1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a strength reduction on array references inside loops that
11 // have as one or more of their components the loop induction variable.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "loop-reduce"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/IVUsers.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ValueHandle.h"
37 #include "llvm/Target/TargetLowering.h"
41 STATISTIC(NumReduced
, "Number of IV uses strength reduced");
42 STATISTIC(NumInserted
, "Number of PHIs inserted");
43 STATISTIC(NumVariable
, "Number of PHIs with variable strides");
44 STATISTIC(NumEliminated
, "Number of strides eliminated");
45 STATISTIC(NumShadow
, "Number of Shadow IVs optimized");
46 STATISTIC(NumImmSunk
, "Number of common expr immediates sunk into uses");
47 STATISTIC(NumLoopCond
, "Number of loop terminating conds optimized");
49 static cl::opt
<bool> EnableFullLSRMode("enable-full-lsr",
57 /// IVInfo - This structure keeps track of one IV expression inserted during
58 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
59 /// well as the PHI node and increment value created for rewrite.
60 struct VISIBILITY_HIDDEN IVExpr
{
65 IVExpr(const SCEVHandle
&stride
, const SCEVHandle
&base
, PHINode
*phi
)
66 : Stride(stride
), Base(base
), PHI(phi
) {}
69 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
70 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
71 struct VISIBILITY_HIDDEN IVsOfOneStride
{
72 std::vector
<IVExpr
> IVs
;
74 void addIV(const SCEVHandle
&Stride
, const SCEVHandle
&Base
, PHINode
*PHI
) {
75 IVs
.push_back(IVExpr(Stride
, Base
, PHI
));
79 class VISIBILITY_HIDDEN LoopStrengthReduce
: public LoopPass
{
86 /// IVsByStride - Keep track of all IVs that have been inserted for a
87 /// particular stride.
88 std::map
<SCEVHandle
, IVsOfOneStride
> IVsByStride
;
90 /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
91 /// reused (nor should they be rewritten to reuse other strides).
92 SmallSet
<SCEVHandle
, 4> StrideNoReuse
;
94 /// DeadInsts - Keep track of instructions we may have made dead, so that
95 /// we can remove them after we are done working.
96 SmallVector
<WeakVH
, 16> DeadInsts
;
98 /// TLI - Keep a pointer of a TargetLowering to consult for determining
99 /// transformation profitability.
100 const TargetLowering
*TLI
;
103 static char ID
; // Pass ID, replacement for typeid
104 explicit LoopStrengthReduce(const TargetLowering
*tli
= NULL
) :
105 LoopPass(&ID
), TLI(tli
) {
108 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
110 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
111 // We split critical edges, so we change the CFG. However, we do update
112 // many analyses if they are around.
113 AU
.addPreservedID(LoopSimplifyID
);
114 AU
.addPreserved
<LoopInfo
>();
115 AU
.addPreserved
<DominanceFrontier
>();
116 AU
.addPreserved
<DominatorTree
>();
118 AU
.addRequiredID(LoopSimplifyID
);
119 AU
.addRequired
<LoopInfo
>();
120 AU
.addRequired
<DominatorTree
>();
121 AU
.addRequired
<ScalarEvolution
>();
122 AU
.addPreserved
<ScalarEvolution
>();
123 AU
.addRequired
<IVUsers
>();
124 AU
.addPreserved
<IVUsers
>();
128 ICmpInst
*ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
129 IVStrideUse
* &CondUse
,
130 const SCEVHandle
* &CondStride
);
132 void OptimizeIndvars(Loop
*L
);
133 void OptimizeLoopCountIV(Loop
*L
);
134 void OptimizeLoopTermCond(Loop
*L
);
136 /// OptimizeShadowIV - If IV is used in a int-to-float cast
137 /// inside the loop then try to eliminate the cast opeation.
138 void OptimizeShadowIV(Loop
*L
);
140 /// OptimizeSMax - Rewrite the loop's terminating condition
141 /// if it uses an smax computation.
142 ICmpInst
*OptimizeSMax(Loop
*L
, ICmpInst
*Cond
,
143 IVStrideUse
* &CondUse
);
145 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
146 const SCEVHandle
*&CondStride
);
147 bool RequiresTypeConversion(const Type
*Ty
, const Type
*NewTy
);
148 SCEVHandle
CheckForIVReuse(bool, bool, bool, const SCEVHandle
&,
149 IVExpr
&, const Type
*,
150 const std::vector
<BasedUser
>& UsersToProcess
);
151 bool ValidScale(bool, int64_t,
152 const std::vector
<BasedUser
>& UsersToProcess
);
153 bool ValidOffset(bool, int64_t, int64_t,
154 const std::vector
<BasedUser
>& UsersToProcess
);
155 SCEVHandle
CollectIVUsers(const SCEVHandle
&Stride
,
156 IVUsersOfOneStride
&Uses
,
158 bool &AllUsesAreAddresses
,
159 bool &AllUsesAreOutsideLoop
,
160 std::vector
<BasedUser
> &UsersToProcess
);
161 bool ShouldUseFullStrengthReductionMode(
162 const std::vector
<BasedUser
> &UsersToProcess
,
164 bool AllUsesAreAddresses
,
166 void PrepareToStrengthReduceFully(
167 std::vector
<BasedUser
> &UsersToProcess
,
169 SCEVHandle CommonExprs
,
171 SCEVExpander
&PreheaderRewriter
);
172 void PrepareToStrengthReduceFromSmallerStride(
173 std::vector
<BasedUser
> &UsersToProcess
,
175 const IVExpr
&ReuseIV
,
176 Instruction
*PreInsertPt
);
177 void PrepareToStrengthReduceWithNewPhi(
178 std::vector
<BasedUser
> &UsersToProcess
,
180 SCEVHandle CommonExprs
,
182 Instruction
*IVIncInsertPt
,
184 SCEVExpander
&PreheaderRewriter
);
185 void StrengthReduceStridedIVUsers(const SCEVHandle
&Stride
,
186 IVUsersOfOneStride
&Uses
,
188 void DeleteTriviallyDeadInstructions();
192 char LoopStrengthReduce::ID
= 0;
193 static RegisterPass
<LoopStrengthReduce
>
194 X("loop-reduce", "Loop Strength Reduction");
196 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
197 return new LoopStrengthReduce(TLI
);
200 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
201 /// specified set are trivially dead, delete them and see if this makes any of
202 /// their operands subsequently dead.
203 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
204 if (DeadInsts
.empty()) return;
206 while (!DeadInsts
.empty()) {
207 Instruction
*I
= dyn_cast_or_null
<Instruction
>(DeadInsts
.back());
208 DeadInsts
.pop_back();
210 if (I
== 0 || !isInstructionTriviallyDead(I
))
213 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
) {
214 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
217 DeadInsts
.push_back(U
);
221 I
->eraseFromParent();
226 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
227 /// subexpression that is an AddRec from a loop other than L. An outer loop
228 /// of L is OK, but not an inner loop nor a disjoint loop.
229 static bool containsAddRecFromDifferentLoop(SCEVHandle S
, Loop
*L
) {
230 // This is very common, put it first.
231 if (isa
<SCEVConstant
>(S
))
233 if (const SCEVCommutativeExpr
*AE
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
234 for (unsigned int i
=0; i
< AE
->getNumOperands(); i
++)
235 if (containsAddRecFromDifferentLoop(AE
->getOperand(i
), L
))
239 if (const SCEVAddRecExpr
*AE
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
240 if (const Loop
*newLoop
= AE
->getLoop()) {
243 // if newLoop is an outer loop of L, this is OK.
244 if (!LoopInfoBase
<BasicBlock
>::isNotAlreadyContainedIn(L
, newLoop
))
249 if (const SCEVUDivExpr
*DE
= dyn_cast
<SCEVUDivExpr
>(S
))
250 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
251 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
253 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
254 // need this when it is.
255 if (const SCEVSDivExpr
*DE
= dyn_cast
<SCEVSDivExpr
>(S
))
256 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
257 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
259 if (const SCEVCastExpr
*CE
= dyn_cast
<SCEVCastExpr
>(S
))
260 return containsAddRecFromDifferentLoop(CE
->getOperand(), L
);
264 /// isAddressUse - Returns true if the specified instruction is using the
265 /// specified value as an address.
266 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
267 bool isAddress
= isa
<LoadInst
>(Inst
);
268 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
269 if (SI
->getOperand(1) == OperandVal
)
271 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
272 // Addressing modes can also be folded into prefetches and a variety
274 switch (II
->getIntrinsicID()) {
276 case Intrinsic::prefetch
:
277 case Intrinsic::x86_sse2_loadu_dq
:
278 case Intrinsic::x86_sse2_loadu_pd
:
279 case Intrinsic::x86_sse_loadu_ps
:
280 case Intrinsic::x86_sse_storeu_ps
:
281 case Intrinsic::x86_sse2_storeu_pd
:
282 case Intrinsic::x86_sse2_storeu_dq
:
283 case Intrinsic::x86_sse2_storel_dq
:
284 if (II
->getOperand(1) == OperandVal
)
292 /// getAccessType - Return the type of the memory being accessed.
293 static const Type
*getAccessType(const Instruction
*Inst
) {
294 const Type
*UseTy
= Inst
->getType();
295 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
296 UseTy
= SI
->getOperand(0)->getType();
297 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
298 // Addressing modes can also be folded into prefetches and a variety
300 switch (II
->getIntrinsicID()) {
302 case Intrinsic::x86_sse_storeu_ps
:
303 case Intrinsic::x86_sse2_storeu_pd
:
304 case Intrinsic::x86_sse2_storeu_dq
:
305 case Intrinsic::x86_sse2_storel_dq
:
306 UseTy
= II
->getOperand(1)->getType();
314 /// BasedUser - For a particular base value, keep information about how we've
315 /// partitioned the expression so far.
317 /// SE - The current ScalarEvolution object.
320 /// Base - The Base value for the PHI node that needs to be inserted for
321 /// this use. As the use is processed, information gets moved from this
322 /// field to the Imm field (below). BasedUser values are sorted by this
326 /// Inst - The instruction using the induction variable.
329 /// OperandValToReplace - The operand value of Inst to replace with the
331 Value
*OperandValToReplace
;
333 /// isSigned - The stride (and thus also the Base) of this use may be in
334 /// a narrower type than the use itself (OperandValToReplace->getType()).
335 /// When this is the case, the isSigned field indicates whether the
336 /// IV expression should be signed-extended instead of zero-extended to
337 /// fit the type of the use.
340 /// Imm - The immediate value that should be added to the base immediately
341 /// before Inst, because it will be folded into the imm field of the
342 /// instruction. This is also sometimes used for loop-variant values that
343 /// must be added inside the loop.
346 /// Phi - The induction variable that performs the striding that
347 /// should be used for this user.
350 // isUseOfPostIncrementedValue - True if this should use the
351 // post-incremented version of this IV, not the preincremented version.
352 // This can only be set in special cases, such as the terminating setcc
353 // instruction for a loop and uses outside the loop that are dominated by
355 bool isUseOfPostIncrementedValue
;
357 BasedUser(IVStrideUse
&IVSU
, ScalarEvolution
*se
)
358 : SE(se
), Base(IVSU
.getOffset()), Inst(IVSU
.getUser()),
359 OperandValToReplace(IVSU
.getOperandValToReplace()),
360 isSigned(IVSU
.isSigned()),
361 Imm(SE
->getIntegerSCEV(0, Base
->getType())),
362 isUseOfPostIncrementedValue(IVSU
.isUseOfPostIncrementedValue()) {}
364 // Once we rewrite the code to insert the new IVs we want, update the
365 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
367 void RewriteInstructionToUseNewBase(const SCEVHandle
&NewBase
,
368 Instruction
*InsertPt
,
369 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
370 SmallVectorImpl
<WeakVH
> &DeadInsts
);
372 Value
*InsertCodeForBaseAtPosition(const SCEVHandle
&NewBase
,
374 SCEVExpander
&Rewriter
,
375 Instruction
*IP
, Loop
*L
);
380 void BasedUser::dump() const {
381 cerr
<< " Base=" << *Base
;
382 cerr
<< " Imm=" << *Imm
;
383 cerr
<< " Inst: " << *Inst
;
386 Value
*BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle
&NewBase
,
388 SCEVExpander
&Rewriter
,
389 Instruction
*IP
, Loop
*L
) {
390 // Figure out where we *really* want to insert this code. In particular, if
391 // the user is inside of a loop that is nested inside of L, we really don't
392 // want to insert this expression before the user, we'd rather pull it out as
393 // many loops as possible.
