movd/movss) to move this into the low element, then shuffle it into
3177 if (EVTBits
== 32) {
3178 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3180 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3181 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3182 Subtarget
->hasSSE2(), DAG
);
3183 SmallVector
<int, 8> MaskVec
;
3184 for (unsigned i
= 0; i
< NumElems
; i
++)
3185 MaskVec
.push_back(i
== Idx
? 0 : 1);
3186 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3190 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3191 if (Values
.size() == 1)
3194 // A vector full of immediates; various special cases are already
3195 // handled, so this is best done with a single constant-pool load.
3199 // Let legalizer expand 2-wide build_vectors.
3200 if (EVTBits
== 64) {
3201 if (NumNonZero
== 1) {
3202 // One half is zero or undef.
3203 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3204 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3205 Op
.getOperand(Idx
));
3206 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3207 Subtarget
->hasSSE2(), DAG
);
3212 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3213 if (EVTBits
== 8 && NumElems
== 16) {
3214 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3216 if (V
.getNode()) return V
;
3219 if (EVTBits
== 16 && NumElems
== 8) {
3220 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3222 if (V
.getNode()) return V
;
3225 // If element VT is == 32 bits, turn it into a number of shuffles.
3226 SmallVector
<SDValue
, 8> V
;
3228 if (NumElems
== 4 && NumZero
> 0) {
3229 for (unsigned i
= 0; i
< 4; ++i
) {
3230 bool isZero
= !(NonZeros
& (1 << i
));
3232 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3234 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3237 for (unsigned i
= 0; i
< 2; ++i
) {
3238 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3241 V
[i
] = V
[i
*2]; // Must be a zero vector.
3244 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3247 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3250 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3255 SmallVector
<int, 8> MaskVec
;
3256 bool Reverse
= (NonZeros
& 0x3) == 2;
3257 for (unsigned i
= 0; i
< 2; ++i
)
3258 MaskVec
.push_back(Reverse
? 1-i
: i
);
3259 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3260 for (unsigned i
= 0; i
< 2; ++i
)
3261 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3262 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3265 if (Values
.size() > 2) {
3266 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3267 // values to be inserted is equal to the number of elements, in which case
3268 // use the unpack code below in the hopes of matching the consecutive elts
3269 // load merge pattern for shuffles.
3270 // FIXME: We could probably just check that here directly.
3271 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3272 getSubtarget()->hasSSE41()) {
3273 V
[0] = DAG
.getUNDEF(VT
);
3274 for (unsigned i
= 0; i
< NumElems
; ++i
)
3275 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3276 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3277 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3280 // Expand into a number of unpckl*.
3282 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3283 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3284 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3285 for (unsigned i
= 0; i
< NumElems
; ++i
)
3286 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3288 while (NumElems
!= 0) {
3289 for (unsigned i
= 0; i
< NumElems
; ++i
)
3290 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3299 // v8i16 shuffles - Prefer shuffles in the following order:
3300 // 1. [all] pshuflw, pshufhw, optional move
3301 // 2. [ssse3] 1 x pshufb
3302 // 3. [ssse3] 2 x pshufb + 1 x por
3303 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3305 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3306 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3307 SDValue V1
= SVOp
->getOperand(0);
3308 SDValue V2
= SVOp
->getOperand(1);
3309 DebugLoc dl
= SVOp
->getDebugLoc();
3310 SmallVector
<int, 8> MaskVals
;
3312 // Determine if more than 1 of the words in each of the low and high quadwords
3313 // of the result come from the same quadword of one of the two inputs. Undef
3314 // mask values count as coming from any quadword, for better codegen.
3315 SmallVector
<unsigned, 4> LoQuad(4);
3316 SmallVector
<unsigned, 4> HiQuad(4);
3317 BitVector
InputQuads(4);
3318 for (unsigned i
= 0; i
< 8; ++i
) {
3319 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3320 int EltIdx
= SVOp
->getMaskElt(i
);
3321 MaskVals
.push_back(EltIdx
);
3330 InputQuads
.set(EltIdx
/ 4);
3333 int BestLoQuad
= -1;
3334 unsigned MaxQuad
= 1;
3335 for (unsigned i
= 0; i
< 4; ++i
) {
3336 if (LoQuad
[i
] > MaxQuad
) {
3338 MaxQuad
= LoQuad
[i
];
3342 int BestHiQuad
= -1;
3344 for (unsigned i
= 0; i
< 4; ++i
) {
3345 if (HiQuad
[i
] > MaxQuad
) {
3347 MaxQuad
= HiQuad
[i
];
3351 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3352 // of the two input vectors, shuffle them into one input vector so only a
3353 // single pshufb instruction is necessary. If There are more than 2 input
3354 // quads, disable the next transformation since it does not help SSSE3.
3355 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3356 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3357 if (TLI
.getSubtarget()->hasSSSE3()) {
3358 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3359 BestLoQuad
= InputQuads
.find_first();
3360 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3362 if (InputQuads
.count() > 2) {
3368 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3369 // the shuffle mask. If a quad is scored as -1, that means that it contains
3370 // words from all 4 input quadwords.
3372 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3373 SmallVector
<int, 8> MaskV
;
3374 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3375 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3376 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3377 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3378 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3379 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3381 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3382 // source words for the shuffle, to aid later transformations.
3383 bool AllWordsInNewV
= true;
3384 bool InOrder
[2] = { true, true };
3385 for (unsigned i
= 0; i
!= 8; ++i
) {
3386 int idx
= MaskVals
[i
];
3388 InOrder
[i
/4] = false;
3389 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3391 AllWordsInNewV
= false;
3395 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3396 if (AllWordsInNewV
) {
3397 for (int i
= 0; i
!= 8; ++i
) {
3398 int idx
= MaskVals
[i
];
3401 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3402 if ((idx
!= i
) && idx
< 4)
3404 if ((idx
!= i
) && idx
> 3)
3413 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3414 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3415 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3416 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3417 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3421 // If we have SSSE3, and all words of the result are from 1 input vector,
3422 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3423 // is present, fall back to case 4.
3424 if (TLI
.getSubtarget()->hasSSSE3()) {
3425 SmallVector
<SDValue
,16> pshufbMask
;
3427 // If we have elements from both input vectors, set the high bit of the
3428 // shuffle mask element to zero out elements that come from V2 in the V1
3429 // mask, and elements that come from V1 in the V2 mask, so that the two
3430 // results can be OR'd together.
3431 bool TwoInputs
= V1Used
&& V2Used
;
3432 for (unsigned i
= 0; i
!= 8; ++i
) {
3433 int EltIdx
= MaskVals
[i
] * 2;
3434 if (TwoInputs
&& (EltIdx
>= 16)) {
3435 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3436 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3439 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3440 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3442 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3443 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3444 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3445 MVT::v16i8
, &pshufbMask
[0], 16));
3447 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3449 // Calculate the shuffle mask for the second input, shuffle it, and
3450 // OR it with the first shuffled input.
3452 for (unsigned i
= 0; i
!= 8; ++i
) {
3453 int EltIdx
= MaskVals
[i
] * 2;
3455 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3456 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3459 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3460 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3462 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3463 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3464 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3465 MVT::v16i8
, &pshufbMask
[0], 16));
3466 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3467 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3470 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3471 // and update MaskVals with new element order.
3472 BitVector
InOrder(8);
3473 if (BestLoQuad
>= 0) {
3474 SmallVector
<int, 8> MaskV
;
3475 for (int i
= 0; i
!= 4; ++i
) {
3476 int idx
= MaskVals
[i
];
3478 MaskV
.push_back(-1);
3480 } else if ((idx
/ 4) == BestLoQuad
) {
3481 MaskV
.push_back(idx
& 3);
3484 MaskV
.push_back(-1);
3487 for (unsigned i
= 4; i
!= 8; ++i
)
3489 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3493 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3494 // and update MaskVals with the new element order.
3495 if (BestHiQuad
>= 0) {
3496 SmallVector
<int, 8> MaskV
;
3497 for (unsigned i
= 0; i
!= 4; ++i
)
3499 for (unsigned i
= 4; i
!= 8; ++i
) {
3500 int idx
= MaskVals
[i
];
3502 MaskV
.push_back(-1);
3504 } else if ((idx
/ 4) == BestHiQuad
) {
3505 MaskV
.push_back((idx
& 3) + 4);
3508 MaskV
.push_back(-1);
3511 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3515 // In case BestHi & BestLo were both -1, which means each quadword has a word
3516 // from each of the four input quadwords, calculate the InOrder bitvector now
3517 // before falling through to the insert/extract cleanup.
3518 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3520 for (int i
= 0; i
!= 8; ++i
)
3521 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3525 // The other elements are put in the right place using pextrw and pinsrw.
3526 for (unsigned i
= 0; i
!= 8; ++i
) {
3529 int EltIdx
= MaskVals
[i
];
3532 SDValue ExtOp
= (EltIdx
< 8)
3533 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3534 DAG
.getIntPtrConstant(EltIdx
))
3535 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3536 DAG
.getIntPtrConstant(EltIdx
- 8));
3537 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3538 DAG
.getIntPtrConstant(i
));
3543 // v16i8 shuffles - Prefer shuffles in the following order:
3544 // 1. [ssse3] 1 x pshufb
3545 // 2. [ssse3] 2 x pshufb + 1 x por
3546 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3548 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3549 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3550 SDValue V1
= SVOp
->getOperand(0);
3551 SDValue V2
= SVOp
->getOperand(1);
3552 DebugLoc dl
= SVOp
->getDebugLoc();
3553 SmallVector
<int, 16> MaskVals
;
3554 SVOp
->getMask(MaskVals
);
3556 // If we have SSSE3, case 1 is generated when all result bytes come from
3557 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3558 // present, fall back to case 3.
3559 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3562 for (unsigned i
= 0; i
< 16; ++i
) {
3563 int EltIdx
= MaskVals
[i
];
3572 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3573 if (TLI
.getSubtarget()->hasSSSE3()) {
3574 SmallVector
<SDValue
,16> pshufbMask
;
3576 // If all result elements are from one input vector, then only translate
3577 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3579 // Otherwise, we have elements from both input vectors, and must zero out
3580 // elements that come from V2 in the first mask, and V1 in the second mask
3581 // so that we can OR them together.
3582 bool TwoInputs
= !(V1Only
|| V2Only
);
3583 for (unsigned i
= 0; i
!= 16; ++i
) {
3584 int EltIdx
= MaskVals
[i
];
3585 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3586 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3589 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3591 // If all the elements are from V2, assign it to V1 and return after
3592 // building the first pshufb.
3595 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3596 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3597 MVT::v16i8
, &pshufbMask
[0], 16));
3601 // Calculate the shuffle mask for the second input, shuffle it, and
3602 // OR it with the first shuffled input.
3604 for (unsigned i
= 0; i
!= 16; ++i
) {
3605 int EltIdx
= MaskVals
[i
];
3607 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3610 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3612 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3613 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3614 MVT::v16i8
, &pshufbMask
[0], 16));
3615 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3618 // No SSSE3 - Calculate in place words and then fix all out of place words
3619 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3620 // the 16 different words that comprise the two doublequadword input vectors.
3621 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3622 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3623 SDValue NewV
= V2Only
? V2
: V1
;
3624 for (int i
= 0; i
!= 8; ++i
) {
3625 int Elt0
= MaskVals
[i
*2];
3626 int Elt1
= MaskVals
[i
*2+1];
3628 // This word of the result is all undef, skip it.
3629 if (Elt0
< 0 && Elt1
< 0)
3632 // This word of the result is already in the correct place, skip it.
3633 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3635 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3638 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3639 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3642 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3643 // using a single extract together, load it and store it.
3644 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3645 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3646 DAG
.getIntPtrConstant(Elt1
/ 2));
3647 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3648 DAG
.getIntPtrConstant(i
));
3652 // If Elt1 is defined, extract it from the appropriate source. If the
3653 // source byte is not also odd, shift the extracted word left 8 bits
3654 // otherwise clear the bottom 8 bits if we need to do an or.
3656 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3657 DAG
.getIntPtrConstant(Elt1
/ 2));
3658 if ((Elt1
& 1) == 0)
3659 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3660 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3662 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3663 DAG
.getConstant(0xFF00, MVT::i16
));
3665 // If Elt0 is defined, extract it from the appropriate source. If the
3666 // source byte is not also even, shift the extracted word right 8 bits. If
3667 // Elt1 was also defined, OR the extracted values together before
3668 // inserting them in the result.
3670 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3671 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3672 if ((Elt0
& 1) != 0)
3673 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3674 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3676 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3677 DAG
.getConstant(0x00FF, MVT::i16
));
3678 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3681 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3682 DAG
.getIntPtrConstant(i
));
3684 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3687 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3688 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3689 /// done when every pair / quad of shuffle mask elements point to elements in
3690 /// the right sequence. e.g.
3691 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3693 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3695 TargetLowering
&TLI
, DebugLoc dl
) {
3696 MVT VT
= SVOp
->getValueType(0);
3697 SDValue V1
= SVOp
->getOperand(0);
3698 SDValue V2
= SVOp
->getOperand(1);
3699 unsigned NumElems
= VT
.getVectorNumElements();
3700 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3701 MVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3702 MVT MaskEltVT
= MaskVT
.getVectorElementType();
3704 switch (VT
.getSimpleVT()) {
3705 default: assert(false && "Unexpected!");
3706 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3707 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3708 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3709 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3712 if (NewWidth
== 2) {
3718 int Scale
= NumElems
/ NewWidth
;
3719 SmallVector
<int, 8> MaskVec
;
3720 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3722 for (int j
= 0; j
< Scale
; ++j
) {
3723 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3727 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3728 if (EltIdx
!= StartIdx
+ j
)
3732 MaskVec
.push_back(-1);
3734 MaskVec
.push_back(StartIdx
/ Scale
);
3737 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3738 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3739 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3742 /// getVZextMovL - Return a zero-extending vector move low node.
3744 static SDValue
getVZextMovL(MVT VT
, MVT OpVT
,
3745 SDValue SrcOp
, SelectionDAG
&DAG
,
3746 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3747 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3748 LoadSDNode
*LD
= NULL
;
3749 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3750 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3752 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3754 MVT EVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3755 if ((EVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3756 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3757 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3758 SrcOp
.getOperand(0).getOperand(0).getValueType() == EVT
) {
3760 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3761 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3762 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3763 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3771 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3772 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3773 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3777 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3780 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3781 SDValue V1
= SVOp
->getOperand(0);
3782 SDValue V2
= SVOp
->getOperand(1);
3783 DebugLoc dl
= SVOp
->getDebugLoc();
3784 MVT VT
= SVOp
->getValueType(0);
3786 SmallVector
<std::pair
<int, int>, 8> Locs
;
3788 SmallVector
<int, 8> Mask1(4U, -1);
3789 SmallVector
<int, 8> PermMask
;
3790 SVOp
->getMask(PermMask
);
3794 for (unsigned i
= 0; i
!= 4; ++i
) {
3795 int Idx
= PermMask
[i
];
3797 Locs
[i
] = std::make_pair(-1, -1);
3799 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3801 Locs
[i
] = std::make_pair(0, NumLo
);
3805 Locs
[i
] = std::make_pair(1, NumHi
);
3807 Mask1
[2+NumHi
] = Idx
;
3813 if (NumLo
<= 2 && NumHi
<= 2) {
3814 // If no more than two elements come from either vector. This can be
3815 // implemented with two shuffles. First shuffle gather the elements.
3816 // The second shuffle, which takes the first shuffle as both of its
3817 // vector operands, put the elements into the right order.
3818 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3820 SmallVector
<int, 8> Mask2(4U, -1);
3822 for (unsigned i
= 0; i
!= 4; ++i
) {
3823 if (Locs
[i
].first
== -1)
3826 unsigned Idx
= (i
< 2) ? 0 : 4;
3827 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
3832 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
3833 } else if (NumLo
== 3 || NumHi
== 3) {
3834 // Otherwise, we must have three elements from one vector, call it X, and
3835 // one element from the other, call it Y. First, use a shufps to build an
3836 // intermediate vector with the one element from Y and the element from X
3837 // that will be in the same half in the final destination (the indexes don't
3838 // matter). Then, use a shufps to build the final vector, taking the half
3839 // containing the element from Y from the intermediate, and the other half
3842 // Normalize it so the 3 elements come from V1.
3843 CommuteVectorShuffleMask(PermMask
, VT
);
3847 // Find the element from V2.
3849 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
3850 int Val
= PermMask
[HiIndex
];
3857 Mask1
[0] = PermMask
[HiIndex
];
3859 Mask1
[2] = PermMask
[HiIndex
^1];
3861 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3864 Mask1
[0] = PermMask
[0];
3865 Mask1
[1] = PermMask
[1];
3866 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
3867 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
3868 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3870 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
3871 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
3872 Mask1
[2] = PermMask
[2];
3873 Mask1
[3] = PermMask
[3];
3878 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
3882 // Break it into (shuffle shuffle_hi, shuffle_lo).
