1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions). For example, a call to the function "exit(3)" that
13 // occurs within the main() function can be transformed into a simple "return 3"
14 // instruction. Any optimization that takes this form (replace call to library
15 // function with simpler code that provides the same result) belongs in this
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "simplify-libcalls"
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/IRBuilder.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Config/config.h"
36 STATISTIC(NumSimplified
, "Number of library calls simplified");
37 STATISTIC(NumAnnotated
, "Number of attributes added to library functions");
39 //===----------------------------------------------------------------------===//
40 // Optimizer Base Class
41 //===----------------------------------------------------------------------===//
43 /// This class is the abstract base class for the set of optimizations that
44 /// corresponds to one library call.
46 class VISIBILITY_HIDDEN LibCallOptimization
{
51 LibCallOptimization() { }
52 virtual ~LibCallOptimization() {}
54 /// CallOptimizer - This pure virtual method is implemented by base classes to
55 /// do various optimizations. If this returns null then no transformation was
56 /// performed. If it returns CI, then it transformed the call and CI is to be
57 /// deleted. If it returns something else, replace CI with the new value and
59 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
)
62 Value
*OptimizeCall(CallInst
*CI
, const TargetData
&TD
, IRBuilder
<> &B
) {
63 Caller
= CI
->getParent()->getParent();
65 return CallOptimizer(CI
->getCalledFunction(), CI
, B
);
68 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
69 Value
*CastToCStr(Value
*V
, IRBuilder
<> &B
);
71 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
72 /// specified pointer. Ptr is required to be some pointer type, and the
73 /// return value has 'intptr_t' type.
74 Value
*EmitStrLen(Value
*Ptr
, IRBuilder
<> &B
);
76 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
77 /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
78 Value
*EmitMemCpy(Value
*Dst
, Value
*Src
, Value
*Len
,
79 unsigned Align
, IRBuilder
<> &B
);
81 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
82 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
83 Value
*EmitMemChr(Value
*Ptr
, Value
*Val
, Value
*Len
, IRBuilder
<> &B
);
85 /// EmitMemCmp - Emit a call to the memcmp function.
86 Value
*EmitMemCmp(Value
*Ptr1
, Value
*Ptr2
, Value
*Len
, IRBuilder
<> &B
);
88 /// EmitMemSet - Emit a call to the memset function
89 Value
*EmitMemSet(Value
*Dst
, Value
*Val
, Value
*Len
, IRBuilder
<> &B
);
91 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
92 /// 'floor'). This function is known to take a single of type matching 'Op'
93 /// and returns one value with the same type. If 'Op' is a long double, 'l'
94 /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
95 Value
*EmitUnaryFloatFnCall(Value
*Op
, const char *Name
, IRBuilder
<> &B
);
97 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
99 void EmitPutChar(Value
*Char
, IRBuilder
<> &B
);
101 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
103 void EmitPutS(Value
*Str
, IRBuilder
<> &B
);
105 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
106 /// an i32, and File is a pointer to FILE.
107 void EmitFPutC(Value
*Char
, Value
*File
, IRBuilder
<> &B
);
109 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
110 /// pointer and File is a pointer to FILE.
111 void EmitFPutS(Value
*Str
, Value
*File
, IRBuilder
<> &B
);
113 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
114 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
115 void EmitFWrite(Value
*Ptr
, Value
*Size
, Value
*File
, IRBuilder
<> &B
);
118 } // End anonymous namespace.
120 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
121 Value
*LibCallOptimization::CastToCStr(Value
*V
, IRBuilder
<> &B
) {
122 return B
.CreateBitCast(V
, PointerType::getUnqual(Type::Int8Ty
), "cstr");
125 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
126 /// specified pointer. This always returns an integer value of size intptr_t.
127 Value
*LibCallOptimization::EmitStrLen(Value
*Ptr
, IRBuilder
<> &B
) {
128 Module
*M
= Caller
->getParent();
129 AttributeWithIndex AWI
[2];
130 AWI
[0] = AttributeWithIndex::get(1, Attribute::NoCapture
);
131 AWI
[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly
|
132 Attribute::NoUnwind
);
134 Constant
*StrLen
=M
->getOrInsertFunction("strlen", AttrListPtr::get(AWI
, 2),
136 PointerType::getUnqual(Type::Int8Ty
),
138 return B
.CreateCall(StrLen
, CastToCStr(Ptr
, B
), "strlen");
141 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
142 /// expects that the size has type 'intptr_t' and Dst/Src are pointers.
143 Value
*LibCallOptimization::EmitMemCpy(Value
*Dst
, Value
*Src
, Value
*Len
,
144 unsigned Align
, IRBuilder
<> &B
) {
145 Module
*M
= Caller
->getParent();
146 Intrinsic::ID IID
= Intrinsic::memcpy
;
148 Tys
[0] = Len
->getType();
149 Value
*MemCpy
= Intrinsic::getDeclaration(M
, IID
, Tys
, 1);
150 return B
.CreateCall4(MemCpy
, CastToCStr(Dst
, B
), CastToCStr(Src
, B
), Len
,
151 ConstantInt::get(Type::Int32Ty
, Align
));
154 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
155 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
156 Value
*LibCallOptimization::EmitMemChr(Value
*Ptr
, Value
*Val
,
157 Value
*Len
, IRBuilder
<> &B
) {
158 Module
*M
= Caller
->getParent();
159 AttributeWithIndex AWI
;
160 AWI
= AttributeWithIndex::get(~0u, Attribute::ReadOnly
| Attribute::NoUnwind
);
162 Value
*MemChr
= M
->getOrInsertFunction("memchr", AttrListPtr::get(&AWI
, 1),
163 PointerType::getUnqual(Type::Int8Ty
),
164 PointerType::getUnqual(Type::Int8Ty
),
165 Type::Int32Ty
, TD
->getIntPtrType(),
167 return B
.CreateCall3(MemChr
, CastToCStr(Ptr
, B
), Val
, Len
, "memchr");
170 /// EmitMemCmp - Emit a call to the memcmp function.
171 Value
*LibCallOptimization::EmitMemCmp(Value
*Ptr1
, Value
*Ptr2
,
172 Value
*Len
, IRBuilder
<> &B
) {
173 Module
*M
= Caller
->getParent();
174 AttributeWithIndex AWI
[3];
175 AWI
[0] = AttributeWithIndex::get(1, Attribute::NoCapture
);
176 AWI
[1] = AttributeWithIndex::get(2, Attribute::NoCapture
);
177 AWI
[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly
|
178 Attribute::NoUnwind
);
180 Value
*MemCmp
= M
->getOrInsertFunction("memcmp", AttrListPtr::get(AWI
, 3),
182 PointerType::getUnqual(Type::Int8Ty
),
183 PointerType::getUnqual(Type::Int8Ty
),
184 TD
->getIntPtrType(), NULL
);
185 return B
.CreateCall3(MemCmp
, CastToCStr(Ptr1
, B
), CastToCStr(Ptr2
, B
),
189 /// EmitMemSet - Emit a call to the memset function
190 Value
*LibCallOptimization::EmitMemSet(Value
*Dst
, Value
*Val
,
191 Value
*Len
, IRBuilder
<> &B
) {
192 Module
*M
= Caller
->getParent();
193 Intrinsic::ID IID
= Intrinsic::memset
;
195 Tys
[0] = Len
->getType();
196 Value
*MemSet
= Intrinsic::getDeclaration(M
, IID
, Tys
, 1);
197 Value
*Align
= ConstantInt::get(Type::Int32Ty
, 1);
198 return B
.CreateCall4(MemSet
, CastToCStr(Dst
, B
), Val
, Len
, Align
);
201 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
202 /// 'floor'). This function is known to take a single of type matching 'Op' and
203 /// returns one value with the same type. If 'Op' is a long double, 'l' is
204 /// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
205 Value
*LibCallOptimization::EmitUnaryFloatFnCall(Value
*Op
, const char *Name
,
208 if (Op
->getType() != Type::DoubleTy
) {
209 // If we need to add a suffix, copy into NameBuffer.
210 unsigned NameLen
= strlen(Name
);
211 assert(NameLen
< sizeof(NameBuffer
)-2);
212 memcpy(NameBuffer
, Name
, NameLen
);
213 if (Op
->getType() == Type::FloatTy
)
214 NameBuffer
[NameLen
] = 'f'; // floorf
216 NameBuffer
[NameLen
] = 'l'; // floorl
217 NameBuffer
[NameLen
+1] = 0;
221 Module
*M
= Caller
->getParent();
222 Value
*Callee
= M
->getOrInsertFunction(Name
, Op
->getType(),
223 Op
->getType(), NULL
);
224 return B
.CreateCall(Callee
, Op
, Name
);
227 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
229 void LibCallOptimization::EmitPutChar(Value
*Char
, IRBuilder
<> &B
) {
230 Module
*M
= Caller
->getParent();
231 Value
*F
= M
->getOrInsertFunction("putchar", Type::Int32Ty
,
232 Type::Int32Ty
, NULL
);
233 B
.CreateCall(F
, B
.CreateIntCast(Char
, Type::Int32Ty
, "chari"), "putchar");
236 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
238 void LibCallOptimization::EmitPutS(Value
*Str
, IRBuilder
<> &B
) {
239 Module
*M
= Caller
->getParent();
240 AttributeWithIndex AWI
[2];
241 AWI
[0] = AttributeWithIndex::get(1, Attribute::NoCapture
);
242 AWI
[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind
);
244 Value
*F
= M
->getOrInsertFunction("puts", AttrListPtr::get(AWI
, 2),
246 PointerType::getUnqual(Type::Int8Ty
), NULL
);
247 B
.CreateCall(F
, CastToCStr(Str
, B
), "puts");
250 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
251 /// an integer and File is a pointer to FILE.
252 void LibCallOptimization::EmitFPutC(Value
*Char
, Value
*File
, IRBuilder
<> &B
) {
253 Module
*M
= Caller
->getParent();
254 AttributeWithIndex AWI
[2];
255 AWI
[0] = AttributeWithIndex::get(2, Attribute::NoCapture
);
256 AWI
[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind
);
258 if (isa
<PointerType
>(File
->getType()))
259 F
= M
->getOrInsertFunction("fputc", AttrListPtr::get(AWI
, 2), Type::Int32Ty
,
260 Type::Int32Ty
, File
->getType(), NULL
);
263 F
= M
->getOrInsertFunction("fputc", Type::Int32Ty
, Type::Int32Ty
,
264 File
->getType(), NULL
);
265 Char
= B
.CreateIntCast(Char
, Type::Int32Ty
, "chari");
266 B
.CreateCall2(F
, Char
, File
, "fputc");
269 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
270 /// pointer and File is a pointer to FILE.
271 void LibCallOptimization::EmitFPutS(Value
*Str
, Value
*File
, IRBuilder
<> &B
) {
272 Module
*M
= Caller
->getParent();
273 AttributeWithIndex AWI
[3];
274 AWI
[0] = AttributeWithIndex::get(1, Attribute::NoCapture
);
275 AWI
[1] = AttributeWithIndex::get(2, Attribute::NoCapture
);
276 AWI
[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind
);
278 if (isa
<PointerType
>(File
->getType()))
279 F
= M
->getOrInsertFunction("fputs", AttrListPtr::get(AWI
, 3), Type::Int32Ty
,
280 PointerType::getUnqual(Type::Int8Ty
),
281 File
->getType(), NULL
);
283 F
= M
->getOrInsertFunction("fputs", Type::Int32Ty
,
284 PointerType::getUnqual(Type::Int8Ty
),
285 File
->getType(), NULL
);
286 B
.CreateCall2(F
, CastToCStr(Str
, B
), File
, "fputs");
289 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
290 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
291 void LibCallOptimization::EmitFWrite(Value
*Ptr
, Value
*Size
, Value
*File
,
293 Module
*M
= Caller
->getParent();
294 AttributeWithIndex AWI
[3];
295 AWI
[0] = AttributeWithIndex::get(1, Attribute::NoCapture
);
296 AWI
[1] = AttributeWithIndex::get(4, Attribute::NoCapture
);
297 AWI
[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind
);
299 if (isa
<PointerType
>(File
->getType()))
300 F
= M
->getOrInsertFunction("fwrite", AttrListPtr::get(AWI
, 3),
302 PointerType::getUnqual(Type::Int8Ty
),
303 TD
->getIntPtrType(), TD
->getIntPtrType(),
304 File
->getType(), NULL
);
306 F
= M
->getOrInsertFunction("fwrite", TD
->getIntPtrType(),
307 PointerType::getUnqual(Type::Int8Ty
),
308 TD
->getIntPtrType(), TD
->getIntPtrType(),
309 File
->getType(), NULL
);
310 B
.CreateCall4(F
, CastToCStr(Ptr
, B
), Size
,
311 ConstantInt::get(TD
->getIntPtrType(), 1), File
);
314 //===----------------------------------------------------------------------===//
316 //===----------------------------------------------------------------------===//
318 /// GetStringLengthH - If we can compute the length of the string pointed to by
319 /// the specified pointer, return 'len+1'. If we can't, return 0.
