1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "globalopt"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/CallingConv.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/GetElementPtrTypeIterator.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/STLExtras.h"
41 STATISTIC(NumMarked
, "Number of globals marked constant");
42 STATISTIC(NumSRA
, "Number of aggregate globals broken into scalars");
43 STATISTIC(NumHeapSRA
, "Number of heap objects SRA'd");
44 STATISTIC(NumSubstitute
,"Number of globals with initializers stored into them");
45 STATISTIC(NumDeleted
, "Number of globals deleted");
46 STATISTIC(NumFnDeleted
, "Number of functions deleted");
47 STATISTIC(NumGlobUses
, "Number of global uses devirtualized");
48 STATISTIC(NumLocalized
, "Number of globals localized");
49 STATISTIC(NumShrunkToBool
, "Number of global vars shrunk to booleans");
50 STATISTIC(NumFastCallFns
, "Number of functions converted to fastcc");
51 STATISTIC(NumCtorsEvaluated
, "Number of static ctors evaluated");
52 STATISTIC(NumNestRemoved
, "Number of nest attributes removed");
53 STATISTIC(NumAliasesResolved
, "Number of global aliases resolved");
54 STATISTIC(NumAliasesRemoved
, "Number of global aliases eliminated");
57 struct VISIBILITY_HIDDEN GlobalOpt
: public ModulePass
{
58 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
59 AU
.addRequired
<TargetData
>();
61 static char ID
; // Pass identification, replacement for typeid
62 GlobalOpt() : ModulePass(&ID
) {}
64 bool runOnModule(Module
&M
);
67 GlobalVariable
*FindGlobalCtors(Module
&M
);
68 bool OptimizeFunctions(Module
&M
);
69 bool OptimizeGlobalVars(Module
&M
);
70 bool OptimizeGlobalAliases(Module
&M
);
71 bool OptimizeGlobalCtorsList(GlobalVariable
*&GCL
);
72 bool ProcessInternalGlobal(GlobalVariable
*GV
,Module::global_iterator
&GVI
);
76 char GlobalOpt::ID
= 0;
77 static RegisterPass
<GlobalOpt
> X("globalopt", "Global Variable Optimizer");
79 ModulePass
*llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
83 /// GlobalStatus - As we analyze each global, keep track of some information
84 /// about it. If we find out that the address of the global is taken, none of
85 /// this info will be accurate.
86 struct VISIBILITY_HIDDEN GlobalStatus
{
87 /// isLoaded - True if the global is ever loaded. If the global isn't ever
88 /// loaded it can be deleted.
91 /// StoredType - Keep track of what stores to the global look like.
94 /// NotStored - There is no store to this global. It can thus be marked
98 /// isInitializerStored - This global is stored to, but the only thing
99 /// stored is the constant it was initialized with. This is only tracked
100 /// for scalar globals.
103 /// isStoredOnce - This global is stored to, but only its initializer and
104 /// one other value is ever stored to it. If this global isStoredOnce, we
105 /// track the value stored to it in StoredOnceValue below. This is only
106 /// tracked for scalar globals.
109 /// isStored - This global is stored to by multiple values or something else
110 /// that we cannot track.
114 /// StoredOnceValue - If only one value (besides the initializer constant) is
115 /// ever stored to this global, keep track of what value it is.
116 Value
*StoredOnceValue
;
118 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119 /// null/false. When the first accessing function is noticed, it is recorded.
120 /// When a second different accessing function is noticed,
121 /// HasMultipleAccessingFunctions is set to true.
122 Function
*AccessingFunction
;
123 bool HasMultipleAccessingFunctions
;
125 /// HasNonInstructionUser - Set to true if this global has a user that is not
126 /// an instruction (e.g. a constant expr or GV initializer).
127 bool HasNonInstructionUser
;
129 /// HasPHIUser - Set to true if this global has a user that is a PHI node.
132 GlobalStatus() : isLoaded(false), StoredType(NotStored
), StoredOnceValue(0),
133 AccessingFunction(0), HasMultipleAccessingFunctions(false),
134 HasNonInstructionUser(false), HasPHIUser(false) {}
139 /// ConstantIsDead - Return true if the specified constant is (transitively)
140 /// dead. The constant may be used by other constants (e.g. constant arrays and
141 /// constant exprs) as long as they are dead, but it cannot be used by anything
143 static bool ConstantIsDead(Constant
*C
) {
144 if (isa
<GlobalValue
>(C
)) return false;
146 for (Value::use_iterator UI
= C
->use_begin(), E
= C
->use_end(); UI
!= E
; ++UI
)
147 if (Constant
*CU
= dyn_cast
<Constant
>(*UI
)) {
148 if (!ConstantIsDead(CU
)) return false;
155 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
156 /// structure. If the global has its address taken, return true to indicate we
157 /// can't do anything with it.
159 static bool AnalyzeGlobal(Value
*V
, GlobalStatus
&GS
,
160 SmallPtrSet
<PHINode
*, 16> &PHIUsers
) {
161 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
162 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(*UI
)) {
163 GS
.HasNonInstructionUser
= true;
165 if (AnalyzeGlobal(CE
, GS
, PHIUsers
)) return true;
167 } else if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
)) {
168 if (!GS
.HasMultipleAccessingFunctions
) {
169 Function
*F
= I
->getParent()->getParent();
170 if (GS
.AccessingFunction
== 0)
171 GS
.AccessingFunction
= F
;
172 else if (GS
.AccessingFunction
!= F
)
173 GS
.HasMultipleAccessingFunctions
= true;
175 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
177 if (LI
->isVolatile()) return true; // Don't hack on volatile loads.
178 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
179 // Don't allow a store OF the address, only stores TO the address.
180 if (SI
->getOperand(0) == V
) return true;
182 if (SI
->isVolatile()) return true; // Don't hack on volatile stores.
184 // If this is a direct store to the global (i.e., the global is a scalar
185 // value, not an aggregate), keep more specific information about
187 if (GS
.StoredType
!= GlobalStatus::isStored
) {
188 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(SI
->getOperand(1))){
189 Value
*StoredVal
= SI
->getOperand(0);
190 if (StoredVal
== GV
->getInitializer()) {
191 if (GS
.StoredType
< GlobalStatus::isInitializerStored
)
192 GS
.StoredType
= GlobalStatus::isInitializerStored
;
193 } else if (isa
<LoadInst
>(StoredVal
) &&
194 cast
<LoadInst
>(StoredVal
)->getOperand(0) == GV
) {
196 if (GS
.StoredType
< GlobalStatus::isInitializerStored
)
197 GS
.StoredType
= GlobalStatus::isInitializerStored
;
198 } else if (GS
.StoredType
< GlobalStatus::isStoredOnce
) {
199 GS
.StoredType
= GlobalStatus::isStoredOnce
;
200 GS
.StoredOnceValue
= StoredVal
;
201 } else if (GS
.StoredType
== GlobalStatus::isStoredOnce
&&
202 GS
.StoredOnceValue
== StoredVal
) {
205 GS
.StoredType
= GlobalStatus::isStored
;
208 GS
.StoredType
= GlobalStatus::isStored
;
211 } else if (isa
<GetElementPtrInst
>(I
)) {
212 if (AnalyzeGlobal(I
, GS
, PHIUsers
)) return true;
213 } else if (isa
<SelectInst
>(I
)) {
214 if (AnalyzeGlobal(I
, GS
, PHIUsers
)) return true;
215 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
216 // PHI nodes we can check just like select or GEP instructions, but we
217 // have to be careful about infinite recursion.
218 if (PHIUsers
.insert(PN
)) // Not already visited.
219 if (AnalyzeGlobal(I
, GS
, PHIUsers
)) return true;
220 GS
.HasPHIUser
= true;
221 } else if (isa
<CmpInst
>(I
)) {
222 } else if (isa
<MemTransferInst
>(I
)) {
223 if (I
->getOperand(1) == V
)
224 GS
.StoredType
= GlobalStatus::isStored
;
225 if (I
->getOperand(2) == V
)
227 } else if (isa
<MemSetInst
>(I
)) {
228 assert(I
->getOperand(1) == V
&& "Memset only takes one pointer!");
229 GS
.StoredType
= GlobalStatus::isStored
;
231 return true; // Any other non-load instruction might take address!
233 } else if (Constant
*C
= dyn_cast
<Constant
>(*UI
)) {
234 GS
.HasNonInstructionUser
= true;
235 // We might have a dead and dangling constant hanging off of here.
236 if (!ConstantIsDead(C
))
239 GS
.HasNonInstructionUser
= true;
240 // Otherwise must be some other user.
247 static Constant
*getAggregateConstantElement(Constant
*Agg
, Constant
*Idx
) {
248 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
);
250 unsigned IdxV
= CI
->getZExtValue();
252 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Agg
)) {
253 if (IdxV
< CS
->getNumOperands()) return CS
->getOperand(IdxV
);
254 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Agg
)) {
255 if (IdxV
< CA
->getNumOperands()) return CA
->getOperand(IdxV
);
256 } else if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Agg
)) {
257 if (IdxV
< CP
->getNumOperands()) return CP
->getOperand(IdxV
);
258 } else if (isa
<ConstantAggregateZero
>(Agg
)) {
259 if (const StructType
*STy
= dyn_cast
<StructType
>(Agg
->getType())) {
260 if (IdxV
< STy
->getNumElements())
261 return Constant::getNullValue(STy
->getElementType(IdxV
));
262 } else if (const SequentialType
*STy
=
263 dyn_cast
<SequentialType
>(Agg
->getType())) {
264 return Constant::getNullValue(STy
->getElementType());
266 } else if (isa
<UndefValue
>(Agg
)) {
267 if (const StructType
*STy
= dyn_cast
<StructType
>(Agg
->getType())) {
268 if (IdxV
< STy
->getNumElements())
269 return UndefValue::get(STy
->getElementType(IdxV
));
270 } else if (const SequentialType
*STy
=
271 dyn_cast
<SequentialType
>(Agg
->getType())) {
272 return UndefValue::get(STy
->getElementType());
279 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
280 /// users of the global, cleaning up the obvious ones. This is largely just a
281 /// quick scan over the use list to clean up the easy and obvious cruft. This
282 /// returns true if it made a change.
283 static bool CleanupConstantGlobalUsers(Value
*V
, Constant
*Init
) {
284 bool Changed
= false;
285 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;) {
288 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
290 // Replace the load with the initializer.
291 LI
->replaceAllUsesWith(Init
);
292 LI
->eraseFromParent();
295 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
296 // Store must be unreachable or storing Init into the global.
297 SI
->eraseFromParent();
299 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
300 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
301 Constant
*SubInit
= 0;
303 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
304 Changed
|= CleanupConstantGlobalUsers(CE
, SubInit
);
305 } else if (CE
->getOpcode() == Instruction::BitCast
&&
306 isa
<PointerType
>(CE
->getType())) {
307 // Pointer cast, delete any stores and memsets to the global.
308 Changed
|= CleanupConstantGlobalUsers(CE
, 0);
311 if (CE
->use_empty()) {
312 CE
->destroyConstant();
315 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
316 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
317 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
318 // and will invalidate our notion of what Init is.
319 Constant
*SubInit
= 0;
320 if (!isa
<ConstantExpr
>(GEP
->getOperand(0))) {
322 dyn_cast_or_null
<ConstantExpr
>(ConstantFoldInstruction(GEP
));
323 if (Init
&& CE
&& CE
->getOpcode() == Instruction::GetElementPtr
)
324 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
326 Changed
|= CleanupConstantGlobalUsers(GEP
, SubInit
);
328 if (GEP
->use_empty()) {
329 GEP
->eraseFromParent();
332 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
)) { // memset/cpy/mv
333 if (MI
->getRawDest() == V
) {
334 MI
->eraseFromParent();
338 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
339 // If we have a chain of dead constantexprs or other things dangling from
340 // us, and if they are all dead, nuke them without remorse.