3884 SmallVector
<int,8> LoMask(4U, -1);
3885 SmallVector
<int,8> HiMask(4U, -1);
3887 SmallVector
<int,8> *MaskPtr
= &LoMask
;
3888 unsigned MaskIdx
= 0;
3891 for (unsigned i
= 0; i
!= 4; ++i
) {
3898 int Idx
= PermMask
[i
];
3900 Locs
[i
] = std::make_pair(-1, -1);
3901 } else if (Idx
< 4) {
3902 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
3903 (*MaskPtr
)[LoIdx
] = Idx
;
3906 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
3907 (*MaskPtr
)[HiIdx
] = Idx
;
3912 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
3913 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
3914 SmallVector
<int, 8> MaskOps
;
3915 for (unsigned i
= 0; i
!= 4; ++i
) {
3916 if (Locs
[i
].first
== -1) {
3917 MaskOps
.push_back(-1);
3919 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
3920 MaskOps
.push_back(Idx
);
3923 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
3927 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
3928 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
3929 SDValue V1
= Op
.getOperand(0);
3930 SDValue V2
= Op
.getOperand(1);
3931 MVT VT
= Op
.getValueType();
3932 DebugLoc dl
= Op
.getDebugLoc();
3933 unsigned NumElems
= VT
.getVectorNumElements();
3934 bool isMMX
= VT
.getSizeInBits() == 64;
3935 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
3936 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
3937 bool V1IsSplat
= false;
3938 bool V2IsSplat
= false;
3940 if (isZeroShuffle(SVOp
))
3941 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3943 // Promote splats to v4f32.
3944 if (SVOp
->isSplat()) {
3945 if (isMMX
|| NumElems
< 4)
3947 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
3950 // If the shuffle can be profitably rewritten as a narrower shuffle, then
3952 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
3953 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3954 if (NewOp
.getNode())
3955 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3956 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
3957 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
3958 // FIXME: Figure out a cleaner way to do this.
3959 // Try to make use of movq to zero out the top part.
3960 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
3961 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3962 if (NewOp
.getNode()) {
3963 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
3964 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
3965 DAG
, Subtarget
, dl
);
3967 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
3968 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3969 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
3970 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
3971 DAG
, Subtarget
, dl
);
3975 if (X86::isPSHUFDMask(SVOp
))
3978 // Check if this can be converted into a logical shift.
3979 bool isLeft
= false;
3982 bool isShift
= getSubtarget()->hasSSE2() &&
3983 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
3984 if (isShift
&& ShVal
.hasOneUse()) {
3985 // If the shifted value has multiple uses, it may be cheaper to use
3986 // v_set0 + movlhps or movhlps, etc.
3987 MVT EVT
= VT
.getVectorElementType();
3988 ShAmt
*= EVT
.getSizeInBits();
3989 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
3992 if (X86::isMOVLMask(SVOp
)) {
3995 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
3996 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4001 // FIXME: fold these into legal mask.
4002 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4003 X86::isMOVSLDUPMask(SVOp
) ||
4004 X86::isMOVHLPSMask(SVOp
) ||
4005 X86::isMOVHPMask(SVOp
) ||
4006 X86::isMOVLPMask(SVOp
)))
4009 if (ShouldXformToMOVHLPS(SVOp
) ||
4010 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4011 return CommuteVectorShuffle(SVOp
, DAG
);
4014 // No better options. Use a vshl / vsrl.
4015 MVT EVT
= VT
.getVectorElementType();
4016 ShAmt
*= EVT
.getSizeInBits();
4017 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4020 bool Commuted
= false;
4021 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4022 // 1,1,1,1 -> v8i16 though.
4023 V1IsSplat
= isSplatVector(V1
.getNode());
4024 V2IsSplat
= isSplatVector(V2
.getNode());
4026 // Canonicalize the splat or undef, if present, to be on the RHS.
4027 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4028 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4029 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4030 V1
= SVOp
->getOperand(0);
4031 V2
= SVOp
->getOperand(1);
4032 std::swap(V1IsSplat
, V2IsSplat
);
4033 std::swap(V1IsUndef
, V2IsUndef
);
4037 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4038 // Shuffling low element of v1 into undef, just return v1.
4041 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4042 // the instruction selector will not match, so get a canonical MOVL with
4043 // swapped operands to undo the commute.
4044 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4047 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4048 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4049 X86::isUNPCKLMask(SVOp
) ||
4050 X86::isUNPCKHMask(SVOp
))
4054 // Normalize mask so all entries that point to V2 points to its first
4055 // element then try to match unpck{h|l} again. If match, return a
4056 // new vector_shuffle with the corrected mask.
4057 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4058 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4059 if (NSVOp
!= SVOp
) {
4060 if (X86::isUNPCKLMask(NSVOp
, true)) {
4062 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4069 // Commute is back and try unpck* again.
4070 // FIXME: this seems wrong.
4071 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4072 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4073 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4074 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4075 X86::isUNPCKLMask(NewSVOp
) ||
4076 X86::isUNPCKHMask(NewSVOp
))
4080 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4082 // Normalize the node to match x86 shuffle ops if needed
4083 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4084 return CommuteVectorShuffle(SVOp
, DAG
);
4086 // Check for legal shuffle and return?
4087 SmallVector
<int, 16> PermMask
;
4088 SVOp
->getMask(PermMask
);
4089 if (isShuffleMaskLegal(PermMask
, VT
))
4092 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4093 if (VT
== MVT::v8i16
) {
4094 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4095 if (NewOp
.getNode())
4099 if (VT
== MVT::v16i8
) {
4100 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4101 if (NewOp
.getNode())
4105 // Handle all 4 wide cases with a number of shuffles except for MMX.
4106 if (NumElems
== 4 && !isMMX
)
4107 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4113 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4114 SelectionDAG
&DAG
) {
4115 MVT VT
= Op
.getValueType();
4116 DebugLoc dl
= Op
.getDebugLoc();
4117 if (VT
.getSizeInBits() == 8) {
4118 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4119 Op
.getOperand(0), Op
.getOperand(1));
4120 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4121 DAG
.getValueType(VT
));
4122 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4123 } else if (VT
.getSizeInBits() == 16) {
4124 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4125 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4127 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4128 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4129 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4133 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4134 Op
.getOperand(0), Op
.getOperand(1));
4135 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4136 DAG
.getValueType(VT
));
4137 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4138 } else if (VT
== MVT::f32
) {
4139 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4140 // the result back to FR32 register. It's only worth matching if the
4141 // result has a single use which is a store or a bitcast to i32. And in
4142 // the case of a store, it's not worth it if the index is a constant 0,
4143 // because a MOVSSmr can be used instead, which is smaller and faster.
4144 if (!Op
.hasOneUse())
4146 SDNode
*User
= *Op
.getNode()->use_begin();
4147 if ((User
->getOpcode() != ISD::STORE
||
4148 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4149 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4150 (User
->getOpcode() != ISD::BIT_CONVERT
||
4151 User
->getValueType(0) != MVT::i32
))
4153 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4154 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4157 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4158 } else if (VT
== MVT::i32
) {
4159 // ExtractPS works with constant index.
4160 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4168 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4169 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4172 if (Subtarget
->hasSSE41()) {
4173 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4178 MVT VT
= Op
.getValueType();
4179 DebugLoc dl
= Op
.getDebugLoc();
4180 // TODO: handle v16i8.
4181 if (VT
.getSizeInBits() == 16) {
4182 SDValue Vec
= Op
.getOperand(0);
4183 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4185 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4186 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4187 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4190 // Transform it so it match pextrw which produces a 32-bit result.
4191 MVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT()+1);
4192 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4193 Op
.getOperand(0), Op
.getOperand(1));
4194 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4195 DAG
.getValueType(VT
));
4196 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4197 } else if (VT
.getSizeInBits() == 32) {
4198 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4202 // SHUFPS the element to the lowest double word, then movss.
4203 int Mask
[4] = { Idx
, -1, -1, -1 };
4204 MVT VVT
= Op
.getOperand(0).getValueType();
4205 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4206 DAG
.getUNDEF(VVT
), Mask
);
4207 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4208 DAG
.getIntPtrConstant(0));
4209 } else if (VT
.getSizeInBits() == 64) {
4210 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4211 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4212 // to match extract_elt for f64.
4213 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4217 // UNPCKHPD the element to the lowest double word, then movsd.
4218 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4219 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4220 int Mask
[2] = { 1, -1 };
4221 MVT VVT
= Op
.getOperand(0).getValueType();
4222 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4223 DAG
.getUNDEF(VVT
), Mask
);
4224 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4225 DAG
.getIntPtrConstant(0));
4232 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4233 MVT VT
= Op
.getValueType();
4234 MVT EVT
= VT
.getVectorElementType();
4235 DebugLoc dl
= Op
.getDebugLoc();
4237 SDValue N0
= Op
.getOperand(0);
4238 SDValue N1
= Op
.getOperand(1);
4239 SDValue N2
= Op
.getOperand(2);
4241 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4242 isa
<ConstantSDNode
>(N2
)) {
4243 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4245 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4247 if (N1
.getValueType() != MVT::i32
)
4248 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4249 if (N2
.getValueType() != MVT::i32
)
4250 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4251 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4252 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4253 // Bits [7:6] of the constant are the source select. This will always be
4254 // zero here. The DAG Combiner may combine an extract_elt index into these
4255 // bits. For example (insert (extract, 3), 2) could be matched by putting
4256 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4257 // Bits [5:4] of the constant are the destination select. This is the
4258 // value of the incoming immediate.
4259 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4260 // combine either bitwise AND or insert of float 0.0 to set these bits.
4261 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4262 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4263 } else if (EVT
== MVT::i32
) {
4264 // InsertPS works with constant index.
4265 if (isa
<ConstantSDNode
>(N2
))
4272 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4273 MVT VT
= Op
.getValueType();
4274 MVT EVT
= VT
.getVectorElementType();
4276 if (Subtarget
->hasSSE41())
4277 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4282 DebugLoc dl
= Op
.getDebugLoc();
4283 SDValue N0
= Op
.getOperand(0);
4284 SDValue N1
= Op
.getOperand(1);
4285 SDValue N2
= Op
.getOperand(2);
4287 if (EVT
.getSizeInBits() == 16) {
4288 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4289 // as its second argument.
4290 if (N1
.getValueType() != MVT::i32
)
4291 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4292 if (N2
.getValueType() != MVT::i32
)
4293 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4294 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4300 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4301 DebugLoc dl
= Op
.getDebugLoc();
4302 if (Op
.getValueType() == MVT::v2f32
)
4303 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4304 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4305 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4306 Op
.getOperand(0))));
4308 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4309 MVT VT
= MVT::v2i32
;
4310 switch (Op
.getValueType().getSimpleVT()) {
4317 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4318 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4321 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4322 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4323 // one of the above mentioned nodes. It has to be wrapped because otherwise
4324 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4325 // be used to form addressing mode. These wrapped nodes will be selected
4328 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4329 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4330 // FIXME there isn't really any debug info here, should come from the parent
4331 DebugLoc dl
= CP
->getDebugLoc();
4332 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4333 CP
->getAlignment());
4334 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4335 // With PIC, the address is actually $g + Offset.
4336 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4337 !Subtarget
->isPICStyleRIPRel()) {
4338 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4339 DAG
.getNode(X86ISD::GlobalBaseReg
,
4340 DebugLoc::getUnknownLoc(),
4349 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4351 SelectionDAG
&DAG
) const {
4352 bool IsPic
= getTargetMachine().getRelocationModel() == Reloc::PIC_
;
4353 bool ExtraLoadRequired
=
4354 Subtarget
->GVRequiresExtraLoad(GV
, getTargetMachine(), false);
4356 // Create the TargetGlobalAddress node, folding in the constant
4357 // offset if it is legal.
4359 if (!IsPic
&& !ExtraLoadRequired
&& isInt32(Offset
)) {
4360 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4363 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0);
4364 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4366 // With PIC, the address is actually $g + Offset.
4367 if (IsPic
&& !Subtarget
->isPICStyleRIPRel()) {
4368 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4369 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4373 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4374 // load the value at address GV, not the value of GV itself. This means that
4375 // the GlobalAddress must be in the base or index register of the address, not
4376 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4377 // The same applies for external symbols during PIC codegen
4378 if (ExtraLoadRequired
)
4379 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4380 PseudoSourceValue::getGOT(), 0);
4382 // If there was a non-zero offset that we didn't fold, create an explicit
4385 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4386 DAG
.getConstant(Offset
, getPointerTy()));
4392 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4393 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4394 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4395 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4399 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4400 SDValue
*InFlag
, const MVT PtrVT
, unsigned ReturnReg
) {
4401 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4402 DebugLoc dl
= GA
->getDebugLoc();
4403 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4404 GA
->getValueType(0),
4407 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4408 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4410 SDValue Ops
[] = { Chain
, TGA
};
4411 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4413 SDValue Flag
= Chain
.getValue(1);
4414 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4417 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4419 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4422 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4423 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4424 DAG
.getNode(X86ISD::GlobalBaseReg
,
4425 DebugLoc::getUnknownLoc(),
4427 InFlag
= Chain
.getValue(1);
4429 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
);
4432 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4434 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4436 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
, X86::RAX
);
4439 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4440 // "local exec" model.
4441 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4442 const MVT PtrVT
, TLSModel::Model model
,
4444 DebugLoc dl
= GA
->getDebugLoc();
4445 // Get the Thread Pointer
4446 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4447 DebugLoc::getUnknownLoc(), PtrVT
,
4448 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4451 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4454 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4456 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4457 GA
->getValueType(0),
4459 SDValue Offset
= DAG
.getNode(X86ISD::Wrapper
, dl
, PtrVT
, TGA
);
4461 if (model
== TLSModel::InitialExec
)
4462 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4463 PseudoSourceValue::getGOT(), 0);
4465 // The address of the thread local variable is the add of the thread
4466 // pointer with the offset of the variable.
4467 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4471 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4472 // TODO: implement the "local dynamic" model
4473 // TODO: implement the "initial exec"model for pic executables
4474 assert(Subtarget
->isTargetELF() &&
4475 "TLS not implemented for non-ELF targets");
4476 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4477 GlobalValue
*GV
= GA
->getGlobal();
4478 TLSModel::Model model
=
4479 getTLSModel (GV
, getTargetMachine().getRelocationModel());
4480 if (Subtarget
->is64Bit()) {
4482 case TLSModel::GeneralDynamic
:
4483 case TLSModel::LocalDynamic
: // not implemented
4484 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4486 case TLSModel::InitialExec
:
4487 case TLSModel::LocalExec
:
4488 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
, true);
4492 case TLSModel::GeneralDynamic
:
4493 case TLSModel::LocalDynamic
: // not implemented
4494 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4496 case TLSModel::InitialExec
:
4497 case TLSModel::LocalExec
:
4498 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
, false);
4501 assert(0 && "Unreachable");
4506 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4507 // FIXME there isn't really any debug info here
4508 DebugLoc dl
= Op
.getDebugLoc();
4509 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4510 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy());
4511 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4512 // With PIC, the address is actually $g + Offset.
4513 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4514 !Subtarget
->isPICStyleRIPRel()) {
4515 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4516 DAG
.getNode(X86ISD::GlobalBaseReg
,
4517 DebugLoc::getUnknownLoc(),
4525 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4526 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4527 // FIXME there isn't really any debug into here
4528 DebugLoc dl
= JT
->getDebugLoc();
4529 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy());
4530 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4531 // With PIC, the address is actually $g + Offset.
4532 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4533 !Subtarget
->isPICStyleRIPRel()) {
4534 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4535 DAG
.getNode(X86ISD::GlobalBaseReg
,
4536 DebugLoc::getUnknownLoc(),
4544 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4545 /// take a 2 x i32 value to shift plus a shift amount.
4546 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4547 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4548 MVT VT
= Op
.getValueType();
4549 unsigned VTBits
= VT
.getSizeInBits();
4550 DebugLoc dl
= Op
.getDebugLoc();
4551 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4552 SDValue ShOpLo
= Op
.getOperand(0);
4553 SDValue ShOpHi
= Op
.getOperand(1);
4554 SDValue ShAmt
= Op
.getOperand(2);
4555 SDValue Tmp1
= isSRA
?
4556 DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4557 DAG
.getConstant(VTBits
- 1, MVT::i8
)) :
4558 DAG
.getConstant(0, VT
);
4561 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4562 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4563 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4565 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4566 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4569 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4570 DAG
.getConstant(VTBits
, MVT::i8
));
4571 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4572 AndNode
, DAG
.getConstant(0, MVT::i8
));
4575 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4576 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4577 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4579 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4580 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4581 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4583 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4584 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4587 SDValue Ops
[2] = { Lo
, Hi
};
4588 return DAG
.getMergeValues(Ops
, 2, dl
);
4591 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4592 MVT SrcVT
= Op
.getOperand(0).getValueType();
4593 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4594 "Unknown SINT_TO_FP to lower!");
4596 // These are really Legal; caller falls through into that case.
4597 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4599 if (SrcVT
== MVT::i64
&& Op
.getValueType() != MVT::f80
&&
4600 Subtarget
->is64Bit())
4603 DebugLoc dl
= Op
.getDebugLoc();
4604 unsigned Size
= SrcVT
.getSizeInBits()/8;
4605 MachineFunction
&MF
= DAG
.getMachineFunction();
4606 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4607 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4608 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4610 PseudoSourceValue::getFixedStack(SSFI
), 0);
4614 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4616 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4618 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4619 SmallVector
<SDValue
, 8> Ops
;
4620 Ops
.push_back(Chain
);
4621 Ops
.push_back(StackSlot
);
4622 Ops
.push_back(DAG
.getValueType(SrcVT
));
4623 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4624 Tys
, &Ops
[0], Ops
.size());
4627 Chain
= Result
.getValue(1);
4628 SDValue InFlag
= Result
.getValue(2);
4630 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4631 // shouldn't be necessary except that RFP cannot be live across
4632 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4633 MachineFunction
&MF
= DAG
.getMachineFunction();
4634 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4635 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4636 Tys
= DAG
.getVTList(MVT::Other
);
4637 SmallVector
<SDValue
, 8> Ops
;
4638 Ops
.push_back(Chain
);
4639 Ops
.push_back(Result
);
4640 Ops
.push_back(StackSlot
);
4641 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4642 Ops
.push_back(InFlag
);
4643 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4644 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4645 PseudoSourceValue::getFixedStack(SSFI
), 0);
4651 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4652 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4653 // This algorithm is not obvious. Here it is in C code, more or less:
4655 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4656 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4657 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4659 // Copy ints to xmm registers.