320 static uint64_t GetStringLengthH(Value
*V
, SmallPtrSet
<PHINode
*, 32> &PHIs
) {
321 // Look through noop bitcast instructions.
322 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
323 return GetStringLengthH(BCI
->getOperand(0), PHIs
);
325 // If this is a PHI node, there are two cases: either we have already seen it
327 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
328 if (!PHIs
.insert(PN
))
329 return ~0ULL; // already in the set.
331 // If it was new, see if all the input strings are the same length.
332 uint64_t LenSoFar
= ~0ULL;
333 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
334 uint64_t Len
= GetStringLengthH(PN
->getIncomingValue(i
), PHIs
);
335 if (Len
== 0) return 0; // Unknown length -> unknown.
337 if (Len
== ~0ULL) continue;
339 if (Len
!= LenSoFar
&& LenSoFar
!= ~0ULL)
340 return 0; // Disagree -> unknown.
344 // Success, all agree.
348 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
349 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
350 uint64_t Len1
= GetStringLengthH(SI
->getTrueValue(), PHIs
);
351 if (Len1
== 0) return 0;
352 uint64_t Len2
= GetStringLengthH(SI
->getFalseValue(), PHIs
);
353 if (Len2
== 0) return 0;
354 if (Len1
== ~0ULL) return Len2
;
355 if (Len2
== ~0ULL) return Len1
;
356 if (Len1
!= Len2
) return 0;
360 // If the value is not a GEP instruction nor a constant expression with a
361 // GEP instruction, then return unknown.
363 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
365 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
366 if (CE
->getOpcode() != Instruction::GetElementPtr
)
373 // Make sure the GEP has exactly three arguments.
374 if (GEP
->getNumOperands() != 3)
377 // Check to make sure that the first operand of the GEP is an integer and
378 // has value 0 so that we are sure we're indexing into the initializer.
379 if (ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1))) {
385 // If the second index isn't a ConstantInt, then this is a variable index
386 // into the array. If this occurs, we can't say anything meaningful about
388 uint64_t StartIdx
= 0;
389 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
390 StartIdx
= CI
->getZExtValue();
394 // The GEP instruction, constant or instruction, must reference a global
395 // variable that is a constant and is initialized. The referenced constant
396 // initializer is the array that we'll use for optimization.
397 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
398 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer())
400 Constant
*GlobalInit
= GV
->getInitializer();
402 // Handle the ConstantAggregateZero case, which is a degenerate case. The
403 // initializer is constant zero so the length of the string must be zero.
404 if (isa
<ConstantAggregateZero
>(GlobalInit
))
405 return 1; // Len = 0 offset by 1.
407 // Must be a Constant Array
408 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
409 if (!Array
|| Array
->getType()->getElementType() != Type::Int8Ty
)
412 // Get the number of elements in the array
413 uint64_t NumElts
= Array
->getType()->getNumElements();
415 // Traverse the constant array from StartIdx (derived above) which is
416 // the place the GEP refers to in the array.
417 for (unsigned i
= StartIdx
; i
!= NumElts
; ++i
) {
418 Constant
*Elt
= Array
->getOperand(i
);
419 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
420 if (!CI
) // This array isn't suitable, non-int initializer.
423 return i
-StartIdx
+1; // We found end of string, success!
426 return 0; // The array isn't null terminated, conservatively return 'unknown'.
429 /// GetStringLength - If we can compute the length of the string pointed to by
430 /// the specified pointer, return 'len+1'. If we can't, return 0.
431 static uint64_t GetStringLength(Value
*V
) {
432 if (!isa
<PointerType
>(V
->getType())) return 0;
434 SmallPtrSet
<PHINode
*, 32> PHIs
;
435 uint64_t Len
= GetStringLengthH(V
, PHIs
);
436 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
437 // an empty string as a length.
438 return Len
== ~0ULL ? 1 : Len
;
441 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
442 /// value is equal or not-equal to zero.
443 static bool IsOnlyUsedInZeroEqualityComparison(Value
*V
) {
444 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
446 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(*UI
))
447 if (IC
->isEquality())
448 if (Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
449 if (C
->isNullValue())
451 // Unknown instruction.
457 //===----------------------------------------------------------------------===//
458 // Miscellaneous LibCall Optimizations
459 //===----------------------------------------------------------------------===//
462 //===---------------------------------------===//
463 // 'exit' Optimizations
465 /// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
466 struct VISIBILITY_HIDDEN ExitOpt
: public LibCallOptimization
{
467 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
468 // Verify we have a reasonable prototype for exit.
469 if (Callee
->arg_size() == 0 || !CI
->use_empty())
472 // Verify the caller is main, and that the result type of main matches the
473 // argument type of exit.
474 if (!Caller
->isName("main") || !Caller
->hasExternalLinkage() ||
475 Caller
->getReturnType() != CI
->getOperand(1)->getType())
478 TerminatorInst
*OldTI
= CI
->getParent()->getTerminator();
480 // Create the return after the call.
481 ReturnInst
*RI
= B
.CreateRet(CI
->getOperand(1));
483 // Drop all successor phi node entries.
484 for (unsigned i
= 0, e
= OldTI
->getNumSuccessors(); i
!= e
; ++i
)
485 OldTI
->getSuccessor(i
)->removePredecessor(CI
->getParent());
487 // Erase all instructions from after our return instruction until the end of
489 BasicBlock::iterator FirstDead
= RI
; ++FirstDead
;
490 CI
->getParent()->getInstList().erase(FirstDead
, CI
->getParent()->end());
495 //===----------------------------------------------------------------------===//
496 // String and Memory LibCall Optimizations
497 //===----------------------------------------------------------------------===//
499 //===---------------------------------------===//
500 // 'strcat' Optimizations
502 struct VISIBILITY_HIDDEN StrCatOpt
: public LibCallOptimization
{
503 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
504 // Verify the "strcat" function prototype.
505 const FunctionType
*FT
= Callee
->getFunctionType();
506 if (FT
->getNumParams() != 2 ||
507 FT
->getReturnType() != PointerType::getUnqual(Type::Int8Ty
) ||
508 FT
->getParamType(0) != FT
->getReturnType() ||
509 FT
->getParamType(1) != FT
->getReturnType())
512 // Extract some information from the instruction
513 Value
*Dst
= CI
->getOperand(1);
514 Value
*Src
= CI
->getOperand(2);
516 // See if we can get the length of the input string.
517 uint64_t Len
= GetStringLength(Src
);
518 if (Len
== 0) return 0;
519 --Len
; // Unbias length.
521 // Handle the simple, do-nothing case: strcat(x, "") -> x
525 EmitStrLenMemCpy(Src
, Dst
, Len
, B
);
529 void EmitStrLenMemCpy(Value
*Src
, Value
*Dst
, uint64_t Len
, IRBuilder
<> &B
) {
530 // We need to find the end of the destination string. That's where the
531 // memory is to be moved to. We just generate a call to strlen.
532 Value
*DstLen
= EmitStrLen(Dst
, B
);
534 // Now that we have the destination's length, we must index into the
535 // destination's pointer to get the actual memcpy destination (end of
536 // the string .. we're concatenating).
537 Value
*CpyDst
= B
.CreateGEP(Dst
, DstLen
, "endptr");
539 // We have enough information to now generate the memcpy call to do the
540 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
541 EmitMemCpy(CpyDst
, Src
, ConstantInt::get(TD
->getIntPtrType(), Len
+1), 1, B
);
545 //===---------------------------------------===//
546 // 'strncat' Optimizations
548 struct VISIBILITY_HIDDEN StrNCatOpt
: public StrCatOpt
{
549 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
550 // Verify the "strncat" function prototype.
551 const FunctionType
*FT
= Callee
->getFunctionType();
552 if (FT
->getNumParams() != 3 ||
553 FT
->getReturnType() != PointerType::getUnqual(Type::Int8Ty
) ||
554 FT
->getParamType(0) != FT
->getReturnType() ||
555 FT
->getParamType(1) != FT
->getReturnType() ||
556 !isa
<IntegerType
>(FT
->getParamType(2)))
559 // Extract some information from the instruction
560 Value
*Dst
= CI
->getOperand(1);
561 Value
*Src
= CI
->getOperand(2);
564 // We don't do anything if length is not constant
565 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(CI
->getOperand(3)))
566 Len
= LengthArg
->getZExtValue();
570 // See if we can get the length of the input string.
571 uint64_t SrcLen
= GetStringLength(Src
);
572 if (SrcLen
== 0) return 0;
573 --SrcLen
; // Unbias length.
575 // Handle the simple, do-nothing cases:
576 // strncat(x, "", c) -> x
577 // strncat(x, c, 0) -> x
578 if (SrcLen
== 0 || Len
== 0) return Dst
;
580 // We don't optimize this case
581 if (Len
< SrcLen
) return 0;
583 // strncat(x, s, c) -> strcat(x, s)
584 // s is constant so the strcat can be optimized further
585 EmitStrLenMemCpy(Src
, Dst
, SrcLen
, B
);
590 //===---------------------------------------===//
591 // 'strchr' Optimizations
593 struct VISIBILITY_HIDDEN StrChrOpt
: public LibCallOptimization
{
594 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
595 // Verify the "strchr" function prototype.
596 const FunctionType
*FT
= Callee
->getFunctionType();
597 if (FT
->getNumParams() != 2 ||
598 FT
->getReturnType() != PointerType::getUnqual(Type::Int8Ty
) ||
599 FT
->getParamType(0) != FT
->getReturnType())
602 Value
*SrcStr
= CI
->getOperand(1);
604 // If the second operand is non-constant, see if we can compute the length
605 // of the input string and turn this into memchr.
606 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CI
->getOperand(2));
608 uint64_t Len
= GetStringLength(SrcStr
);
609 if (Len
== 0 || FT
->getParamType(1) != Type::Int32Ty
) // memchr needs i32.
612 return EmitMemChr(SrcStr
, CI
->getOperand(2), // include nul.
613 ConstantInt::get(TD
->getIntPtrType(), Len
), B
);
616 // Otherwise, the character is a constant, see if the first argument is
617 // a string literal. If so, we can constant fold.
619 if (!GetConstantStringInfo(SrcStr
, Str
))
622 // strchr can find the nul character.
624 char CharValue
= CharC
->getSExtValue();
626 // Compute the offset.
629 if (i
== Str
.size()) // Didn't find the char. strchr returns null.
630 return Constant::getNullValue(CI
->getType());
631 // Did we find our match?
632 if (Str
[i
] == CharValue
)
637 // strchr(s+n,c) -> gep(s+n+i,c)
638 Value
*Idx
= ConstantInt::get(Type::Int64Ty
, i
);
639 return B
.CreateGEP(SrcStr
, Idx
, "strchr");
643 //===---------------------------------------===//
644 // 'strcmp' Optimizations
646 struct VISIBILITY_HIDDEN StrCmpOpt
: public LibCallOptimization
{
647 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
648 // Verify the "strcmp" function prototype.