341 if (ConstantIsDead(C
)) {
342 C
->destroyConstant();
343 // This could have invalidated UI, start over from scratch.
344 CleanupConstantGlobalUsers(V
, Init
);
352 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
353 /// user of a derived expression from a global that we want to SROA.
354 static bool isSafeSROAElementUse(Value
*V
) {
355 // We might have a dead and dangling constant hanging off of here.
356 if (Constant
*C
= dyn_cast
<Constant
>(V
))
357 return ConstantIsDead(C
);
359 Instruction
*I
= dyn_cast
<Instruction
>(V
);
360 if (!I
) return false;
363 if (isa
<LoadInst
>(I
)) return true;
365 // Stores *to* the pointer are ok.
366 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
367 return SI
->getOperand(0) != V
;
369 // Otherwise, it must be a GEP.
370 GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
);
371 if (GEPI
== 0) return false;
373 if (GEPI
->getNumOperands() < 3 || !isa
<Constant
>(GEPI
->getOperand(1)) ||
374 !cast
<Constant
>(GEPI
->getOperand(1))->isNullValue())
377 for (Value::use_iterator I
= GEPI
->use_begin(), E
= GEPI
->use_end();
379 if (!isSafeSROAElementUse(*I
))
385 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
386 /// Look at it and its uses and decide whether it is safe to SROA this global.
388 static bool IsUserOfGlobalSafeForSRA(User
*U
, GlobalValue
*GV
) {
389 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
390 if (!isa
<GetElementPtrInst
>(U
) &&
391 (!isa
<ConstantExpr
>(U
) ||
392 cast
<ConstantExpr
>(U
)->getOpcode() != Instruction::GetElementPtr
))
395 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
396 // don't like < 3 operand CE's, and we don't like non-constant integer
397 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
399 if (U
->getNumOperands() < 3 || !isa
<Constant
>(U
->getOperand(1)) ||
400 !cast
<Constant
>(U
->getOperand(1))->isNullValue() ||
401 !isa
<ConstantInt
>(U
->getOperand(2)))
404 gep_type_iterator GEPI
= gep_type_begin(U
), E
= gep_type_end(U
);
405 ++GEPI
; // Skip over the pointer index.
407 // If this is a use of an array allocation, do a bit more checking for sanity.
408 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(*GEPI
)) {
409 uint64_t NumElements
= AT
->getNumElements();
410 ConstantInt
*Idx
= cast
<ConstantInt
>(U
->getOperand(2));
412 // Check to make sure that index falls within the array. If not,
413 // something funny is going on, so we won't do the optimization.
415 if (Idx
->getZExtValue() >= NumElements
)
418 // We cannot scalar repl this level of the array unless any array
419 // sub-indices are in-range constants. In particular, consider:
420 // A[0][i]. We cannot know that the user isn't doing invalid things like
421 // allowing i to index an out-of-range subscript that accesses A[1].
423 // Scalar replacing *just* the outer index of the array is probably not
424 // going to be a win anyway, so just give up.
425 for (++GEPI
; // Skip array index.
426 GEPI
!= E
&& (isa
<ArrayType
>(*GEPI
) || isa
<VectorType
>(*GEPI
));
428 uint64_t NumElements
;
429 if (const ArrayType
*SubArrayTy
= dyn_cast
<ArrayType
>(*GEPI
))
430 NumElements
= SubArrayTy
->getNumElements();
432 NumElements
= cast
<VectorType
>(*GEPI
)->getNumElements();
434 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPI
.getOperand());
435 if (!IdxVal
|| IdxVal
->getZExtValue() >= NumElements
)
440 for (Value::use_iterator I
= U
->use_begin(), E
= U
->use_end(); I
!= E
; ++I
)
441 if (!isSafeSROAElementUse(*I
))
446 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
447 /// is safe for us to perform this transformation.
449 static bool GlobalUsersSafeToSRA(GlobalValue
*GV
) {
450 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end();
452 if (!IsUserOfGlobalSafeForSRA(*UI
, GV
))
459 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
460 /// variable. This opens the door for other optimizations by exposing the
461 /// behavior of the program in a more fine-grained way. We have determined that
462 /// this transformation is safe already. We return the first global variable we
463 /// insert so that the caller can reprocess it.
464 static GlobalVariable
*SRAGlobal(GlobalVariable
*GV
, const TargetData
&TD
) {
465 // Make sure this global only has simple uses that we can SRA.
466 if (!GlobalUsersSafeToSRA(GV
))
469 assert(GV
->hasLocalLinkage() && !GV
->isConstant());
470 Constant
*Init
= GV
->getInitializer();
471 const Type
*Ty
= Init
->getType();
473 std::vector
<GlobalVariable
*> NewGlobals
;
474 Module::GlobalListType
&Globals
= GV
->getParent()->getGlobalList();
476 // Get the alignment of the global, either explicit or target-specific.
477 unsigned StartAlignment
= GV
->getAlignment();
478 if (StartAlignment
== 0)
479 StartAlignment
= TD
.getABITypeAlignment(GV
->getType());
481 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
482 NewGlobals
.reserve(STy
->getNumElements());
483 const StructLayout
&Layout
= *TD
.getStructLayout(STy
);
484 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
485 Constant
*In
= getAggregateConstantElement(Init
,
486 ConstantInt::get(Type::Int32Ty
, i
));
487 assert(In
&& "Couldn't get element of initializer?");
488 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(i
), false,
489 GlobalVariable::InternalLinkage
,
490 In
, GV
->getName()+"."+utostr(i
),
493 GV
->getType()->getAddressSpace());
494 Globals
.insert(GV
, NGV
);
495 NewGlobals
.push_back(NGV
);
497 // Calculate the known alignment of the field. If the original aggregate
498 // had 256 byte alignment for example, something might depend on that:
499 // propagate info to each field.
500 uint64_t FieldOffset
= Layout
.getElementOffset(i
);
501 unsigned NewAlign
= (unsigned)MinAlign(StartAlignment
, FieldOffset
);
502 if (NewAlign
> TD
.getABITypeAlignment(STy
->getElementType(i
)))
503 NGV
->setAlignment(NewAlign
);
505 } else if (const SequentialType
*STy
= dyn_cast
<SequentialType
>(Ty
)) {
506 unsigned NumElements
= 0;
507 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(STy
))
508 NumElements
= ATy
->getNumElements();
510 NumElements
= cast
<VectorType
>(STy
)->getNumElements();
512 if (NumElements
> 16 && GV
->hasNUsesOrMore(16))
513 return 0; // It's not worth it.
514 NewGlobals
.reserve(NumElements
);
516 uint64_t EltSize
= TD
.getTypeAllocSize(STy
->getElementType());
517 unsigned EltAlign
= TD
.getABITypeAlignment(STy
->getElementType());
518 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
519 Constant
*In
= getAggregateConstantElement(Init
,
520 ConstantInt::get(Type::Int32Ty
, i
));
521 assert(In
&& "Couldn't get element of initializer?");
523 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(), false,
524 GlobalVariable::InternalLinkage
,
525 In
, GV
->getName()+"."+utostr(i
),
528 GV
->getType()->getAddressSpace());
529 Globals
.insert(GV
, NGV
);
530 NewGlobals
.push_back(NGV
);
532 // Calculate the known alignment of the field. If the original aggregate
533 // had 256 byte alignment for example, something might depend on that:
534 // propagate info to each field.
535 unsigned NewAlign
= (unsigned)MinAlign(StartAlignment
, EltSize
*i
);
536 if (NewAlign
> EltAlign
)
537 NGV
->setAlignment(NewAlign
);
541 if (NewGlobals
.empty())
544 DOUT
<< "PERFORMING GLOBAL SRA ON: " << *GV
;
546 Constant
*NullInt
= Constant::getNullValue(Type::Int32Ty
);
548 // Loop over all of the uses of the global, replacing the constantexpr geps,
549 // with smaller constantexpr geps or direct references.
550 while (!GV
->use_empty()) {
551 User
*GEP
= GV
->use_back();
552 assert(((isa
<ConstantExpr
>(GEP
) &&
553 cast
<ConstantExpr
>(GEP
)->getOpcode()==Instruction::GetElementPtr
)||
554 isa
<GetElementPtrInst
>(GEP
)) && "NonGEP CE's are not SRAable!");
556 // Ignore the 1th operand, which has to be zero or else the program is quite
557 // broken (undefined). Get the 2nd operand, which is the structure or array
559 unsigned Val
= cast
<ConstantInt
>(GEP
->getOperand(2))->getZExtValue();
560 if (Val
>= NewGlobals
.size()) Val
= 0; // Out of bound array access.
562 Value
*NewPtr
= NewGlobals
[Val
];
564 // Form a shorter GEP if needed.
565 if (GEP
->getNumOperands() > 3) {
566 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GEP
)) {
567 SmallVector
<Constant
*, 8> Idxs
;
568 Idxs
.push_back(NullInt
);
569 for (unsigned i
= 3, e
= CE
->getNumOperands(); i
!= e
; ++i
)
570 Idxs
.push_back(CE
->getOperand(i
));
571 NewPtr
= ConstantExpr::getGetElementPtr(cast
<Constant
>(NewPtr
),
572 &Idxs
[0], Idxs
.size());
574 GetElementPtrInst
*GEPI
= cast
<GetElementPtrInst
>(GEP
);
575 SmallVector
<Value
*, 8> Idxs
;
576 Idxs
.push_back(NullInt
);
577 for (unsigned i
= 3, e
= GEPI
->getNumOperands(); i
!= e
; ++i
)
578 Idxs
.push_back(GEPI
->getOperand(i
));
579 NewPtr
= GetElementPtrInst::Create(NewPtr
, Idxs
.begin(), Idxs
.end(),
580 GEPI
->getName()+"."+utostr(Val
), GEPI
);
583 GEP
->replaceAllUsesWith(NewPtr
);
585 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(GEP
))
586 GEPI
->eraseFromParent();
588 cast
<ConstantExpr
>(GEP
)->destroyConstant();
591 // Delete the old global, now that it is dead.
595 // Loop over the new globals array deleting any globals that are obviously
596 // dead. This can arise due to scalarization of a structure or an array that
597 // has elements that are dead.
598 unsigned FirstGlobal
= 0;
599 for (unsigned i
= 0, e
= NewGlobals
.size(); i
!= e
; ++i
)
600 if (NewGlobals
[i
]->use_empty()) {
601 Globals
.erase(NewGlobals
[i
]);
602 if (FirstGlobal
== i
) ++FirstGlobal
;
605 return FirstGlobal
!= NewGlobals
.size() ? NewGlobals
[FirstGlobal
] : 0;
608 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
609 /// value will trap if the value is dynamically null. PHIs keeps track of any
610 /// phi nodes we've seen to avoid reprocessing them.
611 static bool AllUsesOfValueWillTrapIfNull(Value
*V
,
612 SmallPtrSet
<PHINode
*, 8> &PHIs
) {
613 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
614 if (isa
<LoadInst
>(*UI
)) {
616 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
617 if (SI
->getOperand(0) == V
) {
618 //cerr << "NONTRAPPING USE: " << **UI;
619 return false; // Storing the value.