4660 __m128i xh = _mm_cvtsi32_si128( hi );
4661 __m128i xl = _mm_cvtsi32_si128( lo );
4663 // Combine into low half of a single xmm register.
4664 __m128i x = _mm_unpacklo_epi32( xh, xl );
4668 // Merge in appropriate exponents to give the integer bits the right
4670 x = _mm_unpacklo_epi32( x, exp );
4672 // Subtract away the biases to deal with the IEEE-754 double precision
4674 d = _mm_sub_pd( (__m128d) x, bias );
4676 // All conversions up to here are exact. The correctly rounded result is
4677 // calculated using the current rounding mode using the following
4679 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4680 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4681 // store doesn't really need to be here (except
4682 // maybe to zero the other double)
4687 DebugLoc dl
= Op
.getDebugLoc();
4689 // Build some magic constants.
4690 std::vector
<Constant
*> CV0
;
4691 CV0
.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4692 CV0
.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4693 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4694 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4695 Constant
*C0
= ConstantVector::get(CV0
);
4696 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4698 std::vector
<Constant
*> CV1
;
4699 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL
))));
4700 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL
))));
4701 Constant
*C1
= ConstantVector::get(CV1
);
4702 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4704 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4705 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4707 DAG
.getIntPtrConstant(1)));
4708 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4709 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4711 DAG
.getIntPtrConstant(0)));
4712 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4713 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4714 PseudoSourceValue::getConstantPool(), 0,
4716 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4717 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4718 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4719 PseudoSourceValue::getConstantPool(), 0,
4721 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4723 // Add the halves; easiest way is to swap them into another reg first.
4724 int ShufMask
[2] = { 1, -1 };
4725 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4726 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4727 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4728 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4729 DAG
.getIntPtrConstant(0));
4732 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4733 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4734 DebugLoc dl
= Op
.getDebugLoc();
4735 // FP constant to bias correct the final result.
4736 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
4739 // Load the 32-bit value into an XMM register.
4740 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4741 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4743 DAG
.getIntPtrConstant(0)));
4745 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4746 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
4747 DAG
.getIntPtrConstant(0));
4749 // Or the load with the bias.
4750 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
4751 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4752 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4754 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4755 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4756 MVT::v2f64
, Bias
)));
4757 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4758 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
4759 DAG
.getIntPtrConstant(0));
4761 // Subtract the bias.
4762 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
4764 // Handle final rounding.
4765 MVT DestVT
= Op
.getValueType();
4767 if (DestVT
.bitsLT(MVT::f64
)) {
4768 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
4769 DAG
.getIntPtrConstant(0));
4770 } else if (DestVT
.bitsGT(MVT::f64
)) {
4771 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
4774 // Handle final rounding.
4778 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4779 SDValue N0
= Op
.getOperand(0);
4780 DebugLoc dl
= Op
.getDebugLoc();
4782 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4783 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4784 // the optimization here.
4785 if (DAG
.SignBitIsZero(N0
))
4786 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
4788 MVT SrcVT
= N0
.getValueType();
4789 if (SrcVT
== MVT::i64
) {
4790 // We only handle SSE2 f64 target here; caller can handle the rest.
4791 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
4794 return LowerUINT_TO_FP_i64(Op
, DAG
);
4795 } else if (SrcVT
== MVT::i32
) {
4796 return LowerUINT_TO_FP_i32(Op
, DAG
);
4799 assert(0 && "Unknown UINT_TO_FP to lower!");
4803 std::pair
<SDValue
,SDValue
> X86TargetLowering::
4804 FP_TO_SINTHelper(SDValue Op
, SelectionDAG
&DAG
) {
4805 DebugLoc dl
= Op
.getDebugLoc();
4806 assert(Op
.getValueType().getSimpleVT() <= MVT::i64
&&
4807 Op
.getValueType().getSimpleVT() >= MVT::i16
&&
4808 "Unknown FP_TO_SINT to lower!");
4810 // These are really Legal.
4811 if (Op
.getValueType() == MVT::i32
&&
4812 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
4813 return std::make_pair(SDValue(), SDValue());
4814 if (Subtarget
->is64Bit() &&
4815 Op
.getValueType() == MVT::i64
&&
4816 Op
.getOperand(0).getValueType() != MVT::f80
)
4817 return std::make_pair(SDValue(), SDValue());
4819 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4821 MachineFunction
&MF
= DAG
.getMachineFunction();
4822 unsigned MemSize
= Op
.getValueType().getSizeInBits()/8;
4823 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
4824 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4826 switch (Op
.getValueType().getSimpleVT()) {
4827 default: assert(0 && "Invalid FP_TO_SINT to lower!");
4828 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
4829 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
4830 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
4833 SDValue Chain
= DAG
.getEntryNode();
4834 SDValue Value
= Op
.getOperand(0);
4835 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
4836 assert(Op
.getValueType() == MVT::i64
&& "Invalid FP_TO_SINT to lower!");
4837 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
4838 PseudoSourceValue::getFixedStack(SSFI
), 0);
4839 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
4841 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
4843 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
4844 Chain
= Value
.getValue(1);
4845 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
4846 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4849 // Build the FP_TO_INT*_IN_MEM
4850 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
4851 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
4853 return std::make_pair(FIST
, StackSlot
);
4856 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
4857 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_SINTHelper(Op
, DAG
);
4858 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
4859 if (FIST
.getNode() == 0) return SDValue();
4862 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
4863 FIST
, StackSlot
, NULL
, 0);
4866 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
4867 DebugLoc dl
= Op
.getDebugLoc();
4868 MVT VT
= Op
.getValueType();
4871 EltVT
= VT
.getVectorElementType();
4872 std::vector
<Constant
*> CV
;
4873 if (EltVT
== MVT::f64
) {
4874 Constant
*C
= ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4878 Constant
*C
= ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4884 Constant
*C
= ConstantVector::get(CV
);
4885 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4886 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4887 PseudoSourceValue::getConstantPool(), 0,
4889 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
4892 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
4893 DebugLoc dl
= Op
.getDebugLoc();
4894 MVT VT
= Op
.getValueType();
4896 unsigned EltNum
= 1;
4897 if (VT
.isVector()) {
4898 EltVT
= VT
.getVectorElementType();
4899 EltNum
= VT
.getVectorNumElements();
4901 std::vector
<Constant
*> CV
;
4902 if (EltVT
== MVT::f64
) {
4903 Constant
*C
= ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4907 Constant
*C
= ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4913 Constant
*C
= ConstantVector::get(CV
);
4914 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4915 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4916 PseudoSourceValue::getConstantPool(), 0,
4918 if (VT
.isVector()) {
4919 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4920 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
4921 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4923 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
4925 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
4929 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
4930 SDValue Op0
= Op
.getOperand(0);
4931 SDValue Op1
= Op
.getOperand(1);
4932 DebugLoc dl
= Op
.getDebugLoc();
4933 MVT VT
= Op
.getValueType();
4934 MVT SrcVT
= Op1
.getValueType();
4936 // If second operand is smaller, extend it first.
4937 if (SrcVT
.bitsLT(VT
)) {
4938 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
4941 // And if it is bigger, shrink it first.
4942 if (SrcVT
.bitsGT(VT
)) {
4943 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
4947 // At this point the operands and the result should have the same
4948 // type, and that won't be f80 since that is not custom lowered.
4950 // First get the sign bit of second operand.
4951 std::vector
<Constant
*> CV
;
4952 if (SrcVT
== MVT::f64
) {
4953 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4954 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4956 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4957 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4958 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4959 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4961 Constant
*C
= ConstantVector::get(CV
);
4962 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4963 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
4964 PseudoSourceValue::getConstantPool(), 0,
4966 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
4968 // Shift sign bit right or left if the two operands have different types.
4969 if (SrcVT
.bitsGT(VT
)) {
4970 // Op0 is MVT::f32, Op1 is MVT::f64.
4971 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
4972 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
4973 DAG
.getConstant(32, MVT::i32
));
4974 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
4975 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
4976 DAG
.getIntPtrConstant(0));
4979 // Clear first operand sign bit.
4981 if (VT
== MVT::f64
) {
4982 CV
.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4983 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4985 CV
.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4986 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4987 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4988 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4990 C
= ConstantVector::get(CV
);
4991 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4992 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4993 PseudoSourceValue::getConstantPool(), 0,
4995 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
4997 // Or the value with the sign bit.
4998 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5001 /// Emit nodes that will be selected as "test Op0,Op0", or something
5003 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5004 SelectionDAG
&DAG
) {
5005 DebugLoc dl
= Op
.getDebugLoc();
5007 // CF and OF aren't always set the way we want. Determine which
5008 // of these we need.
5009 bool NeedCF
= false;
5010 bool NeedOF
= false;
5012 case X86::COND_A
: case X86::COND_AE
:
5013 case X86::COND_B
: case X86::COND_BE
:
5016 case X86::COND_G
: case X86::COND_GE
:
5017 case X86::COND_L
: case X86::COND_LE
:
5018 case X86::COND_O
: case X86::COND_NO
:
5024 // See if we can use the EFLAGS value from the operand instead of
5025 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5026 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5027 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5028 unsigned Opcode
= 0;
5029 unsigned NumOperands
= 0;
5030 switch (Op
.getNode()->getOpcode()) {
5032 // Due to an isel shortcoming, be conservative if this add is likely to
5033 // be selected as part of a load-modify-store instruction. When the root
5034 // node in a match is a store, isel doesn't know how to remap non-chain
5035 // non-flag uses of other nodes in the match, such as the ADD in this
5036 // case. This leads to the ADD being left around and reselected, with
5037 // the result being two adds in the output.
5038 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5039 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5040 if (UI
->getOpcode() == ISD::STORE
)
5042 if (ConstantSDNode
*C
=
5043 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5044 // An add of one will be selected as an INC.
5045 if (C
->getAPIntValue() == 1) {
5046 Opcode
= X86ISD::INC
;
5050 // An add of negative one (subtract of one) will be selected as a DEC.
5051 if (C
->getAPIntValue().isAllOnesValue()) {
5052 Opcode
= X86ISD::DEC
;
5057 // Otherwise use a regular EFLAGS-setting add.
5058 Opcode
= X86ISD::ADD
;
5062 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5063 // likely to be selected as part of a load-modify-store instruction.
5064 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5065 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5066 if (UI
->getOpcode() == ISD::STORE
)
5068 // Otherwise use a regular EFLAGS-setting sub.
5069 Opcode
= X86ISD::SUB
;
5076 return SDValue(Op
.getNode(), 1);
5082 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5083 SmallVector
<SDValue
, 4> Ops
;
5084 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5085 Ops
.push_back(Op
.getOperand(i
));
5086 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5087 DAG
.ReplaceAllUsesWith(Op
, New
);
5088 return SDValue(New
.getNode(), 1);
5092 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5093 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5094 DAG
.getConstant(0, Op
.getValueType()));
5097 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5099 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5100 SelectionDAG
&DAG
) {
5101 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5102 if (C
->getAPIntValue() == 0)
5103 return EmitTest(Op0
, X86CC
, DAG
);
5105 DebugLoc dl
= Op0
.getDebugLoc();
5106 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5109 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5110 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5111 SDValue Op0
= Op
.getOperand(0);
5112 SDValue Op1
= Op
.getOperand(1);
5113 DebugLoc dl
= Op
.getDebugLoc();
5114 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5116 // Lower (X & (1 << N)) == 0 to BT(X, N).
5117 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5118 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5119 if (Op0
.getOpcode() == ISD::AND
&&
5121 Op1
.getOpcode() == ISD::Constant
&&
5122 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5123 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5125 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5126 if (ConstantSDNode
*Op010C
=
5127 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5128 if (Op010C
->getZExtValue() == 1) {
5129 LHS
= Op0
.getOperand(0);
5130 RHS
= Op0
.getOperand(1).getOperand(1);
5132 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5133 if (ConstantSDNode
*Op000C
=
5134 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5135 if (Op000C
->getZExtValue() == 1) {
5136 LHS
= Op0
.getOperand(1);
5137 RHS
= Op0
.getOperand(0).getOperand(1);
5139 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5140 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5141 SDValue AndLHS
= Op0
.getOperand(0);
5142 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5143 LHS
= AndLHS
.getOperand(0);
5144 RHS
= AndLHS
.getOperand(1);
5148 if (LHS
.getNode()) {
5149 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5150 // instruction. Since the shift amount is in-range-or-undefined, we know
5151 // that doing a bittest on the i16 value is ok. We extend to i32 because
5152 // the encoding for the i16 version is larger than the i32 version.
5153 if (LHS
.getValueType() == MVT::i8
)
5154 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5156 // If the operand types disagree, extend the shift amount to match. Since
5157 // BT ignores high bits (like shifts) we can use anyextend.
5158 if (LHS
.getValueType() != RHS
.getValueType())
5159 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5161 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5162 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5163 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5164 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5168 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5169 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5171 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5172 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5173 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5176 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5178 SDValue Op0
= Op
.getOperand(0);
5179 SDValue Op1
= Op
.getOperand(1);
5180 SDValue CC
= Op
.getOperand(2);
5181 MVT VT
= Op
.getValueType();
5182 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5183 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5184 DebugLoc dl
= Op
.getDebugLoc();
5188 MVT VT0
= Op0
.getValueType();
5189 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5190 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5193 switch (SetCCOpcode
) {
5196 case ISD::SETEQ
: SSECC
= 0; break;
5198 case ISD::SETGT
: Swap
= true; // Fallthrough
5200 case ISD::SETOLT
: SSECC
= 1; break;
5202 case ISD::SETGE
: Swap
= true; // Fallthrough
5204 case ISD::SETOLE
: SSECC
= 2; break;
5205 case ISD::SETUO
: SSECC
= 3; break;
5207 case ISD::SETNE
: SSECC
= 4; break;
5208 case ISD::SETULE
: Swap
= true;
5209 case ISD::SETUGE
: SSECC
= 5; break;
5210 case ISD::SETULT
: Swap
= true;
5211 case ISD::SETUGT
: SSECC
= 6; break;
5212 case ISD::SETO
: SSECC
= 7; break;
5215 std::swap(Op0
, Op1
);
5217 // In the two special cases we can't handle, emit two comparisons.
5219 if (SetCCOpcode
== ISD::SETUEQ
) {
5221 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5222 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5223 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5225 else if (SetCCOpcode
== ISD::SETONE
) {
5227 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5228 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5229 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5231 assert(0 && "Illegal FP comparison");
5233 // Handle all other FP comparisons here.
5234 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5237 // We are handling one of the integer comparisons here. Since SSE only has
5238 // GT and EQ comparisons for integer, swapping operands and multiple
5239 // operations may be required for some comparisons.
5240 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5241 bool Swap
= false, Invert
= false, FlipSigns
= false;
5243 switch (VT
.getSimpleVT()) {
5245 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5246 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5247 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5248 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5251 switch (SetCCOpcode
) {
5253 case ISD::SETNE
: Invert
= true;
5254 case ISD::SETEQ
: Opc
= EQOpc
; break;
5255 case ISD::SETLT
: Swap
= true;
5256 case ISD::SETGT
: Opc
= GTOpc
; break;
5257 case ISD::SETGE
: Swap
= true;
5258 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5259 case ISD::SETULT
: Swap
= true;
5260 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5261 case ISD::SETUGE
: Swap
= true;
5262 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5265 std::swap(Op0
, Op1
);
5267 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5268 // bits of the inputs before performing those operations.
5270 MVT EltVT
= VT
.getVectorElementType();
5271 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5273 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5274 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5276 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5277 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5280 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5282 // If the logical-not of the result is required, perform that now.
5284 Result
= DAG
.getNOT(dl
, Result
, VT
);
5289 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5290 static bool isX86LogicalCmp(SDValue Op
) {
5291 unsigned Opc
= Op
.getNode()->getOpcode();
5292 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5294 if (Op
.getResNo() == 1 &&
5295 (Opc
== X86ISD::ADD
||
5296 Opc
== X86ISD::SUB
||
5297 Opc
== X86ISD::SMUL
||
5298 Opc
== X86ISD::UMUL
||
5299 Opc
== X86ISD::INC
||
5300 Opc
== X86ISD::DEC
))
5306 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5307 bool addTest
= true;
5308 SDValue Cond
= Op
.getOperand(0);
5309 DebugLoc dl
= Op
.getDebugLoc();
5312 if (Cond
.getOpcode() == ISD::SETCC
)
5313 Cond
= LowerSETCC(Cond
, DAG
);
5315 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5316 // setting operand in place of the X86ISD::SETCC.
5317 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5318 CC
= Cond
.getOperand(0);
5320 SDValue Cmp
= Cond
.getOperand(1);
5321 unsigned Opc
= Cmp
.getOpcode();
5322 MVT VT
= Op
.getValueType();
5324 bool IllegalFPCMov
= false;
5325 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5326 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5327 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5329 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5330 Opc
== X86ISD::BT
) { // FIXME
5337 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5338 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5341 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5342 SmallVector
<SDValue
, 4> Ops
;
5343 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5344 // condition is true.
5345 Ops
.push_back(Op
.getOperand(2));
5346 Ops
.push_back(Op
.getOperand(1));
5348 Ops
.push_back(Cond
);
5349 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5352 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5353 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5354 // from the AND / OR.
5355 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5356 Opc
= Op
.getOpcode();
5357 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5359 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5360 Op
.getOperand(0).hasOneUse() &&
5361 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5362 Op
.getOperand(1).hasOneUse());
5365 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5366 // 1 and that the SETCC node has a single use.