394 LoopInfo
&LI
= Rewriter
.getLoopInfo();
395 Instruction
*BaseInsertPt
= IP
;
397 // Figure out the most-nested loop that IP is in.
398 Loop
*InsertLoop
= LI
.getLoopFor(IP
->getParent());
400 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
401 // the preheader of the outer-most loop where NewBase is not loop invariant.
402 if (L
->contains(IP
->getParent()))
403 while (InsertLoop
&& NewBase
->isLoopInvariant(InsertLoop
)) {
404 BaseInsertPt
= InsertLoop
->getLoopPreheader()->getTerminator();
405 InsertLoop
= InsertLoop
->getParentLoop();
408 Value
*Base
= Rewriter
.expandCodeFor(NewBase
, NewBase
->getType(),
411 SCEVHandle NewValSCEV
= SE
->getUnknown(Base
);
413 // If there is no immediate value, skip the next part.
414 if (!Imm
->isZero()) {
415 // If we are inserting the base and imm values in the same block, make sure
416 // to adjust the IP position if insertion reused a result.
417 if (IP
== BaseInsertPt
)
418 IP
= Rewriter
.getInsertionPoint();
420 // Always emit the immediate (if non-zero) into the same block as the user.
421 NewValSCEV
= SE
->getAddExpr(NewValSCEV
, Imm
);
425 NewValSCEV
= SE
->getTruncateOrSignExtend(NewValSCEV
, Ty
);
427 NewValSCEV
= SE
->getTruncateOrZeroExtend(NewValSCEV
, Ty
);
429 return Rewriter
.expandCodeFor(NewValSCEV
, Ty
, IP
);
433 // Once we rewrite the code to insert the new IVs we want, update the
434 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
435 // to it. NewBasePt is the last instruction which contributes to the
436 // value of NewBase in the case that it's a diffferent instruction from
437 // the PHI that NewBase is computed from, or null otherwise.
439 void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle
&NewBase
,
440 Instruction
*NewBasePt
,
441 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
442 SmallVectorImpl
<WeakVH
> &DeadInsts
) {
443 if (!isa
<PHINode
>(Inst
)) {
444 // By default, insert code at the user instruction.
445 BasicBlock::iterator InsertPt
= Inst
;
447 // However, if the Operand is itself an instruction, the (potentially
448 // complex) inserted code may be shared by many users. Because of this, we
449 // want to emit code for the computation of the operand right before its old
450 // computation. This is usually safe, because we obviously used to use the
451 // computation when it was computed in its current block. However, in some
452 // cases (e.g. use of a post-incremented induction variable) the NewBase
453 // value will be pinned to live somewhere after the original computation.
454 // In this case, we have to back off.
456 // If this is a use outside the loop (which means after, since it is based
457 // on a loop indvar) we use the post-incremented value, so that we don't
458 // artificially make the preinc value live out the bottom of the loop.
459 if (!isUseOfPostIncrementedValue
&& L
->contains(Inst
->getParent())) {
460 if (NewBasePt
&& isa
<PHINode
>(OperandValToReplace
)) {
461 InsertPt
= NewBasePt
;
463 } else if (Instruction
*OpInst
464 = dyn_cast
<Instruction
>(OperandValToReplace
)) {
466 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
469 Value
*NewVal
= InsertCodeForBaseAtPosition(NewBase
,
470 OperandValToReplace
->getType(),
471 Rewriter
, InsertPt
, L
);
472 // Replace the use of the operand Value with the new Phi we just created.
473 Inst
->replaceUsesOfWith(OperandValToReplace
, NewVal
);
475 DOUT
<< " Replacing with ";
476 DEBUG(WriteAsOperand(*DOUT
, NewVal
, /*PrintType=*/false));
477 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
481 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
482 // expression into each operand block that uses it. Note that PHI nodes can
483 // have multiple entries for the same predecessor. We use a map to make sure
484 // that a PHI node only has a single Value* for each predecessor (which also
485 // prevents us from inserting duplicate code in some blocks).
486 DenseMap
<BasicBlock
*, Value
*> InsertedCode
;
487 PHINode
*PN
= cast
<PHINode
>(Inst
);
488 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
489 if (PN
->getIncomingValue(i
) == OperandValToReplace
) {
490 // If the original expression is outside the loop, put the replacement
491 // code in the same place as the original expression,
492 // which need not be an immediate predecessor of this PHI. This way we
493 // need only one copy of it even if it is referenced multiple times in
494 // the PHI. We don't do this when the original expression is inside the
495 // loop because multiple copies sometimes do useful sinking of code in
497 Instruction
*OldLoc
= dyn_cast
<Instruction
>(OperandValToReplace
);
498 if (L
->contains(OldLoc
->getParent())) {
499 // If this is a critical edge, split the edge so that we do not insert
500 // the code on all predecessor/successor paths. We do this unless this
501 // is the canonical backedge for this loop, as this can make some
502 // inserted code be in an illegal position.
503 BasicBlock
*PHIPred
= PN
->getIncomingBlock(i
);
504 if (e
!= 1 && PHIPred
->getTerminator()->getNumSuccessors() > 1 &&
505 (PN
->getParent() != L
->getHeader() || !L
->contains(PHIPred
))) {
507 // First step, split the critical edge.
508 SplitCriticalEdge(PHIPred
, PN
->getParent(), P
, false);
510 // Next step: move the basic block. In particular, if the PHI node
511 // is outside of the loop, and PredTI is in the loop, we want to
512 // move the block to be immediately before the PHI block, not
513 // immediately after PredTI.
514 if (L
->contains(PHIPred
) && !L
->contains(PN
->getParent())) {
515 BasicBlock
*NewBB
= PN
->getIncomingBlock(i
);
516 NewBB
->moveBefore(PN
->getParent());
519 // Splitting the edge can reduce the number of PHI entries we have.
520 e
= PN
->getNumIncomingValues();
523 Value
*&Code
= InsertedCode
[PN
->getIncomingBlock(i
)];
525 // Insert the code into the end of the predecessor block.
526 Instruction
*InsertPt
= (L
->contains(OldLoc
->getParent())) ?
527 PN
->getIncomingBlock(i
)->getTerminator() :
528 OldLoc
->getParent()->getTerminator();
529 Code
= InsertCodeForBaseAtPosition(NewBase
, PN
->getType(),
530 Rewriter
, InsertPt
, L
);
532 DOUT
<< " Changing PHI use to ";
533 DEBUG(WriteAsOperand(*DOUT
, Code
, /*PrintType=*/false));
534 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
537 // Replace the use of the operand Value with the new Phi we just created.
538 PN
->setIncomingValue(i
, Code
);
543 // PHI node might have become a constant value after SplitCriticalEdge.
544 DeadInsts
.push_back(Inst
);
548 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
549 /// mode, and does not need to be put in a register first.
550 static bool fitsInAddressMode(const SCEVHandle
&V
, const Type
*UseTy
,
551 const TargetLowering
*TLI
, bool HasBaseReg
) {
552 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(V
)) {
553 int64_t VC
= SC
->getValue()->getSExtValue();
555 TargetLowering::AddrMode AM
;
557 AM
.HasBaseReg
= HasBaseReg
;
558 return TLI
->isLegalAddressingMode(AM
, UseTy
);
560 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
561 return (VC
> -(1 << 16) && VC
< (1 << 16)-1);
565 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
))
566 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(SU
->getValue())) {
568 TargetLowering::AddrMode AM
;
570 AM
.HasBaseReg
= HasBaseReg
;
571 return TLI
->isLegalAddressingMode(AM
, UseTy
);
573 // Default: assume global addresses are not legal.
580 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
581 /// loop varying to the Imm operand.
582 static void MoveLoopVariantsToImmediateField(SCEVHandle
&Val
, SCEVHandle
&Imm
,
583 Loop
*L
, ScalarEvolution
*SE
) {
584 if (Val
->isLoopInvariant(L
)) return; // Nothing to do.
586 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
587 std::vector
<SCEVHandle
> NewOps
;
588 NewOps
.reserve(SAE
->getNumOperands());
590 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
)
591 if (!SAE
->getOperand(i
)->isLoopInvariant(L
)) {
592 // If this is a loop-variant expression, it must stay in the immediate
593 // field of the expression.
594 Imm
= SE
->getAddExpr(Imm
, SAE
->getOperand(i
));
596 NewOps
.push_back(SAE
->getOperand(i
));
600 Val
= SE
->getIntegerSCEV(0, Val
->getType());
602 Val
= SE
->getAddExpr(NewOps
);
603 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
604 // Try to pull immediates out of the start value of nested addrec's.
605 SCEVHandle Start
= SARE
->getStart();
606 MoveLoopVariantsToImmediateField(Start
, Imm
, L
, SE
);
608 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
610 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
612 // Otherwise, all of Val is variant, move the whole thing over.
613 Imm
= SE
->getAddExpr(Imm
, Val
);
614 Val
= SE
->getIntegerSCEV(0, Val
->getType());
619 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
620 /// that can fit into the immediate field of instructions in the target.
621 /// Accumulate these immediate values into the Imm value.
622 static void MoveImmediateValues(const TargetLowering
*TLI
,
624 SCEVHandle
&Val
, SCEVHandle
&Imm
,
625 bool isAddress
, Loop
*L
,
626 ScalarEvolution
*SE
) {
627 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
628 std::vector
<SCEVHandle
> NewOps
;
629 NewOps
.reserve(SAE
->getNumOperands());
631 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
) {
632 SCEVHandle NewOp
= SAE
->getOperand(i
);
633 MoveImmediateValues(TLI
, UseTy
, NewOp
, Imm
, isAddress
, L
, SE
);
635 if (!NewOp
->isLoopInvariant(L
)) {
636 // If this is a loop-variant expression, it must stay in the immediate
637 // field of the expression.
638 Imm
= SE
->getAddExpr(Imm
, NewOp
);
640 NewOps
.push_back(NewOp
);
645 Val
= SE
->getIntegerSCEV(0, Val
->getType());
647 Val
= SE
->getAddExpr(NewOps
);
649 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
650 // Try to pull immediates out of the start value of nested addrec's.
651 SCEVHandle Start
= SARE
->getStart();
652 MoveImmediateValues(TLI
, UseTy
, Start
, Imm
, isAddress
, L
, SE
);
654 if (Start
!= SARE
->getStart()) {
655 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
657 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
660 } else if (const SCEVMulExpr
*SME
= dyn_cast
<SCEVMulExpr
>(Val
)) {
661 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
662 if (isAddress
&& fitsInAddressMode(SME
->getOperand(0), UseTy
, TLI
, false) &&
663 SME
->getNumOperands() == 2 && SME
->isLoopInvariant(L
)) {
665 SCEVHandle SubImm
= SE
->getIntegerSCEV(0, Val
->getType());
666 SCEVHandle NewOp
= SME
->getOperand(1);
667 MoveImmediateValues(TLI
, UseTy
, NewOp
, SubImm
, isAddress
, L
, SE
);
669 // If we extracted something out of the subexpressions, see if we can
671 if (NewOp
!= SME
->getOperand(1)) {
672 // Scale SubImm up by "8". If the result is a target constant, we are
674 SubImm
= SE
->getMulExpr(SubImm
, SME
->getOperand(0));
675 if (fitsInAddressMode(SubImm
, UseTy
, TLI
, false)) {
676 // Accumulate the immediate.
677 Imm
= SE
->getAddExpr(Imm
, SubImm
);
679 // Update what is left of 'Val'.