621 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(*UI
)) {
622 if (CI
->getOperand(0) != V
) {
623 //cerr << "NONTRAPPING USE: " << **UI;
624 return false; // Not calling the ptr
626 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(*UI
)) {
627 if (II
->getOperand(0) != V
) {
628 //cerr << "NONTRAPPING USE: " << **UI;
629 return false; // Not calling the ptr
631 } else if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(*UI
)) {
632 if (!AllUsesOfValueWillTrapIfNull(CI
, PHIs
)) return false;
633 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(*UI
)) {
634 if (!AllUsesOfValueWillTrapIfNull(GEPI
, PHIs
)) return false;
635 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(*UI
)) {
636 // If we've already seen this phi node, ignore it, it has already been
639 return AllUsesOfValueWillTrapIfNull(PN
, PHIs
);
640 } else if (isa
<ICmpInst
>(*UI
) &&
641 isa
<ConstantPointerNull
>(UI
->getOperand(1))) {
642 // Ignore setcc X, null
644 //cerr << "NONTRAPPING USE: " << **UI;
650 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
651 /// from GV will trap if the loaded value is null. Note that this also permits
652 /// comparisons of the loaded value against null, as a special case.
653 static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable
*GV
) {
654 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end(); UI
!=E
; ++UI
)
655 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
656 SmallPtrSet
<PHINode
*, 8> PHIs
;
657 if (!AllUsesOfValueWillTrapIfNull(LI
, PHIs
))
659 } else if (isa
<StoreInst
>(*UI
)) {
660 // Ignore stores to the global.
662 // We don't know or understand this user, bail out.
663 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
670 static bool OptimizeAwayTrappingUsesOfValue(Value
*V
, Constant
*NewV
) {
671 bool Changed
= false;
672 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ) {
673 Instruction
*I
= cast
<Instruction
>(*UI
++);
674 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
675 LI
->setOperand(0, NewV
);
677 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
678 if (SI
->getOperand(1) == V
) {
679 SI
->setOperand(1, NewV
);
682 } else if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
683 if (I
->getOperand(0) == V
) {
684 // Calling through the pointer! Turn into a direct call, but be careful
685 // that the pointer is not also being passed as an argument.
686 I
->setOperand(0, NewV
);
688 bool PassedAsArg
= false;
689 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
)
690 if (I
->getOperand(i
) == V
) {
692 I
->setOperand(i
, NewV
);
696 // Being passed as an argument also. Be careful to not invalidate UI!
700 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
701 Changed
|= OptimizeAwayTrappingUsesOfValue(CI
,
702 ConstantExpr::getCast(CI
->getOpcode(),
703 NewV
, CI
->getType()));
704 if (CI
->use_empty()) {
706 CI
->eraseFromParent();
708 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
709 // Should handle GEP here.
710 SmallVector
<Constant
*, 8> Idxs
;
711 Idxs
.reserve(GEPI
->getNumOperands()-1);
712 for (User::op_iterator i
= GEPI
->op_begin() + 1, e
= GEPI
->op_end();
714 if (Constant
*C
= dyn_cast
<Constant
>(*i
))
718 if (Idxs
.size() == GEPI
->getNumOperands()-1)
719 Changed
|= OptimizeAwayTrappingUsesOfValue(GEPI
,
720 ConstantExpr::getGetElementPtr(NewV
, &Idxs
[0],
722 if (GEPI
->use_empty()) {
724 GEPI
->eraseFromParent();
733 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
734 /// value stored into it. If there are uses of the loaded value that would trap
735 /// if the loaded value is dynamically null, then we know that they cannot be
736 /// reachable with a null optimize away the load.
737 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable
*GV
, Constant
*LV
) {
738 bool Changed
= false;
740 // Keep track of whether we are able to remove all the uses of the global
741 // other than the store that defines it.
742 bool AllNonStoreUsesGone
= true;
744 // Replace all uses of loads with uses of uses of the stored value.
745 for (Value::use_iterator GUI
= GV
->use_begin(), E
= GV
->use_end(); GUI
!= E
;){
746 User
*GlobalUser
= *GUI
++;
747 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(GlobalUser
)) {
748 Changed
|= OptimizeAwayTrappingUsesOfValue(LI
, LV
);
749 // If we were able to delete all uses of the loads
750 if (LI
->use_empty()) {
751 LI
->eraseFromParent();
754 AllNonStoreUsesGone
= false;
756 } else if (isa
<StoreInst
>(GlobalUser
)) {
757 // Ignore the store that stores "LV" to the global.
758 assert(GlobalUser
->getOperand(1) == GV
&&
759 "Must be storing *to* the global");
761 AllNonStoreUsesGone
= false;
763 // If we get here we could have other crazy uses that are transitively
765 assert((isa
<PHINode
>(GlobalUser
) || isa
<SelectInst
>(GlobalUser
) ||
766 isa
<ConstantExpr
>(GlobalUser
)) && "Only expect load and stores!");
771 DOUT
<< "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
;
775 // If we nuked all of the loads, then none of the stores are needed either,
776 // nor is the global.
777 if (AllNonStoreUsesGone
) {
778 DOUT
<< " *** GLOBAL NOW DEAD!\n";
779 CleanupConstantGlobalUsers(GV
, 0);
780 if (GV
->use_empty()) {
781 GV
->eraseFromParent();
789 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
790 /// instructions that are foldable.
791 static void ConstantPropUsersOf(Value
*V
) {
792 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; )
793 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
++))
794 if (Constant
*NewC
= ConstantFoldInstruction(I
)) {
795 I
->replaceAllUsesWith(NewC
);
797 // Advance UI to the next non-I use to avoid invalidating it!
798 // Instructions could multiply use V.
799 while (UI
!= E
&& *UI
== I
)
801 I
->eraseFromParent();
805 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
806 /// variable, and transforms the program as if it always contained the result of
807 /// the specified malloc. Because it is always the result of the specified
808 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
809 /// malloc into a global, and any loads of GV as uses of the new global.
810 static GlobalVariable
*OptimizeGlobalAddressOfMalloc(GlobalVariable
*GV
,
812 DOUT
<< "PROMOTING MALLOC GLOBAL: " << *GV
<< " MALLOC = " << *MI
;
813 ConstantInt
*NElements
= cast
<ConstantInt
>(MI
->getArraySize());
815 if (NElements
->getZExtValue() != 1) {
816 // If we have an array allocation, transform it to a single element
817 // allocation to make the code below simpler.
818 Type
*NewTy
= ArrayType::get(MI
->getAllocatedType(),
819 NElements
->getZExtValue());
821 new MallocInst(NewTy
, Constant::getNullValue(Type::Int32Ty
),
822 MI
->getAlignment(), MI
->getName(), MI
);
824 Indices
[0] = Indices
[1] = Constant::getNullValue(Type::Int32Ty
);
825 Value
*NewGEP
= GetElementPtrInst::Create(NewMI
, Indices
, Indices
+ 2,
826 NewMI
->getName()+".el0", MI
);
827 MI
->replaceAllUsesWith(NewGEP
);
828 MI
->eraseFromParent();
832 // Create the new global variable. The contents of the malloc'd memory is
833 // undefined, so initialize with an undef value.
834 Constant
*Init
= UndefValue::get(MI
->getAllocatedType());
835 GlobalVariable
*NewGV
= new GlobalVariable(MI
->getAllocatedType(), false,
836 GlobalValue::InternalLinkage
, Init
,
837 GV
->getName()+".body",
839 GV
->isThreadLocal());
840 // FIXME: This new global should have the alignment returned by malloc. Code
841 // could depend on malloc returning large alignment (on the mac, 16 bytes) but
842 // this would only guarantee some lower alignment.
843 GV
->getParent()->getGlobalList().insert(GV
, NewGV
);
845 // Anything that used the malloc now uses the global directly.
846 MI
->replaceAllUsesWith(NewGV
);
848 Constant
*RepValue
= NewGV
;
849 if (NewGV
->getType() != GV
->getType()->getElementType())
850 RepValue
= ConstantExpr::getBitCast(RepValue
,
851 GV
->getType()->getElementType());
853 // If there is a comparison against null, we will insert a global bool to
854 // keep track of whether the global was initialized yet or not.
855 GlobalVariable
*InitBool
=
856 new GlobalVariable(Type::Int1Ty
, false, GlobalValue::InternalLinkage
,
857 ConstantInt::getFalse(), GV
->getName()+".init",
858 (Module
*)NULL
, GV
->isThreadLocal());
859 bool InitBoolUsed
= false;
861 // Loop over all uses of GV, processing them in turn.
862 std::vector
<StoreInst
*> Stores
;
863 while (!GV
->use_empty())
864 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(GV
->use_back())) {
865 while (!LI
->use_empty()) {
866 Use
&LoadUse
= LI
->use_begin().getUse();
867 if (!isa
<ICmpInst
>(LoadUse
.getUser()))
870 ICmpInst
*CI
= cast
<ICmpInst
>(LoadUse
.getUser());
871 // Replace the cmp X, 0 with a use of the bool value.
872 Value
*LV
= new LoadInst(InitBool
, InitBool
->getName()+".val", CI
);
874 switch (CI
->getPredicate()) {
875 default: assert(0 && "Unknown ICmp Predicate!");
876 case ICmpInst::ICMP_ULT
:
877 case ICmpInst::ICMP_SLT
:
878 LV
= ConstantInt::getFalse(); // X < null -> always false
880 case ICmpInst::ICMP_ULE
:
881 case ICmpInst::ICMP_SLE
:
882 case ICmpInst::ICMP_EQ
:
883 LV
= BinaryOperator::CreateNot(LV
, "notinit", CI
);
885 case ICmpInst::ICMP_NE
:
886 case ICmpInst::ICMP_UGE
:
887 case ICmpInst::ICMP_SGE
:
888 case ICmpInst::ICMP_UGT
:
889 case ICmpInst::ICMP_SGT
:
892 CI
->replaceAllUsesWith(LV
);
893 CI
->eraseFromParent();
896 LI
->eraseFromParent();
898 StoreInst
*SI
= cast
<StoreInst
>(GV
->use_back());
899 // The global is initialized when the store to it occurs.
900 new StoreInst(ConstantInt::getTrue(), InitBool
, SI
);
901 SI
->eraseFromParent();
904 // If the initialization boolean was used, insert it, otherwise delete it.
906 while (!InitBool
->use_empty()) // Delete initializations
907 cast
<Instruction
>(InitBool
->use_back())->eraseFromParent();
910 GV
->getParent()->getGlobalList().insert(GV
, InitBool
);
913 // Now the GV is dead, nuke it and the malloc.
914 GV
->eraseFromParent();
915 MI
->eraseFromParent();
917 // To further other optimizations, loop over all users of NewGV and try to
918 // constant prop them. This will promote GEP instructions with constant
919 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
920 ConstantPropUsersOf(NewGV
);
921 if (RepValue
!= NewGV
)
922 ConstantPropUsersOf(RepValue
);
927 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
928 /// to make sure that there are no complex uses of V. We permit simple things
929 /// like dereferencing the pointer, but not storing through the address, unless
930 /// it is to the specified global.
931 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction
*V
,
933 SmallPtrSet
<PHINode
*, 8> &PHIs
) {
934 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
935 Instruction
*Inst
= dyn_cast
<Instruction
>(*UI
);
936 if (Inst
== 0) return false;
938 if (isa
<LoadInst
>(Inst
) || isa
<CmpInst
>(Inst
)) {
939 continue; // Fine, ignore.
942 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
943 if (SI
->getOperand(0) == V
&& SI
->getOperand(1) != GV
)
944 return false; // Storing the pointer itself... bad.
945 continue; // Otherwise, storing through it, or storing into GV... fine.