649 const FunctionType
*FT
= Callee
->getFunctionType();
650 if (FT
->getNumParams() != 2 || FT
->getReturnType() != Type::Int32Ty
||
651 FT
->getParamType(0) != FT
->getParamType(1) ||
652 FT
->getParamType(0) != PointerType::getUnqual(Type::Int8Ty
))
655 Value
*Str1P
= CI
->getOperand(1), *Str2P
= CI
->getOperand(2);
656 if (Str1P
== Str2P
) // strcmp(x,x) -> 0
657 return ConstantInt::get(CI
->getType(), 0);
659 std::string Str1
, Str2
;
660 bool HasStr1
= GetConstantStringInfo(Str1P
, Str1
);
661 bool HasStr2
= GetConstantStringInfo(Str2P
, Str2
);
663 if (HasStr1
&& Str1
.empty()) // strcmp("", x) -> *x
664 return B
.CreateZExt(B
.CreateLoad(Str2P
, "strcmpload"), CI
->getType());
666 if (HasStr2
&& Str2
.empty()) // strcmp(x,"") -> *x
667 return B
.CreateZExt(B
.CreateLoad(Str1P
, "strcmpload"), CI
->getType());
669 // strcmp(x, y) -> cnst (if both x and y are constant strings)
670 if (HasStr1
&& HasStr2
)
671 return ConstantInt::get(CI
->getType(), strcmp(Str1
.c_str(),Str2
.c_str()));
673 // strcmp(P, "x") -> memcmp(P, "x", 2)
674 uint64_t Len1
= GetStringLength(Str1P
);
675 uint64_t Len2
= GetStringLength(Str2P
);
677 // Choose the smallest Len excluding 0 which means 'unknown'.
678 if (!Len1
|| (Len2
&& Len2
< Len1
))
680 return EmitMemCmp(Str1P
, Str2P
,
681 ConstantInt::get(TD
->getIntPtrType(), Len1
), B
);
688 //===---------------------------------------===//
689 // 'strncmp' Optimizations
691 struct VISIBILITY_HIDDEN StrNCmpOpt
: public LibCallOptimization
{
692 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
693 // Verify the "strncmp" function prototype.
694 const FunctionType
*FT
= Callee
->getFunctionType();
695 if (FT
->getNumParams() != 3 || FT
->getReturnType() != Type::Int32Ty
||
696 FT
->getParamType(0) != FT
->getParamType(1) ||
697 FT
->getParamType(0) != PointerType::getUnqual(Type::Int8Ty
) ||
698 !isa
<IntegerType
>(FT
->getParamType(2)))
701 Value
*Str1P
= CI
->getOperand(1), *Str2P
= CI
->getOperand(2);
702 if (Str1P
== Str2P
) // strncmp(x,x,n) -> 0
703 return ConstantInt::get(CI
->getType(), 0);
705 // Get the length argument if it is constant.
707 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(CI
->getOperand(3)))
708 Length
= LengthArg
->getZExtValue();
712 if (Length
== 0) // strncmp(x,y,0) -> 0
713 return ConstantInt::get(CI
->getType(), 0);
715 std::string Str1
, Str2
;
716 bool HasStr1
= GetConstantStringInfo(Str1P
, Str1
);
717 bool HasStr2
= GetConstantStringInfo(Str2P
, Str2
);
719 if (HasStr1
&& Str1
.empty()) // strncmp("", x, n) -> *x
720 return B
.CreateZExt(B
.CreateLoad(Str2P
, "strcmpload"), CI
->getType());
722 if (HasStr2
&& Str2
.empty()) // strncmp(x, "", n) -> *x
723 return B
.CreateZExt(B
.CreateLoad(Str1P
, "strcmpload"), CI
->getType());
725 // strncmp(x, y) -> cnst (if both x and y are constant strings)
726 if (HasStr1
&& HasStr2
)
727 return ConstantInt::get(CI
->getType(),
728 strncmp(Str1
.c_str(), Str2
.c_str(), Length
));
734 //===---------------------------------------===//
735 // 'strcpy' Optimizations
737 struct VISIBILITY_HIDDEN StrCpyOpt
: public LibCallOptimization
{
738 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
739 // Verify the "strcpy" function prototype.
740 const FunctionType
*FT
= Callee
->getFunctionType();
741 if (FT
->getNumParams() != 2 || FT
->getReturnType() != FT
->getParamType(0) ||
742 FT
->getParamType(0) != FT
->getParamType(1) ||
743 FT
->getParamType(0) != PointerType::getUnqual(Type::Int8Ty
))
746 Value
*Dst
= CI
->getOperand(1), *Src
= CI
->getOperand(2);
747 if (Dst
== Src
) // strcpy(x,x) -> x
750 // See if we can get the length of the input string.
751 uint64_t Len
= GetStringLength(Src
);
752 if (Len
== 0) return 0;
754 // We have enough information to now generate the memcpy call to do the
755 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
756 EmitMemCpy(Dst
, Src
, ConstantInt::get(TD
->getIntPtrType(), Len
), 1, B
);
761 //===---------------------------------------===//
762 // 'strncpy' Optimizations
764 struct VISIBILITY_HIDDEN StrNCpyOpt
: public LibCallOptimization
{
765 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
766 const FunctionType
*FT
= Callee
->getFunctionType();
767 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
768 FT
->getParamType(0) != FT
->getParamType(1) ||
769 FT
->getParamType(0) != PointerType::getUnqual(Type::Int8Ty
) ||
770 !isa
<IntegerType
>(FT
->getParamType(2)))
773 Value
*Dst
= CI
->getOperand(1);
774 Value
*Src
= CI
->getOperand(2);
775 Value
*LenOp
= CI
->getOperand(3);
777 // See if we can get the length of the input string.
778 uint64_t SrcLen
= GetStringLength(Src
);
779 if (SrcLen
== 0) return 0;
783 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
784 EmitMemSet(Dst
, ConstantInt::get(Type::Int8Ty
, '\0'), LenOp
, B
);
789 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(LenOp
))
790 Len
= LengthArg
->getZExtValue();
794 if (Len
== 0) return Dst
; // strncpy(x, y, 0) -> x
796 // Let strncpy handle the zero padding
797 if (Len
> SrcLen
+1) return 0;
799 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
800 EmitMemCpy(Dst
, Src
, ConstantInt::get(TD
->getIntPtrType(), Len
), 1, B
);
806 //===---------------------------------------===//
807 // 'strlen' Optimizations
809 struct VISIBILITY_HIDDEN StrLenOpt
: public LibCallOptimization
{
810 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
811 const FunctionType
*FT
= Callee
->getFunctionType();
812 if (FT
->getNumParams() != 1 ||
813 FT
->getParamType(0) != PointerType::getUnqual(Type::Int8Ty
) ||
814 !isa
<IntegerType
>(FT
->getReturnType()))
817 Value
*Src
= CI
->getOperand(1);
819 // Constant folding: strlen("xyz") -> 3
820 if (uint64_t Len
= GetStringLength(Src
))
821 return ConstantInt::get(CI
->getType(), Len
-1);
823 // Handle strlen(p) != 0.
824 if (!IsOnlyUsedInZeroEqualityComparison(CI
)) return 0;
826 // strlen(x) != 0 --> *x != 0
827 // strlen(x) == 0 --> *x == 0
828 return B
.CreateZExt(B
.CreateLoad(Src
, "strlenfirst"), CI
->getType());
832 //===---------------------------------------===//
833 // 'strto*' Optimizations
835 struct VISIBILITY_HIDDEN StrToOpt
: public LibCallOptimization
{
836 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
837 const FunctionType
*FT
= Callee
->getFunctionType();
838 if ((FT
->getNumParams() != 2 && FT
->getNumParams() != 3) ||
839 !isa
<PointerType
>(FT
->getParamType(0)) ||
840 !isa
<PointerType
>(FT
->getParamType(1)))
843 Value
*EndPtr
= CI
->getOperand(2);
844 if (isa
<ConstantPointerNull
>(EndPtr
)) {
845 CI
->setOnlyReadsMemory();
846 CI
->addAttribute(1, Attribute::NoCapture
);
854 //===---------------------------------------===//
855 // 'memcmp' Optimizations
857 struct VISIBILITY_HIDDEN MemCmpOpt
: public LibCallOptimization
{
858 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
859 const FunctionType
*FT
= Callee
->getFunctionType();
860 if (FT
->getNumParams() != 3 || !isa
<PointerType
>(FT
->getParamType(0)) ||
861 !isa
<PointerType
>(FT
->getParamType(1)) ||
862 FT
->getReturnType() != Type::Int32Ty
)
865 Value
*LHS
= CI
->getOperand(1), *RHS
= CI
->getOperand(2);
867 if (LHS
== RHS
) // memcmp(s,s,x) -> 0
868 return Constant::getNullValue(CI
->getType());
870 // Make sure we have a constant length.
871 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(CI
->getOperand(3));
873 uint64_t Len
= LenC
->getZExtValue();
875 if (Len
== 0) // memcmp(s1,s2,0) -> 0
876 return Constant::getNullValue(CI
->getType());
878 if (Len
== 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
879 Value
*LHSV
= B
.CreateLoad(CastToCStr(LHS
, B
), "lhsv");
880 Value
*RHSV
= B
.CreateLoad(CastToCStr(RHS
, B
), "rhsv");
881 return B
.CreateZExt(B
.CreateSub(LHSV
, RHSV
, "chardiff"), CI
->getType());
884 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
885 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
886 if ((Len
== 2 || Len
== 4) && IsOnlyUsedInZeroEqualityComparison(CI
)) {
887 const Type
*PTy
= PointerType::getUnqual(Len
== 2 ?
888 Type::Int16Ty
: Type::Int32Ty
);
889 LHS
= B
.CreateBitCast(LHS
, PTy
, "tmp");
890 RHS
= B
.CreateBitCast(RHS
, PTy
, "tmp");
891 LoadInst
*LHSV
= B
.CreateLoad(LHS
, "lhsv");
892 LoadInst
*RHSV
= B
.CreateLoad(RHS
, "rhsv");
893 LHSV
->setAlignment(1); RHSV
->setAlignment(1); // Unaligned loads.
894 return B
.CreateZExt(B
.CreateXor(LHSV
, RHSV
, "shortdiff"), CI
->getType());
901 //===---------------------------------------===//
902 // 'memcpy' Optimizations
904 struct VISIBILITY_HIDDEN MemCpyOpt
: public LibCallOptimization
{
905 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
906 const FunctionType
*FT
= Callee
->getFunctionType();
907 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
908 !isa
<PointerType
>(FT
->getParamType(0)) ||
909 !isa
<PointerType
>(FT
->getParamType(1)) ||
910 FT
->getParamType(2) != TD
->getIntPtrType())
913 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
914 EmitMemCpy(CI
->getOperand(1), CI
->getOperand(2), CI
->getOperand(3), 1, B
);
915 return CI
->getOperand(1);
919 //===---------------------------------------===//
920 // 'memmove' Optimizations
922 struct VISIBILITY_HIDDEN MemMoveOpt
: public LibCallOptimization
{
923 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
924 const FunctionType
*FT
= Callee
->getFunctionType();
925 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
926 !isa
<PointerType
>(FT
->getParamType(0)) ||
927 !isa
<PointerType
>(FT
->getParamType(1)) ||
928 FT
->getParamType(2) != TD
->getIntPtrType())
931 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
932 Module
*M
= Caller
->getParent();
933 Intrinsic::ID IID
= Intrinsic::memmove
;
935 Tys
[0] = TD
->getIntPtrType();
936 Value
*MemMove
= Intrinsic::getDeclaration(M
, IID
, Tys
, 1);
937 Value
*Dst
= CastToCStr(CI
->getOperand(1), B
);
938 Value
*Src
= CastToCStr(CI
->getOperand(2), B
);
939 Value
*Size
= CI
->getOperand(3);
940 Value
*Align
= ConstantInt::get(Type::Int32Ty
, 1);
941 B
.CreateCall4(MemMove
, Dst
, Src
, Size
, Align
);
942 return CI
->getOperand(1);
946 //===---------------------------------------===//
947 // 'memset' Optimizations
949 struct VISIBILITY_HIDDEN MemSetOpt
: public LibCallOptimization
{
950 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
951 const FunctionType
*FT
= Callee
->getFunctionType();
952 if (FT
->getNumParams() != 3 || FT
->getReturnType() != FT
->getParamType(0) ||
953 !isa
<PointerType
>(FT
->getParamType(0)) ||
954 FT
->getParamType(1) != TD
->getIntPtrType() ||
955 FT
->getParamType(2) != TD
->getIntPtrType())
958 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
959 Value
*Val
= B
.CreateTrunc(CI
->getOperand(2), Type::Int8Ty
);
960 EmitMemSet(CI
->getOperand(1), Val
, CI
->getOperand(3), B
);
961 return CI
->getOperand(1);
965 //===----------------------------------------------------------------------===//
966 // Math Library Optimizations
967 //===----------------------------------------------------------------------===//
969 //===---------------------------------------===//
970 // 'pow*' Optimizations
972 struct VISIBILITY_HIDDEN PowOpt
: public LibCallOptimization
{
973 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
974 const FunctionType
*FT
= Callee
->getFunctionType();
975 // Just make sure this has 2 arguments of the same FP type, which match the
977 if (FT
->getNumParams() != 2 || FT
->getReturnType() != FT
->getParamType(0) ||
978 FT
->getParamType(0) != FT
->getParamType(1) ||
979 !FT
->getParamType(0)->isFloatingPoint())
982 Value
*Op1
= CI
->getOperand(1), *Op2
= CI
->getOperand(2);
983 if (ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Op1
)) {
984 if (Op1C
->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
986 if (Op1C
->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
987 return EmitUnaryFloatFnCall(Op2
, "exp2", B
);
990 ConstantFP
*Op2C
= dyn_cast
<ConstantFP
>(Op2
);
991 if (Op2C
== 0) return 0;
993 if (Op2C
->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
994 return ConstantFP::get(CI
->getType(), 1.0);
996 if (Op2C
->isExactlyValue(0.5)) {
997 // FIXME: This is not safe for -0.0 and -inf. This can only be done when
998 // 'unsafe' math optimizations are allowed.