680 Val
= SE
->getMulExpr(SME
->getOperand(0), NewOp
);
687 // Loop-variant expressions must stay in the immediate field of the
689 if ((isAddress
&& fitsInAddressMode(Val
, UseTy
, TLI
, false)) ||
690 !Val
->isLoopInvariant(L
)) {
691 Imm
= SE
->getAddExpr(Imm
, Val
);
692 Val
= SE
->getIntegerSCEV(0, Val
->getType());
696 // Otherwise, no immediates to move.
699 static void MoveImmediateValues(const TargetLowering
*TLI
,
701 SCEVHandle
&Val
, SCEVHandle
&Imm
,
702 bool isAddress
, Loop
*L
,
703 ScalarEvolution
*SE
) {
704 const Type
*UseTy
= getAccessType(User
);
705 MoveImmediateValues(TLI
, UseTy
, Val
, Imm
, isAddress
, L
, SE
);
708 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
709 /// added together. This is used to reassociate common addition subexprs
710 /// together for maximal sharing when rewriting bases.
711 static void SeparateSubExprs(std::vector
<SCEVHandle
> &SubExprs
,
713 ScalarEvolution
*SE
) {
714 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(Expr
)) {
715 for (unsigned j
= 0, e
= AE
->getNumOperands(); j
!= e
; ++j
)
716 SeparateSubExprs(SubExprs
, AE
->getOperand(j
), SE
);
717 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Expr
)) {
718 SCEVHandle Zero
= SE
->getIntegerSCEV(0, Expr
->getType());
719 if (SARE
->getOperand(0) == Zero
) {
720 SubExprs
.push_back(Expr
);
722 // Compute the addrec with zero as its base.
723 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
724 Ops
[0] = Zero
; // Start with zero base.
725 SubExprs
.push_back(SE
->getAddRecExpr(Ops
, SARE
->getLoop()));
728 SeparateSubExprs(SubExprs
, SARE
->getOperand(0), SE
);
730 } else if (!Expr
->isZero()) {
732 SubExprs
.push_back(Expr
);
736 // This is logically local to the following function, but C++ says we have
737 // to make it file scope.
738 struct SubExprUseData
{ unsigned Count
; bool notAllUsesAreFree
; };
740 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
741 /// the Uses, removing any common subexpressions, except that if all such
742 /// subexpressions can be folded into an addressing mode for all uses inside
743 /// the loop (this case is referred to as "free" in comments herein) we do
744 /// not remove anything. This looks for things like (a+b+c) and
745 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
746 /// is *removed* from the Bases and returned.
748 RemoveCommonExpressionsFromUseBases(std::vector
<BasedUser
> &Uses
,
749 ScalarEvolution
*SE
, Loop
*L
,
750 const TargetLowering
*TLI
) {
751 unsigned NumUses
= Uses
.size();
753 // Only one use? This is a very common case, so we handle it specially and
755 SCEVHandle Zero
= SE
->getIntegerSCEV(0, Uses
[0].Base
->getType());
756 SCEVHandle Result
= Zero
;
757 SCEVHandle FreeResult
= Zero
;
759 // If the use is inside the loop, use its base, regardless of what it is:
760 // it is clearly shared across all the IV's. If the use is outside the loop
761 // (which means after it) we don't want to factor anything *into* the loop,
762 // so just use 0 as the base.
763 if (L
->contains(Uses
[0].Inst
->getParent()))
764 std::swap(Result
, Uses
[0].Base
);
768 // To find common subexpressions, count how many of Uses use each expression.
769 // If any subexpressions are used Uses.size() times, they are common.
770 // Also track whether all uses of each expression can be moved into an
771 // an addressing mode "for free"; such expressions are left within the loop.
772 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
773 std::map
<SCEVHandle
, SubExprUseData
> SubExpressionUseData
;
775 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
776 // order we see them.
777 std::vector
<SCEVHandle
> UniqueSubExprs
;
779 std::vector
<SCEVHandle
> SubExprs
;
780 unsigned NumUsesInsideLoop
= 0;
781 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
782 // If the user is outside the loop, just ignore it for base computation.
783 // Since the user is outside the loop, it must be *after* the loop (if it
784 // were before, it could not be based on the loop IV). We don't want users
785 // after the loop to affect base computation of values *inside* the loop,
786 // because we can always add their offsets to the result IV after the loop
787 // is done, ensuring we get good code inside the loop.
788 if (!L
->contains(Uses
[i
].Inst
->getParent()))
792 // If the base is zero (which is common), return zero now, there are no
794 if (Uses
[i
].Base
== Zero
) return Zero
;
796 // If this use is as an address we may be able to put CSEs in the addressing
797 // mode rather than hoisting them.
798 bool isAddrUse
= isAddressUse(Uses
[i
].Inst
, Uses
[i
].OperandValToReplace
);
799 // We may need the UseTy below, but only when isAddrUse, so compute it
800 // only in that case.
801 const Type
*UseTy
= 0;
803 UseTy
= getAccessType(Uses
[i
].Inst
);
805 // Split the expression into subexprs.
806 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
807 // Add one to SubExpressionUseData.Count for each subexpr present, and
808 // if the subexpr is not a valid immediate within an addressing mode use,
809 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
810 // hoist these out of the loop (if they are common to all uses).
811 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
812 if (++SubExpressionUseData
[SubExprs
[j
]].Count
== 1)
813 UniqueSubExprs
.push_back(SubExprs
[j
]);
814 if (!isAddrUse
|| !fitsInAddressMode(SubExprs
[j
], UseTy
, TLI
, false))
815 SubExpressionUseData
[SubExprs
[j
]].notAllUsesAreFree
= true;
820 // Now that we know how many times each is used, build Result. Iterate over
821 // UniqueSubexprs so that we have a stable ordering.
822 for (unsigned i
= 0, e
= UniqueSubExprs
.size(); i
!= e
; ++i
) {
823 std::map
<SCEVHandle
, SubExprUseData
>::iterator I
=
824 SubExpressionUseData
.find(UniqueSubExprs
[i
]);
825 assert(I
!= SubExpressionUseData
.end() && "Entry not found?");
826 if (I
->second
.Count
== NumUsesInsideLoop
) { // Found CSE!
827 if (I
->second
.notAllUsesAreFree
)
828 Result
= SE
->getAddExpr(Result
, I
->first
);
830 FreeResult
= SE
->getAddExpr(FreeResult
, I
->first
);
832 // Remove non-cse's from SubExpressionUseData.
833 SubExpressionUseData
.erase(I
);
836 if (FreeResult
!= Zero
) {
837 // We have some subexpressions that can be subsumed into addressing
838 // modes in every use inside the loop. However, it's possible that
839 // there are so many of them that the combined FreeResult cannot
840 // be subsumed, or that the target cannot handle both a FreeResult
841 // and a Result in the same instruction (for example because it would
842 // require too many registers). Check this.
843 for (unsigned i
=0; i
<NumUses
; ++i
) {
844 if (!L
->contains(Uses
[i
].Inst
->getParent()))
846 // We know this is an addressing mode use; if there are any uses that
847 // are not, FreeResult would be Zero.
848 const Type
*UseTy
= getAccessType(Uses
[i
].Inst
);
849 if (!fitsInAddressMode(FreeResult
, UseTy
, TLI
, Result
!=Zero
)) {
850 // FIXME: could split up FreeResult into pieces here, some hoisted
851 // and some not. There is no obvious advantage to this.
852 Result
= SE
->getAddExpr(Result
, FreeResult
);
859 // If we found no CSE's, return now.
860 if (Result
== Zero
) return Result
;
862 // If we still have a FreeResult, remove its subexpressions from
863 // SubExpressionUseData. This means they will remain in the use Bases.
864 if (FreeResult
!= Zero
) {
865 SeparateSubExprs(SubExprs
, FreeResult
, SE
);
866 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
867 std::map
<SCEVHandle
, SubExprUseData
>::iterator I
=
868 SubExpressionUseData
.find(SubExprs
[j
]);
869 SubExpressionUseData
.erase(I
);
874 // Otherwise, remove all of the CSE's we found from each of the base values.
875 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
876 // Uses outside the loop don't necessarily include the common base, but
877 // the final IV value coming into those uses does. Instead of trying to
878 // remove the pieces of the common base, which might not be there,
879 // subtract off the base to compensate for this.
880 if (!L
->contains(Uses
[i
].Inst
->getParent())) {
881 Uses
[i
].Base
= SE
->getMinusSCEV(Uses
[i
].Base
, Result
);
885 // Split the expression into subexprs.
886 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
888 // Remove any common subexpressions.
889 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
)
890 if (SubExpressionUseData
.count(SubExprs
[j
])) {
891 SubExprs
.erase(SubExprs
.begin()+j
);
895 // Finally, add the non-shared expressions together.
896 if (SubExprs
.empty())
899 Uses
[i
].Base
= SE
->getAddExpr(SubExprs
);
906 /// ValidScale - Check whether the given Scale is valid for all loads and
907 /// stores in UsersToProcess.
909 bool LoopStrengthReduce::ValidScale(bool HasBaseReg
, int64_t Scale
,
910 const std::vector
<BasedUser
>& UsersToProcess
) {
914 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
915 // If this is a load or other access, pass the type of the access in.
916 const Type
*AccessTy
= Type::VoidTy
;
917 if (isAddressUse(UsersToProcess
[i
].Inst
,
918 UsersToProcess
[i
].OperandValToReplace
))
919 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
920 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
923 TargetLowering::AddrMode AM
;
924 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
925 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
926 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
929 // If load[imm+r*scale] is illegal, bail out.
930 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
936 /// ValidOffset - Check whether the given Offset is valid for all loads and
937 /// stores in UsersToProcess.
939 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg
,
942 const std::vector
<BasedUser
>& UsersToProcess
) {
946 for (unsigned i
=0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
947 // If this is a load or other access, pass the type of the access in.
948 const Type
*AccessTy
= Type::VoidTy
;
949 if (isAddressUse(UsersToProcess
[i
].Inst
,
950 UsersToProcess
[i
].OperandValToReplace
))
951 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
952 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
955 TargetLowering::AddrMode AM
;
956 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
957 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
958 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ (uint64_t)Offset
;
959 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
962 // If load[imm+r*scale] is illegal, bail out.
963 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
969 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
971 bool LoopStrengthReduce::RequiresTypeConversion(const Type
*Ty1
,
975 Ty1
= SE
->getEffectiveSCEVType(Ty1
);
976 Ty2
= SE
->getEffectiveSCEVType(Ty2
);
979 if (Ty1
->canLosslesslyBitCastTo(Ty2
))
981 if (TLI
&& TLI
->isTruncateFree(Ty1
, Ty2
))
986 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
987 /// of a previous stride and it is a legal value for the target addressing
988 /// mode scale component and optional base reg. This allows the users of
989 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
990 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
992 /// If all uses are outside the loop, we don't require that all multiplies
993 /// be folded into the addressing mode, nor even that the factor be constant;
994 /// a multiply (executed once) outside the loop is better than another IV
995 /// within. Well, usually.
996 SCEVHandle
LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg
,
997 bool AllUsesAreAddresses
,
998 bool AllUsesAreOutsideLoop
,
999 const SCEVHandle
&Stride
,
1000 IVExpr
&IV
, const Type
*Ty
,
1001 const std::vector
<BasedUser
>& UsersToProcess
) {
1002 if (StrideNoReuse
.count(Stride
))
1003 return SE
->getIntegerSCEV(0, Stride
->getType());
1005 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Stride
)) {
1006 int64_t SInt
= SC
->getValue()->getSExtValue();
1007 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1008 NewStride
!= e
; ++NewStride
) {
1009 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1010 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1011 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
) ||
1012 StrideNoReuse
.count(SI
->first
))
1014 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1015 if (SI
->first
!= Stride
&&
1016 (unsigned(abs64(SInt
)) < SSInt
|| (SInt
% SSInt
) != 0))
1018 int64_t Scale
= SInt
/ SSInt
;
1019 // Check that this stride is valid for all the types used for loads and
1020 // stores; if it can be used for some and not others, we might as well use
1021 // the original stride everywhere, since we have to create the IV for it
1022 // anyway. If the scale is 1, then we don't need to worry about folding
1025 (AllUsesAreAddresses
&&
1026 ValidScale(HasBaseReg
, Scale
, UsersToProcess
))) {
1027 // Prefer to reuse an IV with a base of zero.
