1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass promotes "by reference" arguments to be "by value" arguments. In
11 // practice, this means looking for internal functions that have pointer
12 // arguments. If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value. This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded. Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently. This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "argpromotion"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Constants.h"
35 #include "llvm/DerivedTypes.h"
36 #include "llvm/Module.h"
37 #include "llvm/CallGraphSCCPass.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/Analysis/CallGraph.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/CFG.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/ADT/DepthFirstIterator.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/Compiler.h"
52 STATISTIC(NumArgumentsPromoted
, "Number of pointer arguments promoted");
53 STATISTIC(NumAggregatesPromoted
, "Number of aggregate arguments promoted");
54 STATISTIC(NumByValArgsPromoted
, "Number of byval arguments promoted");
55 STATISTIC(NumArgumentsDead
, "Number of dead pointer args eliminated");
58 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60 struct VISIBILITY_HIDDEN ArgPromotion
: public CallGraphSCCPass
{
61 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
62 AU
.addRequired
<AliasAnalysis
>();
63 AU
.addRequired
<TargetData
>();
64 CallGraphSCCPass::getAnalysisUsage(AU
);
67 virtual bool runOnSCC(const std::vector
<CallGraphNode
*> &SCC
);
68 static char ID
; // Pass identification, replacement for typeid
69 explicit ArgPromotion(unsigned maxElements
= 3)
70 : CallGraphSCCPass(&ID
), maxElements(maxElements
) {}
72 /// A vector used to hold the indices of a single GEP instruction
73 typedef std::vector
<uint64_t> IndicesVector
;
76 bool PromoteArguments(CallGraphNode
*CGN
);
77 bool isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const;
78 Function
*DoPromotion(Function
*F
,
79 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
80 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
);
81 /// The maximum number of elements to expand, or 0 for unlimited.
86 char ArgPromotion::ID
= 0;
87 static RegisterPass
<ArgPromotion
>
88 X("argpromotion", "Promote 'by reference' arguments to scalars");
90 Pass
*llvm::createArgumentPromotionPass(unsigned maxElements
) {
91 return new ArgPromotion(maxElements
);
94 bool ArgPromotion::runOnSCC(const std::vector
<CallGraphNode
*> &SCC
) {
95 bool Changed
= false, LocalChange
;
97 do { // Iterate until we stop promoting from this SCC.
99 // Attempt to promote arguments from all functions in this SCC.
100 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
101 LocalChange
|= PromoteArguments(SCC
[i
]);
102 Changed
|= LocalChange
; // Remember that we changed something.
103 } while (LocalChange
);
108 /// PromoteArguments - This method checks the specified function to see if there
109 /// are any promotable arguments and if it is safe to promote the function (for
110 /// example, all callers are direct). If safe to promote some arguments, it
111 /// calls the DoPromotion method.
113 bool ArgPromotion::PromoteArguments(CallGraphNode
*CGN
) {
114 Function
*F
= CGN
->getFunction();
116 // Make sure that it is local to this module.
117 if (!F
|| !F
->hasLocalLinkage()) return false;
119 // First check: see if there are any pointer arguments! If not, quick exit.
120 SmallVector
<std::pair
<Argument
*, unsigned>, 16> PointerArgs
;
122 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
123 I
!= E
; ++I
, ++ArgNo
)
124 if (isa
<PointerType
>(I
->getType()))
125 PointerArgs
.push_back(std::pair
<Argument
*, unsigned>(I
, ArgNo
));
126 if (PointerArgs
.empty()) return false;
128 // Second check: make sure that all callers are direct callers. We can't
129 // transform functions that have indirect callers.
130 for (Value::use_iterator UI
= F
->use_begin(), E
= F
->use_end();
132 CallSite CS
= CallSite::get(*UI
);
133 if (!CS
.getInstruction()) // "Taking the address" of the function
136 // Ensure that this call site is CALLING the function, not passing it as
138 if (!CS
.isCallee(UI
))
142 // Check to see which arguments are promotable. If an argument is promotable,
143 // add it to ArgsToPromote.