948 if (isa
<GetElementPtrInst
>(Inst
)) {
949 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst
, GV
, PHIs
))
954 if (PHINode
*PN
= dyn_cast
<PHINode
>(Inst
)) {
955 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
958 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN
, GV
, PHIs
))
963 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Inst
)) {
964 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI
, GV
, PHIs
))
974 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
975 /// somewhere. Transform all uses of the allocation into loads from the
976 /// global and uses of the resultant pointer. Further, delete the store into
977 /// GV. This assumes that these value pass the
978 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
979 static void ReplaceUsesOfMallocWithGlobal(Instruction
*Alloc
,
980 GlobalVariable
*GV
) {
981 while (!Alloc
->use_empty()) {
982 Instruction
*U
= cast
<Instruction
>(*Alloc
->use_begin());
983 Instruction
*InsertPt
= U
;
984 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
985 // If this is the store of the allocation into the global, remove it.
986 if (SI
->getOperand(1) == GV
) {
987 SI
->eraseFromParent();
990 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
991 // Insert the load in the corresponding predecessor, not right before the
993 InsertPt
= PN
->getIncomingBlock(Alloc
->use_begin())->getTerminator();
994 } else if (isa
<BitCastInst
>(U
)) {
995 // Must be bitcast between the malloc and store to initialize the global.
996 ReplaceUsesOfMallocWithGlobal(U
, GV
);
997 U
->eraseFromParent();
999 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
1000 // If this is a "GEP bitcast" and the user is a store to the global, then
1001 // just process it as a bitcast.
1002 if (GEPI
->hasAllZeroIndices() && GEPI
->hasOneUse())
1003 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(GEPI
->use_back()))
1004 if (SI
->getOperand(1) == GV
) {
1005 // Must be bitcast GEP between the malloc and store to initialize
1007 ReplaceUsesOfMallocWithGlobal(GEPI
, GV
);
1008 GEPI
->eraseFromParent();
1013 // Insert a load from the global, and use it instead of the malloc.
1014 Value
*NL
= new LoadInst(GV
, GV
->getName()+".val", InsertPt
);
1015 U
->replaceUsesOfWith(Alloc
, NL
);
1019 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1020 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1021 /// that index through the array and struct field, icmps of null, and PHIs.
1022 static bool LoadUsesSimpleEnoughForHeapSRA(Value
*V
,
1023 SmallPtrSet
<PHINode
*, 32> &LoadUsingPHIs
) {
1024 // We permit two users of the load: setcc comparing against the null
1025 // pointer, and a getelementptr of a specific form.
1026 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
1027 Instruction
*User
= cast
<Instruction
>(*UI
);
1029 // Comparison against null is ok.
1030 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(User
)) {
1031 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
1036 // getelementptr is also ok, but only a simple form.
1037 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1038 // Must index into the array and into the struct.
1039 if (GEPI
->getNumOperands() < 3)
1042 // Otherwise the GEP is ok.
1046 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1047 // If we have already recursively analyzed this PHI, then it is safe.
1048 if (LoadUsingPHIs
.insert(PN
))
1051 // Make sure all uses of the PHI are simple enough to transform.
1052 if (!LoadUsesSimpleEnoughForHeapSRA(PN
, LoadUsingPHIs
))
1058 // Otherwise we don't know what this is, not ok.
1066 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1067 /// GV are simple enough to perform HeapSRA, return true.
1068 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable
*GV
,
1070 SmallPtrSet
<PHINode
*, 32> LoadUsingPHIs
;
1071 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end(); UI
!= E
;
1073 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
))
1074 if (!LoadUsesSimpleEnoughForHeapSRA(LI
, LoadUsingPHIs
))
1077 // If we reach here, we know that all uses of the loads and transitive uses
1078 // (through PHI nodes) are simple enough to transform. However, we don't know
1079 // that all inputs the to the PHI nodes are in the same equivalence sets.
1080 // Check to verify that all operands of the PHIs are either PHIS that can be
1081 // transformed, loads from GV, or MI itself.
1082 for (SmallPtrSet
<PHINode
*, 32>::iterator I
= LoadUsingPHIs
.begin(),
1083 E
= LoadUsingPHIs
.end(); I
!= E
; ++I
) {
1085 for (unsigned op
= 0, e
= PN
->getNumIncomingValues(); op
!= e
; ++op
) {
1086 Value
*InVal
= PN
->getIncomingValue(op
);
1088 // PHI of the stored value itself is ok.
1089 if (InVal
== MI
) continue;
1091 if (PHINode
*InPN
= dyn_cast
<PHINode
>(InVal
)) {
1092 // One of the PHIs in our set is (optimistically) ok.
1093 if (LoadUsingPHIs
.count(InPN
))
1098 // Load from GV is ok.
1099 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(InVal
))
1100 if (LI
->getOperand(0) == GV
)
1105 // Anything else is rejected.
1113 static Value
*GetHeapSROAValue(Value
*V
, unsigned FieldNo
,
1114 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1115 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1116 std::vector
<Value
*> &FieldVals
= InsertedScalarizedValues
[V
];
1118 if (FieldNo
>= FieldVals
.size())
1119 FieldVals
.resize(FieldNo
+1);
1121 // If we already have this value, just reuse the previously scalarized
1123 if (Value
*FieldVal
= FieldVals
[FieldNo
])
1126 // Depending on what instruction this is, we have several cases.
1128 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(V
)) {
1129 // This is a scalarized version of the load from the global. Just create
1130 // a new Load of the scalarized global.
1131 Result
= new LoadInst(GetHeapSROAValue(LI
->getOperand(0), FieldNo
,
1132 InsertedScalarizedValues
,
1134 LI
->getName()+".f" + utostr(FieldNo
), LI
);
1135 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
1136 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1138 const StructType
*ST
=
1139 cast
<StructType
>(cast
<PointerType
>(PN
->getType())->getElementType());
1141 Result
=PHINode::Create(PointerType::getUnqual(ST
->getElementType(FieldNo
)),
1142 PN
->getName()+".f"+utostr(FieldNo
), PN
);
1143 PHIsToRewrite
.push_back(std::make_pair(PN
, FieldNo
));
1145 assert(0 && "Unknown usable value");
1149 return FieldVals
[FieldNo
] = Result
;
1152 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1153 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1154 static void RewriteHeapSROALoadUser(Instruction
*LoadUser
,
1155 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1156 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1157 // If this is a comparison against null, handle it.
1158 if (ICmpInst
*SCI
= dyn_cast
<ICmpInst
>(LoadUser
)) {
1159 assert(isa
<ConstantPointerNull
>(SCI
->getOperand(1)));
1160 // If we have a setcc of the loaded pointer, we can use a setcc of any
1162 Value
*NPtr
= GetHeapSROAValue(SCI
->getOperand(0), 0,
1163 InsertedScalarizedValues
, PHIsToRewrite
);
1165 Value
*New
= new ICmpInst(SCI
->getPredicate(), NPtr
,
1166 Constant::getNullValue(NPtr
->getType()),
1167 SCI
->getName(), SCI
);
1168 SCI
->replaceAllUsesWith(New
);
1169 SCI
->eraseFromParent();
1173 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1174 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(LoadUser
)) {
1175 assert(GEPI
->getNumOperands() >= 3 && isa
<ConstantInt
>(GEPI
->getOperand(2))
1176 && "Unexpected GEPI!");
1178 // Load the pointer for this field.
1179 unsigned FieldNo
= cast
<ConstantInt
>(GEPI
->getOperand(2))->getZExtValue();
1180 Value
*NewPtr
= GetHeapSROAValue(GEPI
->getOperand(0), FieldNo
,
1181 InsertedScalarizedValues
, PHIsToRewrite
);
1183 // Create the new GEP idx vector.
1184 SmallVector
<Value
*, 8> GEPIdx
;
1185 GEPIdx
.push_back(GEPI
->getOperand(1));
1186 GEPIdx
.append(GEPI
->op_begin()+3, GEPI
->op_end());
1188 Value
*NGEPI
= GetElementPtrInst::Create(NewPtr
,
1189 GEPIdx
.begin(), GEPIdx
.end(),
1190 GEPI
->getName(), GEPI
);
1191 GEPI
->replaceAllUsesWith(NGEPI
);
1192 GEPI
->eraseFromParent();
1196 // Recursively transform the users of PHI nodes. This will lazily create the
1197 // PHIs that are needed for individual elements. Keep track of what PHIs we
1198 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1199 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1200 // already been seen first by another load, so its uses have already been
1202 PHINode
*PN
= cast
<PHINode
>(LoadUser
);
1204 DenseMap
<Value
*, std::vector
<Value
*> >::iterator InsertPos
;
1205 tie(InsertPos
, Inserted
) =
1206 InsertedScalarizedValues
.insert(std::make_pair(PN
, std::vector
<Value
*>()));
1207 if (!Inserted
) return;
1209 // If this is the first time we've seen this PHI, recursively process all
1211 for (Value::use_iterator UI
= PN
->use_begin(), E
= PN
->use_end(); UI
!= E
; ) {
1212 Instruction
*User
= cast
<Instruction
>(*UI
++);
1213 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1217 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1218 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1219 /// use FieldGlobals instead. All uses of loaded values satisfy
1220 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1221 static void RewriteUsesOfLoadForHeapSRoA(LoadInst
*Load
,
1222 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1223 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1224 for (Value::use_iterator UI
= Load
->use_begin(), E
= Load
->use_end();
1226 Instruction
*User
= cast
<Instruction
>(*UI
++);
1227 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1230 if (Load
->use_empty()) {
1231 Load
->eraseFromParent();
1232 InsertedScalarizedValues
.erase(Load
);
1236 /// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
1237 /// it up into multiple allocations of arrays of the fields.
1238 static GlobalVariable
*PerformHeapAllocSRoA(GlobalVariable
*GV
, MallocInst
*MI
){
1239 DOUT
<< "SROA HEAP ALLOC: " << *GV
<< " MALLOC = " << *MI
;
1240 const StructType
*STy
= cast
<StructType
>(MI
->getAllocatedType());
1242 // There is guaranteed to be at least one use of the malloc (storing
1243 // it into GV). If there are other uses, change them to be uses of
1244 // the global to simplify later code. This also deletes the store
1246 ReplaceUsesOfMallocWithGlobal(MI
, GV
);
1248 // Okay, at this point, there are no users of the malloc. Insert N
1249 // new mallocs at the same place as MI, and N globals.
1250 std::vector
<Value
*> FieldGlobals
;
1251 std::vector
<MallocInst
*> FieldMallocs
;
1253 for (unsigned FieldNo
= 0, e
= STy
->getNumElements(); FieldNo
!= e
;++FieldNo
){
1254 const Type
*FieldTy
= STy
->getElementType(FieldNo
);
1255 const Type
*PFieldTy
= PointerType::getUnqual(FieldTy
);
1257 GlobalVariable
*NGV
=
1258 new GlobalVariable(PFieldTy
, false, GlobalValue::InternalLinkage
,
1259 Constant::getNullValue(PFieldTy
),
1260 GV
->getName() + ".f" + utostr(FieldNo
), GV
,
1261 GV
->isThreadLocal());
1262 FieldGlobals
.push_back(NGV
);
1264 MallocInst
*NMI
= new MallocInst(FieldTy
, MI
->getArraySize(),
1265 MI
->getName() + ".f" + utostr(FieldNo
),MI
);
1266 FieldMallocs
.push_back(NMI
);
1267 new StoreInst(NMI
, NGV
, MI
);
1270 // The tricky aspect of this transformation is handling the case when malloc
1271 // fails. In the original code, malloc failing would set the result pointer
1272 // of malloc to null. In this case, some mallocs could succeed and others
1273 // could fail. As such, we emit code that looks like this:
1274 // F0 = malloc(field0)
1275 // F1 = malloc(field1)
1276 // F2 = malloc(field2)
1277 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1278 // if (F0) { free(F0); F0 = 0; }
1279 // if (F1) { free(F1); F1 = 0; }
1280 // if (F2) { free(F2); F2 = 0; }
1282 Value
*RunningOr
= 0;
1283 for (unsigned i
= 0, e
= FieldMallocs
.size(); i
!= e
; ++i
) {
1284 Value
*Cond
= new ICmpInst(ICmpInst::ICMP_EQ
, FieldMallocs
[i
],
1285 Constant::getNullValue(FieldMallocs
[i
]->getType()),
1288 RunningOr
= Cond
; // First seteq
1290 RunningOr
= BinaryOperator::CreateOr(RunningOr
, Cond
, "tmp", MI
);
1293 // Split the basic block at the old malloc.