1028 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1029 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1030 // Only reuse previous IV if it would not require a type conversion
1031 // and if the base difference can be folded.
1032 if (II
->Base
->isZero() &&
1033 !RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1035 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1037 // Otherwise, settle for an IV with a foldable base.
1038 if (AllUsesAreAddresses
)
1039 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1040 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1041 // Only reuse previous IV if it would not require a type conversion
1042 // and if the base difference can be folded.
1043 if (SE
->getEffectiveSCEVType(II
->Base
->getType()) ==
1044 SE
->getEffectiveSCEVType(Ty
) &&
1045 isa
<SCEVConstant
>(II
->Base
)) {
1047 cast
<SCEVConstant
>(II
->Base
)->getValue()->getSExtValue();
1048 if (Base
> INT32_MIN
&& Base
<= INT32_MAX
&&
1049 ValidOffset(HasBaseReg
, -Base
* Scale
,
1050 Scale
, UsersToProcess
)) {
1052 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1057 } else if (AllUsesAreOutsideLoop
) {
1058 // Accept nonconstant strides here; it is really really right to substitute
1059 // an existing IV if we can.
1060 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1061 NewStride
!= e
; ++NewStride
) {
1062 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1063 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1064 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
))
1066 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1067 if (SI
->first
!= Stride
&& SSInt
!= 1)
1069 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1070 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1071 // Accept nonzero base here.
1072 // Only reuse previous IV if it would not require a type conversion.
1073 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1078 // Special case, old IV is -1*x and this one is x. Can treat this one as
1080 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1081 NewStride
!= e
; ++NewStride
) {
1082 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1083 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1084 if (SI
== IVsByStride
.end())
1086 if (const SCEVMulExpr
*ME
= dyn_cast
<SCEVMulExpr
>(SI
->first
))
1087 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(ME
->getOperand(0)))
1088 if (Stride
== ME
->getOperand(1) &&
1089 SC
->getValue()->getSExtValue() == -1LL)
1090 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1091 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1092 // Accept nonzero base here.
1093 // Only reuse previous IV if it would not require type conversion.
1094 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1096 return SE
->getIntegerSCEV(-1LL, Stride
->getType());
1100 return SE
->getIntegerSCEV(0, Stride
->getType());
1103 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1104 /// returns true if Val's isUseOfPostIncrementedValue is true.
1105 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser
&Val
) {
1106 return Val
.isUseOfPostIncrementedValue
;
1109 /// isNonConstantNegative - Return true if the specified scev is negated, but
1111 static bool isNonConstantNegative(const SCEVHandle
&Expr
) {
1112 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Expr
);
1113 if (!Mul
) return false;
1115 // If there is a constant factor, it will be first.
1116 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
1117 if (!SC
) return false;
1119 // Return true if the value is negative, this matches things like (-42 * V).
1120 return SC
->getValue()->getValue().isNegative();
1123 // CollectIVUsers - Transform our list of users and offsets to a bit more
1124 // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1125 // of the strided accesses, as well as the old information from Uses. We
1126 // progressively move information from the Base field to the Imm field, until
1127 // we eventually have the full access expression to rewrite the use.
1128 SCEVHandle
LoopStrengthReduce::CollectIVUsers(const SCEVHandle
&Stride
,
1129 IVUsersOfOneStride
&Uses
,
1131 bool &AllUsesAreAddresses
,
1132 bool &AllUsesAreOutsideLoop
,
1133 std::vector
<BasedUser
> &UsersToProcess
) {
1134 // FIXME: Generalize to non-affine IV's.
1135 if (!Stride
->isLoopInvariant(L
))
1136 return SE
->getIntegerSCEV(0, Stride
->getType());
1138 UsersToProcess
.reserve(Uses
.Users
.size());
1139 for (ilist
<IVStrideUse
>::iterator I
= Uses
.Users
.begin(),
1140 E
= Uses
.Users
.end(); I
!= E
; ++I
) {
1141 UsersToProcess
.push_back(BasedUser(*I
, SE
));
1143 // Move any loop variant operands from the offset field to the immediate
1144 // field of the use, so that we don't try to use something before it is
1146 MoveLoopVariantsToImmediateField(UsersToProcess
.back().Base
,
1147 UsersToProcess
.back().Imm
, L
, SE
);
1148 assert(UsersToProcess
.back().Base
->isLoopInvariant(L
) &&
1149 "Base value is not loop invariant!");
1152 // We now have a whole bunch of uses of like-strided induction variables, but
1153 // they might all have different bases. We want to emit one PHI node for this
1154 // stride which we fold as many common expressions (between the IVs) into as
1155 // possible. Start by identifying the common expressions in the base values
1156 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1157 // "A+B"), emit it to the preheader, then remove the expression from the
1158 // UsersToProcess base values.
1159 SCEVHandle CommonExprs
=
1160 RemoveCommonExpressionsFromUseBases(UsersToProcess
, SE
, L
, TLI
);
1162 // Next, figure out what we can represent in the immediate fields of
1163 // instructions. If we can represent anything there, move it to the imm
1164 // fields of the BasedUsers. We do this so that it increases the commonality
1165 // of the remaining uses.
1166 unsigned NumPHI
= 0;
1167 bool HasAddress
= false;
1168 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1169 // If the user is not in the current loop, this means it is using the exit
1170 // value of the IV. Do not put anything in the base, make sure it's all in
1171 // the immediate field to allow as much factoring as possible.
1172 if (!L
->contains(UsersToProcess
[i
].Inst
->getParent())) {
1173 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
,
1174 UsersToProcess
[i
].Base
);
1175 UsersToProcess
[i
].Base
=
1176 SE
->getIntegerSCEV(0, UsersToProcess
[i
].Base
->getType());
1178 // Not all uses are outside the loop.
1179 AllUsesAreOutsideLoop
= false;
1181 // Addressing modes can be folded into loads and stores. Be careful that
1182 // the store is through the expression, not of the expression though.
1184 bool isAddress
= isAddressUse(UsersToProcess
[i
].Inst
,
1185 UsersToProcess
[i
].OperandValToReplace
);
1186 if (isa
<PHINode
>(UsersToProcess
[i
].Inst
)) {
1194 // If this use isn't an address, then not all uses are addresses.
1195 if (!isAddress
&& !isPHI
)
1196 AllUsesAreAddresses
= false;
1198 MoveImmediateValues(TLI
, UsersToProcess
[i
].Inst
, UsersToProcess
[i
].Base
,
1199 UsersToProcess
[i
].Imm
, isAddress
, L
, SE
);
1203 // If one of the use is a PHI node and all other uses are addresses, still
1204 // allow iv reuse. Essentially we are trading one constant multiplication
1205 // for one fewer iv.
1207 AllUsesAreAddresses
= false;
1209 // There are no in-loop address uses.
1210 if (AllUsesAreAddresses
&& (!HasAddress
&& !AllUsesAreOutsideLoop
))
1211 AllUsesAreAddresses
= false;
1216 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1217 /// is valid and profitable for the given set of users of a stride. In
1218 /// full strength-reduction mode, all addresses at the current stride are
1219 /// strength-reduced all the way down to pointer arithmetic.
1221 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1222 const std::vector
<BasedUser
> &UsersToProcess
,
1224 bool AllUsesAreAddresses
,
1225 SCEVHandle Stride
) {
1226 if (!EnableFullLSRMode
)
1229 // The heuristics below aim to avoid increasing register pressure, but
1230 // fully strength-reducing all the addresses increases the number of
1231 // add instructions, so don't do this when optimizing for size.
1232 // TODO: If the loop is large, the savings due to simpler addresses
1233 // may oughtweight the costs of the extra increment instructions.
1234 if (L
->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize
))
1237 // TODO: For now, don't do full strength reduction if there could
1238 // potentially be greater-stride multiples of the current stride
1239 // which could reuse the current stride IV.
1240 if (IU
->StrideOrder
.back() != Stride
)
1243 // Iterate through the uses to find conditions that automatically rule out
1245 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1246 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1247 const SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1248 // If any users have a loop-variant component, they can't be fully
1249 // strength-reduced.
1250 if (Imm
&& !Imm
->isLoopInvariant(L
))
1252 // If there are to users with the same base and the difference between
1253 // the two Imm values can't be folded into the address, full
1254 // strength reduction would increase register pressure.
1256 const SCEV
*CurImm
= UsersToProcess
[i
].Imm
;
1257 if ((CurImm
|| Imm
) && CurImm
!= Imm
) {
1258 if (!CurImm
) CurImm
= SE
->getIntegerSCEV(0, Stride
->getType());
1259 if (!Imm
) Imm
= SE
->getIntegerSCEV(0, Stride
->getType());
1260 const Instruction
*Inst
= UsersToProcess
[i
].Inst
;
1261 const Type
*UseTy
= getAccessType(Inst
);
1262 SCEVHandle Diff
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1263 if (!Diff
->isZero() &&
1264 (!AllUsesAreAddresses
||
1265 !fitsInAddressMode(Diff
, UseTy
, TLI
, /*HasBaseReg=*/true)))
1268 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1271 // If there's exactly one user in this stride, fully strength-reducing it
1272 // won't increase register pressure. If it's starting from a non-zero base,
1273 // it'll be simpler this way.
1274 if (UsersToProcess
.size() == 1 && !UsersToProcess
[0].Base
->isZero())
1277 // Otherwise, if there are any users in this stride that don't require
1278 // a register for their base, full strength-reduction will increase
1279 // register pressure.
1280 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1281 if (UsersToProcess
[i
].Base
->isZero())
1284 // Otherwise, go for it.
1288 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1289 /// with the specified start and step values in the specified loop.
1291 /// If NegateStride is true, the stride should be negated by using a
1292 /// subtract instead of an add.
1294 /// Return the created phi node.
1296 static PHINode
*InsertAffinePhi(SCEVHandle Start
, SCEVHandle Step
,
1297 Instruction
*IVIncInsertPt
,
1299 SCEVExpander
&Rewriter
) {
1300 assert(Start
->isLoopInvariant(L
) && "New PHI start is not loop invariant!");
1301 assert(Step
->isLoopInvariant(L
) && "New PHI stride is not loop invariant!");
1303 BasicBlock
*Header
= L
->getHeader();
1304 BasicBlock
*Preheader
= L
->getLoopPreheader();
1305 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1306 const Type
*Ty
= Start
->getType();
1307 Ty
= Rewriter
.SE
.getEffectiveSCEVType(Ty
);
1309 PHINode
*PN
= PHINode::Create(Ty
, "lsr.iv", Header
->begin());
1310 PN
->addIncoming(Rewriter
.expandCodeFor(Start
, Ty
, Preheader
->getTerminator()),
1313 // If the stride is negative, insert a sub instead of an add for the
1315 bool isNegative
= isNonConstantNegative(Step
);
1316 SCEVHandle IncAmount
= Step
;
1318 IncAmount
= Rewriter
.SE
.getNegativeSCEV(Step
);
1320 // Insert an add instruction right before the terminator corresponding
1321 // to the back-edge or just before the only use. The location is determined
1322 // by the caller and passed in as IVIncInsertPt.
1323 Value
*StepV
= Rewriter
.expandCodeFor(IncAmount
, Ty
,
1324 Preheader
->getTerminator());
1327 IncV
= BinaryOperator::CreateSub(PN
, StepV
, "lsr.iv.next",
1330 IncV
= BinaryOperator::CreateAdd(PN
, StepV
, "lsr.iv.next",
1333 if (!isa
<ConstantInt
>(StepV
)) ++NumVariable
;
1335 PN
->addIncoming(IncV
, LatchBlock
);
1341 static void SortUsersToProcess(std::vector
<BasedUser
> &UsersToProcess
) {
1342 // We want to emit code for users inside the loop first. To do this, we
1343 // rearrange BasedUser so that the entries at the end have
1344 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1345 // vector (so we handle them first).