144 SmallPtrSet
<Argument
*, 8> ArgsToPromote
;
145 SmallPtrSet
<Argument
*, 8> ByValArgsToTransform
;
146 for (unsigned i
= 0; i
!= PointerArgs
.size(); ++i
) {
147 bool isByVal
= F
->paramHasAttr(PointerArgs
[i
].second
+1, Attribute::ByVal
);
149 // If this is a byval argument, and if the aggregate type is small, just
150 // pass the elements, which is always safe.
151 Argument
*PtrArg
= PointerArgs
[i
].first
;
153 const Type
*AgTy
= cast
<PointerType
>(PtrArg
->getType())->getElementType();
154 if (const StructType
*STy
= dyn_cast
<StructType
>(AgTy
)) {
155 if (maxElements
> 0 && STy
->getNumElements() > maxElements
) {
156 DOUT
<< "argpromotion disable promoting argument '"
157 << PtrArg
->getName() << "' because it would require adding more "
158 << "than " << maxElements
<< " arguments to the function.\n";
160 // If all the elements are single-value types, we can promote it.
161 bool AllSimple
= true;
162 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
163 if (!STy
->getElementType(i
)->isSingleValueType()) {
168 // Safe to transform, don't even bother trying to "promote" it.
169 // Passing the elements as a scalar will allow scalarrepl to hack on
170 // the new alloca we introduce.
172 ByValArgsToTransform
.insert(PtrArg
);
179 // Otherwise, see if we can promote the pointer to its value.
180 if (isSafeToPromoteArgument(PtrArg
, isByVal
))
181 ArgsToPromote
.insert(PtrArg
);
184 // No promotable pointer arguments.
185 if (ArgsToPromote
.empty() && ByValArgsToTransform
.empty()) return false;
187 Function
*NewF
= DoPromotion(F
, ArgsToPromote
, ByValArgsToTransform
);
189 // Update the call graph to know that the function has been transformed.
190 getAnalysis
<CallGraph
>().changeFunction(F
, NewF
);
194 /// IsAlwaysValidPointer - Return true if the specified pointer is always legal
196 static bool IsAlwaysValidPointer(Value
*V
) {
197 if (isa
<AllocaInst
>(V
) || isa
<GlobalVariable
>(V
)) return true;
198 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
))
199 return IsAlwaysValidPointer(GEP
->getOperand(0));
200 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
201 if (CE
->getOpcode() == Instruction::GetElementPtr
)
202 return IsAlwaysValidPointer(CE
->getOperand(0));
207 /// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
208 /// all callees pass in a valid pointer for the specified function argument.
209 static bool AllCalleesPassInValidPointerForArgument(Argument
*Arg
) {
210 Function
*Callee
= Arg
->getParent();
212 unsigned ArgNo
= std::distance(Callee
->arg_begin(),
213 Function::arg_iterator(Arg
));
215 // Look at all call sites of the function. At this pointer we know we only
216 // have direct callees.
217 for (Value::use_iterator UI
= Callee
->use_begin(), E
= Callee
->use_end();
219 CallSite CS
= CallSite::get(*UI
);
220 assert(CS
.getInstruction() && "Should only have direct calls!");
222 if (!IsAlwaysValidPointer(CS
.getArgument(ArgNo
)))
228 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
229 /// that is greater than or equal to the size of prefix, and each of the
230 /// elements in Prefix is the same as the corresponding elements in Longer.
232 /// This means it also returns true when Prefix and Longer are equal!
233 static bool IsPrefix(const ArgPromotion::IndicesVector
&Prefix
,
234 const ArgPromotion::IndicesVector
&Longer
) {
235 if (Prefix
.size() > Longer
.size())
237 for (unsigned i
= 0, e
= Prefix
.size(); i
!= e
; ++i
)
238 if (Prefix
[i
] != Longer
[i
])
244 /// Checks if Indices, or a prefix of Indices, is in Set.