999 // x pow(x, 0.5) sqrt(x)
1000 // ---------------------------------------------
1004 // pow(x, 0.5) -> sqrt(x)
1005 return B
.CreateCall(get_sqrt(), Op1
, "sqrt");
1009 if (Op2C
->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1011 if (Op2C
->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1012 return B
.CreateMul(Op1
, Op1
, "pow2");
1013 if (Op2C
->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1014 return B
.CreateFDiv(ConstantFP::get(CI
->getType(), 1.0), Op1
, "powrecip");
1019 //===---------------------------------------===//
1020 // 'exp2' Optimizations
1022 struct VISIBILITY_HIDDEN Exp2Opt
: public LibCallOptimization
{
1023 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1024 const FunctionType
*FT
= Callee
->getFunctionType();
1025 // Just make sure this has 1 argument of FP type, which matches the
1027 if (FT
->getNumParams() != 1 || FT
->getReturnType() != FT
->getParamType(0) ||
1028 !FT
->getParamType(0)->isFloatingPoint())
1031 Value
*Op
= CI
->getOperand(1);
1032 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1033 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1034 Value
*LdExpArg
= 0;
1035 if (SIToFPInst
*OpC
= dyn_cast
<SIToFPInst
>(Op
)) {
1036 if (OpC
->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1037 LdExpArg
= B
.CreateSExt(OpC
->getOperand(0), Type::Int32Ty
, "tmp");
1038 } else if (UIToFPInst
*OpC
= dyn_cast
<UIToFPInst
>(Op
)) {
1039 if (OpC
->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1040 LdExpArg
= B
.CreateZExt(OpC
->getOperand(0), Type::Int32Ty
, "tmp");
1045 if (Op
->getType() == Type::FloatTy
)
1047 else if (Op
->getType() == Type::DoubleTy
)
1052 Constant
*One
= ConstantFP::get(APFloat(1.0f
));
1053 if (Op
->getType() != Type::FloatTy
)
1054 One
= ConstantExpr::getFPExtend(One
, Op
->getType());
1056 Module
*M
= Caller
->getParent();
1057 Value
*Callee
= M
->getOrInsertFunction(Name
, Op
->getType(),
1058 Op
->getType(), Type::Int32Ty
,NULL
);
1059 return B
.CreateCall2(Callee
, One
, LdExpArg
);
1066 //===---------------------------------------===//
1067 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
1069 struct VISIBILITY_HIDDEN UnaryDoubleFPOpt
: public LibCallOptimization
{
1070 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1071 const FunctionType
*FT
= Callee
->getFunctionType();
1072 if (FT
->getNumParams() != 1 || FT
->getReturnType() != Type::DoubleTy
||
1073 FT
->getParamType(0) != Type::DoubleTy
)
1076 // If this is something like 'floor((double)floatval)', convert to floorf.
1077 FPExtInst
*Cast
= dyn_cast
<FPExtInst
>(CI
->getOperand(1));
1078 if (Cast
== 0 || Cast
->getOperand(0)->getType() != Type::FloatTy
)
1081 // floor((double)floatval) -> (double)floorf(floatval)
1082 Value
*V
= Cast
->getOperand(0);
1083 V
= EmitUnaryFloatFnCall(V
, Callee
->getNameStart(), B
);
1084 return B
.CreateFPExt(V
, Type::DoubleTy
);
1088 //===----------------------------------------------------------------------===//
1089 // Integer Optimizations
1090 //===----------------------------------------------------------------------===//
1092 //===---------------------------------------===//
1093 // 'ffs*' Optimizations
1095 struct VISIBILITY_HIDDEN FFSOpt
: public LibCallOptimization
{
1096 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1097 const FunctionType
*FT
= Callee
->getFunctionType();
1098 // Just make sure this has 2 arguments of the same FP type, which match the
1100 if (FT
->getNumParams() != 1 || FT
->getReturnType() != Type::Int32Ty
||
1101 !isa
<IntegerType
>(FT
->getParamType(0)))
1104 Value
*Op
= CI
->getOperand(1);
1107 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
1108 if (CI
->getValue() == 0) // ffs(0) -> 0.
1109 return Constant::getNullValue(CI
->getType());
1110 return ConstantInt::get(Type::Int32Ty
, // ffs(c) -> cttz(c)+1
1111 CI
->getValue().countTrailingZeros()+1);
1114 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1115 const Type
*ArgType
= Op
->getType();
1116 Value
*F
= Intrinsic::getDeclaration(Callee
->getParent(),
1117 Intrinsic::cttz
, &ArgType
, 1);
1118 Value
*V
= B
.CreateCall(F
, Op
, "cttz");
1119 V
= B
.CreateAdd(V
, ConstantInt::get(V
->getType(), 1), "tmp");
1120 V
= B
.CreateIntCast(V
, Type::Int32Ty
, false, "tmp");
1122 Value
*Cond
= B
.CreateICmpNE(Op
, Constant::getNullValue(ArgType
), "tmp");
1123 return B
.CreateSelect(Cond
, V
, ConstantInt::get(Type::Int32Ty
, 0));
1127 //===---------------------------------------===//
1128 // 'isdigit' Optimizations
1130 struct VISIBILITY_HIDDEN IsDigitOpt
: public LibCallOptimization
{
1131 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1132 const FunctionType
*FT
= Callee
->getFunctionType();
1133 // We require integer(i32)
1134 if (FT
->getNumParams() != 1 || !isa
<IntegerType
>(FT
->getReturnType()) ||
1135 FT
->getParamType(0) != Type::Int32Ty
)
1138 // isdigit(c) -> (c-'0') <u 10
1139 Value
*Op
= CI
->getOperand(1);
1140 Op
= B
.CreateSub(Op
, ConstantInt::get(Type::Int32Ty
, '0'), "isdigittmp");
1141 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(Type::Int32Ty
, 10), "isdigit");
1142 return B
.CreateZExt(Op
, CI
->getType());
1146 //===---------------------------------------===//
1147 // 'isascii' Optimizations
1149 struct VISIBILITY_HIDDEN IsAsciiOpt
: public LibCallOptimization
{
1150 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1151 const FunctionType
*FT
= Callee
->getFunctionType();
1152 // We require integer(i32)
1153 if (FT
->getNumParams() != 1 || !isa
<IntegerType
>(FT
->getReturnType()) ||
1154 FT
->getParamType(0) != Type::Int32Ty
)
1157 // isascii(c) -> c <u 128
1158 Value
*Op
= CI
->getOperand(1);
1159 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(Type::Int32Ty
, 128), "isascii");
1160 return B
.CreateZExt(Op
, CI
->getType());
1164 //===---------------------------------------===//
1165 // 'abs', 'labs', 'llabs' Optimizations
1167 struct VISIBILITY_HIDDEN AbsOpt
: public LibCallOptimization
{
1168 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1169 const FunctionType
*FT
= Callee
->getFunctionType();
1170 // We require integer(integer) where the types agree.
1171 if (FT
->getNumParams() != 1 || !isa
<IntegerType
>(FT
->getReturnType()) ||
1172 FT
->getParamType(0) != FT
->getReturnType())
1175 // abs(x) -> x >s -1 ? x : -x
1176 Value
*Op
= CI
->getOperand(1);
1177 Value
*Pos
= B
.CreateICmpSGT(Op
,ConstantInt::getAllOnesValue(Op
->getType()),
1179 Value
*Neg
= B
.CreateNeg(Op
, "neg");
1180 return B
.CreateSelect(Pos
, Op
, Neg
);
1185 //===---------------------------------------===//
1186 // 'toascii' Optimizations
1188 struct VISIBILITY_HIDDEN ToAsciiOpt
: public LibCallOptimization
{
1189 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1190 const FunctionType
*FT
= Callee
->getFunctionType();
1191 // We require i32(i32)
1192 if (FT
->getNumParams() != 1 || FT
->getReturnType() != FT
->getParamType(0) ||
1193 FT
->getParamType(0) != Type::Int32Ty
)
1196 // isascii(c) -> c & 0x7f
1197 return B
.CreateAnd(CI
->getOperand(1), ConstantInt::get(CI
->getType(),0x7F));
1201 //===----------------------------------------------------------------------===//
1202 // Formatting and IO Optimizations
1203 //===----------------------------------------------------------------------===//
1205 //===---------------------------------------===//
1206 // 'printf' Optimizations
1208 struct VISIBILITY_HIDDEN PrintFOpt
: public LibCallOptimization
{
1209 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1210 // Require one fixed pointer argument and an integer/void result.
1211 const FunctionType
*FT
= Callee
->getFunctionType();
1212 if (FT
->getNumParams() < 1 || !isa
<PointerType
>(FT
->getParamType(0)) ||
1213 !(isa
<IntegerType
>(FT
->getReturnType()) ||
1214 FT
->getReturnType() == Type::VoidTy
))
1217 // Check for a fixed format string.
1218 std::string FormatStr
;
1219 if (!GetConstantStringInfo(CI
->getOperand(1), FormatStr
))
1222 // Empty format string -> noop.
1223 if (FormatStr
.empty()) // Tolerate printf's declared void.
1224 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 0);
1226 // printf("x") -> putchar('x'), even for '%'.
1227 if (FormatStr
.size() == 1) {
1228 EmitPutChar(ConstantInt::get(Type::Int32Ty
, FormatStr
[0]), B
);
1229 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 1);
1232 // printf("foo\n") --> puts("foo")
1233 if (FormatStr
[FormatStr
.size()-1] == '\n' &&
1234 FormatStr
.find('%') == std::string::npos
) { // no format characters.
1235 // Create a string literal with no \n on it. We expect the constant merge
1236 // pass to be run after this pass, to merge duplicate strings.
1237 FormatStr
.erase(FormatStr
.end()-1);
1238 Constant
*C
= ConstantArray::get(FormatStr
, true);
1239 C
= new GlobalVariable(C
->getType(), true,GlobalVariable::InternalLinkage
,
1240 C
, "str", Callee
->getParent());
1242 return CI
->use_empty() ? (Value
*)CI
:
1243 ConstantInt::get(CI
->getType(), FormatStr
.size()+1);
1246 // Optimize specific format strings.
1247 // printf("%c", chr) --> putchar(*(i8*)dst)
1248 if (FormatStr
== "%c" && CI
->getNumOperands() > 2 &&
1249 isa
<IntegerType
>(CI
->getOperand(2)->getType())) {
1250 EmitPutChar(CI
->getOperand(2), B
);
1251 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 1);
1254 // printf("%s\n", str) --> puts(str)
1255 if (FormatStr
== "%s\n" && CI
->getNumOperands() > 2 &&
1256 isa
<PointerType
>(CI
->getOperand(2)->getType()) &&
1258 EmitPutS(CI
->getOperand(2), B
);
1265 //===---------------------------------------===//
1266 // 'sprintf' Optimizations
1268 struct VISIBILITY_HIDDEN SPrintFOpt
: public LibCallOptimization
{
1269 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1270 // Require two fixed pointer arguments and an integer result.
1271 const FunctionType
*FT
= Callee
->getFunctionType();
1272 if (FT
->getNumParams() != 2 || !isa
<PointerType
>(FT
->getParamType(0)) ||
1273 !isa
<PointerType
>(FT
->getParamType(1)) ||
1274 !isa
<IntegerType
>(FT
->getReturnType()))
1277 // Check for a fixed format string.