1346 std::partition(UsersToProcess
.begin(), UsersToProcess
.end(),
1347 PartitionByIsUseOfPostIncrementedValue
);
1349 // Sort this by base, so that things with the same base are handled
1350 // together. By partitioning first and stable-sorting later, we are
1351 // guaranteed that within each base we will pop off users from within the
1352 // loop before users outside of the loop with a particular base.
1354 // We would like to use stable_sort here, but we can't. The problem is that
1355 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1356 // we don't have anything to do a '<' comparison on. Because we think the
1357 // number of uses is small, do a horrible bubble sort which just relies on
1359 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1360 // Get a base value.
1361 SCEVHandle Base
= UsersToProcess
[i
].Base
;
1363 // Compact everything with this base to be consecutive with this one.
1364 for (unsigned j
= i
+1; j
!= e
; ++j
) {
1365 if (UsersToProcess
[j
].Base
== Base
) {
1366 std::swap(UsersToProcess
[i
+1], UsersToProcess
[j
]);
1373 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1374 /// UsersToProcess, meaning lowering addresses all the way down to direct
1375 /// pointer arithmetic.
1378 LoopStrengthReduce::PrepareToStrengthReduceFully(
1379 std::vector
<BasedUser
> &UsersToProcess
,
1381 SCEVHandle CommonExprs
,
1383 SCEVExpander
&PreheaderRewriter
) {
1384 DOUT
<< " Fully reducing all users\n";
1386 // Rewrite the UsersToProcess records, creating a separate PHI for each
1387 // unique Base value.
1388 Instruction
*IVIncInsertPt
= L
->getLoopLatch()->getTerminator();
1389 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1390 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1391 // pick the first Imm value here to start with, and adjust it for the
1393 SCEVHandle Imm
= UsersToProcess
[i
].Imm
;
1394 SCEVHandle Base
= UsersToProcess
[i
].Base
;
1395 SCEVHandle Start
= SE
->getAddExpr(CommonExprs
, Base
, Imm
);
1396 PHINode
*Phi
= InsertAffinePhi(Start
, Stride
, IVIncInsertPt
, L
,
1398 // Loop over all the users with the same base.
1400 UsersToProcess
[i
].Base
= SE
->getIntegerSCEV(0, Stride
->getType());
1401 UsersToProcess
[i
].Imm
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1402 UsersToProcess
[i
].Phi
= Phi
;
1403 assert(UsersToProcess
[i
].Imm
->isLoopInvariant(L
) &&
1404 "ShouldUseFullStrengthReductionMode should reject this!");
1405 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1409 /// FindIVIncInsertPt - Return the location to insert the increment instruction.
1410 /// If the only use if a use of postinc value, (must be the loop termination
1411 /// condition), then insert it just before the use.
1412 static Instruction
*FindIVIncInsertPt(std::vector
<BasedUser
> &UsersToProcess
,
1414 if (UsersToProcess
.size() == 1 &&
1415 UsersToProcess
[0].isUseOfPostIncrementedValue
&&
1416 L
->contains(UsersToProcess
[0].Inst
->getParent()))
1417 return UsersToProcess
[0].Inst
;
1418 return L
->getLoopLatch()->getTerminator();
1421 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1422 /// given users to share.
1425 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1426 std::vector
<BasedUser
> &UsersToProcess
,
1428 SCEVHandle CommonExprs
,
1430 Instruction
*IVIncInsertPt
,
1432 SCEVExpander
&PreheaderRewriter
) {
1433 DOUT
<< " Inserting new PHI:\n";
1435 PHINode
*Phi
= InsertAffinePhi(SE
->getUnknown(CommonBaseV
),
1436 Stride
, IVIncInsertPt
, L
,
1439 // Remember this in case a later stride is multiple of this.
1440 IVsByStride
[Stride
].addIV(Stride
, CommonExprs
, Phi
);
1442 // All the users will share this new IV.
1443 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1444 UsersToProcess
[i
].Phi
= Phi
;
1447 DEBUG(WriteAsOperand(*DOUT
, Phi
, /*PrintType=*/false));
1451 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1452 /// reuse an induction variable with a stride that is a factor of the current
1453 /// induction variable.
1456 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1457 std::vector
<BasedUser
> &UsersToProcess
,
1459 const IVExpr
&ReuseIV
,
1460 Instruction
*PreInsertPt
) {
1461 DOUT
<< " Rewriting in terms of existing IV of STRIDE " << *ReuseIV
.Stride
1462 << " and BASE " << *ReuseIV
.Base
<< "\n";
1464 // All the users will share the reused IV.
1465 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1466 UsersToProcess
[i
].Phi
= ReuseIV
.PHI
;
1468 Constant
*C
= dyn_cast
<Constant
>(CommonBaseV
);
1470 (!C
->isNullValue() &&
1471 !fitsInAddressMode(SE
->getUnknown(CommonBaseV
), CommonBaseV
->getType(),
1473 // We want the common base emitted into the preheader! This is just
1474 // using cast as a copy so BitCast (no-op cast) is appropriate
1475 CommonBaseV
= new BitCastInst(CommonBaseV
, CommonBaseV
->getType(),
1476 "commonbase", PreInsertPt
);
1479 static bool IsImmFoldedIntoAddrMode(GlobalValue
*GV
, int64_t Offset
,
1480 const Type
*AccessTy
,
1481 std::vector
<BasedUser
> &UsersToProcess
,
1482 const TargetLowering
*TLI
) {
1483 SmallVector
<Instruction
*, 16> AddrModeInsts
;
1484 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1485 if (UsersToProcess
[i
].isUseOfPostIncrementedValue
)
1487 ExtAddrMode AddrMode
=
1488 AddressingModeMatcher::Match(UsersToProcess
[i
].OperandValToReplace
,
1489 AccessTy
, UsersToProcess
[i
].Inst
,
1490 AddrModeInsts
, *TLI
);
1491 if (GV
&& GV
!= AddrMode
.BaseGV
)
1493 if (Offset
&& !AddrMode
.BaseOffs
)
1494 // FIXME: How to accurate check it's immediate offset is folded.
1496 AddrModeInsts
.clear();
1501 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1502 /// stride of IV. All of the users may have different starting values, and this
1503 /// may not be the only stride.
1504 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle
&Stride
,
1505 IVUsersOfOneStride
&Uses
,
1507 // If all the users are moved to another stride, then there is nothing to do.
1508 if (Uses
.Users
.empty())
1511 // Keep track if every use in UsersToProcess is an address. If they all are,
1512 // we may be able to rewrite the entire collection of them in terms of a
1513 // smaller-stride IV.
1514 bool AllUsesAreAddresses
= true;
1516 // Keep track if every use of a single stride is outside the loop. If so,
1517 // we want to be more aggressive about reusing a smaller-stride IV; a
1518 // multiply outside the loop is better than another IV inside. Well, usually.
1519 bool AllUsesAreOutsideLoop
= true;
1521 // Transform our list of users and offsets to a bit more complex table. In
1522 // this new vector, each 'BasedUser' contains 'Base' the base of the
1523 // strided accessas well as the old information from Uses. We progressively
1524 // move information from the Base field to the Imm field, until we eventually
1525 // have the full access expression to rewrite the use.
1526 std::vector
<BasedUser
> UsersToProcess
;
1527 SCEVHandle CommonExprs
= CollectIVUsers(Stride
, Uses
, L
, AllUsesAreAddresses
,
1528 AllUsesAreOutsideLoop
,
1531 // Sort the UsersToProcess array so that users with common bases are
1532 // next to each other.
1533 SortUsersToProcess(UsersToProcess
);
1535 // If we managed to find some expressions in common, we'll need to carry
1536 // their value in a register and add it in for each use. This will take up
1537 // a register operand, which potentially restricts what stride values are
1539 bool HaveCommonExprs
= !CommonExprs
->isZero();
1540 const Type
*ReplacedTy
= CommonExprs
->getType();
1542 // If all uses are addresses, consider sinking the immediate part of the
1543 // common expression back into uses if they can fit in the immediate fields.
1544 if (TLI
&& HaveCommonExprs
&& AllUsesAreAddresses
) {
1545 SCEVHandle NewCommon
= CommonExprs
;
1546 SCEVHandle Imm
= SE
->getIntegerSCEV(0, ReplacedTy
);
1547 MoveImmediateValues(TLI
, Type::VoidTy
, NewCommon
, Imm
, true, L
, SE
);
1548 if (!Imm
->isZero()) {
1551 // If the immediate part of the common expression is a GV, check if it's
1552 // possible to fold it into the target addressing mode.
1553 GlobalValue
*GV
= 0;
1554 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(Imm
))
1555 GV
= dyn_cast
<GlobalValue
>(SU
->getValue());
1557 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Imm
))
1558 Offset
= SC
->getValue()->getSExtValue();
1560 // Pass VoidTy as the AccessTy to be conservative, because
1561 // there could be multiple access types among all the uses.
1562 DoSink
= IsImmFoldedIntoAddrMode(GV
, Offset
, Type::VoidTy
,
1563 UsersToProcess
, TLI
);
1566 DOUT
<< " Sinking " << *Imm
<< " back down into uses\n";
1567 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1568 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
, Imm
);
1569 CommonExprs
= NewCommon
;
1570 HaveCommonExprs
= !CommonExprs
->isZero();
1576 // Now that we know what we need to do, insert the PHI node itself.
1578 DOUT
<< "LSR: Examining IVs of TYPE " << *ReplacedTy
<< " of STRIDE "
1580 << " Common base: " << *CommonExprs
<< "\n";
1582 SCEVExpander
Rewriter(*SE
, *LI
);
1583 SCEVExpander
PreheaderRewriter(*SE
, *LI
);
1585 BasicBlock
*Preheader
= L
->getLoopPreheader();
1586 Instruction
*PreInsertPt
= Preheader
->getTerminator();
1587 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1588 Instruction
*IVIncInsertPt
= LatchBlock
->getTerminator();
1590 Value
*CommonBaseV
= Constant::getNullValue(ReplacedTy
);
1592 SCEVHandle RewriteFactor
= SE
->getIntegerSCEV(0, ReplacedTy
);
1593 IVExpr
ReuseIV(SE
->getIntegerSCEV(0, Type::Int32Ty
),
1594 SE
->getIntegerSCEV(0, Type::Int32Ty
),
1597 /// Choose a strength-reduction strategy and prepare for it by creating
1598 /// the necessary PHIs and adjusting the bookkeeping.
1599 if (ShouldUseFullStrengthReductionMode(UsersToProcess
, L
,
1600 AllUsesAreAddresses
, Stride
)) {
1601 PrepareToStrengthReduceFully(UsersToProcess
, Stride
, CommonExprs
, L
,
1604 // Emit the initial base value into the loop preheader.
1605 CommonBaseV
= PreheaderRewriter
.expandCodeFor(CommonExprs
, ReplacedTy
,
1608 // If all uses are addresses, check if it is possible to reuse an IV. The
1609 // new IV must have a stride that is a multiple of the old stride; the
1610 // multiple must be a number that can be encoded in the scale field of the
1611 // target addressing mode; and we must have a valid instruction after this
1612 // substitution, including the immediate field, if any.
1613 RewriteFactor
= CheckForIVReuse(HaveCommonExprs
, AllUsesAreAddresses
,
1614 AllUsesAreOutsideLoop
,
1615 Stride
, ReuseIV
, ReplacedTy
,
1617 if (!RewriteFactor
->isZero())
1618 PrepareToStrengthReduceFromSmallerStride(UsersToProcess
, CommonBaseV
,
1619 ReuseIV
, PreInsertPt
);
1621 IVIncInsertPt
= FindIVIncInsertPt(UsersToProcess
, L
);
1622 PrepareToStrengthReduceWithNewPhi(UsersToProcess
, Stride
, CommonExprs
,
1623 CommonBaseV
, IVIncInsertPt
,
1624 L
, PreheaderRewriter
);
1628 // Process all the users now, replacing their strided uses with
1629 // strength-reduced forms. This outer loop handles all bases, the inner
1630 // loop handles all users of a particular base.