5367 static bool isXor1OfSetCC(SDValue Op
) {
5368 if (Op
.getOpcode() != ISD::XOR
)
5370 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5371 if (N1C
&& N1C
->getAPIntValue() == 1) {
5372 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5373 Op
.getOperand(0).hasOneUse();
5378 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5379 bool addTest
= true;
5380 SDValue Chain
= Op
.getOperand(0);
5381 SDValue Cond
= Op
.getOperand(1);
5382 SDValue Dest
= Op
.getOperand(2);
5383 DebugLoc dl
= Op
.getDebugLoc();
5386 if (Cond
.getOpcode() == ISD::SETCC
)
5387 Cond
= LowerSETCC(Cond
, DAG
);
5389 // FIXME: LowerXALUO doesn't handle these!!
5390 else if (Cond
.getOpcode() == X86ISD::ADD
||
5391 Cond
.getOpcode() == X86ISD::SUB
||
5392 Cond
.getOpcode() == X86ISD::SMUL
||
5393 Cond
.getOpcode() == X86ISD::UMUL
)
5394 Cond
= LowerXALUO(Cond
, DAG
);
5397 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5398 // setting operand in place of the X86ISD::SETCC.
5399 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5400 CC
= Cond
.getOperand(0);
5402 SDValue Cmp
= Cond
.getOperand(1);
5403 unsigned Opc
= Cmp
.getOpcode();
5404 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5405 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5409 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5413 // These can only come from an arithmetic instruction with overflow,
5414 // e.g. SADDO, UADDO.
5415 Cond
= Cond
.getNode()->getOperand(1);
5422 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5423 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5424 if (CondOpc
== ISD::OR
) {
5425 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5426 // two branches instead of an explicit OR instruction with a
5428 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5429 isX86LogicalCmp(Cmp
)) {
5430 CC
= Cond
.getOperand(0).getOperand(0);
5431 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5432 Chain
, Dest
, CC
, Cmp
);
5433 CC
= Cond
.getOperand(1).getOperand(0);
5437 } else { // ISD::AND
5438 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5439 // two branches instead of an explicit AND instruction with a
5440 // separate test. However, we only do this if this block doesn't
5441 // have a fall-through edge, because this requires an explicit
5442 // jmp when the condition is false.
5443 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5444 isX86LogicalCmp(Cmp
) &&
5445 Op
.getNode()->hasOneUse()) {
5446 X86::CondCode CCode
=
5447 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5448 CCode
= X86::GetOppositeBranchCondition(CCode
);
5449 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5450 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5451 // Look for an unconditional branch following this conditional branch.
5452 // We need this because we need to reverse the successors in order
5453 // to implement FCMP_OEQ.
5454 if (User
.getOpcode() == ISD::BR
) {
5455 SDValue FalseBB
= User
.getOperand(1);
5457 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5458 assert(NewBR
== User
);
5461 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5462 Chain
, Dest
, CC
, Cmp
);
5463 X86::CondCode CCode
=
5464 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5465 CCode
= X86::GetOppositeBranchCondition(CCode
);
5466 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5472 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5473 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5474 // It should be transformed during dag combiner except when the condition
5475 // is set by a arithmetics with overflow node.
5476 X86::CondCode CCode
=
5477 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5478 CCode
= X86::GetOppositeBranchCondition(CCode
);
5479 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5480 Cond
= Cond
.getOperand(0).getOperand(1);
5486 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5487 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5489 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5490 Chain
, Dest
, CC
, Cond
);
5494 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5495 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5496 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5497 // that the guard pages used by the OS virtual memory manager are allocated in
5498 // correct sequence.
5500 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5501 SelectionDAG
&DAG
) {
5502 assert(Subtarget
->isTargetCygMing() &&
5503 "This should be used only on Cygwin/Mingw targets");
5504 DebugLoc dl
= Op
.getDebugLoc();
5507 SDValue Chain
= Op
.getOperand(0);
5508 SDValue Size
= Op
.getOperand(1);
5509 // FIXME: Ensure alignment here
5513 MVT IntPtr
= getPointerTy();
5514 MVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5516 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5518 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5519 Flag
= Chain
.getValue(1);
5521 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5522 SDValue Ops
[] = { Chain
,
5523 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5524 DAG
.getRegister(X86::EAX
, IntPtr
),
5525 DAG
.getRegister(X86StackPtr
, SPTy
),
5527 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5528 Flag
= Chain
.getValue(1);
5530 Chain
= DAG
.getCALLSEQ_END(Chain
,
5531 DAG
.getIntPtrConstant(0, true),
5532 DAG
.getIntPtrConstant(0, true),
5535 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5537 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5538 return DAG
.getMergeValues(Ops1
, 2, dl
);
5542 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5544 SDValue Dst
, SDValue Src
,
5545 SDValue Size
, unsigned Align
,
5547 uint64_t DstSVOff
) {
5548 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5550 // If not DWORD aligned or size is more than the threshold, call the library.
5551 // The libc version is likely to be faster for these cases. It can use the
5552 // address value and run time information about the CPU.
5553 if ((Align
& 3) != 0 ||
5555 ConstantSize
->getZExtValue() >
5556 getSubtarget()->getMaxInlineSizeThreshold()) {
5557 SDValue
InFlag(0, 0);
5559 // Check to see if there is a specialized entry-point for memory zeroing.
5560 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5562 if (const char *bzeroEntry
= V
&&
5563 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5564 MVT IntPtr
= getPointerTy();
5565 const Type
*IntPtrTy
= TD
->getIntPtrType();
5566 TargetLowering::ArgListTy Args
;
5567 TargetLowering::ArgListEntry Entry
;
5569 Entry
.Ty
= IntPtrTy
;
5570 Args
.push_back(Entry
);
5572 Args
.push_back(Entry
);
5573 std::pair
<SDValue
,SDValue
> CallResult
=
5574 LowerCallTo(Chain
, Type::VoidTy
, false, false, false, false,
5575 CallingConv::C
, false,
5576 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5577 return CallResult
.second
;
5580 // Otherwise have the target-independent code call memset.
5584 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5585 SDValue
InFlag(0, 0);
5588 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5589 unsigned BytesLeft
= 0;
5590 bool TwoRepStos
= false;
5593 uint64_t Val
= ValC
->getZExtValue() & 255;
5595 // If the value is a constant, then we can potentially use larger sets.
5596 switch (Align
& 3) {
5597 case 2: // WORD aligned
5600 Val
= (Val
<< 8) | Val
;
5602 case 0: // DWORD aligned
5605 Val
= (Val
<< 8) | Val
;
5606 Val
= (Val
<< 16) | Val
;
5607 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5610 Val
= (Val
<< 32) | Val
;
5613 default: // Byte aligned
5616 Count
= DAG
.getIntPtrConstant(SizeVal
);
5620 if (AVT
.bitsGT(MVT::i8
)) {
5621 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5622 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5623 BytesLeft
= SizeVal
% UBytes
;
5626 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5628 InFlag
= Chain
.getValue(1);
5631 Count
= DAG
.getIntPtrConstant(SizeVal
);
5632 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5633 InFlag
= Chain
.getValue(1);
5636 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5639 InFlag
= Chain
.getValue(1);
5640 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5643 InFlag
= Chain
.getValue(1);
5645 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5646 SmallVector
<SDValue
, 8> Ops
;
5647 Ops
.push_back(Chain
);
5648 Ops
.push_back(DAG
.getValueType(AVT
));
5649 Ops
.push_back(InFlag
);
5650 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5653 InFlag
= Chain
.getValue(1);
5655 MVT CVT
= Count
.getValueType();
5656 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5657 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5658 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5661 InFlag
= Chain
.getValue(1);
5662 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5664 Ops
.push_back(Chain
);
5665 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5666 Ops
.push_back(InFlag
);
5667 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5668 } else if (BytesLeft
) {
5669 // Handle the last 1 - 7 bytes.
5670 unsigned Offset
= SizeVal
- BytesLeft
;
5671 MVT AddrVT
= Dst
.getValueType();
5672 MVT SizeVT
= Size
.getValueType();
5674 Chain
= DAG
.getMemset(Chain
, dl
,
5675 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5676 DAG
.getConstant(Offset
, AddrVT
)),
5678 DAG
.getConstant(BytesLeft
, SizeVT
),
5679 Align
, DstSV
, DstSVOff
+ Offset
);
5682 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5687 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5688 SDValue Chain
, SDValue Dst
, SDValue Src
,
5689 SDValue Size
, unsigned Align
,
5691 const Value
*DstSV
, uint64_t DstSVOff
,
5692 const Value
*SrcSV
, uint64_t SrcSVOff
) {
5693 // This requires the copy size to be a constant, preferrably
5694 // within a subtarget-specific limit.
5695 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5698 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5699 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
5702 /// If not DWORD aligned, call the library.
5703 if ((Align
& 3) != 0)
5708 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
5711 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5712 unsigned CountVal
= SizeVal
/ UBytes
;
5713 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
5714 unsigned BytesLeft
= SizeVal
% UBytes
;
5716 SDValue
InFlag(0, 0);
5717 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5720 InFlag
= Chain
.getValue(1);
5721 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5724 InFlag
= Chain
.getValue(1);
5725 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
5728 InFlag
= Chain
.getValue(1);
5730 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5731 SmallVector
<SDValue
, 8> Ops
;
5732 Ops
.push_back(Chain
);
5733 Ops
.push_back(DAG
.getValueType(AVT
));
5734 Ops
.push_back(InFlag
);
5735 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
5737 SmallVector
<SDValue
, 4> Results
;
5738 Results
.push_back(RepMovs
);
5740 // Handle the last 1 - 7 bytes.
5741 unsigned Offset
= SizeVal
- BytesLeft
;
5742 MVT DstVT
= Dst
.getValueType();
5743 MVT SrcVT
= Src
.getValueType();
5744 MVT SizeVT
= Size
.getValueType();
5745 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
5746 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
5747 DAG
.getConstant(Offset
, DstVT
)),
5748 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
5749 DAG
.getConstant(Offset
, SrcVT
)),
5750 DAG
.getConstant(BytesLeft
, SizeVT
),
5751 Align
, AlwaysInline
,
5752 DstSV
, DstSVOff
+ Offset
,
5753 SrcSV
, SrcSVOff
+ Offset
));
5756 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5757 &Results
[0], Results
.size());
5760 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
5761 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5762 DebugLoc dl
= Op
.getDebugLoc();
5764 if (!Subtarget
->is64Bit()) {
5765 // vastart just stores the address of the VarArgsFrameIndex slot into the
5766 // memory location argument.
5767 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
5768 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
5772 // gp_offset (0 - 6 * 8)
5773 // fp_offset (48 - 48 + 8 * 16)
5774 // overflow_arg_area (point to parameters coming in memory).
5776 SmallVector
<SDValue
, 8> MemOps
;
5777 SDValue FIN
= Op
.getOperand(1);
5779 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
5780 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
5782 MemOps
.push_back(Store
);
5785 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5786 FIN
, DAG
.getIntPtrConstant(4));
5787 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
5788 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
5790 MemOps
.push_back(Store
);
5792 // Store ptr to overflow_arg_area
5793 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5794 FIN
, DAG
.getIntPtrConstant(4));
5795 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
5796 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
5797 MemOps
.push_back(Store
);
5799 // Store ptr to reg_save_area.
5800 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5801 FIN
, DAG
.getIntPtrConstant(8));
5802 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
5803 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
5804 MemOps
.push_back(Store
);
5805 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5806 &MemOps
[0], MemOps
.size());
5809 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
5810 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5811 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
5812 SDValue Chain
= Op
.getOperand(0);
5813 SDValue SrcPtr
= Op
.getOperand(1);
5814 SDValue SrcSV
= Op
.getOperand(2);
5816 assert(0 && "VAArgInst is not yet implemented for x86-64!");
5821 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
5822 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5823 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
5824 SDValue Chain
= Op
.getOperand(0);
5825 SDValue DstPtr
= Op
.getOperand(1);
5826 SDValue SrcPtr
= Op
.getOperand(2);
5827 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
5828 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
5829 DebugLoc dl
= Op
.getDebugLoc();
5831 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
5832 DAG
.getIntPtrConstant(24), 8, false,
5833 DstSV
, 0, SrcSV
, 0);
5837 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
5838 DebugLoc dl
= Op
.getDebugLoc();
5839 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5841 default: return SDValue(); // Don't custom lower most intrinsics.
5842 // Comparison intrinsics.
5843 case Intrinsic::x86_sse_comieq_ss
:
5844 case Intrinsic::x86_sse_comilt_ss
:
5845 case Intrinsic::x86_sse_comile_ss
:
5846 case Intrinsic::x86_sse_comigt_ss
:
5847 case Intrinsic::x86_sse_comige_ss
:
5848 case Intrinsic::x86_sse_comineq_ss
:
5849 case Intrinsic::x86_sse_ucomieq_ss
:
5850 case Intrinsic::x86_sse_ucomilt_ss
:
5851 case Intrinsic::x86_sse_ucomile_ss
:
5852 case Intrinsic::x86_sse_ucomigt_ss
:
5853 case Intrinsic::x86_sse_ucomige_ss
:
5854 case Intrinsic::x86_sse_ucomineq_ss
:
5855 case Intrinsic::x86_sse2_comieq_sd
:
5856 case Intrinsic::x86_sse2_comilt_sd
:
5857 case Intrinsic::x86_sse2_comile_sd
:
5858 case Intrinsic::x86_sse2_comigt_sd
:
5859 case Intrinsic::x86_sse2_comige_sd
:
5860 case Intrinsic::x86_sse2_comineq_sd
:
5861 case Intrinsic::x86_sse2_ucomieq_sd
:
5862 case Intrinsic::x86_sse2_ucomilt_sd
:
5863 case Intrinsic::x86_sse2_ucomile_sd
:
5864 case Intrinsic::x86_sse2_ucomigt_sd
:
5865 case Intrinsic::x86_sse2_ucomige_sd
:
5866 case Intrinsic::x86_sse2_ucomineq_sd
: {
5868 ISD::CondCode CC
= ISD::SETCC_INVALID
;
5871 case Intrinsic::x86_sse_comieq_ss
:
5872 case Intrinsic::x86_sse2_comieq_sd
:
5876 case Intrinsic::x86_sse_comilt_ss
:
5877 case Intrinsic::x86_sse2_comilt_sd
:
5881 case Intrinsic::x86_sse_comile_ss
:
5882 case Intrinsic::x86_sse2_comile_sd
:
5886 case Intrinsic::x86_sse_comigt_ss
:
5887 case Intrinsic::x86_sse2_comigt_sd
:
5891 case Intrinsic::x86_sse_comige_ss
:
5892 case Intrinsic::x86_sse2_comige_sd
:
5896 case Intrinsic::x86_sse_comineq_ss
:
5897 case Intrinsic::x86_sse2_comineq_sd
:
5901 case Intrinsic::x86_sse_ucomieq_ss
:
5902 case Intrinsic::x86_sse2_ucomieq_sd
:
5903 Opc
= X86ISD::UCOMI
;
5906 case Intrinsic::x86_sse_ucomilt_ss
:
5907 case Intrinsic::x86_sse2_ucomilt_sd
:
5908 Opc
= X86ISD::UCOMI
;
5911 case Intrinsic::x86_sse_ucomile_ss
:
5912 case Intrinsic::x86_sse2_ucomile_sd
:
5913 Opc
= X86ISD::UCOMI
;
5916 case Intrinsic::x86_sse_ucomigt_ss
:
5917 case Intrinsic::x86_sse2_ucomigt_sd
:
5918 Opc
= X86ISD::UCOMI
;
5921 case Intrinsic::x86_sse_ucomige_ss
:
5922 case Intrinsic::x86_sse2_ucomige_sd
:
5923 Opc
= X86ISD::UCOMI
;
5926 case Intrinsic::x86_sse_ucomineq_ss
:
5927 case Intrinsic::x86_sse2_ucomineq_sd
:
5928 Opc
= X86ISD::UCOMI
;
5933 SDValue LHS
= Op
.getOperand(1);
5934 SDValue RHS
= Op
.getOperand(2);
5935 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
5936 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
5937 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5938 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5939 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
5942 // Fix vector shift instructions where the last operand is a non-immediate
5944 case Intrinsic::x86_sse2_pslli_w
:
5945 case Intrinsic::x86_sse2_pslli_d
:
5946 case Intrinsic::x86_sse2_pslli_q
:
5947 case Intrinsic::x86_sse2_psrli_w
:
5948 case Intrinsic::x86_sse2_psrli_d
:
5949 case Intrinsic::x86_sse2_psrli_q
:
5950 case Intrinsic::x86_sse2_psrai_w
:
5951 case Intrinsic::x86_sse2_psrai_d
:
5952 case Intrinsic::x86_mmx_pslli_w
:
5953 case Intrinsic::x86_mmx_pslli_d
:
5954 case Intrinsic::x86_mmx_pslli_q
:
5955 case Intrinsic::x86_mmx_psrli_w
:
5956 case Intrinsic::x86_mmx_psrli_d
:
5957 case Intrinsic::x86_mmx_psrli_q
:
5958 case Intrinsic::x86_mmx_psrai_w
:
5959 case Intrinsic::x86_mmx_psrai_d
: {
5960 SDValue ShAmt
= Op
.getOperand(2);
5961 if (isa
<ConstantSDNode
>(ShAmt
))
5964 unsigned NewIntNo
= 0;
5965 MVT ShAmtVT
= MVT::v4i32
;
5967 case Intrinsic::x86_sse2_pslli_w
:
5968 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
5970 case Intrinsic::x86_sse2_pslli_d
:
5971 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
5973 case Intrinsic::x86_sse2_pslli_q
:
5974 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
5976 case Intrinsic::x86_sse2_psrli_w
:
5977 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
5979 case Intrinsic::x86_sse2_psrli_d
:
5980 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
5982 case Intrinsic::x86_sse2_psrli_q
:
5983 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
5985 case Intrinsic::x86_sse2_psrai_w
:
5986 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
5988 case Intrinsic::x86_sse2_psrai_d
:
5989 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
5992 ShAmtVT
= MVT::v2i32
;
5994 case Intrinsic::x86_mmx_pslli_w
:
5995 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
5997 case Intrinsic::x86_mmx_pslli_d
:
5998 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
6000 case Intrinsic::x86_mmx_pslli_q
:
6001 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6003 case Intrinsic::x86_mmx_psrli_w
:
6004 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6006 case Intrinsic::x86_mmx_psrli_d
:
6007 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6009 case Intrinsic::x86_mmx_psrli_q
:
6010 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6012 case Intrinsic::x86_mmx_psrai_w
:
6013 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6015 case Intrinsic::x86_mmx_psrai_d
:
6016 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6018 default: abort(); // Can't reach here.