1294 BasicBlock
*OrigBB
= MI
->getParent();
1295 BasicBlock
*ContBB
= OrigBB
->splitBasicBlock(MI
, "malloc_cont");
1297 // Create the block to check the first condition. Put all these blocks at the
1298 // end of the function as they are unlikely to be executed.
1299 BasicBlock
*NullPtrBlock
= BasicBlock::Create("malloc_ret_null",
1300 OrigBB
->getParent());
1302 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1303 // branch on RunningOr.
1304 OrigBB
->getTerminator()->eraseFromParent();
1305 BranchInst::Create(NullPtrBlock
, ContBB
, RunningOr
, OrigBB
);
1307 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1308 // pointer, because some may be null while others are not.
1309 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1310 Value
*GVVal
= new LoadInst(FieldGlobals
[i
], "tmp", NullPtrBlock
);
1311 Value
*Cmp
= new ICmpInst(ICmpInst::ICMP_NE
, GVVal
,
1312 Constant::getNullValue(GVVal
->getType()),
1313 "tmp", NullPtrBlock
);
1314 BasicBlock
*FreeBlock
= BasicBlock::Create("free_it", OrigBB
->getParent());
1315 BasicBlock
*NextBlock
= BasicBlock::Create("next", OrigBB
->getParent());
1316 BranchInst::Create(FreeBlock
, NextBlock
, Cmp
, NullPtrBlock
);
1318 // Fill in FreeBlock.
1319 new FreeInst(GVVal
, FreeBlock
);
1320 new StoreInst(Constant::getNullValue(GVVal
->getType()), FieldGlobals
[i
],
1322 BranchInst::Create(NextBlock
, FreeBlock
);
1324 NullPtrBlock
= NextBlock
;
1327 BranchInst::Create(ContBB
, NullPtrBlock
);
1329 // MI is no longer needed, remove it.
1330 MI
->eraseFromParent();
1332 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1333 /// update all uses of the load, keep track of what scalarized loads are
1334 /// inserted for a given load.
1335 DenseMap
<Value
*, std::vector
<Value
*> > InsertedScalarizedValues
;
1336 InsertedScalarizedValues
[GV
] = FieldGlobals
;
1338 std::vector
<std::pair
<PHINode
*, unsigned> > PHIsToRewrite
;
1340 // Okay, the malloc site is completely handled. All of the uses of GV are now
1341 // loads, and all uses of those loads are simple. Rewrite them to use loads
1342 // of the per-field globals instead.
1343 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end(); UI
!= E
;) {
1344 Instruction
*User
= cast
<Instruction
>(*UI
++);
1346 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1347 RewriteUsesOfLoadForHeapSRoA(LI
, InsertedScalarizedValues
, PHIsToRewrite
);
1351 // Must be a store of null.
1352 StoreInst
*SI
= cast
<StoreInst
>(User
);
1353 assert(isa
<ConstantPointerNull
>(SI
->getOperand(0)) &&
1354 "Unexpected heap-sra user!");
1356 // Insert a store of null into each global.
1357 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1358 const PointerType
*PT
= cast
<PointerType
>(FieldGlobals
[i
]->getType());
1359 Constant
*Null
= Constant::getNullValue(PT
->getElementType());
1360 new StoreInst(Null
, FieldGlobals
[i
], SI
);
1362 // Erase the original store.
1363 SI
->eraseFromParent();
1366 // While we have PHIs that are interesting to rewrite, do it.
1367 while (!PHIsToRewrite
.empty()) {
1368 PHINode
*PN
= PHIsToRewrite
.back().first
;
1369 unsigned FieldNo
= PHIsToRewrite
.back().second
;
1370 PHIsToRewrite
.pop_back();
1371 PHINode
*FieldPN
= cast
<PHINode
>(InsertedScalarizedValues
[PN
][FieldNo
]);
1372 assert(FieldPN
->getNumIncomingValues() == 0 &&"Already processed this phi");
1374 // Add all the incoming values. This can materialize more phis.
1375 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1376 Value
*InVal
= PN
->getIncomingValue(i
);
1377 InVal
= GetHeapSROAValue(InVal
, FieldNo
, InsertedScalarizedValues
,
1379 FieldPN
->addIncoming(InVal
, PN
->getIncomingBlock(i
));
1383 // Drop all inter-phi links and any loads that made it this far.
1384 for (DenseMap
<Value
*, std::vector
<Value
*> >::iterator
1385 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1387 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1388 PN
->dropAllReferences();
1389 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1390 LI
->dropAllReferences();
1393 // Delete all the phis and loads now that inter-references are dead.
1394 for (DenseMap
<Value
*, std::vector
<Value
*> >::iterator
1395 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1397 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1398 PN
->eraseFromParent();
1399 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1400 LI
->eraseFromParent();
1403 // The old global is now dead, remove it.
1404 GV
->eraseFromParent();
1407 return cast
<GlobalVariable
>(FieldGlobals
[0]);
1410 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1411 /// pointer global variable with a single value stored it that is a malloc or
1413 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable
*GV
,
1415 Module::global_iterator
&GVI
,
1417 // If this is a malloc of an abstract type, don't touch it.
1418 if (!MI
->getAllocatedType()->isSized())
1421 // We can't optimize this global unless all uses of it are *known* to be
1422 // of the malloc value, not of the null initializer value (consider a use
1423 // that compares the global's value against zero to see if the malloc has
1424 // been reached). To do this, we check to see if all uses of the global
1425 // would trap if the global were null: this proves that they must all
1426 // happen after the malloc.
1427 if (!AllUsesOfLoadedValueWillTrapIfNull(GV
))
1430 // We can't optimize this if the malloc itself is used in a complex way,
1431 // for example, being stored into multiple globals. This allows the
1432 // malloc to be stored into the specified global, loaded setcc'd, and
1433 // GEP'd. These are all things we could transform to using the global
1436 SmallPtrSet
<PHINode
*, 8> PHIs
;
1437 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI
, GV
, PHIs
))
1442 // If we have a global that is only initialized with a fixed size malloc,
1443 // transform the program to use global memory instead of malloc'd memory.
1444 // This eliminates dynamic allocation, avoids an indirection accessing the
1445 // data, and exposes the resultant global to further GlobalOpt.
1446 if (ConstantInt
*NElements
= dyn_cast
<ConstantInt
>(MI
->getArraySize())) {
1447 // Restrict this transformation to only working on small allocations
1448 // (2048 bytes currently), as we don't want to introduce a 16M global or
1450 if (NElements
->getZExtValue()*
1451 TD
.getTypeAllocSize(MI
->getAllocatedType()) < 2048) {
1452 GVI
= OptimizeGlobalAddressOfMalloc(GV
, MI
);
1457 // If the allocation is an array of structures, consider transforming this
1458 // into multiple malloc'd arrays, one for each field. This is basically
1459 // SRoA for malloc'd memory.
1460 const Type
*AllocTy
= MI
->getAllocatedType();
1462 // If this is an allocation of a fixed size array of structs, analyze as a
1463 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1464 if (!MI
->isArrayAllocation())
1465 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(AllocTy
))
1466 AllocTy
= AT
->getElementType();
1468 if (const StructType
*AllocSTy
= dyn_cast
<StructType
>(AllocTy
)) {
1469 // This the structure has an unreasonable number of fields, leave it
1471 if (AllocSTy
->getNumElements() <= 16 && AllocSTy
->getNumElements() != 0 &&
1472 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV
, MI
)) {
1474 // If this is a fixed size array, transform the Malloc to be an alloc of
1475 // structs. malloc [100 x struct],1 -> malloc struct, 100
1476 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(MI
->getAllocatedType())) {
1478 new MallocInst(AllocSTy
,
1479 ConstantInt::get(Type::Int32Ty
, AT
->getNumElements()),
1481 NewMI
->takeName(MI
);
1482 Value
*Cast
= new BitCastInst(NewMI
, MI
->getType(), "tmp", MI
);
1483 MI
->replaceAllUsesWith(Cast
);
1484 MI
->eraseFromParent();
1488 GVI
= PerformHeapAllocSRoA(GV
, MI
);
1496 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1497 // that only one value (besides its initializer) is ever stored to the global.
1498 static bool OptimizeOnceStoredGlobal(GlobalVariable
*GV
, Value
*StoredOnceVal
,
1499 Module::global_iterator
&GVI
,
1501 // Ignore no-op GEPs and bitcasts.
1502 StoredOnceVal
= StoredOnceVal
->stripPointerCasts();
1504 // If we are dealing with a pointer global that is initialized to null and
1505 // only has one (non-null) value stored into it, then we can optimize any
1506 // users of the loaded value (often calls and loads) that would trap if the
1508 if (isa
<PointerType
>(GV
->getInitializer()->getType()) &&
1509 GV
->getInitializer()->isNullValue()) {
1510 if (Constant
*SOVC
= dyn_cast
<Constant
>(StoredOnceVal
)) {
1511 if (GV
->getInitializer()->getType() != SOVC
->getType())
1512 SOVC
= ConstantExpr::getBitCast(SOVC
, GV
->getInitializer()->getType());
1514 // Optimize away any trapping uses of the loaded value.
1515 if (OptimizeAwayTrappingUsesOfLoads(GV
, SOVC
))
1517 } else if (MallocInst
*MI
= dyn_cast
<MallocInst
>(StoredOnceVal
)) {
1518 if (TryToOptimizeStoreOfMallocToGlobal(GV
, MI
, GVI
, TD
))
1526 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1527 /// two values ever stored into GV are its initializer and OtherVal. See if we
1528 /// can shrink the global into a boolean and select between the two values
1529 /// whenever it is used. This exposes the values to other scalar optimizations.
1530 static bool TryToShrinkGlobalToBoolean(GlobalVariable
*GV
, Constant
*OtherVal
) {
1531 const Type
*GVElType
= GV
->getType()->getElementType();
1533 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1534 // an FP value, pointer or vector, don't do this optimization because a select
1535 // between them is very expensive and unlikely to lead to later
1536 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1537 // where v1 and v2 both require constant pool loads, a big loss.
1538 if (GVElType
== Type::Int1Ty
|| GVElType
->isFloatingPoint() ||
1539 isa
<PointerType
>(GVElType
) || isa
<VectorType
>(GVElType
))
1542 // Walk the use list of the global seeing if all the uses are load or store.
1543 // If there is anything else, bail out.
1544 for (Value::use_iterator I
= GV
->use_begin(), E
= GV
->use_end(); I
!= E
; ++I
)
1545 if (!isa
<LoadInst
>(I
) && !isa
<StoreInst
>(I
))
1548 DOUT
<< " *** SHRINKING TO BOOL: " << *GV
;
1550 // Create the new global, initializing it to false.
1551 GlobalVariable
*NewGV
= new GlobalVariable(Type::Int1Ty
, false,
1552 GlobalValue::InternalLinkage
, ConstantInt::getFalse(),
1555 GV
->isThreadLocal());
1556 GV
->getParent()->getGlobalList().insert(GV
, NewGV
);
1558 Constant
*InitVal
= GV
->getInitializer();
1559 assert(InitVal
->getType() != Type::Int1Ty
&& "No reason to shrink to bool!");
1561 // If initialized to zero and storing one into the global, we can use a cast
1562 // instead of a select to synthesize the desired value.