245 static bool PrefixIn(const ArgPromotion::IndicesVector
&Indices
,
246 std::set
<ArgPromotion::IndicesVector
> &Set
) {
247 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
248 Low
= Set
.upper_bound(Indices
);
249 if (Low
!= Set
.begin())
251 // Low is now the last element smaller than or equal to Indices. This means
252 // it points to a prefix of Indices (possibly Indices itself), if such
255 // This load is safe if any prefix of its operands is safe to load.
256 return Low
!= Set
.end() && IsPrefix(*Low
, Indices
);
259 /// Mark the given indices (ToMark) as safe in the the given set of indices
260 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
261 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
262 /// already. Furthermore, any indices that Indices is itself a prefix of, are
263 /// removed from Safe (since they are implicitely safe because of Indices now).
264 static void MarkIndicesSafe(const ArgPromotion::IndicesVector
&ToMark
,
265 std::set
<ArgPromotion::IndicesVector
> &Safe
) {
266 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
267 Low
= Safe
.upper_bound(ToMark
);
268 // Guard against the case where Safe is empty
269 if (Low
!= Safe
.begin())
271 // Low is now the last element smaller than or equal to Indices. This
272 // means it points to a prefix of Indices (possibly Indices itself), if
273 // such prefix exists.
274 if (Low
!= Safe
.end()) {
275 if (IsPrefix(*Low
, ToMark
))
276 // If there is already a prefix of these indices (or exactly these
277 // indices) marked a safe, don't bother adding these indices
280 // Increment Low, so we can use it as a "insert before" hint
284 Low
= Safe
.insert(Low
, ToMark
);
286 // If there we're a prefix of longer index list(s), remove those
287 std::set
<ArgPromotion::IndicesVector
>::iterator End
= Safe
.end();
288 while (Low
!= End
&& IsPrefix(ToMark
, *Low
)) {
289 std::set
<ArgPromotion::IndicesVector
>::iterator Remove
= Low
;
295 /// isSafeToPromoteArgument - As you might guess from the name of this method,
296 /// it checks to see if it is both safe and useful to promote the argument.
297 /// This method limits promotion of aggregates to only promote up to three
298 /// elements of the aggregate in order to avoid exploding the number of
299 /// arguments passed in.
300 bool ArgPromotion::isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const {
301 typedef std::set
<IndicesVector
> GEPIndicesSet
;
303 // Quick exit for unused arguments
304 if (Arg
->use_empty())
307 // We can only promote this argument if all of the uses are loads, or are GEP
308 // instructions (with constant indices) that are subsequently loaded.
310 // Promoting the argument causes it to be loaded in the caller
311 // unconditionally. This is only safe if we can prove that either the load
312 // would have happened in the callee anyway (ie, there is a load in the entry
313 // block) or the pointer passed in at every call site is guaranteed to be
315 // In the former case, invalid loads can happen, but would have happened
316 // anyway, in the latter case, invalid loads won't happen. This prevents us
317 // from introducing an invalid load that wouldn't have happened in the
320 // This set will contain all sets of indices that are loaded in the entry
321 // block, and thus are safe to unconditionally load in the caller.
322 GEPIndicesSet SafeToUnconditionallyLoad
;
324 // This set contains all the sets of indices that we are planning to promote.
325 // This makes it possible to limit the number of arguments added.
326 GEPIndicesSet ToPromote
;
328 // If the pointer is always valid, any load with first index 0 is valid.
