Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Scalar / LoopDeletion.cpp
blob65126728c7fc885308e8ab8389ea88cc3bf4c416
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "loop-delete"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/SmallVector.h"
25 using namespace llvm;
27 STATISTIC(NumDeleted, "Number of loops deleted");
29 namespace {
30 class VISIBILITY_HIDDEN LoopDeletion : public LoopPass {
31 public:
32 static char ID; // Pass ID, replacement for typeid
33 LoopDeletion() : LoopPass(&ID) {}
35 // Possibly eliminate loop L if it is dead.
36 bool runOnLoop(Loop* L, LPPassManager& LPM);
38 bool SingleDominatingExit(Loop* L,
39 SmallVector<BasicBlock*, 4>& exitingBlocks);
40 bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
41 SmallVector<BasicBlock*, 4>& exitBlocks);
42 bool IsLoopInvariantInst(Instruction *I, Loop* L);
44 virtual void getAnalysisUsage(AnalysisUsage& AU) const {
45 AU.addRequired<ScalarEvolution>();
46 AU.addRequired<DominatorTree>();
47 AU.addRequired<LoopInfo>();
48 AU.addRequiredID(LoopSimplifyID);
49 AU.addRequiredID(LCSSAID);
51 AU.addPreserved<ScalarEvolution>();
52 AU.addPreserved<DominatorTree>();
53 AU.addPreserved<LoopInfo>();
54 AU.addPreservedID(LoopSimplifyID);
55 AU.addPreservedID(LCSSAID);
56 AU.addPreserved<DominanceFrontier>();
61 char LoopDeletion::ID = 0;
62 static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");
64 Pass* llvm::createLoopDeletionPass() {
65 return new LoopDeletion();
68 /// SingleDominatingExit - Checks that there is only a single blocks that
69 /// branches out of the loop, and that it also g the latch block. Loops
70 /// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
71 /// have to do more extensive analysis to make sure, for instance, that the
72 /// control flow logic involved was or could be made loop-invariant.
73 bool LoopDeletion::SingleDominatingExit(Loop* L,
74 SmallVector<BasicBlock*, 4>& exitingBlocks) {
76 if (exitingBlocks.size() != 1)
77 return false;
79 BasicBlock* latch = L->getLoopLatch();
80 if (!latch)
81 return false;
83 DominatorTree& DT = getAnalysis<DominatorTree>();
84 return DT.dominates(exitingBlocks[0], latch);
87 /// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
88 /// a loop, which is defined as being true if all of its operands are defined
89 /// outside of the loop. These instructions can be hoisted out of the loop
90 /// if their results are needed. This could be made more aggressive by
91 /// recursively checking the operands for invariance, but it's not clear that
92 /// it's worth it.
93 bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
94 // PHI nodes are not loop invariant if defined in the loop.
95 if (isa<PHINode>(I) && L->contains(I->getParent()))
96 return false;
98 // The instruction is loop invariant if all of its operands are loop-invariant
99 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
100 if (!L->isLoopInvariant(I->getOperand(i)))
101 return false;
103 // If we got this far, the instruction is loop invariant!
104 return true;
107 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
108 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
109 /// form.
110 bool LoopDeletion::IsLoopDead(Loop* L,
111 SmallVector<BasicBlock*, 4>& exitingBlocks,
112 SmallVector<BasicBlock*, 4>& exitBlocks) {
113 BasicBlock* exitingBlock = exitingBlocks[0];
114 BasicBlock* exitBlock = exitBlocks[0];
116 // Make sure that all PHI entries coming from the loop are loop invariant.
117 // Because the code is in LCSSA form, any values used outside of the loop
118 // must pass through a PHI in the exit block, meaning that this check is
119 // sufficient to guarantee that no loop-variant values are used outside
120 // of the loop.
121 BasicBlock::iterator BI = exitBlock->begin();
122 while (PHINode* P = dyn_cast<PHINode>(BI)) {
123 Value* incoming = P->getIncomingValueForBlock(exitingBlock);
124 if (Instruction* I = dyn_cast<Instruction>(incoming))
125 if (!IsLoopInvariantInst(I, L))
126 return false;
128 BI++;
131 // Make sure that no instructions in the block have potential side-effects.
132 // This includes instructions that could write to memory, and loads that are
133 // marked volatile. This could be made more aggressive by using aliasing
134 // information to identify readonly and readnone calls.
135 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
136 LI != LE; ++LI) {
137 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
138 BI != BE; ++BI) {
139 if (BI->mayHaveSideEffects())
140 return false;
144 return true;
147 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
148 /// observable behavior of the program other than finite running time. Note
149 /// we do ensure that this never remove a loop that might be infinite, as doing
150 /// so could change the halting/non-halting nature of a program.
151 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
152 /// in order to make various safety checks work.