1631 while (!UsersToProcess
.empty()) {
1632 SCEVHandle Base
= UsersToProcess
.back().Base
;
1633 Instruction
*Inst
= UsersToProcess
.back().Inst
;
1635 // Emit the code for Base into the preheader.
1637 if (!Base
->isZero()) {
1638 BaseV
= PreheaderRewriter
.expandCodeFor(Base
, Base
->getType(),
1641 DOUT
<< " INSERTING code for BASE = " << *Base
<< ":";
1642 if (BaseV
->hasName())
1643 DOUT
<< " Result value name = %" << BaseV
->getNameStr();
1646 // If BaseV is a non-zero constant, make sure that it gets inserted into
1647 // the preheader, instead of being forward substituted into the uses. We
1648 // do this by forcing a BitCast (noop cast) to be inserted into the
1649 // preheader in this case.
1650 if (!fitsInAddressMode(Base
, getAccessType(Inst
), TLI
, false)) {
1651 // We want this constant emitted into the preheader! This is just
1652 // using cast as a copy so BitCast (no-op cast) is appropriate
1653 BaseV
= new BitCastInst(BaseV
, BaseV
->getType(), "preheaderinsert",
1658 // Emit the code to add the immediate offset to the Phi value, just before
1659 // the instructions that we identified as using this stride and base.
1661 // FIXME: Use emitted users to emit other users.
1662 BasedUser
&User
= UsersToProcess
.back();
1664 DOUT
<< " Examining ";
1665 if (User
.isUseOfPostIncrementedValue
)
1670 DEBUG(WriteAsOperand(*DOUT
, UsersToProcess
.back().OperandValToReplace
,
1671 /*PrintType=*/false));
1672 DOUT
<< " in Inst: " << *(User
.Inst
);
1674 // If this instruction wants to use the post-incremented value, move it
1675 // after the post-inc and use its value instead of the PHI.
1676 Value
*RewriteOp
= User
.Phi
;
1677 if (User
.isUseOfPostIncrementedValue
) {
1678 RewriteOp
= User
.Phi
->getIncomingValueForBlock(LatchBlock
);
1679 // If this user is in the loop, make sure it is the last thing in the
1680 // loop to ensure it is dominated by the increment. In case it's the
1681 // only use of the iv, the increment instruction is already before the
1683 if (L
->contains(User
.Inst
->getParent()) && User
.Inst
!= IVIncInsertPt
)
1684 User
.Inst
->moveBefore(IVIncInsertPt
);
1687 SCEVHandle RewriteExpr
= SE
->getUnknown(RewriteOp
);
1689 if (SE
->getEffectiveSCEVType(RewriteOp
->getType()) !=
1690 SE
->getEffectiveSCEVType(ReplacedTy
)) {
1691 assert(SE
->getTypeSizeInBits(RewriteOp
->getType()) >
1692 SE
->getTypeSizeInBits(ReplacedTy
) &&
1693 "Unexpected widening cast!");
1694 RewriteExpr
= SE
->getTruncateExpr(RewriteExpr
, ReplacedTy
);
1697 // If we had to insert new instructions for RewriteOp, we have to
1698 // consider that they may not have been able to end up immediately
1699 // next to RewriteOp, because non-PHI instructions may never precede
1700 // PHI instructions in a block. In this case, remember where the last
1701 // instruction was inserted so that if we're replacing a different
1702 // PHI node, we can use the later point to expand the final
1704 Instruction
*NewBasePt
= dyn_cast
<Instruction
>(RewriteOp
);
1705 if (RewriteOp
== User
.Phi
) NewBasePt
= 0;
1707 // Clear the SCEVExpander's expression map so that we are guaranteed
1708 // to have the code emitted where we expect it.
1711 // If we are reusing the iv, then it must be multiplied by a constant
1712 // factor to take advantage of the addressing mode scale component.
1713 if (!RewriteFactor
->isZero()) {
1714 // If we're reusing an IV with a nonzero base (currently this happens
1715 // only when all reuses are outside the loop) subtract that base here.
1716 // The base has been used to initialize the PHI node but we don't want
1718 if (!ReuseIV
.Base
->isZero()) {
1719 SCEVHandle typedBase
= ReuseIV
.Base
;
1720 if (SE
->getEffectiveSCEVType(RewriteExpr
->getType()) !=
1721 SE
->getEffectiveSCEVType(ReuseIV
.Base
->getType())) {
1722 // It's possible the original IV is a larger type than the new IV,
1723 // in which case we have to truncate the Base. We checked in
1724 // RequiresTypeConversion that this is valid.
1725 assert(SE
->getTypeSizeInBits(RewriteExpr
->getType()) <
1726 SE
->getTypeSizeInBits(ReuseIV
.Base
->getType()) &&
1727 "Unexpected lengthening conversion!");
1728 typedBase
= SE
->getTruncateExpr(ReuseIV
.Base
,
1729 RewriteExpr
->getType());
1731 RewriteExpr
= SE
->getMinusSCEV(RewriteExpr
, typedBase
);
1734 // Multiply old variable, with base removed, by new scale factor.
1735 RewriteExpr
= SE
->getMulExpr(RewriteFactor
,
1738 // The common base is emitted in the loop preheader. But since we
1739 // are reusing an IV, it has not been used to initialize the PHI node.
1740 // Add it to the expression used to rewrite the uses.
1741 // When this use is outside the loop, we earlier subtracted the
1742 // common base, and are adding it back here. Use the same expression
1743 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1744 if (!CommonExprs
->isZero()) {
1745 if (L
->contains(User
.Inst
->getParent()))
1746 RewriteExpr
= SE
->getAddExpr(RewriteExpr
,
1747 SE
->getUnknown(CommonBaseV
));
1749 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, CommonExprs
);
1753 // Now that we know what we need to do, insert code before User for the
1754 // immediate and any loop-variant expressions.
1756 // Add BaseV to the PHI value if needed.
1757 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, SE
->getUnknown(BaseV
));
1759 User
.RewriteInstructionToUseNewBase(RewriteExpr
, NewBasePt
,
1763 // Mark old value we replaced as possibly dead, so that it is eliminated
1764 // if we just replaced the last use of that value.
1765 DeadInsts
.push_back(User
.OperandValToReplace
);
1767 UsersToProcess
.pop_back();
1770 // If there are any more users to process with the same base, process them
1771 // now. We sorted by base above, so we just have to check the last elt.
1772 } while (!UsersToProcess
.empty() && UsersToProcess
.back().Base
== Base
);
1773 // TODO: Next, find out which base index is the most common, pull it out.
1776 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1777 // different starting values, into different PHIs.
1780 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1781 /// set the IV user and stride information and return true, otherwise return
1783 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
1784 const SCEVHandle
*&CondStride
) {
1785 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
1786 Stride
!= e
&& !CondUse
; ++Stride
) {
1787 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator SI
=
1788 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
1789 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
1791 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1792 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
)
1793 if (UI
->getUser() == Cond
) {
1794 // NOTE: we could handle setcc instructions with multiple uses here, but
1795 // InstCombine does it as well for simple uses, it's not clear that it
1796 // occurs enough in real life to handle.
1798 CondStride
= &SI
->first
;
1806 // Constant strides come first which in turns are sorted by their absolute
1807 // values. If absolute values are the same, then positive strides comes first.
1809 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1810 struct StrideCompare
{
1811 const ScalarEvolution
*SE
;
1812 explicit StrideCompare(const ScalarEvolution
*se
) : SE(se
) {}
1814 bool operator()(const SCEVHandle
&LHS
, const SCEVHandle
&RHS
) {
1815 const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
);
1816 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
1818 int64_t LV
= LHSC
->getValue()->getSExtValue();
1819 int64_t RV
= RHSC
->getValue()->getSExtValue();
1820 uint64_t ALV
= (LV
< 0) ? -LV
: LV
;
1821 uint64_t ARV
= (RV
< 0) ? -RV
: RV
;
1829 // If it's the same value but different type, sort by bit width so
1830 // that we emit larger induction variables before smaller
1831 // ones, letting the smaller be re-written in terms of larger ones.
1832 return SE
->getTypeSizeInBits(RHS
->getType()) <
1833 SE
->getTypeSizeInBits(LHS
->getType());
1835 return LHSC
&& !RHSC
;
1840 /// ChangeCompareStride - If a loop termination compare instruction is the
1841 /// only use of its stride, and the compaison is against a constant value,
1842 /// try eliminate the stride by moving the compare instruction to another
1843 /// stride and change its constant operand accordingly. e.g.
1849 /// if (v2 < 10) goto loop
1854 /// if (v1 < 30) goto loop
1855 ICmpInst
*LoopStrengthReduce::ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
1856 IVStrideUse
* &CondUse
,
1857 const SCEVHandle
* &CondStride
) {
1858 // If there's only one stride in the loop, there's nothing to do here.
1859 if (IU
->StrideOrder
.size() < 2)
1861 // If there are other users of the condition's stride, don't bother
1862 // trying to change the condition because the stride will still
1864 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator I
=
1865 IU
->IVUsesByStride
.find(*CondStride
);
1866 if (I
== IU
->IVUsesByStride
.end() ||
1867 I
->second
->Users
.size() != 1)
1869 // Only handle constant strides for now.
1870 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
);
1871 if (!SC
) return Cond
;
1873 ICmpInst::Predicate Predicate
= Cond
->getPredicate();
1874 int64_t CmpSSInt
= SC
->getValue()->getSExtValue();
1875 unsigned BitWidth
= SE
->getTypeSizeInBits((*CondStride
)->getType());
1876 uint64_t SignBit
= 1ULL << (BitWidth
-1);
1877 const Type
*CmpTy
= Cond
->getOperand(0)->getType();
1878 const Type
*NewCmpTy
= NULL
;
1879 unsigned TyBits
= SE
->getTypeSizeInBits(CmpTy
);
1880 unsigned NewTyBits
= 0;
1881 SCEVHandle
*NewStride
= NULL
;
1882 Value
*NewCmpLHS
= NULL
;
1883 Value
*NewCmpRHS
= NULL
;
1885 SCEVHandle NewOffset
= SE
->getIntegerSCEV(0, CmpTy
);
1887 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Cond
->getOperand(1))) {
1888 int64_t CmpVal
= C
->getValue().getSExtValue();
1890 // Check stride constant and the comparision constant signs to detect
1892 if ((CmpVal
& SignBit
) != (CmpSSInt
& SignBit
))
1895 // Look for a suitable stride / iv as replacement.
1896 for (unsigned i
= 0, e
= IU
->StrideOrder
.size(); i
!= e
; ++i
) {
1897 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator SI
=
1898 IU
->IVUsesByStride
.find(IU
->StrideOrder
[i
]);
1899 if (!isa
<SCEVConstant
>(SI
->first
))
1901 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1902 if (SSInt
== CmpSSInt
||
1903 abs64(SSInt
) < abs64(CmpSSInt
) ||
1904 (SSInt
% CmpSSInt
) != 0)
1907 Scale
= SSInt
/ CmpSSInt
;
1908 int64_t NewCmpVal
= CmpVal
* Scale
;
1909 APInt Mul
= APInt(BitWidth
*2, CmpVal
, true);
1910 Mul
= Mul
* APInt(BitWidth
*2, Scale
, true);
1911 // Check for overflow.
1912 if (!Mul
.isSignedIntN(BitWidth
))
1914 // Check for overflow in the stride's type too.
1915 if (!Mul
.isSignedIntN(SE
->getTypeSizeInBits(SI
->first
->getType())))
1918 // Watch out for overflow.
