Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / IPO / IPConstantPropagation.cpp
blob2dc8558246915385a2298a144b17217b07ef7be0
1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an _extremely_ simple interprocedural constant
11 // propagation pass. It could certainly be improved in many different ways,
12 // like using a worklist. This pass makes arguments dead, but does not remove
13 // them. The existing dead argument elimination pass should be run after this
14 // to clean up the mess.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "ipconstprop"
19 #include "llvm/Transforms/IPO.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Support/CallSite.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/SmallVector.h"
29 using namespace llvm;
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
34 namespace {
35 /// IPCP - The interprocedural constant propagation pass
36 ///
37 struct VISIBILITY_HIDDEN IPCP : public ModulePass {
38 static char ID; // Pass identification, replacement for typeid
39 IPCP() : ModulePass(&ID) {}
41 bool runOnModule(Module &M);
42 private:
43 bool PropagateConstantsIntoArguments(Function &F);
44 bool PropagateConstantReturn(Function &F);
48 char IPCP::ID = 0;
49 static RegisterPass<IPCP>
50 X("ipconstprop", "Interprocedural constant propagation");
52 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
54 bool IPCP::runOnModule(Module &M) {
55 bool Changed = false;
56 bool LocalChange = true;
58 // FIXME: instead of using smart algorithms, we just iterate until we stop
59 // making changes.
60 while (LocalChange) {
61 LocalChange = false;
62 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
63 if (!I->isDeclaration()) {
64 // Delete any klingons.
65 I->removeDeadConstantUsers();
66 if (I->hasLocalLinkage())
67 LocalChange |= PropagateConstantsIntoArguments(*I);
68 Changed |= PropagateConstantReturn(*I);
70 Changed |= LocalChange;
72 return Changed;
75 /// PropagateConstantsIntoArguments - Look at all uses of the specified
76 /// function. If all uses are direct call sites, and all pass a particular
77 /// constant in for an argument, propagate that constant in as the argument.
78 ///
79 bool IPCP::PropagateConstantsIntoArguments(Function &F) {
80 if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
82 // For each argument, keep track of its constant value and whether it is a
83 // constant or not. The bool is driven to true when found to be non-constant.
84 SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
85 ArgumentConstants.resize(F.arg_size());
87 unsigned NumNonconstant = 0;
88 for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
89 // Used by a non-instruction, or not the callee of a function, do not
90 // transform.
91 if (!isa<CallInst>(*UI) && !isa<InvokeInst>(*UI))
92 return false;
94 CallSite CS = CallSite::get(cast<Instruction>(*UI));
95 if (!CS.isCallee(UI))
96 return false;
98 // Check out all of the potentially constant arguments. Note that we don't
99 // inspect varargs here.
100 CallSite::arg_iterator AI = CS.arg_begin();
101 Function::arg_iterator Arg = F.arg_begin();
102 for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
103 ++i, ++AI, ++Arg) {
105 // If this argument is known non-constant, ignore it.
106 if (ArgumentConstants[i].second)
107 continue;
109 Constant *C = dyn_cast<Constant>(*AI);
110 if (C && ArgumentConstants[i].first == 0) {
111 ArgumentConstants[i].first = C; // First constant seen.
112 } else if (C && ArgumentConstants[i].first == C) {
113 // Still the constant value we think it is.
114 } else if (*AI == &*Arg) {
115 // Ignore recursive calls passing argument down.
116 } else {
117 // Argument became non-constant. If all arguments are non-constant now,
118 // give up on this function.
119 if (++NumNonconstant == ArgumentConstants.size())
120 return false;
121 ArgumentConstants[i].second = true;
126 // If we got to this point, there is a constant argument!
127 assert(NumNonconstant != ArgumentConstants.size());
128 bool MadeChange = false;
129 Function::arg_iterator AI = F.arg_begin();
130 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
131 // Do we have a constant argument?