329 if(isByVal
|| AllCalleesPassInValidPointerForArgument(Arg
))
330 SafeToUnconditionallyLoad
.insert(IndicesVector(1, 0));
332 // First, iterate the entry block and mark loads of (geps of) arguments as
334 BasicBlock
*EntryBlock
= Arg
->getParent()->begin();
335 // Declare this here so we can reuse it
336 IndicesVector Indices
;
337 for (BasicBlock::iterator I
= EntryBlock
->begin(), E
= EntryBlock
->end();
339 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
340 Value
*V
= LI
->getPointerOperand();
341 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
342 V
= GEP
->getPointerOperand();
344 // This load actually loads (part of) Arg? Check the indices then.
345 Indices
.reserve(GEP
->getNumIndices());
346 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
348 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*II
))
349 Indices
.push_back(CI
->getSExtValue());
351 // We found a non-constant GEP index for this argument? Bail out
352 // right away, can't promote this argument at all.
355 // Indices checked out, mark them as safe
356 MarkIndicesSafe(Indices
, SafeToUnconditionallyLoad
);
359 } else if (V
== Arg
) {
360 // Direct loads are equivalent to a GEP with a single 0 index.
361 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad
);
365 // Now, iterate all uses of the argument to see if there are any uses that are
366 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
367 SmallVector
<LoadInst
*, 16> Loads
;
368 IndicesVector Operands
;
369 for (Value::use_iterator UI
= Arg
->use_begin(), E
= Arg
->use_end();
372 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
373 if (LI
->isVolatile()) return false; // Don't hack volatile loads
375 // Direct loads are equivalent to a GEP with a zero index and then a load.
376 Operands
.push_back(0);
377 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(*UI
)) {
378 if (GEP
->use_empty()) {
379 // Dead GEP's cause trouble later. Just remove them if we run into
381 getAnalysis
<AliasAnalysis
>().deleteValue(GEP
);
382 GEP
->eraseFromParent();
383 // TODO: This runs the above loop over and over again for dead GEPS
384 // Couldn't we just do increment the UI iterator earlier and erase the
386 return isSafeToPromoteArgument(Arg
, isByVal
);
389 // Ensure that all of the indices are constants.
390 for (User::op_iterator i
= GEP
->idx_begin(), e
= GEP
->idx_end();
392 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(*i
))
393 Operands
.push_back(C
->getSExtValue());
395 return false; // Not a constant operand GEP!
397 // Ensure that the only users of the GEP are load instructions.
398 for (Value::use_iterator UI
= GEP
->use_begin(), E
= GEP
->use_end();
400 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
401 if (LI
->isVolatile()) return false; // Don't hack volatile loads
404 // Other uses than load?
408 return false; // Not a load or a GEP.
411 // Now, see if it is safe to promote this load / loads of this GEP. Loading
412 // is safe if Operands, or a prefix of Operands, is marked as safe.
413 if (!PrefixIn(Operands
, SafeToUnconditionallyLoad
))
416 // See if we are already promoting a load with these indices. If not, check
417 // to make sure that we aren't promoting too many elements. If so, nothing
419 if (ToPromote
.find(Operands
) == ToPromote
.end()) {
420 if (maxElements
> 0 && ToPromote
.size() == maxElements
) {
421 DOUT
<< "argpromotion not promoting argument '"
422 << Arg
->getName() << "' because it would require adding more "
423 << "than " << maxElements
<< " arguments to the function.\n";
424 // We limit aggregate promotion to only promoting up to a fixed number
425 // of elements of the aggregate.
428 ToPromote
.insert(Operands
);
432 if (Loads
.empty()) return true; // No users, this is a dead argument.
434 // Okay, now we know that the argument is only used by load instructions and
435 // it is safe to unconditionally perform all of them. Use alias analysis to
436 // check to see if the pointer is guaranteed to not be modified from entry of
437 // the function to each of the load instructions.
439 // Because there could be several/many load instructions, remember which
440 // blocks we know to be transparent to the load.