1278 std::string FormatStr
;
1279 if (!GetConstantStringInfo(CI
->getOperand(2), FormatStr
))
1282 // If we just have a format string (nothing else crazy) transform it.
1283 if (CI
->getNumOperands() == 3) {
1284 // Make sure there's no % in the constant array. We could try to handle
1285 // %% -> % in the future if we cared.
1286 for (unsigned i
= 0, e
= FormatStr
.size(); i
!= e
; ++i
)
1287 if (FormatStr
[i
] == '%')
1288 return 0; // we found a format specifier, bail out.
1290 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1291 EmitMemCpy(CI
->getOperand(1), CI
->getOperand(2), // Copy the nul byte.
1292 ConstantInt::get(TD
->getIntPtrType(), FormatStr
.size()+1),1,B
);
1293 return ConstantInt::get(CI
->getType(), FormatStr
.size());
1296 // The remaining optimizations require the format string to be "%s" or "%c"
1297 // and have an extra operand.
1298 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->getNumOperands() <4)
1301 // Decode the second character of the format string.
1302 if (FormatStr
[1] == 'c') {
1303 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1304 if (!isa
<IntegerType
>(CI
->getOperand(3)->getType())) return 0;
1305 Value
*V
= B
.CreateTrunc(CI
->getOperand(3), Type::Int8Ty
, "char");
1306 Value
*Ptr
= CastToCStr(CI
->getOperand(1), B
);
1307 B
.CreateStore(V
, Ptr
);
1308 Ptr
= B
.CreateGEP(Ptr
, ConstantInt::get(Type::Int32Ty
, 1), "nul");
1309 B
.CreateStore(Constant::getNullValue(Type::Int8Ty
), Ptr
);
1311 return ConstantInt::get(CI
->getType(), 1);
1314 if (FormatStr
[1] == 's') {
1315 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1316 if (!isa
<PointerType
>(CI
->getOperand(3)->getType())) return 0;
1318 Value
*Len
= EmitStrLen(CI
->getOperand(3), B
);
1319 Value
*IncLen
= B
.CreateAdd(Len
, ConstantInt::get(Len
->getType(), 1),
1321 EmitMemCpy(CI
->getOperand(1), CI
->getOperand(3), IncLen
, 1, B
);
1323 // The sprintf result is the unincremented number of bytes in the string.
1324 return B
.CreateIntCast(Len
, CI
->getType(), false);
1330 //===---------------------------------------===//
1331 // 'fwrite' Optimizations
1333 struct VISIBILITY_HIDDEN FWriteOpt
: public LibCallOptimization
{
1334 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1335 // Require a pointer, an integer, an integer, a pointer, returning integer.
1336 const FunctionType
*FT
= Callee
->getFunctionType();
1337 if (FT
->getNumParams() != 4 || !isa
<PointerType
>(FT
->getParamType(0)) ||
1338 !isa
<IntegerType
>(FT
->getParamType(1)) ||
1339 !isa
<IntegerType
>(FT
->getParamType(2)) ||
1340 !isa
<PointerType
>(FT
->getParamType(3)) ||
1341 !isa
<IntegerType
>(FT
->getReturnType()))
1344 // Get the element size and count.
1345 ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(CI
->getOperand(2));
1346 ConstantInt
*CountC
= dyn_cast
<ConstantInt
>(CI
->getOperand(3));
1347 if (!SizeC
|| !CountC
) return 0;
1348 uint64_t Bytes
= SizeC
->getZExtValue()*CountC
->getZExtValue();
1350 // If this is writing zero records, remove the call (it's a noop).
1352 return ConstantInt::get(CI
->getType(), 0);
1354 // If this is writing one byte, turn it into fputc.
1355 if (Bytes
== 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1356 Value
*Char
= B
.CreateLoad(CastToCStr(CI
->getOperand(1), B
), "char");
1357 EmitFPutC(Char
, CI
->getOperand(4), B
);
1358 return ConstantInt::get(CI
->getType(), 1);
1365 //===---------------------------------------===//
1366 // 'fputs' Optimizations
1368 struct VISIBILITY_HIDDEN FPutsOpt
: public LibCallOptimization
{
1369 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1370 // Require two pointers. Also, we can't optimize if return value is used.
1371 const FunctionType
*FT
= Callee
->getFunctionType();
1372 if (FT
->getNumParams() != 2 || !isa
<PointerType
>(FT
->getParamType(0)) ||
1373 !isa
<PointerType
>(FT
->getParamType(1)) ||
1377 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1378 uint64_t Len
= GetStringLength(CI
->getOperand(1));
1380 EmitFWrite(CI
->getOperand(1), ConstantInt::get(TD
->getIntPtrType(), Len
-1),
1381 CI
->getOperand(2), B
);
1382 return CI
; // Known to have no uses (see above).
1386 //===---------------------------------------===//
1387 // 'fprintf' Optimizations
1389 struct VISIBILITY_HIDDEN FPrintFOpt
: public LibCallOptimization
{
1390 virtual Value
*CallOptimizer(Function
*Callee
, CallInst
*CI
, IRBuilder
<> &B
) {
1391 // Require two fixed paramters as pointers and integer result.
1392 const FunctionType
*FT
= Callee
->getFunctionType();
1393 if (FT
->getNumParams() != 2 || !isa
<PointerType
>(FT
->getParamType(0)) ||
1394 !isa
<PointerType
>(FT
->getParamType(1)) ||
1395 !isa
<IntegerType
>(FT
->getReturnType()))
1398 // All the optimizations depend on the format string.
1399 std::string FormatStr
;
1400 if (!GetConstantStringInfo(CI
->getOperand(2), FormatStr
))
1403 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1404 if (CI
->getNumOperands() == 3) {
1405 for (unsigned i
= 0, e
= FormatStr
.size(); i
!= e
; ++i
)
1406 if (FormatStr
[i
] == '%') // Could handle %% -> % if we cared.
1407 return 0; // We found a format specifier.
1409 EmitFWrite(CI
->getOperand(2), ConstantInt::get(TD
->getIntPtrType(),
1411 CI
->getOperand(1), B
);
1412 return ConstantInt::get(CI
->getType(), FormatStr
.size());
1415 // The remaining optimizations require the format string to be "%s" or "%c"
1416 // and have an extra operand.
1417 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->getNumOperands() <4)
1420 // Decode the second character of the format string.
1421 if (FormatStr
[1] == 'c') {
1422 // fprintf(F, "%c", chr) --> *(i8*)dst = chr
1423 if (!isa
<IntegerType
>(CI
->getOperand(3)->getType())) return 0;
1424 EmitFPutC(CI
->getOperand(3), CI
->getOperand(1), B
);
1425 return ConstantInt::get(CI
->getType(), 1);
1428 if (FormatStr
[1] == 's') {
1429 // fprintf(F, "%s", str) -> fputs(str, F)
1430 if (!isa
<PointerType
>(CI
->getOperand(3)->getType()) || !CI
->use_empty())
1432 EmitFPutS(CI
->getOperand(3), CI
->getOperand(1), B
);
1439 } // end anonymous namespace.
1441 //===----------------------------------------------------------------------===//
1442 // SimplifyLibCalls Pass Implementation
1443 //===----------------------------------------------------------------------===//
1446 /// This pass optimizes well known library functions from libc and libm.
1448 class VISIBILITY_HIDDEN SimplifyLibCalls
: public FunctionPass
{
1449 StringMap
<LibCallOptimization
*> Optimizations
;
1450 // Miscellaneous LibCall Optimizations
1452 // String and Memory LibCall Optimizations
1453 StrCatOpt StrCat
; StrNCatOpt StrNCat
; StrChrOpt StrChr
; StrCmpOpt StrCmp
;
1454 StrNCmpOpt StrNCmp
; StrCpyOpt StrCpy
; StrNCpyOpt StrNCpy
; StrLenOpt StrLen
;
1455 StrToOpt StrTo
; MemCmpOpt MemCmp
; MemCpyOpt MemCpy
; MemMoveOpt MemMove
;
1457 // Math Library Optimizations
1458 PowOpt Pow
; Exp2Opt Exp2
; UnaryDoubleFPOpt UnaryDoubleFP
;
1459 // Integer Optimizations
1460 FFSOpt FFS
; AbsOpt Abs
; IsDigitOpt IsDigit
; IsAsciiOpt IsAscii
;
1462 // Formatting and IO Optimizations
1463 SPrintFOpt SPrintF
; PrintFOpt PrintF
;
1464 FWriteOpt FWrite
; FPutsOpt FPuts
; FPrintFOpt FPrintF
;
1466 bool Modified
; // This is only used by doInitialization.
1468 static char ID
; // Pass identification
1469 SimplifyLibCalls() : FunctionPass(&ID
) {}
1471 void InitOptimizations();
1472 bool runOnFunction(Function
&F
);
1474 void setDoesNotAccessMemory(Function
&F
);
1475 void setOnlyReadsMemory(Function
&F
);
1476 void setDoesNotThrow(Function
&F
);
1477 void setDoesNotCapture(Function
&F
, unsigned n
);
1478 void setDoesNotAlias(Function
&F
, unsigned n
);
1479 bool doInitialization(Module
&M
);
1481 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1482 AU
.addRequired
<TargetData
>();
1485 char SimplifyLibCalls::ID
= 0;
1486 } // end anonymous namespace.
1488 static RegisterPass
<SimplifyLibCalls
>
1489 X("simplify-libcalls", "Simplify well-known library calls");
1491 // Public interface to the Simplify LibCalls pass.
1492 FunctionPass
*llvm::createSimplifyLibCallsPass() {
1493 return new SimplifyLibCalls();
1496 /// Optimizations - Populate the Optimizations map with all the optimizations
1498 void SimplifyLibCalls::InitOptimizations() {
1499 // Miscellaneous LibCall Optimizations
1500 Optimizations
["exit"] = &Exit
;
1502 // String and Memory LibCall Optimizations
1503 Optimizations
["strcat"] = &StrCat
;
1504 Optimizations
["strncat"] = &StrNCat
;
1505 Optimizations
["strchr"] = &StrChr
;
1506 Optimizations
["strcmp"] = &StrCmp
;
1507 Optimizations
["strncmp"] = &StrNCmp
;
1508 Optimizations
["strcpy"] = &StrCpy
;
1509 Optimizations
["strncpy"] = &StrNCpy
;
1510 Optimizations
["strlen"] = &StrLen
;
1511 Optimizations
["strtol"] = &StrTo
;
1512 Optimizations
["strtod"] = &StrTo
;
1513 Optimizations
["strtof"] = &StrTo
;
1514 Optimizations
["strtoul"] = &StrTo
;
1515 Optimizations
["strtoll"] = &StrTo
;
1516 Optimizations
["strtold"] = &StrTo
;
1517 Optimizations
["strtoull"] = &StrTo
;
1518 Optimizations
["memcmp"] = &MemCmp
;
1519 Optimizations
["memcpy"] = &MemCpy
;
1520 Optimizations
["memmove"] = &MemMove
;
1521 Optimizations
["memset"] = &MemSet
;
1523 // Math Library Optimizations
1524 Optimizations
["powf"] = &Pow
;
1525 Optimizations
["pow"] = &Pow
;
1526 Optimizations
["powl"] = &Pow
;
1527 Optimizations
["llvm.pow.f32"] = &Pow
;
1528 Optimizations
["llvm.pow.f64"] = &Pow
;
1529 Optimizations
["llvm.pow.f80"] = &Pow
;
1530 Optimizations
["llvm.pow.f128"] = &Pow
;
1531 Optimizations
["llvm.pow.ppcf128"] = &Pow
;
1532 Optimizations
["exp2l"] = &Exp2
;
1533 Optimizations
["exp2"] = &Exp2
;
1534 Optimizations
["exp2f"] = &Exp2
;
1535 Optimizations
["llvm.exp2.ppcf128"] = &Exp2
;
1536 Optimizations
["llvm.exp2.f128"] = &Exp2
;
1537 Optimizations
["llvm.exp2.f80"] = &Exp2
;
1538 Optimizations
["llvm.exp2.f64"] = &Exp2
;
1539 Optimizations
["llvm.exp2.f32"] = &Exp2
;
1542 Optimizations
["floor"] = &UnaryDoubleFP
;
1545 Optimizations
["ceil"] = &UnaryDoubleFP
;
1548 Optimizations
["round"] = &UnaryDoubleFP
;
1551 Optimizations
["rint"] = &UnaryDoubleFP
;
1553 #ifdef HAVE_NEARBYINTF
1554 Optimizations
["nearbyint"] = &UnaryDoubleFP
;
1557 // Integer Optimizations
1558 Optimizations
["ffs"] = &FFS
;
1559 Optimizations
["ffsl"] = &FFS
;
1560 Optimizations
["ffsll"] = &FFS
;
1561 Optimizations
["abs"] = &Abs
;
1562 Optimizations
["labs"] = &Abs
;
1563 Optimizations
["llabs"] = &Abs
;
1564 Optimizations
["isdigit"] = &IsDigit
;
1565 Optimizations
["isascii"] = &IsAscii
;
1566 Optimizations
["toascii"] = &ToAscii
;
1568 // Formatting and IO Optimizations
1569 Optimizations
["sprintf"] = &SPrintF
;
1570 Optimizations
["printf"] = &PrintF
;
1571 Optimizations
["fwrite"] = &FWrite
;
1572 Optimizations
["fputs"] = &FPuts
;
1573 Optimizations
["fprintf"] = &FPrintF
;
1577 /// runOnFunction - Top level algorithm.