132 if (ArgumentConstants[i].second || AI->use_empty())
133 continue;
135 Value *V = ArgumentConstants[i].first;
136 if (V == 0) V = UndefValue::get(AI->getType());
137 AI->replaceAllUsesWith(V);
138 ++NumArgumentsProped;
139 MadeChange = true;
141 return MadeChange;
145 // Check to see if this function returns one or more constants. If so, replace
146 // all callers that use those return values with the constant value. This will
147 // leave in the actual return values and instructions, but deadargelim will
148 // clean that up.
150 // Additionally if a function always returns one of its arguments directly,
151 // callers will be updated to use the value they pass in directly instead of
152 // using the return value.
153 bool IPCP::PropagateConstantReturn(Function &F) {
154 if (F.getReturnType() == Type::VoidTy)
155 return false; // No return value.
157 // If this function could be overridden later in the link stage, we can't
158 // propagate information about its results into callers.
159 if (F.mayBeOverridden())
160 return false;
162 // Check to see if this function returns a constant.
163 SmallVector<Value *,4> RetVals;
164 const StructType *STy = dyn_cast<StructType>(F.getReturnType());
165 if (STy)
166 for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
167 RetVals.push_back(UndefValue::get(STy->getElementType(i)));
168 else
169 RetVals.push_back(UndefValue::get(F.getReturnType()));
171 unsigned NumNonConstant = 0;
172 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
173 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
174 for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
175 // Already found conflicting return values?
176 Value *RV = RetVals[i];
177 if (!RV)
178 continue;
180 // Find the returned value
181 Value *V;
182 if (!STy)
183 V = RI->getOperand(i);
184 else
185 V = FindInsertedValue(RI->getOperand(0), i);
187 if (V) {
188 // Ignore undefs, we can change them into anything
189 if (isa<UndefValue>(V))
190 continue;
192 // Try to see if all the rets return the same constant or argument.
193 if (isa<Constant>(V) || isa<Argument>(V)) {
194 if (isa<UndefValue>(RV)) {
195 // No value found yet? Try the current one.
196 RetVals[i] = V;
197 continue;
199 // Returning the same value? Good.
200 if (RV == V)
201 continue;
204 // Different or no known return value? Don't propagate this return
205 // value.
206 RetVals[i] = 0;
207 // All values non constant? Stop looking.
208 if (++NumNonConstant == RetVals.size())
209 return false;
213 // If we got here, the function returns at least one constant value. Loop
214 // over all users, replacing any uses of the return value with the returned
215 // constant.
216 bool MadeChange = false;
217 for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
218 CallSite CS = CallSite::get(*UI);
219 Instruction* Call = CS.getInstruction();
221 // Not a call instruction or a call instruction that's not calling F
222 // directly?
223 if (!Call || !CS.isCallee(UI))
224 continue;
226 // Call result not used?
227 if (Call->use_empty())
228 continue;
230 MadeChange = true;
232 if (STy == 0) {
233 Value* New = RetVals[0];
234 if (Argument *A = dyn_cast<Argument>(New))
235 // Was an argument returned? Then find the corresponding argument in
236 // the call instruction and use that.
237 New = CS.getArgument(A->getArgNo());
238 Call->replaceAllUsesWith(New);
239 continue;
242 for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
243 I != E;) {
244 Instruction *Ins = dyn_cast<Instruction>(*I);
246 // Increment now, so we can remove the use
247 ++I;
249 // Not an instruction? Ignore
250 if (!Ins)
251 continue;
253 // Find the index of the retval to replace with
254 int index = -1;
255 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
256 if (EV->hasIndices())
257 index = *EV->idx_begin();
259 // If this use uses a specific return value, and we have a replacement,
260 // replace it.
261 if (index != -1) {
262 Value *New = RetVals[index];
263 if (New) {
264 if (Argument *A = dyn_cast<Argument>(New))
265 // Was an argument returned? Then find the corresponding argument in
266 // the call instruction and use that.
267 New = CS.getArgument(A->getArgNo());
268 Ins->replaceAllUsesWith(New);
269 Ins->eraseFromParent();
275 if (MadeChange) ++NumReturnValProped;
276 return MadeChange;