1563 bool IsOneZero
= false;
1564 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
))
1565 IsOneZero
= InitVal
->isNullValue() && CI
->isOne();
1567 while (!GV
->use_empty()) {
1568 Instruction
*UI
= cast
<Instruction
>(GV
->use_back());
1569 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
1570 // Change the store into a boolean store.
1571 bool StoringOther
= SI
->getOperand(0) == OtherVal
;
1572 // Only do this if we weren't storing a loaded value.
1574 if (StoringOther
|| SI
->getOperand(0) == InitVal
)
1575 StoreVal
= ConstantInt::get(Type::Int1Ty
, StoringOther
);
1577 // Otherwise, we are storing a previously loaded copy. To do this,
1578 // change the copy from copying the original value to just copying the
1580 Instruction
*StoredVal
= cast
<Instruction
>(SI
->getOperand(0));
1582 // If we're already replaced the input, StoredVal will be a cast or
1583 // select instruction. If not, it will be a load of the original
1585 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(StoredVal
)) {
1586 assert(LI
->getOperand(0) == GV
&& "Not a copy!");
1587 // Insert a new load, to preserve the saved value.
1588 StoreVal
= new LoadInst(NewGV
, LI
->getName()+".b", LI
);
1590 assert((isa
<CastInst
>(StoredVal
) || isa
<SelectInst
>(StoredVal
)) &&
1591 "This is not a form that we understand!");
1592 StoreVal
= StoredVal
->getOperand(0);
1593 assert(isa
<LoadInst
>(StoreVal
) && "Not a load of NewGV!");
1596 new StoreInst(StoreVal
, NewGV
, SI
);
1598 // Change the load into a load of bool then a select.
1599 LoadInst
*LI
= cast
<LoadInst
>(UI
);
1600 LoadInst
*NLI
= new LoadInst(NewGV
, LI
->getName()+".b", LI
);
1603 NSI
= new ZExtInst(NLI
, LI
->getType(), "", LI
);
1605 NSI
= SelectInst::Create(NLI
, OtherVal
, InitVal
, "", LI
);
1607 LI
->replaceAllUsesWith(NSI
);
1609 UI
->eraseFromParent();
1612 GV
->eraseFromParent();
1617 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1618 /// it if possible. If we make a change, return true.
1619 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable
*GV
,
1620 Module::global_iterator
&GVI
) {
1621 SmallPtrSet
<PHINode
*, 16> PHIUsers
;
1623 GV
->removeDeadConstantUsers();
1625 if (GV
->use_empty()) {
1626 DOUT
<< "GLOBAL DEAD: " << *GV
;
1627 GV
->eraseFromParent();
1632 if (!AnalyzeGlobal(GV
, GS
, PHIUsers
)) {
1634 cerr
<< "Global: " << *GV
;
1635 cerr
<< " isLoaded = " << GS
.isLoaded
<< "\n";
1636 cerr
<< " StoredType = ";
1637 switch (GS
.StoredType
) {
1638 case GlobalStatus::NotStored
: cerr
<< "NEVER STORED\n"; break;
1639 case GlobalStatus::isInitializerStored
: cerr
<< "INIT STORED\n"; break;
1640 case GlobalStatus::isStoredOnce
: cerr
<< "STORED ONCE\n"; break;
1641 case GlobalStatus::isStored
: cerr
<< "stored\n"; break;
1643 if (GS
.StoredType
== GlobalStatus::isStoredOnce
&& GS
.StoredOnceValue
)
1644 cerr
<< " StoredOnceValue = " << *GS
.StoredOnceValue
<< "\n";
1645 if (GS
.AccessingFunction
&& !GS
.HasMultipleAccessingFunctions
)
1646 cerr
<< " AccessingFunction = " << GS
.AccessingFunction
->getName()
1648 cerr
<< " HasMultipleAccessingFunctions = "
1649 << GS
.HasMultipleAccessingFunctions
<< "\n";
1650 cerr
<< " HasNonInstructionUser = " << GS
.HasNonInstructionUser
<<"\n";
1654 // If this is a first class global and has only one accessing function
1655 // and this function is main (which we know is not recursive we can make
1656 // this global a local variable) we replace the global with a local alloca
1657 // in this function.
1659 // NOTE: It doesn't make sense to promote non single-value types since we
1660 // are just replacing static memory to stack memory.
1661 if (!GS
.HasMultipleAccessingFunctions
&&
1662 GS
.AccessingFunction
&& !GS
.HasNonInstructionUser
&&
1663 GV
->getType()->getElementType()->isSingleValueType() &&
1664 GS
.AccessingFunction
->getName() == "main" &&
1665 GS
.AccessingFunction
->hasExternalLinkage()) {
1666 DOUT
<< "LOCALIZING GLOBAL: " << *GV
;
1667 Instruction
* FirstI
= GS
.AccessingFunction
->getEntryBlock().begin();
1668 const Type
* ElemTy
= GV
->getType()->getElementType();
1669 // FIXME: Pass Global's alignment when globals have alignment
1670 AllocaInst
* Alloca
= new AllocaInst(ElemTy
, NULL
, GV
->getName(), FirstI
);
1671 if (!isa
<UndefValue
>(GV
->getInitializer()))
1672 new StoreInst(GV
->getInitializer(), Alloca
, FirstI
);
1674 GV
->replaceAllUsesWith(Alloca
);
1675 GV
->eraseFromParent();
1680 // If the global is never loaded (but may be stored to), it is dead.
1683 DOUT
<< "GLOBAL NEVER LOADED: " << *GV
;
1685 // Delete any stores we can find to the global. We may not be able to
1686 // make it completely dead though.
1687 bool Changed
= CleanupConstantGlobalUsers(GV
, GV
->getInitializer());
1689 // If the global is dead now, delete it.
1690 if (GV
->use_empty()) {
1691 GV
->eraseFromParent();
1697 } else if (GS
.StoredType
<= GlobalStatus::isInitializerStored
) {
1698 DOUT
<< "MARKING CONSTANT: " << *GV
;
1699 GV
->setConstant(true);
1701 // Clean up any obviously simplifiable users now.
1702 CleanupConstantGlobalUsers(GV
, GV
->getInitializer());
1704 // If the global is dead now, just nuke it.
1705 if (GV
->use_empty()) {
1706 DOUT
<< " *** Marking constant allowed us to simplify "
1707 << "all users and delete global!\n";
1708 GV
->eraseFromParent();
1714 } else if (!GV
->getInitializer()->getType()->isSingleValueType()) {
1715 if (GlobalVariable
*FirstNewGV
= SRAGlobal(GV
,
1716 getAnalysis
<TargetData
>())) {
1717 GVI
= FirstNewGV
; // Don't skip the newly produced globals!
1720 } else if (GS
.StoredType
== GlobalStatus::isStoredOnce
) {
1721 // If the initial value for the global was an undef value, and if only
1722 // one other value was stored into it, we can just change the
1723 // initializer to be the stored value, then delete all stores to the
1724 // global. This allows us to mark it constant.
1725 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
))
1726 if (isa
<UndefValue
>(GV
->getInitializer())) {
1727 // Change the initial value here.
1728 GV
->setInitializer(SOVConstant
);
1730 // Clean up any obviously simplifiable users now.
1731 CleanupConstantGlobalUsers(GV
, GV
->getInitializer());
1733 if (GV
->use_empty()) {
1734 DOUT
<< " *** Substituting initializer allowed us to "
1735 << "simplify all users and delete global!\n";
1736 GV
->eraseFromParent();
1745 // Try to optimize globals based on the knowledge that only one value
1746 // (besides its initializer) is ever stored to the global.
1747 if (OptimizeOnceStoredGlobal(GV
, GS
.StoredOnceValue
, GVI
,
1748 getAnalysis
<TargetData
>()))
1751 // Otherwise, if the global was not a boolean, we can shrink it to be a
1753 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
))
1754 if (TryToShrinkGlobalToBoolean(GV
, SOVConstant
)) {
1763 /// OnlyCalledDirectly - Return true if the specified function is only called
1764 /// directly. In other words, its address is never taken.
1765 static bool OnlyCalledDirectly(Function
*F
) {
1766 for (Value::use_iterator UI
= F
->use_begin(), E
= F
->use_end(); UI
!= E
;++UI
){
1767 Instruction
*User
= dyn_cast
<Instruction
>(*UI
);
1768 if (!User
) return false;
1769 if (!isa
<CallInst
>(User
) && !isa
<InvokeInst
>(User
)) return false;
1771 // See if the function address is passed as an argument.
1772 for (User::op_iterator i
= User
->op_begin() + 1, e
= User
->op_end();
1774 if (*i
== F
) return false;
1779 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1780 /// function, changing them to FastCC.
1781 static void ChangeCalleesToFastCall(Function
*F
) {
1782 for (Value::use_iterator UI
= F
->use_begin(), E
= F
->use_end(); UI
!= E
;++UI
){
1783 CallSite
User(cast
<Instruction
>(*UI
));
1784 User
.setCallingConv(CallingConv::Fast
);
1788 static AttrListPtr
StripNest(const AttrListPtr
&Attrs
) {
1789 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
1790 if ((Attrs
.getSlot(i
).Attrs
& Attribute::Nest
) == 0)
1793 // There can be only one.
1794 return Attrs
.removeAttr(Attrs
.getSlot(i
).Index
, Attribute::Nest
);
1800 static void RemoveNestAttribute(Function
*F
) {
1801 F
->setAttributes(StripNest(F
->getAttributes()));
1802 for (Value::use_iterator UI
= F
->use_begin(), E
= F
->use_end(); UI
!= E
;++UI
){
1803 CallSite
User(cast
<Instruction
>(*UI
));
1804 User
.setAttributes(StripNest(User
.getAttributes()));
1808 bool GlobalOpt::OptimizeFunctions(Module
&M
) {
1809 bool Changed
= false;
1810 // Optimize functions.
1811 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ) {
1813 // Functions without names cannot be referenced outside this module.
1814 if (!F
->hasName() && !F
->isDeclaration())
1815 F
->setLinkage(GlobalValue::InternalLinkage
);
1816 F
->removeDeadConstantUsers();
1817 if (F
->use_empty() && (F
->hasLocalLinkage() ||
1818 F
->hasLinkOnceLinkage())) {
1819 M
.getFunctionList().erase(F
);
1822 } else if (F
->hasLocalLinkage()) {
1823 if (F
->getCallingConv() == CallingConv::C
&& !F
->isVarArg() &&
1824 OnlyCalledDirectly(F
)) {
1825 // If this function has C calling conventions, is not a varargs
1826 // function, and is only called directly, promote it to use the Fast
1827 // calling convention.
1828 F
->setCallingConv(CallingConv::Fast
);
1829 ChangeCalleesToFastCall(F
);
1834 if (F
->getAttributes().hasAttrSomewhere(Attribute::Nest
) &&
1835 OnlyCalledDirectly(F
)) {
1836 // The function is not used by a trampoline intrinsic, so it is safe
1837 // to remove the 'nest' attribute.
1838 RemoveNestAttribute(F
);
1847 bool GlobalOpt::OptimizeGlobalVars(Module
&M
) {
1848 bool Changed
= false;
1849 for (Module::global_iterator GVI
= M
.global_begin(), E
= M
.global_end();
1851 GlobalVariable
*GV
= GVI
++;
1852 // Global variables without names cannot be referenced outside this module.