1579 bool SimplifyLibCalls::runOnFunction(Function
&F
) {
1580 if (Optimizations
.empty())
1581 InitOptimizations();
1583 const TargetData
&TD
= getAnalysis
<TargetData
>();
1585 IRBuilder
<> Builder
;
1587 bool Changed
= false;
1588 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1589 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ) {
1590 // Ignore non-calls.
1591 CallInst
*CI
= dyn_cast
<CallInst
>(I
++);
1594 // Ignore indirect calls and calls to non-external functions.
1595 Function
*Callee
= CI
->getCalledFunction();
1596 if (Callee
== 0 || !Callee
->isDeclaration() ||
1597 !(Callee
->hasExternalLinkage() || Callee
->hasDLLImportLinkage()))
1600 // Ignore unknown calls.
1601 const char *CalleeName
= Callee
->getNameStart();
1602 StringMap
<LibCallOptimization
*>::iterator OMI
=
1603 Optimizations
.find(CalleeName
, CalleeName
+Callee
->getNameLen());
1604 if (OMI
== Optimizations
.end()) continue;
1606 // Set the builder to the instruction after the call.
1607 Builder
.SetInsertPoint(BB
, I
);
1609 // Try to optimize this call.
1610 Value
*Result
= OMI
->second
->OptimizeCall(CI
, TD
, Builder
);
1611 if (Result
== 0) continue;
1613 DEBUG(DOUT
<< "SimplifyLibCalls simplified: " << *CI
;
1614 DOUT
<< " into: " << *Result
<< "\n");
1616 // Something changed!
1620 // Inspect the instruction after the call (which was potentially just
1624 if (CI
!= Result
&& !CI
->use_empty()) {
1625 CI
->replaceAllUsesWith(Result
);
1626 if (!Result
->hasName())
1627 Result
->takeName(CI
);
1629 CI
->eraseFromParent();
1635 // Utility methods for doInitialization.
1637 void SimplifyLibCalls::setDoesNotAccessMemory(Function
&F
) {
1638 if (!F
.doesNotAccessMemory()) {
1639 F
.setDoesNotAccessMemory();
1644 void SimplifyLibCalls::setOnlyReadsMemory(Function
&F
) {
1645 if (!F
.onlyReadsMemory()) {
1646 F
.setOnlyReadsMemory();
1651 void SimplifyLibCalls::setDoesNotThrow(Function
&F
) {
1652 if (!F
.doesNotThrow()) {
1653 F
.setDoesNotThrow();
1658 void SimplifyLibCalls::setDoesNotCapture(Function
&F
, unsigned n
) {
1659 if (!F
.doesNotCapture(n
)) {
1660 F
.setDoesNotCapture(n
);
1665 void SimplifyLibCalls::setDoesNotAlias(Function
&F
, unsigned n
) {
1666 if (!F
.doesNotAlias(n
)) {
1667 F
.setDoesNotAlias(n
);
1673 /// doInitialization - Add attributes to well-known functions.
1675 bool SimplifyLibCalls::doInitialization(Module
&M
) {
1677 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
1679 if (!F
.isDeclaration())
1682 unsigned NameLen
= F
.getNameLen();
1686 const FunctionType
*FTy
= F
.getFunctionType();
1688 const char *NameStr
= F
.getNameStart();
1689 switch (NameStr
[0]) {
1691 if (NameLen
== 6 && !strcmp(NameStr
, "strlen")) {
1692 if (FTy
->getNumParams() != 1 ||
1693 !isa
<PointerType
>(FTy
->getParamType(0)))
1695 setOnlyReadsMemory(F
);
1697 setDoesNotCapture(F
, 1);
1698 } else if ((NameLen
== 6 && !strcmp(NameStr
, "strcpy")) ||
1699 (NameLen
== 6 && !strcmp(NameStr
, "stpcpy")) ||
1700 (NameLen
== 6 && !strcmp(NameStr
, "strcat")) ||
1701 (NameLen
== 6 && !strcmp(NameStr
, "strtol")) ||
1702 (NameLen
== 6 && !strcmp(NameStr
, "strtod")) ||
1703 (NameLen
== 6 && !strcmp(NameStr
, "strtof")) ||
1704 (NameLen
== 7 && !strcmp(NameStr
, "strtoul")) ||
1705 (NameLen
== 7 && !strcmp(NameStr
, "strtoll")) ||
1706 (NameLen
== 7 && !strcmp(NameStr
, "strtold")) ||
1707 (NameLen
== 7 && !strcmp(NameStr
, "strncat")) ||
1708 (NameLen
== 7 && !strcmp(NameStr
, "strncpy")) ||
1709 (NameLen
== 8 && !strcmp(NameStr
, "strtoull"))) {
1710 if (FTy
->getNumParams() < 2 ||
1711 !isa
<PointerType
>(FTy
->getParamType(1)))
1714 setDoesNotCapture(F
, 2);
1715 } else if (NameLen
== 7 && !strcmp(NameStr
, "strxfrm")) {
1716 if (FTy
->getNumParams() != 3 ||
1717 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1718 !isa
<PointerType
>(FTy
->getParamType(1)))
1721 setDoesNotCapture(F
, 1);
1722 setDoesNotCapture(F
, 2);
1723 } else if ((NameLen
== 6 && !strcmp(NameStr
, "strcmp")) ||
1724 (NameLen
== 6 && !strcmp(NameStr
, "strspn")) ||
1725 (NameLen
== 7 && !strcmp(NameStr
, "strncmp")) ||
1726 (NameLen
== 7 && !strcmp(NameStr
, "strcspn")) ||
1727 (NameLen
== 7 && !strcmp(NameStr
, "strcoll")) ||
1728 (NameLen
== 10 && !strcmp(NameStr
, "strcasecmp")) ||
1729 (NameLen
== 11 && !strcmp(NameStr
, "strncasecmp"))) {
1730 if (FTy
->getNumParams() < 2 ||
1731 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1732 !isa
<PointerType
>(FTy
->getParamType(1)))
1734 setOnlyReadsMemory(F
);
1736 setDoesNotCapture(F
, 1);
1737 setDoesNotCapture(F
, 2);
1738 } else if ((NameLen
== 6 && !strcmp(NameStr
, "strstr")) ||
1739 (NameLen
== 7 && !strcmp(NameStr
, "strpbrk"))) {
1740 if (FTy
->getNumParams() != 2 ||
1741 !isa
<PointerType
>(FTy
->getParamType(1)))
1743 setOnlyReadsMemory(F
);
1745 setDoesNotCapture(F
, 2);
1746 } else if ((NameLen
== 6 && !strcmp(NameStr
, "strtok")) ||
1747 (NameLen
== 8 && !strcmp(NameStr
, "strtok_r"))) {
1748 if (FTy
->getNumParams() < 2 ||
1749 !isa
<PointerType
>(FTy
->getParamType(1)))
1752 setDoesNotCapture(F
, 2);
1753 } else if ((NameLen
== 5 && !strcmp(NameStr
, "scanf")) ||
1754 (NameLen
== 6 && !strcmp(NameStr
, "setbuf")) ||
1755 (NameLen
== 7 && !strcmp(NameStr
, "setvbuf"))) {
1756 if (FTy
->getNumParams() < 1 ||
1757 !isa
<PointerType
>(FTy
->getParamType(0)))
1760 setDoesNotCapture(F
, 1);
1761 } else if ((NameLen
== 6 && !strcmp(NameStr
, "strdup")) ||
1762 (NameLen
== 7 && !strcmp(NameStr
, "strndup"))) {
1763 if (FTy
->getNumParams() < 1 ||
1764 !isa
<PointerType
>(FTy
->getReturnType()) ||
1765 !isa
<PointerType
>(FTy
->getParamType(0)))
1768 setDoesNotAlias(F
, 0);
1769 setDoesNotCapture(F
, 1);
1770 } else if ((NameLen
== 4 && !strcmp(NameStr
, "stat")) ||
1771 (NameLen
== 6 && !strcmp(NameStr
, "sscanf")) ||
1772 (NameLen
== 7 && !strcmp(NameStr
, "sprintf")) ||
1773 (NameLen
== 7 && !strcmp(NameStr
, "statvfs"))) {
1774 if (FTy
->getNumParams() < 2 ||
1775 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1776 !isa
<PointerType
>(FTy
->getParamType(1)))
1779 setDoesNotCapture(F
, 1);
1780 setDoesNotCapture(F
, 2);
1781 } else if (NameLen
== 8 && !strcmp(NameStr
, "snprintf")) {
1782 if (FTy
->getNumParams() != 3 ||
1783 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1784 !isa
<PointerType
>(FTy
->getParamType(2)))
1787 setDoesNotCapture(F
, 1);
1788 setDoesNotCapture(F
, 3);
1789 } else if (NameLen
== 9 && !strcmp(NameStr
, "setitimer")) {
1790 if (FTy
->getNumParams() != 3 ||
1791 !isa
<PointerType
>(FTy
->getParamType(1)) ||
1792 !isa
<PointerType
>(FTy
->getParamType(2)))
1795 setDoesNotCapture(F
, 2);
1796 setDoesNotCapture(F
, 3);
1797 } else if (NameLen
== 6 && !strcmp(NameStr
, "system")) {
1798 if (FTy
->getNumParams() != 1 ||
1799 !isa
<PointerType
>(FTy
->getParamType(0)))
1801 // May throw; "system" is a valid pthread cancellation point.
1802 setDoesNotCapture(F
, 1);
1806 if (NameLen
== 6 && !strcmp(NameStr
, "memcmp")) {
1807 if (FTy
->getNumParams() != 3 ||
1808 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1809 !isa
<PointerType
>(FTy
->getParamType(1)))
1811 setOnlyReadsMemory(F
);
1813 setDoesNotCapture(F
, 1);
1814 setDoesNotCapture(F
, 2);
1815 } else if ((NameLen
== 6 && !strcmp(NameStr
, "memchr")) ||
1816 (NameLen
== 7 && !strcmp(NameStr
, "memrchr"))) {
1817 if (FTy
->getNumParams() != 3)
1819 setOnlyReadsMemory(F
);
1821 } else if ((NameLen
== 4 && !strcmp(NameStr
, "modf")) ||
1822 (NameLen
== 5 && !strcmp(NameStr
, "modff")) ||
1823 (NameLen
== 5 && !strcmp(NameStr
, "modfl")) ||
1824 (NameLen
== 6 && !strcmp(NameStr
, "memcpy")) ||
1825 (NameLen
== 7 && !strcmp(NameStr
, "memccpy")) ||
1826 (NameLen
== 7 && !strcmp(NameStr
, "memmove"))) {
1827 if (FTy
->getNumParams() < 2 ||
1828 !isa
<PointerType
>(FTy
->getParamType(1)))
1831 setDoesNotCapture(F
, 2);
1832 } else if (NameLen
== 8 && !strcmp(NameStr
, "memalign")) {
1833 if (!isa
<PointerType
>(FTy
->getReturnType()))
1835 setDoesNotAlias(F
, 0);
1836 } else if ((NameLen
== 5 && !strcmp(NameStr
, "mkdir")) ||
1837 (NameLen
== 6 && !strcmp(NameStr
, "mktime"))) {
1838 if (FTy
->getNumParams() == 0 ||
1839 !isa
<PointerType
>(FTy
->getParamType(0)))
1842 setDoesNotCapture(F
, 1);
1846 if (NameLen
== 7 && !strcmp(NameStr
, "realloc")) {
1847 if (FTy
->getNumParams() != 2 ||
1848 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1849 !isa
<PointerType
>(FTy
->getReturnType()))
1852 setDoesNotAlias(F
, 0);
1853 setDoesNotCapture(F
, 1);
1854 } else if (NameLen
== 4 && !strcmp(NameStr
, "read")) {
1855 if (FTy
->getNumParams() != 3 ||
1856 !isa
<PointerType
>(FTy
->getParamType(1)))
1858 // May throw; "read" is a valid pthread cancellation point.