441 SmallPtrSet
<BasicBlock
*, 16> TranspBlocks
;
443 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
444 TargetData
&TD
= getAnalysis
<TargetData
>();
446 for (unsigned i
= 0, e
= Loads
.size(); i
!= e
; ++i
) {
447 // Check to see if the load is invalidated from the start of the block to
449 LoadInst
*Load
= Loads
[i
];
450 BasicBlock
*BB
= Load
->getParent();
452 const PointerType
*LoadTy
=
453 cast
<PointerType
>(Load
->getPointerOperand()->getType());
454 unsigned LoadSize
= (unsigned)TD
.getTypeStoreSize(LoadTy
->getElementType());
456 if (AA
.canInstructionRangeModify(BB
->front(), *Load
, Arg
, LoadSize
))
457 return false; // Pointer is invalidated!
459 // Now check every path from the entry block to the load for transparency.
460 // To do this, we perform a depth first search on the inverse CFG from the
462 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
463 for (idf_ext_iterator
<BasicBlock
*, SmallPtrSet
<BasicBlock
*, 16> >
464 I
= idf_ext_begin(*PI
, TranspBlocks
),
465 E
= idf_ext_end(*PI
, TranspBlocks
); I
!= E
; ++I
)
466 if (AA
.canBasicBlockModify(**I
, Arg
, LoadSize
))
470 // If the path from the entry of the function to each load is free of
471 // instructions that potentially invalidate the load, we can make the
476 /// DoPromotion - This method actually performs the promotion of the specified
477 /// arguments, and returns the new function. At this point, we know that it's
479 Function
*ArgPromotion::DoPromotion(Function
*F
,
480 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
481 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
) {
483 // Start by computing a new prototype for the function, which is the same as
484 // the old function, but has modified arguments.
485 const FunctionType
*FTy
= F
->getFunctionType();
486 std::vector
<const Type
*> Params
;
488 typedef std::set
<IndicesVector
> ScalarizeTable
;
490 // ScalarizedElements - If we are promoting a pointer that has elements
491 // accessed out of it, keep track of which elements are accessed so that we
492 // can add one argument for each.
494 // Arguments that are directly loaded will have a zero element value here, to
495 // handle cases where there are both a direct load and GEP accesses.
497 std::map
<Argument
*, ScalarizeTable
> ScalarizedElements
;
499 // OriginalLoads - Keep track of a representative load instruction from the
500 // original function so that we can tell the alias analysis implementation
501 // what the new GEP/Load instructions we are inserting look like.
502 std::map
<IndicesVector
, LoadInst
*> OriginalLoads
;
504 // Attributes - Keep track of the parameter attributes for the arguments
505 // that we are *not* promoting. For the ones that we do promote, the parameter
506 // attributes are lost
507 SmallVector
<AttributeWithIndex
, 8> AttributesVec
;
508 const AttrListPtr
&PAL
= F
->getAttributes();
510 // Add any return attributes.
511 if (Attributes attrs
= PAL
.getRetAttributes())
512 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
514 // First, determine the new argument list
515 unsigned ArgIndex
= 1;
516 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
;
518 if (ByValArgsToTransform
.count(I
)) {
519 // Simple byval argument? Just add all the struct element types.
520 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
521 const StructType
*STy
= cast
<StructType
>(AgTy
);
522 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
523 Params
.push_back(STy
->getElementType(i
));
524 ++NumByValArgsPromoted
;
525 } else if (!ArgsToPromote
.count(I
)) {
526 // Unchanged argument
527 Params
.push_back(I
->getType());
528 if (Attributes attrs
= PAL
.getParamAttributes(ArgIndex
))
529 AttributesVec
.push_back(AttributeWithIndex::get(Params
.size(), attrs
));
530 } else if (I
->use_empty()) {
531 // Dead argument (which are always marked as promotable)
534 // Okay, this is being promoted. This means that the only uses are loads
535 // or GEPs which are only used by loads
537 // In this table, we will track which indices are loaded from the argument
538 // (where direct loads are tracked as no indices).