6023 MVT VT
= Op
.getValueType();
6024 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6025 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, ShAmtVT
, ShAmt
));
6026 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6027 DAG
.getConstant(NewIntNo
, MVT::i32
),
6028 Op
.getOperand(1), ShAmt
);
6033 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6034 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6035 DebugLoc dl
= Op
.getDebugLoc();
6038 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6040 DAG
.getConstant(TD
->getPointerSize(),
6041 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6042 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6043 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6048 // Just load the return address.
6049 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6050 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6051 RetAddrFI
, NULL
, 0);
6054 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6055 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6056 MFI
->setFrameAddressIsTaken(true);
6057 MVT VT
= Op
.getValueType();
6058 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6059 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6060 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6061 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6063 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6067 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6068 SelectionDAG
&DAG
) {
6069 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6072 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6074 MachineFunction
&MF
= DAG
.getMachineFunction();
6075 SDValue Chain
= Op
.getOperand(0);
6076 SDValue Offset
= Op
.getOperand(1);
6077 SDValue Handler
= Op
.getOperand(2);
6078 DebugLoc dl
= Op
.getDebugLoc();
6080 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6082 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6084 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6085 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6086 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6087 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6088 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6089 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6091 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6093 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6096 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6097 SelectionDAG
&DAG
) {
6098 SDValue Root
= Op
.getOperand(0);
6099 SDValue Trmp
= Op
.getOperand(1); // trampoline
6100 SDValue FPtr
= Op
.getOperand(2); // nested function
6101 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6102 DebugLoc dl
= Op
.getDebugLoc();
6104 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6106 const X86InstrInfo
*TII
=
6107 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6109 if (Subtarget
->is64Bit()) {
6110 SDValue OutChains
[6];
6112 // Large code-model.
6114 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6115 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6117 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6118 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6120 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6122 // Load the pointer to the nested function into R11.
6123 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6124 SDValue Addr
= Trmp
;
6125 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6128 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6129 DAG
.getConstant(2, MVT::i64
));
6130 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6132 // Load the 'nest' parameter value into R10.
6133 // R10 is specified in X86CallingConv.td
6134 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6135 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6136 DAG
.getConstant(10, MVT::i64
));
6137 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6138 Addr
, TrmpAddr
, 10);
6140 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6141 DAG
.getConstant(12, MVT::i64
));
6142 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6144 // Jump to the nested function.
6145 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6146 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6147 DAG
.getConstant(20, MVT::i64
));
6148 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6149 Addr
, TrmpAddr
, 20);
6151 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6152 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6153 DAG
.getConstant(22, MVT::i64
));
6154 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6158 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6159 return DAG
.getMergeValues(Ops
, 2, dl
);
6161 const Function
*Func
=
6162 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6163 unsigned CC
= Func
->getCallingConv();
6168 assert(0 && "Unsupported calling convention");
6169 case CallingConv::C
:
6170 case CallingConv::X86_StdCall
: {
6171 // Pass 'nest' parameter in ECX.
6172 // Must be kept in sync with X86CallingConv.td
6175 // Check that ECX wasn't needed by an 'inreg' parameter.
6176 const FunctionType
*FTy
= Func
->getFunctionType();
6177 const AttrListPtr
&Attrs
= Func
->getAttributes();
6179 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6180 unsigned InRegCount
= 0;
6183 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6184 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6185 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6186 // FIXME: should only count parameters that are lowered to integers.
6187 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6189 if (InRegCount
> 2) {
6190 cerr
<< "Nest register in use - reduce number of inreg parameters!\n";
6196 case CallingConv::X86_FastCall
:
6197 case CallingConv::Fast
:
6198 // Pass 'nest' parameter in EAX.
6199 // Must be kept in sync with X86CallingConv.td
6204 SDValue OutChains
[4];
6207 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6208 DAG
.getConstant(10, MVT::i32
));
6209 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6211 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6212 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6213 OutChains
[0] = DAG
.getStore(Root
, dl
,
6214 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6217 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6218 DAG
.getConstant(1, MVT::i32
));
6219 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6221 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6222 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6223 DAG
.getConstant(5, MVT::i32
));
6224 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6225 TrmpAddr
, 5, false, 1);
6227 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6228 DAG
.getConstant(6, MVT::i32
));
6229 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6232 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6233 return DAG
.getMergeValues(Ops
, 2, dl
);
6237 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6239 The rounding mode is in bits 11:10 of FPSR, and has the following
6246 FLT_ROUNDS, on the other hand, expects the following:
6253 To perform the conversion, we do:
6254 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6257 MachineFunction
&MF
= DAG
.getMachineFunction();
6258 const TargetMachine
&TM
= MF
.getTarget();
6259 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6260 unsigned StackAlignment
= TFI
.getStackAlignment();
6261 MVT VT
= Op
.getValueType();
6262 DebugLoc dl
= Op
.getDebugLoc();
6264 // Save FP Control Word to stack slot
6265 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6266 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6268 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6269 DAG
.getEntryNode(), StackSlot
);
6271 // Load FP Control Word from stack slot
6272 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6274 // Transform as necessary
6276 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6277 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6278 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6279 DAG
.getConstant(11, MVT::i8
));
6281 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6282 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6283 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6284 DAG
.getConstant(9, MVT::i8
));
6287 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6288 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6289 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6290 DAG
.getConstant(1, MVT::i16
)),
6291 DAG
.getConstant(3, MVT::i16
));
6294 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6295 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6298 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6299 MVT VT
= Op
.getValueType();
6301 unsigned NumBits
= VT
.getSizeInBits();
6302 DebugLoc dl
= Op
.getDebugLoc();
6304 Op
= Op
.getOperand(0);
6305 if (VT
== MVT::i8
) {
6306 // Zero extend to i32 since there is not an i8 bsr.
6308 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6311 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6312 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6313 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6315 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6316 SmallVector
<SDValue
, 4> Ops
;
6318 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6319 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6320 Ops
.push_back(Op
.getValue(1));
6321 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6323 // Finally xor with NumBits-1.
6324 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6327 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6331 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6332 MVT VT
= Op
.getValueType();
6334 unsigned NumBits
= VT
.getSizeInBits();
6335 DebugLoc dl
= Op
.getDebugLoc();
6337 Op
= Op
.getOperand(0);
6338 if (VT
== MVT::i8
) {
6340 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6343 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6344 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6345 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6347 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6348 SmallVector
<SDValue
, 4> Ops
;
6350 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6351 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6352 Ops
.push_back(Op
.getValue(1));
6353 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6356 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6360 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6361 MVT VT
= Op
.getValueType();
6362 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6363 DebugLoc dl
= Op
.getDebugLoc();
6365 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6366 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6367 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6368 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6369 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6371 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6372 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6373 // return AloBlo + AloBhi + AhiBlo;
6375 SDValue A
= Op
.getOperand(0);
6376 SDValue B
= Op
.getOperand(1);
6378 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6379 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6380 A
, DAG
.getConstant(32, MVT::i32
));
6381 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6382 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6383 B
, DAG
.getConstant(32, MVT::i32
));
6384 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6385 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6387 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6388 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6390 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6391 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6393 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6394 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6395 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6396 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6397 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6398 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6399 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6400 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6405 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6406 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6407 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6408 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6409 // has only one use.
6410 SDNode
*N
= Op
.getNode();
6411 SDValue LHS
= N
->getOperand(0);
6412 SDValue RHS
= N
->getOperand(1);
6413 unsigned BaseOp
= 0;
6415 DebugLoc dl
= Op
.getDebugLoc();
6417 switch (Op
.getOpcode()) {
6418 default: assert(0 && "Unknown ovf instruction!");
6420 // A subtract of one will be selected as a INC. Note that INC doesn't
6421 // set CF, so we can't do this for UADDO.
6422 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6423 if (C
->getAPIntValue() == 1) {
6424 BaseOp
= X86ISD::INC
;
6428 BaseOp
= X86ISD::ADD
;
6432 BaseOp
= X86ISD::ADD
;
6436 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6437 // set CF, so we can't do this for USUBO.
6438 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6439 if (C
->getAPIntValue() == 1) {
6440 BaseOp
= X86ISD::DEC
;
6444 BaseOp
= X86ISD::SUB
;
6448 BaseOp
= X86ISD::SUB
;
6452 BaseOp
= X86ISD::SMUL
;
6456 BaseOp
= X86ISD::UMUL
;
6461 // Also sets EFLAGS.
6462 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6463 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6466 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6467 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6469 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6473 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6474 MVT T
= Op
.getValueType();
6475 DebugLoc dl
= Op
.getDebugLoc();
6478 switch(T
.getSimpleVT()) {
6480 assert(false && "Invalid value type!");
6481 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6482 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6483 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6485 assert(Subtarget
->is64Bit() && "Node not type legal!");
6486 Reg
= X86::RAX
; size
= 8;
6489 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6490 Op
.getOperand(2), SDValue());
6491 SDValue Ops
[] = { cpIn
.getValue(0),
6494 DAG
.getTargetConstant(size
, MVT::i8
),
6496 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6497 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6499 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6503 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6504 SelectionDAG
&DAG
) {
6505 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6506 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6507 SDValue TheChain
= Op
.getOperand(0);
6508 DebugLoc dl
= Op
.getDebugLoc();
6509 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6510 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6511 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6513 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6514 DAG
.getConstant(32, MVT::i8
));
6516 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6519 return DAG
.getMergeValues(Ops
, 2, dl
);
6522 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6523 SDNode
*Node
= Op
.getNode();
6524 DebugLoc dl
= Node
->getDebugLoc();
6525 MVT T
= Node
->getValueType(0);
6526 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6527 DAG
.getConstant(0, T
), Node
->getOperand(2));
6528 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6529 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6530 Node
->getOperand(0),
6531 Node
->getOperand(1), negOp
,
6532 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6533 cast
<AtomicSDNode
>(Node
)->getAlignment());
6536 /// LowerOperation - Provide custom lowering hooks for some operations.
6538 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6539 switch (Op
.getOpcode()) {
6540 default: assert(0 && "Should not custom lower this!");
6541 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6542 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6543 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6544 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6545 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6546 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6547 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6548 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6549 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6550 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6551 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6552 case ISD::SHL_PARTS
:
6553 case ISD::SRA_PARTS
:
6554 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6555 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6556 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6557 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6558 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6559 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6560 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6561 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6562 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6563 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6564 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6565 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6566 case ISD::CALL
: return LowerCALL(Op
, DAG
);
6567 case ISD::RET
: return LowerRET(Op
, DAG
);
6568 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
6569 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6570 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6571 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6572 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6573 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6574 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6575 case ISD::FRAME_TO_ARGS_OFFSET
:
6576 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6577 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6578 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6579 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6580 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6581 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6582 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6583 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6589 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6590 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6594 void X86TargetLowering::
6595 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6596 SelectionDAG
&DAG
, unsigned NewOp
) {
6597 MVT T
= Node
->getValueType(0);
6598 DebugLoc dl
= Node
->getDebugLoc();
6599 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6601 SDValue Chain
= Node
->getOperand(0);
6602 SDValue In1
= Node
->getOperand(1);
6603 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6604 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6605 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6606 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6607 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6608 // have a MemOperand. Pass the info through as a normal operand.
6609 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6610 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6611 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6612 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6613 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6614 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6615 Results
.push_back(Result
.getValue(2));
6618 /// ReplaceNodeResults - Replace a node with an illegal result type
6619 /// with a new node built out of custom code.
6620 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6621 SmallVectorImpl
<SDValue
>&Results
,
6622 SelectionDAG
&DAG
) {
6623 DebugLoc dl
= N
->getDebugLoc();
6624 switch (N
->getOpcode()) {
6626 assert(false && "Do not know how to custom type legalize this operation!");
6628 case ISD::FP_TO_SINT
: {
6629 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_SINTHelper(SDValue(N
, 0), DAG
);
6630 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6631 if (FIST
.getNode() != 0) {
6632 MVT VT
= N
->getValueType(0);
6633 // Return a load from the stack slot.
6634 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6638 case ISD::READCYCLECOUNTER
: {
6639 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6640 SDValue TheChain
= N
->getOperand(0);
6641 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6642 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6644 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6646 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6647 SDValue Ops
[] = { eax
, edx
};
6648 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6649 Results
.push_back(edx
.getValue(1));
6652 case ISD::ATOMIC_CMP_SWAP
: {
6653 MVT T
= N
->getValueType(0);
6654 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
6655 SDValue cpInL
, cpInH
;
6656 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6657 DAG
.getConstant(0, MVT::i32
));
6658 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6659 DAG
.getConstant(1, MVT::i32
));
6660 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
6661 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
6663 SDValue swapInL
, swapInH
;
6664 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6665 DAG
.getConstant(0, MVT::i32
));
6666 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6667 DAG
.getConstant(1, MVT::i32
));
6668 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
6670 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
6671 swapInL
.getValue(1));
6672 SDValue Ops
[] = { swapInH
.getValue(0),
6674 swapInH
.getValue(1) };
6675 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6676 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
6677 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
6678 MVT::i32
, Result
.getValue(1));
6679 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
6680 MVT::i32
, cpOutL
.getValue(2));
6681 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
6682 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6683 Results
.push_back(cpOutH
.getValue(1));
6686 case ISD::ATOMIC_LOAD_ADD
:
6687 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
6689 case ISD::ATOMIC_LOAD_AND
:
6690 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
6692 case ISD::ATOMIC_LOAD_NAND
:
6693 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
6695 case ISD::ATOMIC_LOAD_OR
:
6696 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
6698 case ISD::ATOMIC_LOAD_SUB
:
6699 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
6701 case ISD::ATOMIC_LOAD_XOR
:
6702 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
6704 case ISD::ATOMIC_SWAP
:
6705 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
6710 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
6712 default: return NULL
;
6713 case X86ISD::BSF
: return "X86ISD::BSF";
6714 case X86ISD::BSR
: return "X86ISD::BSR";
6715 case X86ISD::SHLD
: return "X86ISD::SHLD";
6716 case X86ISD::SHRD
: return "X86ISD::SHRD";
6717 case X86ISD::FAND
: return "X86ISD::FAND";
6718 case X86ISD::FOR
: return "X86ISD::FOR";
6719 case X86ISD::FXOR
: return "X86ISD::FXOR";
6720 case X86ISD::FSRL
: return "X86ISD::FSRL";
6721 case X86ISD::FILD
: return "X86ISD::FILD";
6722 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
6723 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
6724 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
6725 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
6726 case X86ISD::FLD
: return "X86ISD::FLD";
6727 case X86ISD::FST
: return "X86ISD::FST";
6728 case X86ISD::CALL
: return "X86ISD::CALL";
6729 case X86ISD::TAILCALL
: return "X86ISD::TAILCALL";
6730 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
6731 case X86ISD::BT
: return "X86ISD::BT";
6732 case X86ISD::CMP
: return "X86ISD::CMP";
6733 case X86ISD::COMI
: return "X86ISD::COMI";
6734 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
6735 case X86ISD::SETCC
: return "X86ISD::SETCC";
6736 case X86ISD::CMOV
: return "X86ISD::CMOV";
6737 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
6738 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
6739 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
6740 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
6741 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
6742 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
6743 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
6744 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
6745 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
6746 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
6747 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
6748 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
6749 case X86ISD::FMAX
: return "X86ISD::FMAX";
6750 case X86ISD::FMIN
: return "X86ISD::FMIN";
6751 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
6752 case X86ISD::FRCP
: return "X86ISD::FRCP";
6753 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
6754 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
6755 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
6756 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
6757 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
6758 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
6759 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
6760 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
6761 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
6762 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
6763 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
6764 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
6765 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
6766 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
6767 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
6768 case X86ISD::VSHL
: return "X86ISD::VSHL";
6769 case X86ISD::VSRL
: return "X86ISD::VSRL";
6770 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
6771 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
6772 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
6773 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
6774 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
6775 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
6776 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
6777 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
6778 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
6779 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
6780 case X86ISD::ADD
: return "X86ISD::ADD";
6781 case X86ISD::SUB
: return "X86ISD::SUB";
6782 case X86ISD::SMUL
: return "X86ISD::SMUL";
6783 case X86ISD::UMUL
: return "X86ISD::UMUL";
6784 case X86ISD::INC
: return "X86ISD::INC";
6785 case X86ISD::DEC
: return "X86ISD::DEC";
6786 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
6790 // isLegalAddressingMode - Return true if the addressing mode represented
6791 // by AM is legal for this target, for a load/store of the specified type.
6792 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
6793 const Type
*Ty
) const {
6794 // X86 supports extremely general addressing modes.
6796 // X86 allows a sign-extended 32-bit immediate field as a displacement.
6797 if (AM
.BaseOffs
<= -(1LL << 32) || AM
.BaseOffs
>= (1LL << 32)-1)
6801 // We can only fold this if we don't need an extra load.