1859 setDoesNotCapture(F
, 2);
1860 } else if ((NameLen
== 5 && !strcmp(NameStr
, "rmdir")) ||
1861 (NameLen
== 6 && !strcmp(NameStr
, "rewind")) ||
1862 (NameLen
== 6 && !strcmp(NameStr
, "remove")) ||
1863 (NameLen
== 8 && !strcmp(NameStr
, "realpath"))) {
1864 if (FTy
->getNumParams() < 1 ||
1865 !isa
<PointerType
>(FTy
->getParamType(0)))
1868 setDoesNotCapture(F
, 1);
1869 } else if ((NameLen
== 6 && !strcmp(NameStr
, "rename")) ||
1870 (NameLen
== 8 && !strcmp(NameStr
, "readlink"))) {
1871 if (FTy
->getNumParams() < 2 ||
1872 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1873 !isa
<PointerType
>(FTy
->getParamType(1)))
1876 setDoesNotCapture(F
, 1);
1877 setDoesNotCapture(F
, 2);
1881 if (NameLen
== 5 && !strcmp(NameStr
, "write")) {
1882 if (FTy
->getNumParams() != 3 ||
1883 !isa
<PointerType
>(FTy
->getParamType(1)))
1885 // May throw; "write" is a valid pthread cancellation point.
1886 setDoesNotCapture(F
, 2);
1890 if (NameLen
== 5 && !strcmp(NameStr
, "bcopy")) {
1891 if (FTy
->getNumParams() != 3 ||
1892 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1893 !isa
<PointerType
>(FTy
->getParamType(1)))
1896 setDoesNotCapture(F
, 1);
1897 setDoesNotCapture(F
, 2);
1898 } else if (NameLen
== 4 && !strcmp(NameStr
, "bcmp")) {
1899 if (FTy
->getNumParams() != 3 ||
1900 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1901 !isa
<PointerType
>(FTy
->getParamType(1)))
1904 setOnlyReadsMemory(F
);
1905 setDoesNotCapture(F
, 1);
1906 setDoesNotCapture(F
, 2);
1907 } else if (NameLen
== 5 && !strcmp(NameStr
, "bzero")) {
1908 if (FTy
->getNumParams() != 2 ||
1909 !isa
<PointerType
>(FTy
->getParamType(0)))
1912 setDoesNotCapture(F
, 1);
1916 if (NameLen
== 6 && !strcmp(NameStr
, "calloc")) {
1917 if (FTy
->getNumParams() != 2 ||
1918 !isa
<PointerType
>(FTy
->getReturnType()))
1921 setDoesNotAlias(F
, 0);
1922 } else if ((NameLen
== 5 && !strcmp(NameStr
, "chmod")) ||
1923 (NameLen
== 5 && !strcmp(NameStr
, "chown")) ||
1924 (NameLen
== 7 && !strcmp(NameStr
, "ctermid")) ||
1925 (NameLen
== 8 && !strcmp(NameStr
, "clearerr")) ||
1926 (NameLen
== 8 && !strcmp(NameStr
, "closedir"))) {
1927 if (FTy
->getNumParams() == 0 ||
1928 !isa
<PointerType
>(FTy
->getParamType(0)))
1931 setDoesNotCapture(F
, 1);
1935 if ((NameLen
== 4 && !strcmp(NameStr
, "atoi")) ||
1936 (NameLen
== 4 && !strcmp(NameStr
, "atol")) ||
1937 (NameLen
== 4 && !strcmp(NameStr
, "atof")) ||
1938 (NameLen
== 5 && !strcmp(NameStr
, "atoll"))) {
1939 if (FTy
->getNumParams() != 1 ||
1940 !isa
<PointerType
>(FTy
->getParamType(0)))
1943 setOnlyReadsMemory(F
);
1944 setDoesNotCapture(F
, 1);
1945 } else if (NameLen
== 6 && !strcmp(NameStr
, "access")) {
1946 if (FTy
->getNumParams() != 2 ||
1947 !isa
<PointerType
>(FTy
->getParamType(0)))
1950 setDoesNotCapture(F
, 1);
1954 if (NameLen
== 5 && !strcmp(NameStr
, "fopen")) {
1955 if (FTy
->getNumParams() != 2 ||
1956 !isa
<PointerType
>(FTy
->getReturnType()) ||
1957 !isa
<PointerType
>(FTy
->getParamType(0)) ||
1958 !isa
<PointerType
>(FTy
->getParamType(1)))
1961 setDoesNotAlias(F
, 0);
1962 setDoesNotCapture(F
, 1);
1963 setDoesNotCapture(F
, 2);
1964 } else if (NameLen
== 6 && !strcmp(NameStr
, "fdopen")) {
1965 if (FTy
->getNumParams() != 2 ||
1966 !isa
<PointerType
>(FTy
->getReturnType()) ||
1967 !isa
<PointerType
>(FTy
->getParamType(1)))
1970 setDoesNotAlias(F
, 0);
1971 setDoesNotCapture(F
, 2);
1972 } else if ((NameLen
== 4 && !strcmp(NameStr
, "feof")) ||
1973 (NameLen
== 4 && !strcmp(NameStr
, "free")) ||
1974 (NameLen
== 5 && !strcmp(NameStr
, "fseek")) ||
1975 (NameLen
== 5 && !strcmp(NameStr
, "ftell")) ||
1976 (NameLen
== 5 && !strcmp(NameStr
, "fgetc")) ||
1977 (NameLen
== 6 && !strcmp(NameStr
, "fseeko")) ||
1978 (NameLen
== 6 && !strcmp(NameStr
, "ftello")) ||
1979 (NameLen
== 6 && !strcmp(NameStr
, "fileno")) ||
1980 (NameLen
== 6 && !strcmp(NameStr
, "fflush")) ||
1981 (NameLen
== 6 && !strcmp(NameStr
, "fclose")) ||
1982 (NameLen
== 7 && !strcmp(NameStr
, "fsetpos")) ||
1983 (NameLen
== 9 && !strcmp(NameStr
, "flockfile")) ||
1984 (NameLen
== 11 && !strcmp(NameStr
, "funlockfile")) ||
1985 (NameLen
== 12 && !strcmp(NameStr
, "ftrylockfile"))) {
1986 if (FTy
->getNumParams() == 0 ||
1987 !isa
<PointerType
>(FTy
->getParamType(0)))
1990 setDoesNotCapture(F
, 1);
1991 } else if (NameLen
== 6 && !strcmp(NameStr
, "ferror")) {
1992 if (FTy
->getNumParams() != 1 ||
1993 !isa
<PointerType
>(FTy
->getParamType(0)))
1996 setDoesNotCapture(F
, 1);
1997 setOnlyReadsMemory(F
);
1998 } else if ((NameLen
== 5 && !strcmp(NameStr
, "fputc")) ||
1999 (NameLen
== 5 && !strcmp(NameStr
, "fstat")) ||
2000 (NameLen
== 5 && !strcmp(NameStr
, "frexp")) ||
2001 (NameLen
== 6 && !strcmp(NameStr
, "frexpf")) ||
2002 (NameLen
== 6 && !strcmp(NameStr
, "frexpl")) ||
2003 (NameLen
== 8 && !strcmp(NameStr
, "fstatvfs"))) {
2004 if (FTy
->getNumParams() != 2 ||
2005 !isa
<PointerType
>(FTy
->getParamType(1)))
2008 setDoesNotCapture(F
, 2);
2009 } else if (NameLen
== 5 && !strcmp(NameStr
, "fgets")) {
2010 if (FTy
->getNumParams() != 3 ||
2011 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2012 !isa
<PointerType
>(FTy
->getParamType(2)))
2015 setDoesNotCapture(F
, 3);
2016 } else if ((NameLen
== 5 && !strcmp(NameStr
, "fread")) ||
2017 (NameLen
== 6 && !strcmp(NameStr
, "fwrite"))) {
2018 if (FTy
->getNumParams() != 4 ||
2019 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2020 !isa
<PointerType
>(FTy
->getParamType(3)))
2023 setDoesNotCapture(F
, 1);
2024 setDoesNotCapture(F
, 4);
2025 } else if ((NameLen
== 5 && !strcmp(NameStr
, "fputs")) ||
2026 (NameLen
== 6 && !strcmp(NameStr
, "fscanf")) ||
2027 (NameLen
== 7 && !strcmp(NameStr
, "fprintf")) ||
2028 (NameLen
== 7 && !strcmp(NameStr
, "fgetpos"))) {
2029 if (FTy
->getNumParams() < 2 ||
2030 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2031 !isa
<PointerType
>(FTy
->getParamType(1)))
2034 setDoesNotCapture(F
, 1);
2035 setDoesNotCapture(F
, 2);
2039 if ((NameLen
== 4 && !strcmp(NameStr
, "getc")) ||
2040 (NameLen
== 10 && !strcmp(NameStr
, "getlogin_r")) ||
2041 (NameLen
== 13 && !strcmp(NameStr
, "getc_unlocked"))) {
2042 if (FTy
->getNumParams() == 0 ||
2043 !isa
<PointerType
>(FTy
->getParamType(0)))
2046 setDoesNotCapture(F
, 1);
2047 } else if (NameLen
== 6 && !strcmp(NameStr
, "getenv")) {
2048 if (FTy
->getNumParams() != 1 ||
2049 !isa
<PointerType
>(FTy
->getParamType(0)))
2052 setOnlyReadsMemory(F
);
2053 setDoesNotCapture(F
, 1);
2054 } else if ((NameLen
== 4 && !strcmp(NameStr
, "gets")) ||
2055 (NameLen
== 7 && !strcmp(NameStr
, "getchar"))) {
2057 } else if (NameLen
== 9 && !strcmp(NameStr
, "getitimer")) {
2058 if (FTy
->getNumParams() != 2 ||
2059 !isa
<PointerType
>(FTy
->getParamType(1)))
2062 setDoesNotCapture(F
, 2);
2063 } else if (NameLen
== 8 && !strcmp(NameStr
, "getpwnam")) {
2064 if (FTy
->getNumParams() != 1 ||
2065 !isa
<PointerType
>(FTy
->getParamType(0)))
2068 setDoesNotCapture(F
, 1);
2072 if (NameLen
== 6 && !strcmp(NameStr
, "ungetc")) {
2073 if (FTy
->getNumParams() != 2 ||
2074 !isa
<PointerType
>(FTy
->getParamType(1)))
2077 setDoesNotCapture(F
, 2);
2078 } else if ((NameLen
== 5 && !strcmp(NameStr
, "uname")) ||
2079 (NameLen
== 6 && !strcmp(NameStr
, "unlink")) ||
2080 (NameLen
== 8 && !strcmp(NameStr
, "unsetenv"))) {
2081 if (FTy
->getNumParams() != 1 ||
2082 !isa
<PointerType
>(FTy
->getParamType(0)))
2085 setDoesNotCapture(F
, 1);
2086 } else if ((NameLen
== 5 && !strcmp(NameStr
, "utime")) ||
2087 (NameLen
== 6 && !strcmp(NameStr
, "utimes"))) {
2088 if (FTy
->getNumParams() != 2 ||
2089 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2090 !isa
<PointerType
>(FTy
->getParamType(1)))
2093 setDoesNotCapture(F
, 1);
2094 setDoesNotCapture(F
, 2);
2098 if (NameLen
== 4 && !strcmp(NameStr
, "putc")) {
2099 if (FTy
->getNumParams() != 2 ||
2100 !isa
<PointerType
>(FTy
->getParamType(1)))
2103 setDoesNotCapture(F
, 2);
2104 } else if ((NameLen
== 4 && !strcmp(NameStr
, "puts")) ||
2105 (NameLen
== 6 && !strcmp(NameStr
, "printf")) ||
2106 (NameLen
== 6 && !strcmp(NameStr
, "perror"))) {
2107 if (FTy
->getNumParams() != 1 ||
2108 !isa
<PointerType
>(FTy
->getParamType(0)))
2111 setDoesNotCapture(F
, 1);
2112 } else if ((NameLen
== 5 && !strcmp(NameStr
, "pread")) ||
2113 (NameLen
== 6 && !strcmp(NameStr
, "pwrite"))) {
2114 if (FTy
->getNumParams() != 4 ||
2115 !isa
<PointerType
>(FTy
->getParamType(1)))
2117 // May throw; these are valid pthread cancellation points.