539 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
540 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
542 Instruction
*User
= cast
<Instruction
>(*UI
);
543 assert(isa
<LoadInst
>(User
) || isa
<GetElementPtrInst
>(User
));
544 IndicesVector Indices
;
545 Indices
.reserve(User
->getNumOperands() - 1);
546 // Since loads will only have a single operand, and GEPs only a single
547 // non-index operand, this will record direct loads without any indices,
548 // and gep+loads with the GEP indices.
549 for (User::op_iterator II
= User
->op_begin() + 1, IE
= User
->op_end();
551 Indices
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
552 // GEPs with a single 0 index can be merged with direct loads
553 if (Indices
.size() == 1 && Indices
.front() == 0)
555 ArgIndices
.insert(Indices
);
557 if (LoadInst
*L
= dyn_cast
<LoadInst
>(User
))
560 // Take any load, we will use it only to update Alias Analysis
561 OrigLoad
= cast
<LoadInst
>(User
->use_back());
562 OriginalLoads
[Indices
] = OrigLoad
;
565 // Add a parameter to the function for each element passed in.
566 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
567 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
568 // not allowed to dereference ->begin() if size() is 0
569 Params
.push_back(GetElementPtrInst::getIndexedType(I
->getType(),
572 assert(Params
.back());
575 if (ArgIndices
.size() == 1 && ArgIndices
.begin()->empty())
576 ++NumArgumentsPromoted
;
578 ++NumAggregatesPromoted
;
582 // Add any function attributes.
583 if (Attributes attrs
= PAL
.getFnAttributes())
584 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
586 const Type
*RetTy
= FTy
->getReturnType();
588 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
589 // have zero fixed arguments.
590 bool ExtraArgHack
= false;
591 if (Params
.empty() && FTy
->isVarArg()) {
593 Params
.push_back(Type::Int32Ty
);
596 // Construct the new function type using the new arguments.
597 FunctionType
*NFTy
= FunctionType::get(RetTy
, Params
, FTy
->isVarArg());
599 // Create the new function body and insert it into the module...
600 Function
*NF
= Function::Create(NFTy
, F
->getLinkage(), F
->getName());
601 NF
->copyAttributesFrom(F
);
603 // Recompute the parameter attributes list based on the new arguments for
605 NF
->setAttributes(AttrListPtr::get(AttributesVec
.begin(), AttributesVec
.end()));
606 AttributesVec
.clear();
608 F
->getParent()->getFunctionList().insert(F
, NF
);
611 // Get the alias analysis information that we need to update to reflect our
613 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
615 // Get the callgraph information that we need to update to reflect our
617 CallGraph
&CG
= getAnalysis
<CallGraph
>();
619 // Loop over all of the callers of the function, transforming the call sites
620 // to pass in the loaded pointers.
622 SmallVector
<Value
*, 16> Args
;
623 while (!F
->use_empty()) {
624 CallSite CS
= CallSite::get(F
->use_back());
625 Instruction
*Call
= CS
.getInstruction();
626 const AttrListPtr
&CallPAL
= CS
.getAttributes();
628 // Add any return attributes.
629 if (Attributes attrs
= CallPAL
.getRetAttributes())
630 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
632 // Loop over the operands, inserting GEP and loads in the caller as
634 CallSite::arg_iterator AI
= CS
.arg_begin();
636 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
637 I
!= E
; ++I
, ++AI
, ++ArgIndex
)
638 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
639 Args
.push_back(*AI
); // Unmodified argument
641 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
642 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
644 } else if (ByValArgsToTransform
.count(I
)) {
645 // Emit a GEP and load for each element of the struct.
646 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
647 const StructType
*STy
= cast
<StructType
>(AgTy
);
648 Value
*Idxs
[2] = { ConstantInt::get(Type::Int32Ty
, 0), 0 };
649 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
650 Idxs
[1] = ConstantInt::get(Type::Int32Ty
, i
);
651 Value
*Idx
= GetElementPtrInst::Create(*AI
, Idxs
, Idxs
+2,
652 (*AI
)->getName()+"."+utostr(i
),
654 // TODO: Tell AA about the new values?