6802 if (Subtarget
->GVRequiresExtraLoad(AM
.BaseGV
, getTargetMachine(), false))
6804 // If BaseGV requires a register, we cannot also have a BaseReg.
6805 if (Subtarget
->GVRequiresRegister(AM
.BaseGV
, getTargetMachine(), false) &&
6809 // X86-64 only supports addr of globals in small code model.
6810 if (Subtarget
->is64Bit()) {
6811 if (getTargetMachine().getCodeModel() != CodeModel::Small
)
6813 // If lower 4G is not available, then we must use rip-relative addressing.
6814 if (AM
.BaseOffs
|| AM
.Scale
> 1)
6825 // These scales always work.
6830 // These scales are formed with basereg+scalereg. Only accept if there is
6835 default: // Other stuff never works.
6843 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
6844 if (!Ty1
->isInteger() || !Ty2
->isInteger())
6846 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
6847 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
6848 if (NumBits1
<= NumBits2
)
6850 return Subtarget
->is64Bit() || NumBits1
< 64;
6853 bool X86TargetLowering::isTruncateFree(MVT VT1
, MVT VT2
) const {
6854 if (!VT1
.isInteger() || !VT2
.isInteger())
6856 unsigned NumBits1
= VT1
.getSizeInBits();
6857 unsigned NumBits2
= VT2
.getSizeInBits();
6858 if (NumBits1
<= NumBits2
)
6860 return Subtarget
->is64Bit() || NumBits1
< 64;
6863 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
6864 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6865 return Ty1
== Type::Int32Ty
&& Ty2
== Type::Int64Ty
&& Subtarget
->is64Bit();
6868 bool X86TargetLowering::isZExtFree(MVT VT1
, MVT VT2
) const {
6869 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6870 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
6873 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6874 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6875 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6876 /// are assumed to be legal.
6878 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
6880 // Only do shuffles on 128-bit vector types for now.
6881 if (VT
.getSizeInBits() == 64)
6884 // FIXME: pshufb, blends, palignr, shifts.
6885 return (VT
.getVectorNumElements() == 2 ||
6886 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
6887 isMOVLMask(M
, VT
) ||
6888 isSHUFPMask(M
, VT
) ||
6889 isPSHUFDMask(M
, VT
) ||
6890 isPSHUFHWMask(M
, VT
) ||
6891 isPSHUFLWMask(M
, VT
) ||
6892 isUNPCKLMask(M
, VT
) ||
6893 isUNPCKHMask(M
, VT
) ||
6894 isUNPCKL_v_undef_Mask(M
, VT
) ||
6895 isUNPCKH_v_undef_Mask(M
, VT
));
6899 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
6901 unsigned NumElts
= VT
.getVectorNumElements();
6902 // FIXME: This collection of masks seems suspect.
6905 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
6906 return (isMOVLMask(Mask
, VT
) ||
6907 isCommutedMOVLMask(Mask
, VT
, true) ||
6908 isSHUFPMask(Mask
, VT
) ||
6909 isCommutedSHUFPMask(Mask
, VT
));
6914 //===----------------------------------------------------------------------===//
6915 // X86 Scheduler Hooks
6916 //===----------------------------------------------------------------------===//
6918 // private utility function
6920 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
6921 MachineBasicBlock
*MBB
,
6929 TargetRegisterClass
*RC
,
6930 bool invSrc
) const {
6931 // For the atomic bitwise operator, we generate
6934 // ld t1 = [bitinstr.addr]
6935 // op t2 = t1, [bitinstr.val]
6937 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
6939 // fallthrough -->nextMBB
6940 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
6941 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
6942 MachineFunction::iterator MBBIter
= MBB
;
6945 /// First build the CFG
6946 MachineFunction
*F
= MBB
->getParent();
6947 MachineBasicBlock
*thisMBB
= MBB
;
6948 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6949 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6950 F
->insert(MBBIter
, newMBB
);
6951 F
->insert(MBBIter
, nextMBB
);
6953 // Move all successors to thisMBB to nextMBB
6954 nextMBB
->transferSuccessors(thisMBB
);
6956 // Update thisMBB to fall through to newMBB
6957 thisMBB
->addSuccessor(newMBB
);
6959 // newMBB jumps to itself and fall through to nextMBB
6960 newMBB
->addSuccessor(nextMBB
);
6961 newMBB
->addSuccessor(newMBB
);
6963 // Insert instructions into newMBB based on incoming instruction
6964 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
6965 "unexpected number of operands");
6966 DebugLoc dl
= bInstr
->getDebugLoc();
6967 MachineOperand
& destOper
= bInstr
->getOperand(0);
6968 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
6969 int numArgs
= bInstr
->getNumOperands() - 1;
6970 for (int i
=0; i
< numArgs
; ++i
)
6971 argOpers
[i
] = &bInstr
->getOperand(i
+1);
6973 // x86 address has 4 operands: base, index, scale, and displacement
6974 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
6975 int valArgIndx
= lastAddrIndx
+ 1;
6977 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
6978 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
6979 for (int i
=0; i
<= lastAddrIndx
; ++i
)
6980 (*MIB
).addOperand(*argOpers
[i
]);
6982 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
6984 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
6989 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
6990 assert((argOpers
[valArgIndx
]->isReg() ||
6991 argOpers
[valArgIndx
]->isImm()) &&
6993 if (argOpers
[valArgIndx
]->isReg())
6994 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
6996 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
6998 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7000 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7003 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7004 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7005 (*MIB
).addOperand(*argOpers
[i
]);
7007 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7008 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7010 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7014 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7016 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7020 // private utility function: 64 bit atomics on 32 bit host.
7022 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7023 MachineBasicBlock
*MBB
,
7028 bool invSrc
) const {
7029 // For the atomic bitwise operator, we generate
7030 // thisMBB (instructions are in pairs, except cmpxchg8b)
7031 // ld t1,t2 = [bitinstr.addr]
7033 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7034 // op t5, t6 <- out1, out2, [bitinstr.val]
7035 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7036 // mov ECX, EBX <- t5, t6
7037 // mov EAX, EDX <- t1, t2
7038 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7039 // mov t3, t4 <- EAX, EDX
7041 // result in out1, out2
7042 // fallthrough -->nextMBB
7044 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7045 const unsigned LoadOpc
= X86::MOV32rm
;
7046 const unsigned copyOpc
= X86::MOV32rr
;
7047 const unsigned NotOpc
= X86::NOT32r
;
7048 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7049 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7050 MachineFunction::iterator MBBIter
= MBB
;
7053 /// First build the CFG
7054 MachineFunction
*F
= MBB
->getParent();
7055 MachineBasicBlock
*thisMBB
= MBB
;
7056 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7057 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7058 F
->insert(MBBIter
, newMBB
);
7059 F
->insert(MBBIter
, nextMBB
);
7061 // Move all successors to thisMBB to nextMBB
7062 nextMBB
->transferSuccessors(thisMBB
);
7064 // Update thisMBB to fall through to newMBB
7065 thisMBB
->addSuccessor(newMBB
);
7067 // newMBB jumps to itself and fall through to nextMBB
7068 newMBB
->addSuccessor(nextMBB
);
7069 newMBB
->addSuccessor(newMBB
);
7071 DebugLoc dl
= bInstr
->getDebugLoc();
7072 // Insert instructions into newMBB based on incoming instruction
7073 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7074 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7075 "unexpected number of operands");
7076 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7077 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7078 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7079 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7080 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7082 // x86 address has 4 operands: base, index, scale, and displacement
7083 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7085 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7086 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7087 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7088 (*MIB
).addOperand(*argOpers
[i
]);
7089 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7090 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7091 // add 4 to displacement.
7092 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7093 (*MIB
).addOperand(*argOpers
[i
]);
7094 MachineOperand newOp3
= *(argOpers
[3]);
7096 newOp3
.setImm(newOp3
.getImm()+4);
7098 newOp3
.setOffset(newOp3
.getOffset()+4);
7099 (*MIB
).addOperand(newOp3
);
7100 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7102 // t3/4 are defined later, at the bottom of the loop
7103 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7104 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7105 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7106 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7107 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7108 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7110 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7111 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7113 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7114 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7120 int valArgIndx
= lastAddrIndx
+ 1;
7121 assert((argOpers
[valArgIndx
]->isReg() ||
7122 argOpers
[valArgIndx
]->isImm()) &&
7124 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7125 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7126 if (argOpers
[valArgIndx
]->isReg())
7127 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7129 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7130 if (regOpcL
!= X86::MOV32rr
)
7132 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7133 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7134 argOpers
[valArgIndx
]->isReg());
7135 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7136 argOpers
[valArgIndx
]->isImm());
7137 if (argOpers
[valArgIndx
+ 1]->isReg())
7138 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7140 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7141 if (regOpcH
!= X86::MOV32rr
)
7143 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7145 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7147 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7150 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7152 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7155 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7156 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7157 (*MIB
).addOperand(*argOpers
[i
]);
7159 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7160 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7162 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7163 MIB
.addReg(X86::EAX
);
7164 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7165 MIB
.addReg(X86::EDX
);
7168 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7170 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7174 // private utility function
7176 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7177 MachineBasicBlock
*MBB
,
7178 unsigned cmovOpc
) const {
7179 // For the atomic min/max operator, we generate
7182 // ld t1 = [min/max.addr]
7183 // mov t2 = [min/max.val]
7185 // cmov[cond] t2 = t1
7187 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7189 // fallthrough -->nextMBB
7191 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7192 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7193 MachineFunction::iterator MBBIter
= MBB
;
7196 /// First build the CFG
7197 MachineFunction
*F
= MBB
->getParent();
7198 MachineBasicBlock
*thisMBB
= MBB
;
7199 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7200 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7201 F
->insert(MBBIter
, newMBB
);
7202 F
->insert(MBBIter
, nextMBB
);
7204 // Move all successors to thisMBB to nextMBB
7205 nextMBB
->transferSuccessors(thisMBB
);
7207 // Update thisMBB to fall through to newMBB
7208 thisMBB
->addSuccessor(newMBB
);
7210 // newMBB jumps to newMBB and fall through to nextMBB
7211 newMBB
->addSuccessor(nextMBB
);
7212 newMBB
->addSuccessor(newMBB
);
7214 DebugLoc dl
= mInstr
->getDebugLoc();
7215 // Insert instructions into newMBB based on incoming instruction
7216 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7217 "unexpected number of operands");
7218 MachineOperand
& destOper
= mInstr
->getOperand(0);
7219 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7220 int numArgs
= mInstr
->getNumOperands() - 1;
7221 for (int i
=0; i
< numArgs
; ++i
)
7222 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7224 // x86 address has 4 operands: base, index, scale, and displacement
7225 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7226 int valArgIndx
= lastAddrIndx
+ 1;
7228 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7229 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7230 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7231 (*MIB
).addOperand(*argOpers
[i
]);
7233 // We only support register and immediate values
7234 assert((argOpers
[valArgIndx
]->isReg() ||
7235 argOpers
[valArgIndx
]->isImm()) &&
7238 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7239 if (argOpers
[valArgIndx
]->isReg())
7240 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7242 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7243 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7245 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7248 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7253 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7254 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7258 // Cmp and exchange if none has modified the memory location
7259 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7260 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7261 (*MIB
).addOperand(*argOpers
[i
]);
7263 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7264 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7266 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7267 MIB
.addReg(X86::EAX
);
7270 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7272 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7278 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7279 MachineBasicBlock
*BB
) const {
7280 DebugLoc dl
= MI
->getDebugLoc();
7281 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7282 switch (MI
->getOpcode()) {
7283 default: assert(false && "Unexpected instr type to insert");
7284 case X86::CMOV_V1I64
:
7285 case X86::CMOV_FR32
:
7286 case X86::CMOV_FR64
:
7287 case X86::CMOV_V4F32
:
7288 case X86::CMOV_V2F64
:
7289 case X86::CMOV_V2I64
: {
7290 // To "insert" a SELECT_CC instruction, we actually have to insert the
7291 // diamond control-flow pattern. The incoming instruction knows the
7292 // destination vreg to set, the condition code register to branch on, the
7293 // true/false values to select between, and a branch opcode to use.
7294 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7295 MachineFunction::iterator It
= BB
;
7301 // cmpTY ccX, r1, r2
7303 // fallthrough --> copy0MBB
7304 MachineBasicBlock
*thisMBB
= BB
;
7305 MachineFunction
*F
= BB
->getParent();
7306 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7307 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7309 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7310 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
7311 F
->insert(It
, copy0MBB
);
7312 F
->insert(It
, sinkMBB
);
7313 // Update machine-CFG edges by transferring all successors of the current
7314 // block to the new block which will contain the Phi node for the select.
7315 sinkMBB
->transferSuccessors(BB
);
7317 // Add the true and fallthrough blocks as its successors.
7318 BB
->addSuccessor(copy0MBB
);
7319 BB
->addSuccessor(sinkMBB
);
7322 // %FalseValue = ...
7323 // # fallthrough to sinkMBB
7326 // Update machine-CFG edges
7327 BB
->addSuccessor(sinkMBB
);
7330 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7333 BuildMI(BB
, dl
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7334 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7335 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7337 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7341 case X86::FP32_TO_INT16_IN_MEM
:
7342 case X86::FP32_TO_INT32_IN_MEM
:
7343 case X86::FP32_TO_INT64_IN_MEM
:
7344 case X86::FP64_TO_INT16_IN_MEM
:
7345 case X86::FP64_TO_INT32_IN_MEM
:
7346 case X86::FP64_TO_INT64_IN_MEM
:
7347 case X86::FP80_TO_INT16_IN_MEM
:
7348 case X86::FP80_TO_INT32_IN_MEM
:
7349 case X86::FP80_TO_INT64_IN_MEM
: {
7350 // Change the floating point control register to use "round towards zero"
7351 // mode when truncating to an integer value.
7352 MachineFunction
*F
= BB
->getParent();
7353 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7354 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7356 // Load the old value of the high byte of the control word...
7358 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7359 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16rm
), OldCW
),
7362 // Set the high part to be round to zero...
7363 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7366 // Reload the modified control word now...
7367 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7369 // Restore the memory image of control word to original value
7370 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7373 // Get the X86 opcode to use.
7375 switch (MI
->getOpcode()) {
7376 default: assert(0 && "illegal opcode!");
7377 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7378 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7379 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7380 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7381 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7382 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7383 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7384 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7385 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7389 MachineOperand
&Op
= MI
->getOperand(0);
7391 AM
.BaseType
= X86AddressMode::RegBase
;
7392 AM
.Base
.Reg
= Op
.getReg();
7394 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7395 AM
.Base
.FrameIndex
= Op
.getIndex();
7397 Op
= MI
->getOperand(1);
7399 AM
.Scale
= Op
.getImm();
7400 Op
= MI
->getOperand(2);
7402 AM
.IndexReg
= Op
.getImm();
7403 Op
= MI
->getOperand(3);
7404 if (Op
.isGlobal()) {
7405 AM
.GV
= Op
.getGlobal();
7407 AM
.Disp
= Op
.getImm();
7409 addFullAddress(BuildMI(BB
, dl
, TII
->get(Opc
)), AM
)
7410 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7412 // Reload the original control word now.
7413 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7415 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7418 case X86::ATOMAND32
:
7419 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7420 X86::AND32ri
, X86::MOV32rm
,
7421 X86::LCMPXCHG32
, X86::MOV32rr
,
7422 X86::NOT32r
, X86::EAX
,
7423 X86::GR32RegisterClass
);
7425 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7426 X86::OR32ri
, X86::MOV32rm
,
7427 X86::LCMPXCHG32
, X86::MOV32rr
,
7428 X86::NOT32r
, X86::EAX
,
7429 X86::GR32RegisterClass
);
7430 case X86::ATOMXOR32
:
7431 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7432 X86::XOR32ri
, X86::MOV32rm
,
7433 X86::LCMPXCHG32
, X86::MOV32rr
,
7434 X86::NOT32r
, X86::EAX
,
7435 X86::GR32RegisterClass
);
7436 case X86::ATOMNAND32
:
7437 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7438 X86::AND32ri
, X86::MOV32rm
,
7439 X86::LCMPXCHG32
, X86::MOV32rr
,
7440 X86::NOT32r
, X86::EAX
,
7441 X86::GR32RegisterClass
, true);
7442 case X86::ATOMMIN32
:
7443 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7444 case X86::ATOMMAX32
:
7445 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7446 case X86::ATOMUMIN32
:
7447 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7448 case X86::ATOMUMAX32
:
7449 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7451 case X86::ATOMAND16
:
7452 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7453 X86::AND16ri
, X86::MOV16rm
,
7454 X86::LCMPXCHG16
, X86::MOV16rr
,
7455 X86::NOT16r
, X86::AX
,
7456 X86::GR16RegisterClass
);
7458 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7459 X86::OR16ri
, X86::MOV16rm
,
7460 X86::LCMPXCHG16
, X86::MOV16rr
,
7461 X86::NOT16r
, X86::AX
,
7462 X86::GR16RegisterClass
);
7463 case X86::ATOMXOR16
:
7464 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7465 X86::XOR16ri
, X86::MOV16rm
,
7466 X86::LCMPXCHG16
, X86::MOV16rr
,
7467 X86::NOT16r
, X86::AX
,
7468 X86::GR16RegisterClass
);
7469 case X86::ATOMNAND16
:
7470 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7471 X86::AND16ri
, X86::MOV16rm
,
7472 X86::LCMPXCHG16
, X86::MOV16rr
,
7473 X86::NOT16r
, X86::AX
,
7474 X86::GR16RegisterClass
, true);
7475 case X86::ATOMMIN16
:
7476 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7477 case X86::ATOMMAX16
:
7478 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7479 case X86::ATOMUMIN16
:
7480 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7481 case X86::ATOMUMAX16
:
7482 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7485 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7486 X86::AND8ri
, X86::MOV8rm
,
7487 X86::LCMPXCHG8
, X86::MOV8rr
,
7488 X86::NOT8r
, X86::AL
,
7489 X86::GR8RegisterClass
);
7491 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7492 X86::OR8ri
, X86::MOV8rm
,
7493 X86::LCMPXCHG8
, X86::MOV8rr
,
7494 X86::NOT8r
, X86::AL
,
7495 X86::GR8RegisterClass
);
7497 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7498 X86::XOR8ri
, X86::MOV8rm
,
7499 X86::LCMPXCHG8
, X86::MOV8rr
,
7500 X86::NOT8r
, X86::AL
,
7501 X86::GR8RegisterClass
);
7502 case X86::ATOMNAND8
:
7503 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7504 X86::AND8ri
, X86::MOV8rm
,
7505 X86::LCMPXCHG8
, X86::MOV8rr
,
7506 X86::NOT8r
, X86::AL
,
7507 X86::GR8RegisterClass
, true);
7508 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7509 // This group is for 64-bit host.