2118 setDoesNotCapture(F
, 2);
2119 } else if (NameLen
== 7 && !strcmp(NameStr
, "putchar")) {
2121 } else if (NameLen
== 5 && !strcmp(NameStr
, "popen")) {
2122 if (FTy
->getNumParams() != 2 ||
2123 !isa
<PointerType
>(FTy
->getReturnType()) ||
2124 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2125 !isa
<PointerType
>(FTy
->getParamType(1)))
2128 setDoesNotAlias(F
, 0);
2129 setDoesNotCapture(F
, 1);
2130 setDoesNotCapture(F
, 2);
2131 } else if (NameLen
== 6 && !strcmp(NameStr
, "pclose")) {
2132 if (FTy
->getNumParams() != 1 ||
2133 !isa
<PointerType
>(FTy
->getParamType(0)))
2136 setDoesNotCapture(F
, 1);
2140 if (NameLen
== 6 && !strcmp(NameStr
, "vscanf")) {
2141 if (FTy
->getNumParams() != 2 ||
2142 !isa
<PointerType
>(FTy
->getParamType(1)))
2145 setDoesNotCapture(F
, 1);
2146 } else if ((NameLen
== 7 && !strcmp(NameStr
, "vsscanf")) ||
2147 (NameLen
== 7 && !strcmp(NameStr
, "vfscanf"))) {
2148 if (FTy
->getNumParams() != 3 ||
2149 !isa
<PointerType
>(FTy
->getParamType(1)) ||
2150 !isa
<PointerType
>(FTy
->getParamType(2)))
2153 setDoesNotCapture(F
, 1);
2154 setDoesNotCapture(F
, 2);
2155 } else if (NameLen
== 6 && !strcmp(NameStr
, "valloc")) {
2156 if (!isa
<PointerType
>(FTy
->getReturnType()))
2159 setDoesNotAlias(F
, 0);
2160 } else if (NameLen
== 7 && !strcmp(NameStr
, "vprintf")) {
2161 if (FTy
->getNumParams() != 2 ||
2162 !isa
<PointerType
>(FTy
->getParamType(0)))
2165 setDoesNotCapture(F
, 1);
2166 } else if ((NameLen
== 8 && !strcmp(NameStr
, "vfprintf")) ||
2167 (NameLen
== 8 && !strcmp(NameStr
, "vsprintf"))) {
2168 if (FTy
->getNumParams() != 3 ||
2169 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2170 !isa
<PointerType
>(FTy
->getParamType(1)))
2173 setDoesNotCapture(F
, 1);
2174 setDoesNotCapture(F
, 2);
2175 } else if (NameLen
== 9 && !strcmp(NameStr
, "vsnprintf")) {
2176 if (FTy
->getNumParams() != 4 ||
2177 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2178 !isa
<PointerType
>(FTy
->getParamType(2)))
2181 setDoesNotCapture(F
, 1);
2182 setDoesNotCapture(F
, 3);
2186 if (NameLen
== 4 && !strcmp(NameStr
, "open")) {
2187 if (FTy
->getNumParams() < 2 ||
2188 !isa
<PointerType
>(FTy
->getParamType(0)))
2190 // May throw; "open" is a valid pthread cancellation point.
2191 setDoesNotCapture(F
, 1);
2192 } else if (NameLen
== 7 && !strcmp(NameStr
, "opendir")) {
2193 if (FTy
->getNumParams() != 1 ||
2194 !isa
<PointerType
>(FTy
->getReturnType()) ||
2195 !isa
<PointerType
>(FTy
->getParamType(0)))
2198 setDoesNotAlias(F
, 0);
2199 setDoesNotCapture(F
, 1);
2203 if (NameLen
== 7 && !strcmp(NameStr
, "tmpfile")) {
2204 if (!isa
<PointerType
>(FTy
->getReturnType()))
2207 setDoesNotAlias(F
, 0);
2208 } else if (NameLen
== 5 && !strcmp(NameStr
, "times")) {
2209 if (FTy
->getNumParams() != 1 ||
2210 !isa
<PointerType
>(FTy
->getParamType(0)))
2213 setDoesNotCapture(F
, 1);
2217 if ((NameLen
== 5 && !strcmp(NameStr
, "htonl")) ||
2218 (NameLen
== 5 && !strcmp(NameStr
, "htons"))) {
2220 setDoesNotAccessMemory(F
);
2224 if ((NameLen
== 5 && !strcmp(NameStr
, "ntohl")) ||
2225 (NameLen
== 5 && !strcmp(NameStr
, "ntohs"))) {
2227 setDoesNotAccessMemory(F
);
2231 if (NameLen
== 5 && !strcmp(NameStr
, "lstat")) {
2232 if (FTy
->getNumParams() != 2 ||
2233 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2234 !isa
<PointerType
>(FTy
->getParamType(1)))
2237 setDoesNotCapture(F
, 1);
2238 setDoesNotCapture(F
, 2);
2239 } else if (NameLen
== 6 && !strcmp(NameStr
, "lchown")) {
2240 if (FTy
->getNumParams() != 3 ||
2241 !isa
<PointerType
>(FTy
->getParamType(0)))
2244 setDoesNotCapture(F
, 1);
2248 if (NameLen
== 5 && !strcmp(NameStr
, "qsort")) {
2249 if (FTy
->getNumParams() != 4 ||
2250 !isa
<PointerType
>(FTy
->getParamType(3)))
2252 // May throw; places call through function pointer.
2253 setDoesNotCapture(F
, 4);
2257 if ((NameLen
== 8 && !strcmp(NameStr
, "__strdup")) ||
2258 (NameLen
== 9 && !strcmp(NameStr
, "__strndup"))) {
2259 if (FTy
->getNumParams() < 1 ||
2260 !isa
<PointerType
>(FTy
->getReturnType()) ||
2261 !isa
<PointerType
>(FTy
->getParamType(0)))
2264 setDoesNotAlias(F
, 0);
2265 setDoesNotCapture(F
, 1);
2266 } else if (NameLen
== 10 && !strcmp(NameStr
, "__strtok_r")) {
2267 if (FTy
->getNumParams() != 3 ||
2268 !isa
<PointerType
>(FTy
->getParamType(1)))
2271 setDoesNotCapture(F
, 2);
2272 } else if (NameLen
== 8 && !strcmp(NameStr
, "_IO_getc")) {
2273 if (FTy
->getNumParams() != 1 ||
2274 !isa
<PointerType
>(FTy
->getParamType(0)))
2277 setDoesNotCapture(F
, 1);
2278 } else if (NameLen
== 8 && !strcmp(NameStr
, "_IO_putc")) {
2279 if (FTy
->getNumParams() != 2 ||
2280 !isa
<PointerType
>(FTy
->getParamType(1)))
2283 setDoesNotCapture(F
, 2);
2287 if (NameLen
== 15 && !strcmp(NameStr
, "\1__isoc99_scanf")) {
2288 if (FTy
->getNumParams() < 1 ||
2289 !isa
<PointerType
>(FTy
->getParamType(0)))
2292 setDoesNotCapture(F
, 1);
2293 } else if ((NameLen
== 7 && !strcmp(NameStr
, "\1stat64")) ||
2294 (NameLen
== 8 && !strcmp(NameStr
, "\1lstat64")) ||
2295 (NameLen
== 10 && !strcmp(NameStr
, "\1statvfs64")) ||
2296 (NameLen
== 16 && !strcmp(NameStr
, "\1__isoc99_sscanf"))) {
2297 if (FTy
->getNumParams() < 1 ||
2298 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2299 !isa
<PointerType
>(FTy
->getParamType(1)))
2302 setDoesNotCapture(F
, 1);
2303 setDoesNotCapture(F
, 2);
2304 } else if (NameLen
== 8 && !strcmp(NameStr
, "\1fopen64")) {
2305 if (FTy
->getNumParams() != 2 ||
2306 !isa
<PointerType
>(FTy
->getReturnType()) ||
2307 !isa
<PointerType
>(FTy
->getParamType(0)) ||
2308 !isa
<PointerType
>(FTy
->getParamType(1)))
2311 setDoesNotAlias(F
, 0);
2312 setDoesNotCapture(F
, 1);
2313 setDoesNotCapture(F
, 2);
2314 } else if ((NameLen
== 9 && !strcmp(NameStr
, "\1fseeko64")) ||
2315 (NameLen
== 9 && !strcmp(NameStr
, "\1ftello64"))) {
2316 if (FTy
->getNumParams() == 0 ||
2317 !isa
<PointerType
>(FTy
->getParamType(0)))
2320 setDoesNotCapture(F
, 1);
2321 } else if (NameLen
== 10 && !strcmp(NameStr
, "\1tmpfile64")) {
2322 if (!isa
<PointerType
>(FTy
->getReturnType()))
2325 setDoesNotAlias(F
, 0);
2326 } else if ((NameLen
== 8 && !strcmp(NameStr
, "\1fstat64")) ||
2327 (NameLen
== 11 && !strcmp(NameStr
, "\1fstatvfs64"))) {
2328 if (FTy
->getNumParams() != 2 ||
2329 !isa
<PointerType
>(FTy
->getParamType(1)))
2332 setDoesNotCapture(F
, 2);
2333 } else if (NameLen
== 7 && !strcmp(NameStr
, "\1open64")) {
2334 if (FTy
->getNumParams() < 2 ||
2335 !isa
<PointerType
>(FTy
->getParamType(0)))
2337 // May throw; "open" is a valid pthread cancellation point.
2338 setDoesNotCapture(F
, 1);
2347 // Additional cases that we need to add to this file:
2350 // * cbrt(expN(X)) -> expN(x/3)
2351 // * cbrt(sqrt(x)) -> pow(x,1/6)
2352 // * cbrt(sqrt(x)) -> pow(x,1/9)
2355 // * cos(-x) -> cos(x)
2358 // * exp(log(x)) -> x
2361 // * log(exp(x)) -> x
2362 // * log(x**y) -> y*log(x)
2363 // * log(exp(y)) -> y*log(e)
2364 // * log(exp2(y)) -> y*log(2)
2365 // * log(exp10(y)) -> y*log(10)
2366 // * log(sqrt(x)) -> 0.5*log(x)
2367 // * log(pow(x,y)) -> y*log(x)
2369 // lround, lroundf, lroundl:
2370 // * lround(cnst) -> cnst'
2373 // * memcmp(x,y,l) -> cnst
2374 // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
2377 // * pow(exp(x),y) -> exp(x*y)
2378 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2379 // * pow(pow(x,y),z)-> pow(x,y*z)
2382 // * puts("") -> putchar("\n")
2384 // round, roundf, roundl:
2385 // * round(cnst) -> cnst'
2388 // * signbit(cnst) -> cnst'
2389 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2391 // sqrt, sqrtf, sqrtl:
2392 // * sqrt(expN(x)) -> expN(x*0.5)
2393 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2394 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2397 // * stpcpy(str, "literal") ->
2398 // llvm.memcpy(str,"literal",strlen("literal")+1,1)
2400 // * strrchr(s,c) -> reverse_offset_of_in(c,s)
2401 // (if c is a constant integer and s is a constant string)
2402 // * strrchr(s1,0) -> strchr(s1,0)
2405 // * strpbrk(s,a) -> offset_in_for(s,a)
2406 // (if s and a are both constant strings)
2407 // * strpbrk(s,"") -> 0
2408 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
2411 // * strspn(s,a) -> const_int (if both args are constant)
2412 // * strspn("",a) -> 0
2413 // * strspn(s,"") -> 0
2414 // * strcspn(s,a) -> const_int (if both args are constant)
2415 // * strcspn("",a) -> 0
2416 // * strcspn(s,"") -> strlen(a)
2419 // * strstr(x,x) -> x
2420 // * strstr(s1,s2) -> offset_of_s2_in(s1)
2421 // (if s1 and s2 are constant strings)
2424 // * tan(atan(x)) -> x
2426 // trunc, truncf, truncl:
2427 // * trunc(cnst) -> cnst'