655 Args
.push_back(new LoadInst(Idx
, Idx
->getName()+".val", Call
));
657 } else if (!I
->use_empty()) {
658 // Non-dead argument: insert GEPs and loads as appropriate.
659 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
660 // Store the Value* version of the indices in here, but declare it now
662 std::vector
<Value
*> Ops
;
663 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
664 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
666 LoadInst
*OrigLoad
= OriginalLoads
[*SI
];
668 Ops
.reserve(SI
->size());
669 const Type
*ElTy
= V
->getType();
670 for (IndicesVector::const_iterator II
= SI
->begin(),
671 IE
= SI
->end(); II
!= IE
; ++II
) {
672 // Use i32 to index structs, and i64 for others (pointers/arrays).
673 // This satisfies GEP constraints.
674 const Type
*IdxTy
= (isa
<StructType
>(ElTy
) ? Type::Int32Ty
: Type::Int64Ty
);
675 Ops
.push_back(ConstantInt::get(IdxTy
, *II
));
676 // Keep track of the type we're currently indexing
677 ElTy
= cast
<CompositeType
>(ElTy
)->getTypeAtIndex(*II
);
679 // And create a GEP to extract those indices
680 V
= GetElementPtrInst::Create(V
, Ops
.begin(), Ops
.end(),
681 V
->getName()+".idx", Call
);
683 AA
.copyValue(OrigLoad
->getOperand(0), V
);
685 Args
.push_back(new LoadInst(V
, V
->getName()+".val", Call
));
686 AA
.copyValue(OrigLoad
, Args
.back());
691 Args
.push_back(Constant::getNullValue(Type::Int32Ty
));
693 // Push any varargs arguments on the list
694 for (; AI
!= CS
.arg_end(); ++AI
, ++ArgIndex
) {
696 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
697 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
700 // Add any function attributes.
701 if (Attributes attrs
= CallPAL
.getFnAttributes())
702 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
705 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
706 New
= InvokeInst::Create(NF
, II
->getNormalDest(), II
->getUnwindDest(),
707 Args
.begin(), Args
.end(), "", Call
);
708 cast
<InvokeInst
>(New
)->setCallingConv(CS
.getCallingConv());
709 cast
<InvokeInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
710 AttributesVec
.end()));
712 New
= CallInst::Create(NF
, Args
.begin(), Args
.end(), "", Call
);
713 cast
<CallInst
>(New
)->setCallingConv(CS
.getCallingConv());
714 cast
<CallInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
715 AttributesVec
.end()));
716 if (cast
<CallInst
>(Call
)->isTailCall())
717 cast
<CallInst
>(New
)->setTailCall();
720 AttributesVec
.clear();
722 // Update the alias analysis implementation to know that we are replacing
723 // the old call with a new one.
724 AA
.replaceWithNewValue(Call
, New
);
726 // Update the callgraph to know that the callsite has been transformed.
727 CG
[Call
->getParent()->getParent()]->replaceCallSite(Call
, New
);
729 if (!Call
->use_empty()) {
730 Call
->replaceAllUsesWith(New
);
734 // Finally, remove the old call from the program, reducing the use-count of
736 Call
->eraseFromParent();
739 // Since we have now created the new function, splice the body of the old
740 // function right into the new function, leaving the old rotting hulk of the
742 NF
->getBasicBlockList().splice(NF
->begin(), F
->getBasicBlockList());
744 // Loop over the argument list, transfering uses of the old arguments over to
745 // the new arguments, also transfering over the names as well.