1853 if (!GV
->hasName() && !GV
->isDeclaration())
1854 GV
->setLinkage(GlobalValue::InternalLinkage
);
1855 if (!GV
->isConstant() && GV
->hasLocalLinkage() &&
1856 GV
->hasInitializer())
1857 Changed
|= ProcessInternalGlobal(GV
, GVI
);
1862 /// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1863 /// initializers have an init priority of 65535.
1864 GlobalVariable
*GlobalOpt::FindGlobalCtors(Module
&M
) {
1865 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1867 if (I
->getName() == "llvm.global_ctors") {
1868 // Found it, verify it's an array of { int, void()* }.
1869 const ArrayType
*ATy
=dyn_cast
<ArrayType
>(I
->getType()->getElementType());
1871 const StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
1872 if (!STy
|| STy
->getNumElements() != 2 ||
1873 STy
->getElementType(0) != Type::Int32Ty
) return 0;
1874 const PointerType
*PFTy
= dyn_cast
<PointerType
>(STy
->getElementType(1));
1875 if (!PFTy
) return 0;
1876 const FunctionType
*FTy
= dyn_cast
<FunctionType
>(PFTy
->getElementType());
1877 if (!FTy
|| FTy
->getReturnType() != Type::VoidTy
|| FTy
->isVarArg() ||
1878 FTy
->getNumParams() != 0)
1881 // Verify that the initializer is simple enough for us to handle.
1882 if (!I
->hasInitializer()) return 0;
1883 ConstantArray
*CA
= dyn_cast
<ConstantArray
>(I
->getInitializer());
1885 for (User::op_iterator i
= CA
->op_begin(), e
= CA
->op_end(); i
!= e
; ++i
)
1886 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(*i
)) {
1887 if (isa
<ConstantPointerNull
>(CS
->getOperand(1)))
1890 // Must have a function or null ptr.
1891 if (!isa
<Function
>(CS
->getOperand(1)))
1894 // Init priority must be standard.
1895 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
1896 if (!CI
|| CI
->getZExtValue() != 65535)
1907 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1908 /// return a list of the functions and null terminator as a vector.
1909 static std::vector
<Function
*> ParseGlobalCtors(GlobalVariable
*GV
) {
1910 ConstantArray
*CA
= cast
<ConstantArray
>(GV
->getInitializer());
1911 std::vector
<Function
*> Result
;
1912 Result
.reserve(CA
->getNumOperands());
1913 for (User::op_iterator i
= CA
->op_begin(), e
= CA
->op_end(); i
!= e
; ++i
) {
1914 ConstantStruct
*CS
= cast
<ConstantStruct
>(*i
);
1915 Result
.push_back(dyn_cast
<Function
>(CS
->getOperand(1)));
1920 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1921 /// specified array, returning the new global to use.
1922 static GlobalVariable
*InstallGlobalCtors(GlobalVariable
*GCL
,
1923 const std::vector
<Function
*> &Ctors
) {
1924 // If we made a change, reassemble the initializer list.
1925 std::vector
<Constant
*> CSVals
;
1926 CSVals
.push_back(ConstantInt::get(Type::Int32Ty
, 65535));
1927 CSVals
.push_back(0);
1929 // Create the new init list.
1930 std::vector
<Constant
*> CAList
;
1931 for (unsigned i
= 0, e
= Ctors
.size(); i
!= e
; ++i
) {
1933 CSVals
[1] = Ctors
[i
];
1935 const Type
*FTy
= FunctionType::get(Type::VoidTy
,
1936 std::vector
<const Type
*>(), false);
1937 const PointerType
*PFTy
= PointerType::getUnqual(FTy
);
1938 CSVals
[1] = Constant::getNullValue(PFTy
);
1939 CSVals
[0] = ConstantInt::get(Type::Int32Ty
, 2147483647);
1941 CAList
.push_back(ConstantStruct::get(CSVals
));
1944 // Create the array initializer.
1945 const Type
*StructTy
=
1946 cast
<ArrayType
>(GCL
->getType()->getElementType())->getElementType();
1947 Constant
*CA
= ConstantArray::get(ArrayType::get(StructTy
, CAList
.size()),
1950 // If we didn't change the number of elements, don't create a new GV.
1951 if (CA
->getType() == GCL
->getInitializer()->getType()) {
1952 GCL
->setInitializer(CA
);
1956 // Create the new global and insert it next to the existing list.
1957 GlobalVariable
*NGV
= new GlobalVariable(CA
->getType(), GCL
->isConstant(),
1958 GCL
->getLinkage(), CA
, "",
1960 GCL
->isThreadLocal());
1961 GCL
->getParent()->getGlobalList().insert(GCL
, NGV
);
1964 // Nuke the old list, replacing any uses with the new one.
1965 if (!GCL
->use_empty()) {
1967 if (V
->getType() != GCL
->getType())
1968 V
= ConstantExpr::getBitCast(V
, GCL
->getType());
1969 GCL
->replaceAllUsesWith(V
);
1971 GCL
->eraseFromParent();
1980 static Constant
*getVal(DenseMap
<Value
*, Constant
*> &ComputedValues
,
1982 if (Constant
*CV
= dyn_cast
<Constant
>(V
)) return CV
;
1983 Constant
*R
= ComputedValues
[V
];
1984 assert(R
&& "Reference to an uncomputed value!");
1988 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1989 /// enough for us to understand. In particular, if it is a cast of something,
1990 /// we punt. We basically just support direct accesses to globals and GEP's of
1991 /// globals. This should be kept up to date with CommitValueTo.
1992 static bool isSimpleEnoughPointerToCommit(Constant
*C
) {
1993 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
)) {
1994 if (!GV
->hasExternalLinkage() && !GV
->hasLocalLinkage())
1995 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
1996 return !GV
->isDeclaration(); // reject external globals.
1998 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
1999 // Handle a constantexpr gep.
2000 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
2001 isa
<GlobalVariable
>(CE
->getOperand(0))) {
2002 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2003 if (!GV
->hasExternalLinkage() && !GV
->hasLocalLinkage())
2004 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
2005 return GV
->hasInitializer() &&
2006 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
);
2011 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2012 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2013 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2014 static Constant
*EvaluateStoreInto(Constant
*Init
, Constant
*Val
,
2015 ConstantExpr
*Addr
, unsigned OpNo
) {
2016 // Base case of the recursion.
2017 if (OpNo
== Addr
->getNumOperands()) {
2018 assert(Val
->getType() == Init
->getType() && "Type mismatch!");
2022 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2023 std::vector
<Constant
*> Elts
;
2025 // Break up the constant into its elements.
2026 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
2027 for (User::op_iterator i
= CS
->op_begin(), e
= CS
->op_end(); i
!= e
; ++i
)
2028 Elts
.push_back(cast
<Constant
>(*i
));
2029 } else if (isa
<ConstantAggregateZero
>(Init
)) {
2030 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
2031 Elts
.push_back(Constant::getNullValue(STy
->getElementType(i
)));
2032 } else if (isa
<UndefValue
>(Init
)) {
2033 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
2034 Elts
.push_back(UndefValue::get(STy
->getElementType(i
)));
2036 assert(0 && "This code is out of sync with "
2037 " ConstantFoldLoadThroughGEPConstantExpr");
2040 // Replace the element that we are supposed to.
2041 ConstantInt
*CU
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2042 unsigned Idx
= CU
->getZExtValue();
2043 assert(Idx
< STy
->getNumElements() && "Struct index out of range!");
2044 Elts
[Idx
] = EvaluateStoreInto(Elts
[Idx
], Val
, Addr
, OpNo
+1);
2046 // Return the modified struct.
2047 return ConstantStruct::get(&Elts
[0], Elts
.size(), STy
->isPacked());
2049 ConstantInt
*CI
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2050 const ArrayType
*ATy
= cast
<ArrayType
>(Init
->getType());
2052 // Break up the array into elements.
2053 std::vector
<Constant
*> Elts
;
2054 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
2055 for (User::op_iterator i
= CA
->op_begin(), e
= CA
->op_end(); i
!= e
; ++i
)
2056 Elts
.push_back(cast
<Constant
>(*i
));
2057 } else if (isa
<ConstantAggregateZero
>(Init
)) {
2058 Constant
*Elt
= Constant::getNullValue(ATy
->getElementType());
2059 Elts
.assign(ATy
->getNumElements(), Elt
);
2060 } else if (isa
<UndefValue
>(Init
)) {
2061 Constant
*Elt
= UndefValue::get(ATy
->getElementType());
2062 Elts
.assign(ATy
->getNumElements(), Elt
);
2064 assert(0 && "This code is out of sync with "
2065 " ConstantFoldLoadThroughGEPConstantExpr");
2068 assert(CI
->getZExtValue() < ATy
->getNumElements());
2069 Elts
[CI
->getZExtValue()] =
2070 EvaluateStoreInto(Elts
[CI
->getZExtValue()], Val
, Addr
, OpNo
+1);
2071 return ConstantArray::get(ATy
, Elts
);
2075 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2076 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2077 static void CommitValueTo(Constant
*Val
, Constant
*Addr
) {
2078 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
2079 assert(GV
->hasInitializer());
2080 GV
->setInitializer(Val
);
2084 ConstantExpr
*CE
= cast
<ConstantExpr
>(Addr
);
2085 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2087 Constant
*Init
= GV
->getInitializer();
2088 Init
= EvaluateStoreInto(Init
, Val
, CE
, 2);
2089 GV
->setInitializer(Init
);
2092 /// ComputeLoadResult - Return the value that would be computed by a load from
2093 /// P after the stores reflected by 'memory' have been performed. If we can't
2094 /// decide, return null.
2095 static Constant
*ComputeLoadResult(Constant
*P
,
2096 const DenseMap
<Constant
*, Constant
*> &Memory
) {
2097 // If this memory location has been recently stored, use the stored value: it
2098 // is the most up-to-date.
2099 DenseMap
<Constant
*, Constant
*>::const_iterator I
= Memory
.find(P
);
2100 if (I
!= Memory
.end()) return I
->second
;
2103 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(P
)) {
2104 if (GV
->hasInitializer())
2105 return GV
->getInitializer();
2109 // Handle a constantexpr getelementptr.
2110 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(P
))
2111 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
2112 isa
<GlobalVariable
>(CE
->getOperand(0))) {
2113 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2114 if (GV
->hasInitializer())
2115 return ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
);
2118 return 0; // don't know how to evaluate.
2121 /// EvaluateFunction - Evaluate a call to function F, returning true if
2122 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2123 /// arguments for the function.
2124 static bool EvaluateFunction(Function
*F
, Constant
*&RetVal
,
2125 const std::vector
<Constant
*> &ActualArgs
,
2126 std::vector
<Function
*> &CallStack
,
2127 DenseMap
<Constant
*, Constant
*> &MutatedMemory
,
2128 std::vector
<GlobalVariable
*> &AllocaTmps
) {
2129 // Check to see if this function is already executing (recursion). If so,
2130 // bail out. TODO: we might want to accept limited recursion.
2131 if (std::find(CallStack
.begin(), CallStack
.end(), F
) != CallStack
.end())
2134 CallStack
.push_back(F
);
2136 /// Values - As we compute SSA register values, we store their contents here.
2137 DenseMap
<Value
*, Constant
*> Values
;
2139 // Initialize arguments to the incoming values specified.
2141 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end(); AI
!= E
;
2143 Values
[AI
] = ActualArgs
[ArgNo
];
2145 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2146 /// we can only evaluate any one basic block at most once. This set keeps
2147 /// track of what we have executed so we can detect recursive cases etc.
2148 SmallPtrSet
<BasicBlock
*, 32> ExecutedBlocks
;
2150 // CurInst - The current instruction we're evaluating.