7510 case X86::ATOMAND64
:
7511 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7512 X86::AND64ri32
, X86::MOV64rm
,
7513 X86::LCMPXCHG64
, X86::MOV64rr
,
7514 X86::NOT64r
, X86::RAX
,
7515 X86::GR64RegisterClass
);
7517 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
7518 X86::OR64ri32
, X86::MOV64rm
,
7519 X86::LCMPXCHG64
, X86::MOV64rr
,
7520 X86::NOT64r
, X86::RAX
,
7521 X86::GR64RegisterClass
);
7522 case X86::ATOMXOR64
:
7523 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
7524 X86::XOR64ri32
, X86::MOV64rm
,
7525 X86::LCMPXCHG64
, X86::MOV64rr
,
7526 X86::NOT64r
, X86::RAX
,
7527 X86::GR64RegisterClass
);
7528 case X86::ATOMNAND64
:
7529 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7530 X86::AND64ri32
, X86::MOV64rm
,
7531 X86::LCMPXCHG64
, X86::MOV64rr
,
7532 X86::NOT64r
, X86::RAX
,
7533 X86::GR64RegisterClass
, true);
7534 case X86::ATOMMIN64
:
7535 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
7536 case X86::ATOMMAX64
:
7537 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
7538 case X86::ATOMUMIN64
:
7539 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
7540 case X86::ATOMUMAX64
:
7541 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
7543 // This group does 64-bit operations on a 32-bit host.
7544 case X86::ATOMAND6432
:
7545 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7546 X86::AND32rr
, X86::AND32rr
,
7547 X86::AND32ri
, X86::AND32ri
,
7549 case X86::ATOMOR6432
:
7550 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7551 X86::OR32rr
, X86::OR32rr
,
7552 X86::OR32ri
, X86::OR32ri
,
7554 case X86::ATOMXOR6432
:
7555 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7556 X86::XOR32rr
, X86::XOR32rr
,
7557 X86::XOR32ri
, X86::XOR32ri
,
7559 case X86::ATOMNAND6432
:
7560 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7561 X86::AND32rr
, X86::AND32rr
,
7562 X86::AND32ri
, X86::AND32ri
,
7564 case X86::ATOMADD6432
:
7565 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7566 X86::ADD32rr
, X86::ADC32rr
,
7567 X86::ADD32ri
, X86::ADC32ri
,
7569 case X86::ATOMSUB6432
:
7570 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7571 X86::SUB32rr
, X86::SBB32rr
,
7572 X86::SUB32ri
, X86::SBB32ri
,
7574 case X86::ATOMSWAP6432
:
7575 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7576 X86::MOV32rr
, X86::MOV32rr
,
7577 X86::MOV32ri
, X86::MOV32ri
,
7582 //===----------------------------------------------------------------------===//
7583 // X86 Optimization Hooks
7584 //===----------------------------------------------------------------------===//
7586 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
7590 const SelectionDAG
&DAG
,
7591 unsigned Depth
) const {
7592 unsigned Opc
= Op
.getOpcode();
7593 assert((Opc
>= ISD::BUILTIN_OP_END
||
7594 Opc
== ISD::INTRINSIC_WO_CHAIN
||
7595 Opc
== ISD::INTRINSIC_W_CHAIN
||
7596 Opc
== ISD::INTRINSIC_VOID
) &&
7597 "Should use MaskedValueIsZero if you don't know whether Op"
7598 " is a target node!");
7600 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
7609 // These nodes' second result is a boolean.
7610 if (Op
.getResNo() == 0)
7614 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
7615 Mask
.getBitWidth() - 1);
7620 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7621 /// node is a GlobalAddress + offset.
7622 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
7623 GlobalValue
* &GA
, int64_t &Offset
) const{
7624 if (N
->getOpcode() == X86ISD::Wrapper
) {
7625 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
7626 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
7627 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
7631 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
7634 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
7635 const TargetLowering
&TLI
) {
7638 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
7639 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
7640 // DAG combine handles the stack object case.
7644 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
7645 MVT EVT
, SDNode
*&Base
,
7646 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
7647 const TargetLowering
&TLI
) {
7649 for (unsigned i
= 0; i
< NumElems
; ++i
) {
7650 if (N
->getMaskElt(i
) < 0) {
7656 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
7657 if (!Elt
.getNode() ||
7658 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
7661 Base
= Elt
.getNode();
7662 if (Base
->getOpcode() == ISD::UNDEF
)
7666 if (Elt
.getOpcode() == ISD::UNDEF
)
7669 if (!TLI
.isConsecutiveLoad(Elt
.getNode(), Base
,
7670 EVT
.getSizeInBits()/8, i
, MFI
))
7676 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7677 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7678 /// if the load addresses are consecutive, non-overlapping, and in the right
7679 /// order. In the case of v2i64, it will see if it can rewrite the
7680 /// shuffle to be an appropriate build vector so it can take advantage of
7681 // performBuildVectorCombine.
7682 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
7683 const TargetLowering
&TLI
) {
7684 DebugLoc dl
= N
->getDebugLoc();
7685 MVT VT
= N
->getValueType(0);
7686 MVT EVT
= VT
.getVectorElementType();
7687 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
7688 unsigned NumElems
= VT
.getVectorNumElements();
7690 // For x86-32 machines, if we see an insert and then a shuffle in a v2i64
7691 // where the upper half is 0, it is advantageous to rewrite it as a build
7692 // vector of (0, val) so it can use movq.
7693 if (VT
== MVT::v2i64
) {
7695 In
[0] = N
->getOperand(0);
7696 In
[1] = N
->getOperand(1);
7697 int Idx0
= SVN
->getMaskElt(0);
7698 int Idx1
= SVN
->getMaskElt(1);
7699 // FIXME: can we take advantage of undef index?
7700 if (Idx0
>= 0 && Idx1
>= 0 &&
7701 In
[Idx0
/2].getOpcode() == ISD::INSERT_VECTOR_ELT
&&
7702 In
[Idx1
/2].getOpcode() == ISD::BUILD_VECTOR
) {
7703 ConstantSDNode
* InsertVecIdx
=
7704 dyn_cast
<ConstantSDNode
>(In
[Idx0
/2].getOperand(2));
7706 InsertVecIdx
->getZExtValue() == (unsigned)(Idx0
% 2) &&
7707 isZeroNode(In
[Idx1
/2].getOperand(Idx1
% 2))) {
7708 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
,
7709 In
[Idx0
/2].getOperand(1),
7710 In
[Idx1
/2].getOperand(Idx1
% 2));
7715 // Try to combine a vector_shuffle into a 128-bit load.
7716 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7717 SDNode
*Base
= NULL
;
7718 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, Base
, DAG
, MFI
, TLI
))
7721 LoadSDNode
*LD
= cast
<LoadSDNode
>(Base
);
7722 if (isBaseAlignmentOfN(16, Base
->getOperand(1).getNode(), TLI
))
7723 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7724 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7726 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7727 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7728 LD
->isVolatile(), LD
->getAlignment());
7731 /// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7732 static SDValue
PerformBuildVectorCombine(SDNode
*N
, SelectionDAG
&DAG
,
7733 TargetLowering::DAGCombinerInfo
&DCI
,
7734 const X86Subtarget
*Subtarget
,
7735 const TargetLowering
&TLI
) {
7736 unsigned NumOps
= N
->getNumOperands();
7737 DebugLoc dl
= N
->getDebugLoc();
7739 // Ignore single operand BUILD_VECTOR.
7743 MVT VT
= N
->getValueType(0);
7744 MVT EVT
= VT
.getVectorElementType();
7745 if ((EVT
!= MVT::i64
&& EVT
!= MVT::f64
) || Subtarget
->is64Bit())
7746 // We are looking for load i64 and zero extend. We want to transform
7747 // it before legalizer has a chance to expand it. Also look for i64
7748 // BUILD_PAIR bit casted to f64.
7750 // This must be an insertion into a zero vector.
7751 SDValue HighElt
= N
->getOperand(1);
7752 if (!isZeroNode(HighElt
))
7755 // Value must be a load.
7756 SDNode
*Base
= N
->getOperand(0).getNode();
7757 if (!isa
<LoadSDNode
>(Base
)) {
7758 if (Base
->getOpcode() != ISD::BIT_CONVERT
)
7760 Base
= Base
->getOperand(0).getNode();
7761 if (!isa
<LoadSDNode
>(Base
))
7765 // Transform it into VZEXT_LOAD addr.
7766 LoadSDNode
*LD
= cast
<LoadSDNode
>(Base
);
7768 // Load must not be an extload.
7769 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
)
7772 // Load type should legal type so we don't have to legalize it.
7773 if (!TLI
.isTypeLegal(VT
))
7776 SDVTList Tys
= DAG
.getVTList(VT
, MVT::Other
);
7777 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
7778 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
7779 TargetLowering::TargetLoweringOpt
TLO(DAG
);
7780 TLO
.CombineTo(SDValue(Base
, 1), ResNode
.getValue(1));
7781 DCI
.CommitTargetLoweringOpt(TLO
);
7785 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7786 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
7787 const X86Subtarget
*Subtarget
) {
7788 DebugLoc DL
= N
->getDebugLoc();
7789 SDValue Cond
= N
->getOperand(0);
7790 // Get the LHS/RHS of the select.
7791 SDValue LHS
= N
->getOperand(1);
7792 SDValue RHS
= N
->getOperand(2);
7794 // If we have SSE[12] support, try to form min/max nodes.
7795 if (Subtarget
->hasSSE2() &&
7796 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
7797 Cond
.getOpcode() == ISD::SETCC
) {
7798 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
7800 unsigned Opcode
= 0;
7801 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
7804 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
7807 if (!UnsafeFPMath
) break;
7809 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
7811 Opcode
= X86ISD::FMIN
;
7814 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
7817 if (!UnsafeFPMath
) break;
7819 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
7821 Opcode
= X86ISD::FMAX
;
7824 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
7827 case ISD::SETOGT
: // (X > Y) ? Y : X -> min
7830 if (!UnsafeFPMath
) break;
7832 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
7834 Opcode
= X86ISD::FMIN
;
7837 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
7840 if (!UnsafeFPMath
) break;
7842 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
7844 Opcode
= X86ISD::FMAX
;
7850 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
7853 // If this is a select between two integer constants, try to do some
7855 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
7856 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
7857 // Don't do this for crazy integer types.
7858 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
7859 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7860 // so that TrueC (the true value) is larger than FalseC.
7861 bool NeedsCondInvert
= false;
7863 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
7864 // Efficiently invertible.
7865 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
7866 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
7867 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
7868 NeedsCondInvert
= true;
7869 std::swap(TrueC
, FalseC
);
7872 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
7873 if (FalseC
->getAPIntValue() == 0 &&
7874 TrueC
->getAPIntValue().isPowerOf2()) {
7875 if (NeedsCondInvert
) // Invert the condition if needed.
7876 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7877 DAG
.getConstant(1, Cond
.getValueType()));
7879 // Zero extend the condition if needed.
7880 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
7882 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
7883 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
7884 DAG
.getConstant(ShAmt
, MVT::i8
));
7887 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7888 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
7889 if (NeedsCondInvert
) // Invert the condition if needed.
7890 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7891 DAG
.getConstant(1, Cond
.getValueType()));
7893 // Zero extend the condition if needed.
7894 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
7895 FalseC
->getValueType(0), Cond
);
7896 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
7897 SDValue(FalseC
, 0));
7900 // Optimize cases that will turn into an LEA instruction. This requires
7901 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7902 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
7903 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
7904 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
7906 bool isFastMultiplier
= false;
7908 switch ((unsigned char)Diff
) {
7910 case 1: // result = add base, cond
7911 case 2: // result = lea base( , cond*2)
7912 case 3: // result = lea base(cond, cond*2)
7913 case 4: // result = lea base( , cond*4)
7914 case 5: // result = lea base(cond, cond*4)
7915 case 8: // result = lea base( , cond*8)
7916 case 9: // result = lea base(cond, cond*8)
7917 isFastMultiplier
= true;
7922 if (isFastMultiplier
) {
7923 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
7924 if (NeedsCondInvert
) // Invert the condition if needed.
7925 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7926 DAG
.getConstant(1, Cond
.getValueType()));
7928 // Zero extend the condition if needed.
7929 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
7931 // Scale the condition by the difference.
7933 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
7934 DAG
.getConstant(Diff
, Cond
.getValueType()));
7936 // Add the base if non-zero.
7937 if (FalseC
->getAPIntValue() != 0)
7938 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
7939 SDValue(FalseC
, 0));
7949 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7950 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
7951 TargetLowering::DAGCombinerInfo
&DCI
) {
7952 DebugLoc DL
= N
->getDebugLoc();
7954 // If the flag operand isn't dead, don't touch this CMOV.
7955 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
7958 // If this is a select between two integer constants, try to do some
7959 // optimizations. Note that the operands are ordered the opposite of SELECT
7961 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
7962 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
7963 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
7964 // larger than FalseC (the false value).
7965 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
7967 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
7968 CC
= X86::GetOppositeBranchCondition(CC
);
7969 std::swap(TrueC
, FalseC
);
7972 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
7973 // This is efficient for any integer data type (including i8/i16) and
7975 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
7976 SDValue Cond
= N
->getOperand(3);
7977 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
7978 DAG
.getConstant(CC
, MVT::i8
), Cond
);
7980 // Zero extend the condition if needed.
7981 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
7983 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
7984 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
7985 DAG
.getConstant(ShAmt
, MVT::i8
));
7986 if (N
->getNumValues() == 2) // Dead flag value?
7987 return DCI
.CombineTo(N
, Cond
, SDValue());
7991 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
7992 // for any integer data type, including i8/i16.
7993 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
7994 SDValue Cond
= N
->getOperand(3);
7995 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
7996 DAG
.getConstant(CC
, MVT::i8
), Cond
);
7998 // Zero extend the condition if needed.
7999 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8000 FalseC
->getValueType(0), Cond
);
8001 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8002 SDValue(FalseC
, 0));
8004 if (N
->getNumValues() == 2) // Dead flag value?
8005 return DCI
.CombineTo(N
, Cond
, SDValue());
8009 // Optimize cases that will turn into an LEA instruction. This requires
8010 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8011 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8012 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8013 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8015 bool isFastMultiplier
= false;
8017 switch ((unsigned char)Diff
) {
8019 case 1: // result = add base, cond
8020 case 2: // result = lea base( , cond*2)
8021 case 3: // result = lea base(cond, cond*2)
8022 case 4: // result = lea base( , cond*4)
8023 case 5: // result = lea base(cond, cond*4)
8024 case 8: // result = lea base( , cond*8)
8025 case 9: // result = lea base(cond, cond*8)
8026 isFastMultiplier
= true;
8031 if (isFastMultiplier
) {
8032 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8033 SDValue Cond
= N
->getOperand(3);
8034 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8035 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8036 // Zero extend the condition if needed.
8037 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8039 // Scale the condition by the difference.
8041 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8042 DAG
.getConstant(Diff
, Cond
.getValueType()));
8044 // Add the base if non-zero.
8045 if (FalseC
->getAPIntValue() != 0)
8046 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8047 SDValue(FalseC
, 0));
8048 if (N
->getNumValues() == 2) // Dead flag value?
8049 return DCI
.CombineTo(N
, Cond
, SDValue());
8059 /// PerformMulCombine - Optimize a single multiply with constant into two
8060 /// in order to implement it with two cheaper instructions, e.g.
8061 /// LEA + SHL, LEA + LEA.
8062 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8063 TargetLowering::DAGCombinerInfo
&DCI
) {
8064 if (DAG
.getMachineFunction().
8065 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8068 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8071 MVT VT
= N
->getValueType(0);
8075 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8078 uint64_t MulAmt
= C
->getZExtValue();
8079 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8082 uint64_t MulAmt1
= 0;
8083 uint64_t MulAmt2
= 0;
8084 if ((MulAmt
% 9) == 0) {
8086 MulAmt2
= MulAmt
/ 9;
8087 } else if ((MulAmt
% 5) == 0) {
8089 MulAmt2
= MulAmt
/ 5;
8090 } else if ((MulAmt
% 3) == 0) {
8092 MulAmt2
= MulAmt
/ 3;
8095 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8096 DebugLoc DL
= N
->getDebugLoc();
8098 if (isPowerOf2_64(MulAmt2
) &&
8099 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8100 // If second multiplifer is pow2, issue it first. We want the multiply by
8101 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8103 std::swap(MulAmt1
, MulAmt2
);
8106 if (isPowerOf2_64(MulAmt1
))
8107 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8108 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8110 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8111 DAG
.getConstant(MulAmt1
, VT
));
8113 if (isPowerOf2_64(MulAmt2
))
8114 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8115 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8117 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8118 DAG
.getConstant(MulAmt2
, VT
));
8120 // Do not add new nodes to DAG combiner worklist.