747 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(),
748 I2
= NF
->arg_begin(); I
!= E
; ++I
) {
749 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
750 // If this is an unmodified argument, move the name and users over to the
752 I
->replaceAllUsesWith(I2
);
754 AA
.replaceWithNewValue(I
, I2
);
759 if (ByValArgsToTransform
.count(I
)) {
760 // In the callee, we create an alloca, and store each of the new incoming
761 // arguments into the alloca.
762 Instruction
*InsertPt
= NF
->begin()->begin();
764 // Just add all the struct element types.
765 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
766 Value
*TheAlloca
= new AllocaInst(AgTy
, 0, "", InsertPt
);
767 const StructType
*STy
= cast
<StructType
>(AgTy
);
768 Value
*Idxs
[2] = { ConstantInt::get(Type::Int32Ty
, 0), 0 };
770 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
771 Idxs
[1] = ConstantInt::get(Type::Int32Ty
, i
);
772 std::string Name
= TheAlloca
->getName()+"."+utostr(i
);
773 Value
*Idx
= GetElementPtrInst::Create(TheAlloca
, Idxs
, Idxs
+2,
775 I2
->setName(I
->getName()+"."+utostr(i
));
776 new StoreInst(I2
++, Idx
, InsertPt
);
779 // Anything that used the arg should now use the alloca.
780 I
->replaceAllUsesWith(TheAlloca
);
781 TheAlloca
->takeName(I
);
782 AA
.replaceWithNewValue(I
, TheAlloca
);
786 if (I
->use_empty()) {
791 // Otherwise, if we promoted this argument, then all users are load
792 // instructions (or GEPs with only load users), and all loads should be
793 // using the new argument that we added.
794 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
796 while (!I
->use_empty()) {
797 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->use_back())) {
798 assert(ArgIndices
.begin()->empty() &&
799 "Load element should sort to front!");
800 I2
->setName(I
->getName()+".val");
801 LI
->replaceAllUsesWith(I2
);
802 AA
.replaceWithNewValue(LI
, I2
);
803 LI
->eraseFromParent();
804 DOUT
<< "*** Promoted load of argument '" << I
->getName()
805 << "' in function '" << F
->getName() << "'\n";
807 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
->use_back());
808 IndicesVector Operands
;
809 Operands
.reserve(GEP
->getNumIndices());
810 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
812 Operands
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
814 // GEPs with a single 0 index can be merged with direct loads
815 if (Operands
.size() == 1 && Operands
.front() == 0)
818 Function::arg_iterator TheArg
= I2
;
819 for (ScalarizeTable::iterator It
= ArgIndices
.begin();
820 *It
!= Operands
; ++It
, ++TheArg
) {
821 assert(It
!= ArgIndices
.end() && "GEP not handled??");
824 std::string NewName
= I
->getName();
825 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
826 NewName
+= "." + utostr(Operands
[i
]);
829 TheArg
->setName(NewName
);
831 DOUT
<< "*** Promoted agg argument '" << TheArg
->getName()
832 << "' of function '" << NF
->getName() << "'\n";
834 // All of the uses must be load instructions. Replace them all with
835 // the argument specified by ArgNo.
836 while (!GEP
->use_empty()) {
837 LoadInst
*L
= cast
<LoadInst
>(GEP
->use_back());
838 L
->replaceAllUsesWith(TheArg
);
839 AA
.replaceWithNewValue(L
, TheArg
);
840 L
->eraseFromParent();
843 GEP
->eraseFromParent();
847 // Increment I2 past all of the arguments added for this promoted pointer.
848 for (unsigned i
= 0, e
= ArgIndices
.size(); i
!= e
; ++i
)
852 // Notify the alias analysis implementation that we inserted a new argument.
854 AA
.copyValue(Constant::getNullValue(Type::Int32Ty
), NF
->arg_begin());
857 // Tell the alias analysis that the old function is about to disappear.
858 AA
.replaceWithNewValue(F
, NF
);
860 // Now that the old function is dead, delete it.
861 F
->eraseFromParent();