153 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
154 // We can only remove the loop if there is a preheader that we can
155 // branch from after removing it.
156 BasicBlock* preheader = L->getLoopPreheader();
157 if (!preheader)
158 return false;
160 // We can't remove loops that contain subloops. If the subloops were dead,
161 // they would already have been removed in earlier executions of this pass.
162 if (L->begin() != L->end())
163 return false;
165 SmallVector<BasicBlock*, 4> exitingBlocks;
166 L->getExitingBlocks(exitingBlocks);
168 SmallVector<BasicBlock*, 4> exitBlocks;
169 L->getUniqueExitBlocks(exitBlocks);
171 // We require that the loop only have a single exit block. Otherwise, we'd
172 // be in the situation of needing to be able to solve statically which exit
173 // block will be branched to, or trying to preserve the branching logic in
174 // a loop invariant manner.
175 if (exitBlocks.size() != 1)
176 return false;
178 // Loops with multiple exits or exits that don't dominate the latch
179 // are too complicated to handle correctly.
180 if (!SingleDominatingExit(L, exitingBlocks))
181 return false;
183 // Finally, we have to check that the loop really is dead.
184 if (!IsLoopDead(L, exitingBlocks, exitBlocks))
185 return false;
187 // Don't remove loops for which we can't solve the trip count.
188 // They could be infinite, in which case we'd be changing program behavior.
189 ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
190 SCEVHandle S = SE.getBackedgeTakenCount(L);
191 if (isa<SCEVCouldNotCompute>(S))
192 return false;
194 // Now that we know the removal is safe, remove the loop by changing the
195 // branch from the preheader to go to the single exit block.
196 BasicBlock* exitBlock = exitBlocks[0];
197 BasicBlock* exitingBlock = exitingBlocks[0];
199 // Because we're deleting a large chunk of code at once, the sequence in which
200 // we remove things is very important to avoid invalidation issues. Don't
201 // mess with this unless you have good reason and know what you're doing.
203 // Move simple loop-invariant expressions out of the loop, since they
204 // might be needed by the exit phis.
205 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
206 LI != LE; ++LI)
207 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
208 BI != BE; ) {
209 Instruction* I = BI++;
210 if (!I->use_empty() && IsLoopInvariantInst(I, L))
211 I->moveBefore(preheader->getTerminator());
214 // Connect the preheader directly to the exit block.
215 TerminatorInst* TI = preheader->getTerminator();
216 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
218 // Rewrite phis in the exit block to get their inputs from
219 // the preheader instead of the exiting block.
220 BasicBlock::iterator BI = exitBlock->begin();
221 while (PHINode* P = dyn_cast<PHINode>(BI)) {
222 P->replaceUsesOfWith(exitingBlock, preheader);
223 BI++;
226 // Update the dominator tree and remove the instructions and blocks that will
227 // be deleted from the reference counting scheme.
228 DominatorTree& DT = getAnalysis<DominatorTree>();
229 DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
230 SmallPtrSet<DomTreeNode*, 8> ChildNodes;
231 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
232 LI != LE; ++LI) {
233 // Move all of the block's children to be children of the preheader, which
234 // allows us to remove the domtree entry for the block.
235 ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
236 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
237 DE = ChildNodes.end(); DI != DE; ++DI) {
238 DT.changeImmediateDominator(*DI, DT[preheader]);
239 if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
242 ChildNodes.clear();
243 DT.eraseNode(*LI);
244 if (DF) DF->removeBlock(*LI);
246 // Remove the block from the reference counting scheme, so that we can
247 // delete it freely later.
248 (*LI)->dropAllReferences();
251 // Tell ScalarEvolution that the loop is deleted. Do this before
252 // deleting the loop so that ScalarEvolution can look at the loop
253 // to determine what it needs to clean up.
254 SE.forgetLoopBackedgeTakenCount(L);
256 // Erase the instructions and the blocks without having to worry
257 // about ordering because we already dropped the references.
258 // NOTE: This iteration is safe because erasing the block does not remove its
259 // entry from the loop's block list. We do that in the next section.
260 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
261 LI != LE; ++LI)
262 (*LI)->eraseFromParent();
264 // Finally, the blocks from loopinfo. This has to happen late because
265 // otherwise our loop iterators won't work.
266 LoopInfo& loopInfo = getAnalysis<LoopInfo>();
267 SmallPtrSet<BasicBlock*, 8> blocks;
268 blocks.insert(L->block_begin(), L->block_end());
269 for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
270 E = blocks.end(); I != E; ++I)
271 loopInfo.removeBlock(*I);
273 // The last step is to inform the loop pass manager that we've
274 // eliminated this loop.
275 LPM.deleteLoopFromQueue(L);
277 NumDeleted++;
279 return true;