8121 DCI
.CombineTo(N
, NewMul
, false);
8127 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8129 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8130 const X86Subtarget
*Subtarget
) {
8131 // On X86 with SSE2 support, we can transform this to a vector shift if
8132 // all elements are shifted by the same amount. We can't do this in legalize
8133 // because the a constant vector is typically transformed to a constant pool
8134 // so we have no knowledge of the shift amount.
8135 if (!Subtarget
->hasSSE2())
8138 MVT VT
= N
->getValueType(0);
8139 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8142 SDValue ShAmtOp
= N
->getOperand(1);
8143 MVT EltVT
= VT
.getVectorElementType();
8144 DebugLoc DL
= N
->getDebugLoc();
8146 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8147 unsigned NumElts
= VT
.getVectorNumElements();
8149 for (; i
!= NumElts
; ++i
) {
8150 SDValue Arg
= ShAmtOp
.getOperand(i
);
8151 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8155 for (; i
!= NumElts
; ++i
) {
8156 SDValue Arg
= ShAmtOp
.getOperand(i
);
8157 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8158 if (Arg
!= BaseShAmt
) {
8162 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8163 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8164 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8165 DAG
.getIntPtrConstant(0));
8169 if (EltVT
.bitsGT(MVT::i32
))
8170 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8171 else if (EltVT
.bitsLT(MVT::i32
))
8172 BaseShAmt
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8174 // The shift amount is identical so we can do a vector shift.
8175 SDValue ValOp
= N
->getOperand(0);
8176 switch (N
->getOpcode()) {
8178 assert(0 && "Unknown shift opcode!");
8181 if (VT
== MVT::v2i64
)
8182 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8183 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8185 if (VT
== MVT::v4i32
)
8186 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8187 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8189 if (VT
== MVT::v8i16
)
8190 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8191 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8195 if (VT
== MVT::v4i32
)
8196 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8197 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8199 if (VT
== MVT::v8i16
)
8200 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8201 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8205 if (VT
== MVT::v2i64
)
8206 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8207 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8209 if (VT
== MVT::v4i32
)
8210 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8211 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8213 if (VT
== MVT::v8i16
)
8214 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8215 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8222 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8223 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8224 const X86Subtarget
*Subtarget
) {
8225 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8226 // the FP state in cases where an emms may be missing.
8227 // A preferable solution to the general problem is to figure out the right
8228 // places to insert EMMS. This qualifies as a quick hack.
8230 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8231 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8232 MVT VT
= St
->getValue().getValueType();
8233 if (VT
.getSizeInBits() != 64)
8236 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloat
&& Subtarget
->hasSSE2();
8237 if ((VT
.isVector() ||
8238 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8239 isa
<LoadSDNode
>(St
->getValue()) &&
8240 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8241 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8242 SDNode
* LdVal
= St
->getValue().getNode();
8244 int TokenFactorIndex
= -1;
8245 SmallVector
<SDValue
, 8> Ops
;
8246 SDNode
* ChainVal
= St
->getChain().getNode();
8247 // Must be a store of a load. We currently handle two cases: the load
8248 // is a direct child, and it's under an intervening TokenFactor. It is
8249 // possible to dig deeper under nested TokenFactors.
8250 if (ChainVal
== LdVal
)
8251 Ld
= cast
<LoadSDNode
>(St
->getChain());
8252 else if (St
->getValue().hasOneUse() &&
8253 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8254 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8255 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8256 TokenFactorIndex
= i
;
8257 Ld
= cast
<LoadSDNode
>(St
->getValue());
8259 Ops
.push_back(ChainVal
->getOperand(i
));
8263 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8266 // If this is not the MMX case, i.e. we are just turning i64 load/store
8267 // into f64 load/store, avoid the transformation if there are multiple
8268 // uses of the loaded value.
8269 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8272 DebugLoc LdDL
= Ld
->getDebugLoc();
8273 DebugLoc StDL
= N
->getDebugLoc();
8274 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8275 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8277 if (Subtarget
->is64Bit() || F64IsLegal
) {
8278 MVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8279 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8280 Ld
->getBasePtr(), Ld
->getSrcValue(),
8281 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8282 Ld
->getAlignment());
8283 SDValue NewChain
= NewLd
.getValue(1);
8284 if (TokenFactorIndex
!= -1) {
8285 Ops
.push_back(NewChain
);
8286 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8289 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8290 St
->getSrcValue(), St
->getSrcValueOffset(),
8291 St
->isVolatile(), St
->getAlignment());
8294 // Otherwise, lower to two pairs of 32-bit loads / stores.
8295 SDValue LoAddr
= Ld
->getBasePtr();
8296 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8297 DAG
.getConstant(4, MVT::i32
));
8299 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8300 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8301 Ld
->isVolatile(), Ld
->getAlignment());
8302 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8303 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8305 MinAlign(Ld
->getAlignment(), 4));
8307 SDValue NewChain
= LoLd
.getValue(1);
8308 if (TokenFactorIndex
!= -1) {
8309 Ops
.push_back(LoLd
);
8310 Ops
.push_back(HiLd
);
8311 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8315 LoAddr
= St
->getBasePtr();
8316 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8317 DAG
.getConstant(4, MVT::i32
));
8319 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8320 St
->getSrcValue(), St
->getSrcValueOffset(),
8321 St
->isVolatile(), St
->getAlignment());
8322 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8324 St
->getSrcValueOffset() + 4,
8326 MinAlign(St
->getAlignment(), 4));
8327 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8332 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8333 /// X86ISD::FXOR nodes.
8334 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8335 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8336 // F[X]OR(0.0, x) -> x
8337 // F[X]OR(x, 0.0) -> x
8338 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8339 if (C
->getValueAPF().isPosZero())
8340 return N
->getOperand(1);
8341 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8342 if (C
->getValueAPF().isPosZero())
8343 return N
->getOperand(0);
8347 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8348 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8349 // FAND(0.0, x) -> 0.0
8350 // FAND(x, 0.0) -> 0.0
8351 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8352 if (C
->getValueAPF().isPosZero())
8353 return N
->getOperand(0);
8354 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8355 if (C
->getValueAPF().isPosZero())
8356 return N
->getOperand(1);
8360 static SDValue
PerformBTCombine(SDNode
*N
,
8362 TargetLowering::DAGCombinerInfo
&DCI
) {
8363 // BT ignores high bits in the bit index operand.
8364 SDValue Op1
= N
->getOperand(1);
8365 if (Op1
.hasOneUse()) {
8366 unsigned BitWidth
= Op1
.getValueSizeInBits();
8367 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8368 APInt KnownZero
, KnownOne
;
8369 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8370 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8371 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8372 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8373 DCI
.CommitTargetLoweringOpt(TLO
);
8378 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8379 DAGCombinerInfo
&DCI
) const {
8380 SelectionDAG
&DAG
= DCI
.DAG
;
8381 switch (N
->getOpcode()) {
8383 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8384 case ISD::BUILD_VECTOR
:
8385 return PerformBuildVectorCombine(N
, DAG
, DCI
, Subtarget
, *this);
8386 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8387 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8388 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8391 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8392 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8394 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8395 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8396 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8402 //===----------------------------------------------------------------------===//
8403 // X86 Inline Assembly Support
8404 //===----------------------------------------------------------------------===//
8406 /// getConstraintType - Given a constraint letter, return the type of
8407 /// constraint it is for this target.
8408 X86TargetLowering::ConstraintType
8409 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
8410 if (Constraint
.size() == 1) {
8411 switch (Constraint
[0]) {
8423 return C_RegisterClass
;
8431 return TargetLowering::getConstraintType(Constraint
);
8434 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8435 /// with another that has more specific requirements based on the type of the
8436 /// corresponding operand.
8437 const char *X86TargetLowering::
8438 LowerXConstraint(MVT ConstraintVT
) const {
8439 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8440 // 'f' like normal targets.
8441 if (ConstraintVT
.isFloatingPoint()) {
8442 if (Subtarget
->hasSSE2())
8444 if (Subtarget
->hasSSE1())
8448 return TargetLowering::LowerXConstraint(ConstraintVT
);
8451 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8452 /// vector. If it is invalid, don't add anything to Ops.
8453 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
8456 std::vector
<SDValue
>&Ops
,
8457 SelectionDAG
&DAG
) const {
8458 SDValue
Result(0, 0);
8460 switch (Constraint
) {
8463 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8464 if (C
->getZExtValue() <= 31) {
8465 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8471 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8472 if (C
->getZExtValue() <= 63) {
8473 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8479 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8480 if (C
->getZExtValue() <= 255) {
8481 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8487 // 32-bit signed value
8488 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8489 const ConstantInt
*CI
= C
->getConstantIntValue();
8490 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getSExtValue())) {
8491 // Widen to 64 bits here to get it sign extended.
8492 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
8495 // FIXME gcc accepts some relocatable values here too, but only in certain
8496 // memory models; it's complicated.
8501 // 32-bit unsigned value
8502 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8503 const ConstantInt
*CI
= C
->getConstantIntValue();
8504 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getZExtValue())) {
8505 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8509 // FIXME gcc accepts some relocatable values here too, but only in certain
8510 // memory models; it's complicated.
8514 // Literal immediates are always ok.
8515 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
8516 // Widen to 64 bits here to get it sign extended.
8517 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
8521 // If we are in non-pic codegen mode, we allow the address of a global (with
8522 // an optional displacement) to be used with 'i'.
8523 GlobalAddressSDNode
*GA
= 0;
8526 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8528 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
8529 Offset
+= GA
->getOffset();
8531 } else if (Op
.getOpcode() == ISD::ADD
) {
8532 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8533 Offset
+= C
->getZExtValue();
8534 Op
= Op
.getOperand(0);
8537 } else if (Op
.getOpcode() == ISD::SUB
) {
8538 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8539 Offset
+= -C
->getZExtValue();
8540 Op
= Op
.getOperand(0);
8545 // Otherwise, this isn't something we can handle, reject it.
8550 Op
= LowerGlobalAddress(GA
->getGlobal(), Op
.getDebugLoc(), Offset
, DAG
);
8552 Op
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
8559 if (Result
.getNode()) {
8560 Ops
.push_back(Result
);
8563 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
8567 std::vector
<unsigned> X86TargetLowering::
8568 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
8570 if (Constraint
.size() == 1) {
8571 // FIXME: not handling fp-stack yet!
8572 switch (Constraint
[0]) { // GCC X86 Constraint Letters
8573 default: break; // Unknown constraint letter
8574 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8577 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
8578 else if (VT
== MVT::i16
)
8579 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
8580 else if (VT
== MVT::i8
)
8581 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
8582 else if (VT
== MVT::i64
)
8583 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
8588 return std::vector
<unsigned>();
8591 std::pair
<unsigned, const TargetRegisterClass
*>
8592 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
8594 // First, see if this is a constraint that directly corresponds to an LLVM
8596 if (Constraint
.size() == 1) {
8597 // GCC Constraint Letters
8598 switch (Constraint
[0]) {
8600 case 'r': // GENERAL_REGS
8601 case 'R': // LEGACY_REGS
8602 case 'l': // INDEX_REGS
8604 return std::make_pair(0U, X86::GR8RegisterClass
);
8606 return std::make_pair(0U, X86::GR16RegisterClass
);
8607 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
8608 return std::make_pair(0U, X86::GR32RegisterClass
);
8609 return std::make_pair(0U, X86::GR64RegisterClass
);
8610 case 'f': // FP Stack registers.
8611 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8612 // value to the correct fpstack register class.
8613 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
8614 return std::make_pair(0U, X86::RFP32RegisterClass
);
8615 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
8616 return std::make_pair(0U, X86::RFP64RegisterClass
);
8617 return std::make_pair(0U, X86::RFP80RegisterClass
);
8618 case 'y': // MMX_REGS if MMX allowed.
8619 if (!Subtarget
->hasMMX()) break;
8620 return std::make_pair(0U, X86::VR64RegisterClass
);
8621 case 'Y': // SSE_REGS if SSE2 allowed
8622 if (!Subtarget
->hasSSE2()) break;
8624 case 'x': // SSE_REGS if SSE1 allowed
8625 if (!Subtarget
->hasSSE1()) break;
8627 switch (VT
.getSimpleVT()) {
8629 // Scalar SSE types.
8632 return std::make_pair(0U, X86::FR32RegisterClass
);
8635 return std::make_pair(0U, X86::FR64RegisterClass
);
8643 return std::make_pair(0U, X86::VR128RegisterClass
);
8649 // Use the default implementation in TargetLowering to convert the register
8650 // constraint into a member of a register class.
8651 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
8652 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
8654 // Not found as a standard register?
8655 if (Res
.second
== 0) {
8656 // GCC calls "st(0)" just plain "st".
8657 if (StringsEqualNoCase("{st}", Constraint
)) {
8658 Res
.first
= X86::ST0
;
8659 Res
.second
= X86::RFP80RegisterClass
;
8661 // 'A' means EAX + EDX.
8662 if (Constraint
== "A") {
8663 Res
.first
= X86::EAX
;
8664 Res
.second
= X86::GRADRegisterClass
;
8669 // Otherwise, check to see if this is a register class of the wrong value
8670 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8671 // turn into {ax},{dx}.
8672 if (Res
.second
->hasType(VT
))
8673 return Res
; // Correct type already, nothing to do.
8675 // All of the single-register GCC register classes map their values onto
8676 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8677 // really want an 8-bit or 32-bit register, map to the appropriate register
8678 // class and return the appropriate register.
8679 if (Res
.second
== X86::GR16RegisterClass
) {
8680 if (VT
== MVT::i8
) {
8681 unsigned DestReg
= 0;
8682 switch (Res
.first
) {
8684 case X86::AX
: DestReg
= X86::AL
; break;
8685 case X86::DX
: DestReg
= X86::DL
; break;
8686 case X86::CX
: DestReg
= X86::CL
; break;
8687 case X86::BX
: DestReg
= X86::BL
; break;
8690 Res
.first
= DestReg
;
8691 Res
.second
= X86::GR8RegisterClass
;
8693 } else if (VT
== MVT::i32
) {
8694 unsigned DestReg
= 0;
8695 switch (Res
.first
) {
8697 case X86::AX
: DestReg
= X86::EAX
; break;
8698 case X86::DX
: DestReg
= X86::EDX
; break;
8699 case X86::CX
: DestReg
= X86::ECX
; break;
8700 case X86::BX
: DestReg
= X86::EBX
; break;
8701 case X86::SI
: DestReg
= X86::ESI
; break;
8702 case X86::DI
: DestReg
= X86::EDI
; break;
8703 case X86::BP
: DestReg
= X86::EBP
; break;
8704 case X86::SP
: DestReg
= X86::ESP
; break;
8707 Res
.first
= DestReg
;
8708 Res
.second
= X86::GR32RegisterClass
;
8710 } else if (VT
== MVT::i64
) {
8711 unsigned DestReg
= 0;
8712 switch (Res
.first
) {
8714 case X86::AX
: DestReg
= X86::RAX
; break;
8715 case X86::DX
: DestReg
= X86::RDX
; break;
8716 case X86::CX
: DestReg
= X86::RCX
; break;
8717 case X86::BX
: DestReg
= X86::RBX
; break;
8718 case X86::SI
: DestReg
= X86::RSI
; break;
8719 case X86::DI
: DestReg
= X86::RDI
; break;
8720 case X86::BP
: DestReg
= X86::RBP
; break;
8721 case X86::SP
: DestReg
= X86::RSP
; break;
8724 Res
.first
= DestReg
;
8725 Res
.second
= X86::GR64RegisterClass
;
8728 } else if (Res
.second
== X86::FR32RegisterClass
||
8729 Res
.second
== X86::FR64RegisterClass
||
8730 Res
.second
== X86::VR128RegisterClass
) {
8731 // Handle references to XMM physical registers that got mapped into the
8732 // wrong class. This can happen with constraints like {xmm0} where the
8733 // target independent register mapper will just pick the first match it can
8734 // find, ignoring the required type.
8736 Res
.second
= X86::FR32RegisterClass
;
8737 else if (VT
== MVT::f64
)
8738 Res
.second
= X86::FR64RegisterClass
;
8739 else if (X86::VR128RegisterClass
->hasType(VT
))
8740 Res
.second
= X86::VR128RegisterClass
;
8746 //===----------------------------------------------------------------------===//
8747 // X86 Widen vector type
8748 //===----------------------------------------------------------------------===//
8750 /// getWidenVectorType: given a vector type, returns the type to widen
8751 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8752 /// If there is no vector type that we want to widen to, returns MVT::Other
8753 /// When and where to widen is target dependent based on the cost of
8754 /// scalarizing vs using the wider vector type.
8756 MVT
X86TargetLowering::getWidenVectorType(MVT VT
) const {
8757 assert(VT
.isVector());
8758 if (isTypeLegal(VT
))
8761 // TODO: In computeRegisterProperty, we can compute the list of legal vector
8762 // type based on element type. This would speed up our search (though
8763 // it may not be worth it since the size of the list is relatively
8765 MVT EltVT
= VT
.getVectorElementType();
8766 unsigned NElts
= VT
.getVectorNumElements();
8768 // On X86, it make sense to widen any vector wider than 1
8772 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
8773 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
8774 MVT SVT
= (MVT::SimpleValueType
)nVT
;
8776 if (isTypeLegal(SVT
) &&
8777 SVT
.getVectorElementType() == EltVT
&&
8778 SVT
.getVectorNumElements() > NElts
)