2151 BasicBlock::iterator CurInst
= F
->begin()->begin();
2153 // This is the main evaluation loop.
2155 Constant
*InstResult
= 0;
2157 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(CurInst
)) {
2158 if (SI
->isVolatile()) return false; // no volatile accesses.
2159 Constant
*Ptr
= getVal(Values
, SI
->getOperand(1));
2160 if (!isSimpleEnoughPointerToCommit(Ptr
))
2161 // If this is too complex for us to commit, reject it.
2163 Constant
*Val
= getVal(Values
, SI
->getOperand(0));
2164 MutatedMemory
[Ptr
] = Val
;
2165 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CurInst
)) {
2166 InstResult
= ConstantExpr::get(BO
->getOpcode(),
2167 getVal(Values
, BO
->getOperand(0)),
2168 getVal(Values
, BO
->getOperand(1)));
2169 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(CurInst
)) {
2170 InstResult
= ConstantExpr::getCompare(CI
->getPredicate(),
2171 getVal(Values
, CI
->getOperand(0)),
2172 getVal(Values
, CI
->getOperand(1)));
2173 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(CurInst
)) {
2174 InstResult
= ConstantExpr::getCast(CI
->getOpcode(),
2175 getVal(Values
, CI
->getOperand(0)),
2177 } else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(CurInst
)) {
2178 InstResult
= ConstantExpr::getSelect(getVal(Values
, SI
->getOperand(0)),
2179 getVal(Values
, SI
->getOperand(1)),
2180 getVal(Values
, SI
->getOperand(2)));
2181 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(CurInst
)) {
2182 Constant
*P
= getVal(Values
, GEP
->getOperand(0));
2183 SmallVector
<Constant
*, 8> GEPOps
;
2184 for (User::op_iterator i
= GEP
->op_begin() + 1, e
= GEP
->op_end();
2186 GEPOps
.push_back(getVal(Values
, *i
));
2187 InstResult
= ConstantExpr::getGetElementPtr(P
, &GEPOps
[0], GEPOps
.size());
2188 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(CurInst
)) {
2189 if (LI
->isVolatile()) return false; // no volatile accesses.
2190 InstResult
= ComputeLoadResult(getVal(Values
, LI
->getOperand(0)),
2192 if (InstResult
== 0) return false; // Could not evaluate load.
2193 } else if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(CurInst
)) {
2194 if (AI
->isArrayAllocation()) return false; // Cannot handle array allocs.
2195 const Type
*Ty
= AI
->getType()->getElementType();
2196 AllocaTmps
.push_back(new GlobalVariable(Ty
, false,
2197 GlobalValue::InternalLinkage
,
2198 UndefValue::get(Ty
),
2200 InstResult
= AllocaTmps
.back();
2201 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(CurInst
)) {
2203 // Debug info can safely be ignored here.
2204 if (isa
<DbgInfoIntrinsic
>(CI
)) {
2209 // Cannot handle inline asm.
2210 if (isa
<InlineAsm
>(CI
->getOperand(0))) return false;
2212 // Resolve function pointers.
2213 Function
*Callee
= dyn_cast
<Function
>(getVal(Values
, CI
->getOperand(0)));
2214 if (!Callee
) return false; // Cannot resolve.
2216 std::vector
<Constant
*> Formals
;
2217 for (User::op_iterator i
= CI
->op_begin() + 1, e
= CI
->op_end();
2219 Formals
.push_back(getVal(Values
, *i
));
2221 if (Callee
->isDeclaration()) {
2222 // If this is a function we can constant fold, do it.
2223 if (Constant
*C
= ConstantFoldCall(Callee
, &Formals
[0],
2230 if (Callee
->getFunctionType()->isVarArg())
2234 // Execute the call, if successful, use the return value.
2235 if (!EvaluateFunction(Callee
, RetVal
, Formals
, CallStack
,
2236 MutatedMemory
, AllocaTmps
))
2238 InstResult
= RetVal
;
2240 } else if (isa
<TerminatorInst
>(CurInst
)) {
2241 BasicBlock
*NewBB
= 0;
2242 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurInst
)) {
2243 if (BI
->isUnconditional()) {
2244 NewBB
= BI
->getSuccessor(0);
2247 dyn_cast
<ConstantInt
>(getVal(Values
, BI
->getCondition()));
2248 if (!Cond
) return false; // Cannot determine.
2250 NewBB
= BI
->getSuccessor(!Cond
->getZExtValue());
2252 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurInst
)) {
2254 dyn_cast
<ConstantInt
>(getVal(Values
, SI
->getCondition()));
2255 if (!Val
) return false; // Cannot determine.
2256 NewBB
= SI
->getSuccessor(SI
->findCaseValue(Val
));
2257 } else if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(CurInst
)) {
2258 if (RI
->getNumOperands())
2259 RetVal
= getVal(Values
, RI
->getOperand(0));
2261 CallStack
.pop_back(); // return from fn.
2262 return true; // We succeeded at evaluating this ctor!
2264 // invoke, unwind, unreachable.
2265 return false; // Cannot handle this terminator.
2268 // Okay, we succeeded in evaluating this control flow. See if we have
2269 // executed the new block before. If so, we have a looping function,
2270 // which we cannot evaluate in reasonable time.
2271 if (!ExecutedBlocks
.insert(NewBB
))
2272 return false; // looped!
2274 // Okay, we have never been in this block before. Check to see if there
2275 // are any PHI nodes. If so, evaluate them with information about where
2277 BasicBlock
*OldBB
= CurInst
->getParent();
2278 CurInst
= NewBB
->begin();
2280 for (; (PN
= dyn_cast
<PHINode
>(CurInst
)); ++CurInst
)
2281 Values
[PN
] = getVal(Values
, PN
->getIncomingValueForBlock(OldBB
));
2283 // Do NOT increment CurInst. We know that the terminator had no value.
2286 // Did not know how to evaluate this!
2290 if (!CurInst
->use_empty())
2291 Values
[CurInst
] = InstResult
;
2293 // Advance program counter.
2298 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2299 /// we can. Return true if we can, false otherwise.
2300 static bool EvaluateStaticConstructor(Function
*F
) {
2301 /// MutatedMemory - For each store we execute, we update this map. Loads
2302 /// check this to get the most up-to-date value. If evaluation is successful,
2303 /// this state is committed to the process.
2304 DenseMap
<Constant
*, Constant
*> MutatedMemory
;
2306 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2307 /// to represent its body. This vector is needed so we can delete the
2308 /// temporary globals when we are done.
2309 std::vector
<GlobalVariable
*> AllocaTmps
;
2311 /// CallStack - This is used to detect recursion. In pathological situations
2312 /// we could hit exponential behavior, but at least there is nothing
2314 std::vector
<Function
*> CallStack
;
2316 // Call the function.
2317 Constant
*RetValDummy
;
2318 bool EvalSuccess
= EvaluateFunction(F
, RetValDummy
, std::vector
<Constant
*>(),
2319 CallStack
, MutatedMemory
, AllocaTmps
);
2321 // We succeeded at evaluation: commit the result.
2322 DOUT
<< "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2323 << F
->getName() << "' to " << MutatedMemory
.size()
2325 for (DenseMap
<Constant
*, Constant
*>::iterator I
= MutatedMemory
.begin(),
2326 E
= MutatedMemory
.end(); I
!= E
; ++I
)
2327 CommitValueTo(I
->second
, I
->first
);
2330 // At this point, we are done interpreting. If we created any 'alloca'
2331 // temporaries, release them now.
2332 while (!AllocaTmps
.empty()) {
2333 GlobalVariable
*Tmp
= AllocaTmps
.back();
2334 AllocaTmps
.pop_back();
2336 // If there are still users of the alloca, the program is doing something
2337 // silly, e.g. storing the address of the alloca somewhere and using it
2338 // later. Since this is undefined, we'll just make it be null.
2339 if (!Tmp
->use_empty())
2340 Tmp
->replaceAllUsesWith(Constant::getNullValue(Tmp
->getType()));
2349 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2350 /// Return true if anything changed.
2351 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable
*&GCL
) {
2352 std::vector
<Function
*> Ctors
= ParseGlobalCtors(GCL
);
2353 bool MadeChange
= false;
2354 if (Ctors
.empty()) return false;
2356 // Loop over global ctors, optimizing them when we can.
2357 for (unsigned i
= 0; i
!= Ctors
.size(); ++i
) {
2358 Function
*F
= Ctors
[i
];
2359 // Found a null terminator in the middle of the list, prune off the rest of
2362 if (i
!= Ctors
.size()-1) {
2369 // We cannot simplify external ctor functions.
2370 if (F
->empty()) continue;
2372 // If we can evaluate the ctor at compile time, do.
2373 if (EvaluateStaticConstructor(F
)) {
2374 Ctors
.erase(Ctors
.begin()+i
);
2377 ++NumCtorsEvaluated
;
2382 if (!MadeChange
) return false;
2384 GCL
= InstallGlobalCtors(GCL
, Ctors
);
2388 bool GlobalOpt::OptimizeGlobalAliases(Module
&M
) {
2389 bool Changed
= false;
2391 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
2393 Module::alias_iterator J
= I
++;
2394 // Aliases without names cannot be referenced outside this module.
2395 if (!J
->hasName() && !J
->isDeclaration())
2396 J
->setLinkage(GlobalValue::InternalLinkage
);
2397 // If the aliasee may change at link time, nothing can be done - bail out.
2398 if (J
->mayBeOverridden())
2401 Constant
*Aliasee
= J
->getAliasee();
2402 GlobalValue
*Target
= cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2403 Target
->removeDeadConstantUsers();
2404 bool hasOneUse
= Target
->hasOneUse() && Aliasee
->hasOneUse();
2406 // Make all users of the alias use the aliasee instead.
2407 if (!J
->use_empty()) {
2408 J
->replaceAllUsesWith(Aliasee
);
2409 ++NumAliasesResolved
;
2413 // If the aliasee has internal linkage, give it the name and linkage
2414 // of the alias, and delete the alias. This turns:
2415 // define internal ... @f(...)
2416 // @a = alias ... @f
2418 // define ... @a(...)
2419 if (!Target
->hasLocalLinkage())
2422 // The transform is only useful if the alias does not have internal linkage.
2423 if (J
->hasLocalLinkage())
2426 // Do not perform the transform if multiple aliases potentially target the
2427 // aliasee. This check also ensures that it is safe to replace the section
2428 // and other attributes of the aliasee with those of the alias.
2432 // Give the aliasee the name, linkage and other attributes of the alias.
2433 Target
->takeName(J
);
2434 Target
->setLinkage(J
->getLinkage());
2435 Target
->GlobalValue::copyAttributesFrom(J
);
2437 // Delete the alias.
2438 M
.getAliasList().erase(J
);
2439 ++NumAliasesRemoved
;
2446 bool GlobalOpt::runOnModule(Module
&M
) {
2447 bool Changed
= false;
2449 // Try to find the llvm.globalctors list.
2450 GlobalVariable
*GlobalCtors
= FindGlobalCtors(M
);
2452 bool LocalChange
= true;
2453 while (LocalChange
) {
2454 LocalChange
= false;
2456 // Delete functions that are trivially dead, ccc -> fastcc
2457 LocalChange
|= OptimizeFunctions(M
);
2459 // Optimize global_ctors list.
2461 LocalChange
|= OptimizeGlobalCtorsList(GlobalCtors
);
2463 // Optimize non-address-taken globals.
2464 LocalChange
|= OptimizeGlobalVars(M
);
2466 // Resolve aliases, when possible.
2467 LocalChange
|= OptimizeGlobalAliases(M
);
2468 Changed
|= LocalChange
;
2471 // TODO: Move all global ctors functions to the end of the module for code