1919 if (ICmpInst::isSignedPredicate(Predicate
) &&
1920 (CmpVal
& SignBit
) != (NewCmpVal
& SignBit
))
1923 if (NewCmpVal
== CmpVal
)
1925 // Pick the best iv to use trying to avoid a cast.
1927 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1928 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
) {
1929 Value
*Op
= UI
->getOperandValToReplace();
1931 // If the IVStrideUse implies a cast, check for an actual cast which
1932 // can be used to find the original IV expression.
1933 if (SE
->getEffectiveSCEVType(Op
->getType()) !=
1934 SE
->getEffectiveSCEVType(SI
->first
->getType())) {
1935 CastInst
*CI
= dyn_cast
<CastInst
>(Op
);
1936 // If it's not a simple cast, it's complicated.
1939 // If it's a cast from a type other than the stride type,
1940 // it's complicated.
1941 if (CI
->getOperand(0)->getType() != SI
->first
->getType())
1943 // Ok, we found the IV expression in the stride's type.
1944 Op
= CI
->getOperand(0);
1948 if (NewCmpLHS
->getType() == CmpTy
)
1954 NewCmpTy
= NewCmpLHS
->getType();
1955 NewTyBits
= SE
->getTypeSizeInBits(NewCmpTy
);
1956 const Type
*NewCmpIntTy
= IntegerType::get(NewTyBits
);
1957 if (RequiresTypeConversion(NewCmpTy
, CmpTy
)) {
1958 // Check if it is possible to rewrite it using
1959 // an iv / stride of a smaller integer type.
1960 unsigned Bits
= NewTyBits
;
1961 if (ICmpInst::isSignedPredicate(Predicate
))
1963 uint64_t Mask
= (1ULL << Bits
) - 1;
1964 if (((uint64_t)NewCmpVal
& Mask
) != (uint64_t)NewCmpVal
)
1968 // Don't rewrite if use offset is non-constant and the new type is
1969 // of a different type.
1970 // FIXME: too conservative?
1971 if (NewTyBits
!= TyBits
&& !isa
<SCEVConstant
>(CondUse
->getOffset()))
1974 bool AllUsesAreAddresses
= true;
1975 bool AllUsesAreOutsideLoop
= true;
1976 std::vector
<BasedUser
> UsersToProcess
;
1977 SCEVHandle CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
1978 AllUsesAreAddresses
,
1979 AllUsesAreOutsideLoop
,
1981 // Avoid rewriting the compare instruction with an iv of new stride
1982 // if it's likely the new stride uses will be rewritten using the
1983 // stride of the compare instruction.
1984 if (AllUsesAreAddresses
&&
1985 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
1988 // If scale is negative, use swapped predicate unless it's testing
1990 if (Scale
< 0 && !Cond
->isEquality())
1991 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1993 NewStride
= &IU
->StrideOrder
[i
];
1994 if (!isa
<PointerType
>(NewCmpTy
))
1995 NewCmpRHS
= ConstantInt::get(NewCmpTy
, NewCmpVal
);
1997 ConstantInt
*CI
= ConstantInt::get(NewCmpIntTy
, NewCmpVal
);
1998 NewCmpRHS
= ConstantExpr::getIntToPtr(CI
, NewCmpTy
);
2000 NewOffset
= TyBits
== NewTyBits
2001 ? SE
->getMulExpr(CondUse
->getOffset(),
2002 SE
->getConstant(ConstantInt::get(CmpTy
, Scale
)))
2003 : SE
->getConstant(ConstantInt::get(NewCmpIntTy
,
2004 cast
<SCEVConstant
>(CondUse
->getOffset())->getValue()
2005 ->getSExtValue()*Scale
));
2010 // Forgo this transformation if it the increment happens to be
2011 // unfortunately positioned after the condition, and the condition
2012 // has multiple uses which prevent it from being moved immediately
2013 // before the branch. See
2014 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2015 // for an example of this situation.
2016 if (!Cond
->hasOneUse()) {
2017 for (BasicBlock::iterator I
= Cond
, E
= Cond
->getParent()->end();
2024 // Create a new compare instruction using new stride / iv.
2025 ICmpInst
*OldCond
= Cond
;
2026 // Insert new compare instruction.
2027 Cond
= new ICmpInst(Predicate
, NewCmpLHS
, NewCmpRHS
,
2028 L
->getHeader()->getName() + ".termcond",
2031 // Remove the old compare instruction. The old indvar is probably dead too.
2032 DeadInsts
.push_back(CondUse
->getOperandValToReplace());
2033 OldCond
->replaceAllUsesWith(Cond
);
2034 OldCond
->eraseFromParent();
2036 IU
->IVUsesByStride
[*NewStride
]->addUser(NewOffset
, Cond
, NewCmpLHS
, false);
2037 CondUse
= &IU
->IVUsesByStride
[*NewStride
]->Users
.back();
2038 CondStride
= NewStride
;
2046 /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
2047 /// an smax computation.
2049 /// This is a narrow solution to a specific, but acute, problem. For loops
2055 /// } while (++i < n);
2057 /// where the comparison is signed, the trip count isn't just 'n', because
2058 /// 'n' could be negative. And unfortunately this can come up even for loops
2059 /// where the user didn't use a C do-while loop. For example, seemingly
2060 /// well-behaved top-test loops will commonly be lowered like this:
2066 /// } while (++i < n);
2069 /// and then it's possible for subsequent optimization to obscure the if
2070 /// test in such a way that indvars can't find it.
2072 /// When indvars can't find the if test in loops like this, it creates a
2073 /// signed-max expression, which allows it to give the loop a canonical
2074 /// induction variable:
2077 /// smax = n < 1 ? 1 : n;
2080 /// } while (++i != smax);
2082 /// Canonical induction variables are necessary because the loop passes
2083 /// are designed around them. The most obvious example of this is the
2084 /// LoopInfo analysis, which doesn't remember trip count values. It
2085 /// expects to be able to rediscover the trip count each time it is
2086 /// needed, and it does this using a simple analyis that only succeeds if
2087 /// the loop has a canonical induction variable.
2089 /// However, when it comes time to generate code, the maximum operation
2090 /// can be quite costly, especially if it's inside of an outer loop.
2092 /// This function solves this problem by detecting this type of loop and
2093 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2094 /// the instructions for the maximum computation.
2096 ICmpInst
*LoopStrengthReduce::OptimizeSMax(Loop
*L
, ICmpInst
*Cond
,
2097 IVStrideUse
* &CondUse
) {
2098 // Check that the loop matches the pattern we're looking for.
2099 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2100 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2103 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2104 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2106 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2107 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2109 SCEVHandle One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2111 // Add one to the backedge-taken count to get the trip count.
2112 SCEVHandle IterationCount
= SE
->getAddExpr(BackedgeTakenCount
, One
);
2114 // Check for a max calculation that matches the pattern.
2115 const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
);
2116 if (!SMax
|| SMax
!= SE
->getSCEV(Sel
)) return Cond
;
2118 SCEVHandle SMaxLHS
= SMax
->getOperand(0);
2119 SCEVHandle SMaxRHS
= SMax
->getOperand(1);
2120 if (!SMaxLHS
|| SMaxLHS
!= One
) return Cond
;
2122 // Check the relevant induction variable for conformance to
2124 SCEVHandle IV
= SE
->getSCEV(Cond
->getOperand(0));
2125 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2126 if (!AR
|| !AR
->isAffine() ||
2127 AR
->getStart() != One
||
2128 AR
->getStepRecurrence(*SE
) != One
)
2131 assert(AR
->getLoop() == L
&&
2132 "Loop condition operand is an addrec in a different loop!");
2134 // Check the right operand of the select, and remember it, as it will
2135 // be used in the new comparison instruction.
2137 if (SE
->getSCEV(Sel
->getOperand(1)) == SMaxRHS
)
2138 NewRHS
= Sel
->getOperand(1);
2139 else if (SE
->getSCEV(Sel
->getOperand(2)) == SMaxRHS
)
2140 NewRHS
= Sel
->getOperand(2);
2141 if (!NewRHS
) return Cond
;
2143 // Ok, everything looks ok to change the condition into an SLT or SGE and
2144 // delete the max calculation.
2146 new ICmpInst(Cond
->getPredicate() == CmpInst::ICMP_NE
?
2149 Cond
->getOperand(0), NewRHS
, "scmp", Cond
);
2151 // Delete the max calculation instructions.
2152 Cond
->replaceAllUsesWith(NewCond
);
2153 CondUse
->setUser(NewCond
);
2154 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2155 Cond
->eraseFromParent();
2156 Sel
->eraseFromParent();
2157 if (Cmp
->use_empty())
2158 Cmp
->eraseFromParent();
2162 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2163 /// inside the loop then try to eliminate the cast opeation.
2164 void LoopStrengthReduce::OptimizeShadowIV(Loop
*L
) {
2166 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2167 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2170 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size(); Stride
!= e
;
2172 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator SI
=
2173 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2174 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2175 if (!isa
<SCEVConstant
>(SI
->first
))
2178 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
2179 E
= SI
->second
->Users
.end(); UI
!= E
; /* empty */) {
2180 ilist
<IVStrideUse
>::iterator CandidateUI
= UI
;
2182 Instruction
*ShadowUse
= CandidateUI
->getUser();
2183 const Type
*DestTy
= NULL
;
2185 /* If shadow use is a int->float cast then insert a second IV
2186 to eliminate this cast.
2188 for (unsigned i = 0; i < n; ++i)
2194 for (unsigned i = 0; i < n; ++i, ++d)
2197 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser()))
2198 DestTy
= UCast
->getDestTy();
2199 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser()))
2200 DestTy
= SCast
->getDestTy();
2201 if (!DestTy
) continue;
2204 // If target does not support DestTy natively then do not apply
2205 // this transformation.
2206 MVT DVT
= TLI
->getValueType(DestTy
);
2207 if (!TLI
->isTypeLegal(DVT
)) continue;
2210 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2212 if (PH
->getNumIncomingValues() != 2) continue;
2214 const Type
*SrcTy
= PH
->getType();
2215 int Mantissa
= DestTy
->getFPMantissaWidth();
2216 if (Mantissa
== -1) continue;
2217 if ((int)SE
->getTypeSizeInBits(SrcTy
) > Mantissa
)
2220 unsigned Entry
, Latch
;
2221 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2229 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2230 if (!Init
) continue;
2231 ConstantFP
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
2233 BinaryOperator
*Incr
=
2234 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2235 if (!Incr
) continue;
2236 if (Incr
->getOpcode() != Instruction::Add
2237 && Incr
->getOpcode() != Instruction::Sub
)
2240 /* Initialize new IV, double d = 0.0 in above example. */
2241 ConstantInt
*C
= NULL
;
2242 if (Incr
->getOperand(0) == PH
)
2243 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2244 else if (Incr
->getOperand(1) == PH
)
2245 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2251 /* Add new PHINode. */
2252 PHINode
*NewPH
= PHINode::Create(DestTy
, "IV.S.", PH
);
2254 /* create new increment. '++d' in above example. */
2255 ConstantFP
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2256 BinaryOperator
*NewIncr
=
2257 BinaryOperator::Create(Incr
->getOpcode(),
2258 NewPH
, CFP
, "IV.S.next.", Incr
);
2260 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2261 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2263 /* Remove cast operation */
2264 ShadowUse
->replaceAllUsesWith(NewPH
);
2265 ShadowUse
->eraseFromParent();
2272 // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2273 // uses in the loop, look to see if we can eliminate some, in favor of using
2274 // common indvars for the different uses.
2275 void LoopStrengthReduce::OptimizeIndvars(Loop
*L
) {
2276 // TODO: implement optzns here.
2278 OptimizeShadowIV(L
);
2281 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2282 /// postinc iv when possible.
2283 void LoopStrengthReduce::OptimizeLoopTermCond(Loop
*L
) {
2284 // Finally, get the terminating condition for the loop if possible. If we
2285 // can, we want to change it to use a post-incremented version of its
2286 // induction variable, to allow coalescing the live ranges for the IV into
2287 // one register value.
2288 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2289 BasicBlock
*ExitBlock
= L
->getExitingBlock();
2291 // Multiple exits, just look at the exit in the latch block if there is one.
2292 ExitBlock
= LatchBlock
;
2293 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitBlock
->getTerminator());
2296 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2299 // Search IVUsesByStride to find Cond's IVUse if there is one.
2300 IVStrideUse
*CondUse
= 0;
2301 const SCEVHandle
*CondStride
= 0;
2302 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2303 if (!FindIVUserForCond(Cond
, CondUse
, CondStride
))
2304 return; // setcc doesn't use the IV.
2306 if (ExitBlock
!= LatchBlock
) {
2307 if (!Cond
->hasOneUse())
2308 // See below, we don't want the condition to be cloned.
2311 // If exiting block is the latch block, we know it's safe and profitable to
2312 // transform the icmp to use post-inc iv. Otherwise do so only if it would
2313 // not reuse another iv and its iv would be reused by other uses. We are
2314 // optimizing for the case where the icmp is the only use of the iv.
2315 IVUsersOfOneStride
&StrideUses
= *IU
->IVUsesByStride
[*CondStride
];
2316 for (ilist
<IVStrideUse
>::iterator I
= StrideUses
.Users
.begin(),
2317 E
= StrideUses
.Users
.end(); I
!= E
; ++I
) {
2318 if (I
->getUser() == Cond
)
2320 if (!I
->isUseOfPostIncrementedValue())
2324 // FIXME: This is expensive, and worse still ChangeCompareStride does a
2325 // similar check. Can we perform all the icmp related transformations after
2326 // StrengthReduceStridedIVUsers?
2327 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
)) {
2328 int64_t SInt
= SC
->getValue()->getSExtValue();
2329 for (unsigned NewStride
= 0, ee
= IU
->StrideOrder
.size(); NewStride
!= ee
;
2331 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator SI
=
2332 IU
->IVUsesByStride
.find(IU
->StrideOrder
[NewStride
]);
2333 if (!isa
<SCEVConstant
>(SI
->first
) || SI
->first
== *CondStride
)
2336 cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
2338 return; // This can definitely be reused.
2339 if (unsigned(abs64(SSInt
)) < SInt
|| (SSInt
% SInt
) != 0)
2341 int64_t Scale
= SSInt
/ SInt
;
2342 bool AllUsesAreAddresses
= true;
2343 bool AllUsesAreOutsideLoop
= true;
2344 std::vector
<BasedUser
> UsersToProcess
;
2345 SCEVHandle CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
2346 AllUsesAreAddresses
,
2347 AllUsesAreOutsideLoop
,
2349 // Avoid rewriting the compare instruction with an iv of new stride
2350 // if it's likely the new stride uses will be rewritten using the
2351 // stride of the compare instruction.
2352 if (AllUsesAreAddresses
&&
2353 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
2358 StrideNoReuse
.insert(*CondStride
);
2361 // If the trip count is computed in terms of an smax (due to ScalarEvolution
2362 // being unable to find a sufficient guard, for example), change the loop
2363 // comparison to use SLT instead of NE.
2364 Cond
= OptimizeSMax(L
, Cond
, CondUse
);
2366 // If possible, change stride and operands of the compare instruction to
2367 // eliminate one stride.
2368 if (ExitBlock
== LatchBlock
)
2369 Cond
= ChangeCompareStride(L
, Cond
, CondUse
, CondStride
);
2371 // It's possible for the setcc instruction to be anywhere in the loop, and
2372 // possible for it to have multiple users. If it is not immediately before
2373 // the latch block branch, move it.
2374 if (&*++BasicBlock::iterator(Cond
) != (Instruction
*)TermBr
) {
2375 if (Cond
->hasOneUse()) { // Condition has a single use, just move it.
2376 Cond
->moveBefore(TermBr
);
2378 // Otherwise, clone the terminating condition and insert into the loopend.
2379 Cond
= cast
<ICmpInst
>(Cond
->clone());
2380 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2381 LatchBlock
->getInstList().insert(TermBr
, Cond
);
2383 // Clone the IVUse, as the old use still exists!
2384 IU
->IVUsesByStride
[*CondStride
]->addUser(CondUse
->getOffset(), Cond
,
2385 CondUse
->getOperandValToReplace(),
2387 CondUse
= &IU
->IVUsesByStride
[*CondStride
]->Users
.back();
2391 // If we get to here, we know that we can transform the setcc instruction to
2392 // use the post-incremented version of the IV, allowing us to coalesce the
2393 // live ranges for the IV correctly.
2394 CondUse
->setOffset(SE
->getMinusSCEV(CondUse
->getOffset(), *CondStride
));
2395 CondUse
->setIsUseOfPostIncrementedValue(true);
2401 // OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2402 // when to exit the loop is used only for that purpose, try to rearrange things
2403 // so it counts down to a test against zero.
2404 void LoopStrengthReduce::OptimizeLoopCountIV(Loop
*L
) {
2406 // If the number of times the loop is executed isn't computable, give up.
2407 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2408 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2411 // Get the terminating condition for the loop if possible (this isn't
2412 // necessarily in the latch, or a block that's a predecessor of the header).
2413 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
2414 L
->getExitBlocks(ExitBlocks
);
2415 if (ExitBlocks
.size() != 1) return;
2417 // Okay, there is one exit block. Try to find the condition that causes the
2418 // loop to be exited.
2419 BasicBlock
*ExitBlock
= ExitBlocks
[0];
2421 BasicBlock
*ExitingBlock
= 0;
2422 for (pred_iterator PI
= pred_begin(ExitBlock
), E
= pred_end(ExitBlock
);
2424 if (L
->contains(*PI
)) {
2425 if (ExitingBlock
== 0)
2428 return; // More than one block exiting!
2430 assert(ExitingBlock
&& "No exits from loop, something is broken!");
2432 // Okay, we've computed the exiting block. See what condition causes us to
2435 // FIXME: we should be able to handle switch instructions (with a single exit)
2436 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2437 if (TermBr
== 0) return;
2438 assert(TermBr
->isConditional() && "If unconditional, it can't be in loop!");
2439 if (!isa
<ICmpInst
>(TermBr
->getCondition()))
2441 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2443 // Handle only tests for equality for the moment, and only stride 1.
2444 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
)
2446 SCEVHandle IV
= SE
->getSCEV(Cond
->getOperand(0));
2447 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2448 SCEVHandle One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2449 if (!AR
|| !AR
->isAffine() || AR
->getStepRecurrence(*SE
) != One
)
2452 // Make sure the IV is only used for counting. Value may be preinc or
2453 // postinc; 2 uses in either case.
2454 if (!Cond
->getOperand(0)->hasNUses(2))
2456 PHINode
*phi
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
2458 if (phi
&& phi
->getParent()==L
->getHeader()) {
2459 // value tested is preinc. Find the increment.
2460 // A CmpInst is not a BinaryOperator; we depend on this.
2461 Instruction::use_iterator UI
= phi
->use_begin();
2462 incr
= dyn_cast
<BinaryOperator
>(UI
);
2464 incr
= dyn_cast
<BinaryOperator
>(++UI
);
2465 // 1 use for postinc value, the phi. Unnecessarily conservative?
2466 if (!incr
|| !incr
->hasOneUse() || incr
->getOpcode()!=Instruction::Add
)
2469 // Value tested is postinc. Find the phi node.
2470 incr
= dyn_cast
<BinaryOperator
>(Cond
->getOperand(0));
2471 if (!incr
|| incr
->getOpcode()!=Instruction::Add
)
2474 Instruction::use_iterator UI
= Cond
->getOperand(0)->use_begin();
2475 phi
= dyn_cast
<PHINode
>(UI
);
2477 phi
= dyn_cast
<PHINode
>(++UI
);
2478 // 1 use for preinc value, the increment.
2479 if (!phi
|| phi
->getParent()!=L
->getHeader() || !phi
->hasOneUse())
2483 // Replace the increment with a decrement.
2484 BinaryOperator
*decr
=
2485 BinaryOperator::Create(Instruction::Sub
, incr
->getOperand(0),
2486 incr
->getOperand(1), "tmp", incr
);
2487 incr
->replaceAllUsesWith(decr
);
2488 incr
->eraseFromParent();
2490 // Substitute endval-startval for the original startval, and 0 for the
2491 // original endval. Since we're only testing for equality this is OK even
2492 // if the computation wraps around.
2493 BasicBlock
*Preheader
= L
->getLoopPreheader();
2494 Instruction
*PreInsertPt
= Preheader
->getTerminator();
2495 int inBlock
= L
->contains(phi
->getIncomingBlock(0)) ? 1 : 0;
2496 Value
*startVal
= phi
->getIncomingValue(inBlock
);
2497 Value
*endVal
= Cond
->getOperand(1);
2498 // FIXME check for case where both are constant
2499 ConstantInt
* Zero
= ConstantInt::get(Cond
->getOperand(1)->getType(), 0);
2500 BinaryOperator
*NewStartVal
=
2501 BinaryOperator::Create(Instruction::Sub
, endVal
, startVal
,
2502 "tmp", PreInsertPt
);
2503 phi
->setIncomingValue(inBlock
, NewStartVal
);
2504 Cond
->setOperand(1, Zero
);
2509 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
2511 IU
= &getAnalysis
<IVUsers
>();
2512 LI
= &getAnalysis
<LoopInfo
>();
2513 DT
= &getAnalysis
<DominatorTree
>();
2514 SE
= &getAnalysis
<ScalarEvolution
>();
2517 if (!IU
->IVUsesByStride
.empty()) {
2519 DOUT
<< "\nLSR on \"" << L
->getHeader()->getParent()->getNameStart()
2524 // Sort the StrideOrder so we process larger strides first.
2525 std::stable_sort(IU
->StrideOrder
.begin(), IU
->StrideOrder
.end(),
2528 // Optimize induction variables. Some indvar uses can be transformed to use
2529 // strides that will be needed for other purposes. A common example of this
2530 // is the exit test for the loop, which can often be rewritten to use the
2531 // computation of some other indvar to decide when to terminate the loop.
2534 // Change loop terminating condition to use the postinc iv when possible
2535 // and optimize loop terminating compare. FIXME: Move this after
2536 // StrengthReduceStridedIVUsers?
2537 OptimizeLoopTermCond(L
);
2539 // FIXME: We can shrink overlarge IV's here. e.g. if the code has
2540 // computation in i64 values and the target doesn't support i64, demote
2541 // the computation to 32-bit if safe.
2543 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2544 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2545 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2546 // Need to be careful that IV's are all the same type. Only works for
2547 // intptr_t indvars.
2549 // IVsByStride keeps IVs for one particular loop.
2550 assert(IVsByStride
.empty() && "Stale entries in IVsByStride?");
2552 // Note: this processes each stride/type pair individually. All users
2553 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2554 // Also, note that we iterate over IVUsesByStride indirectly by using
2555 // StrideOrder. This extra layer of indirection makes the ordering of
2556 // strides deterministic - not dependent on map order.
2557 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
2558 Stride
!= e
; ++Stride
) {
2559 std::map
<SCEVHandle
, IVUsersOfOneStride
*>::iterator SI
=
2560 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2561 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2562 // FIXME: Generalize to non-affine IV's.
2563 if (!SI
->first
->isLoopInvariant(L
))
2565 StrengthReduceStridedIVUsers(SI
->first
, *SI
->second
, L
);
2569 // After all sharing is done, see if we can adjust the loop to test against
2570 // zero instead of counting up to a maximum. This is usually faster.
2571 OptimizeLoopCountIV(L
);
2573 // We're done analyzing this loop; release all the state we built up for it.
2574 IVsByStride
.clear();
2575 StrideNoReuse
.clear();
2577 // Clean up after ourselves
2578 if (!DeadInsts
.empty())
2579 DeleteTriviallyDeadInstructions();
2581 // At this point, it is worth checking to see if any recurrence PHIs are also
2582 // dead, so that we can remove them as well.
2583 DeleteDeadPHIs(L
->getHeader());