Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / BreakCriticalEdges.cpp
blobc4fd1eae43cd978a54c85df5f685cf3eb8208f4f
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // forward dominator (set, immediate dominators, tree, and frontier)
15 // information.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "break-crit-edges"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 using namespace llvm;
33 STATISTIC(NumBroken, "Number of blocks inserted");
35 namespace {
36 struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
37 static char ID; // Pass identification, replacement for typeid
38 BreakCriticalEdges() : FunctionPass(&ID) {}
40 virtual bool runOnFunction(Function &F);
42 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
43 AU.addPreserved<DominatorTree>();
44 AU.addPreserved<DominanceFrontier>();
45 AU.addPreserved<LoopInfo>();
47 // No loop canonicalization guarantees are broken by this pass.
48 AU.addPreservedID(LoopSimplifyID);
53 char BreakCriticalEdges::ID = 0;
54 static RegisterPass<BreakCriticalEdges>
55 X("break-crit-edges", "Break critical edges in CFG");
57 // Publically exposed interface to pass...
58 const PassInfo *const llvm::BreakCriticalEdgesID = &X;
59 FunctionPass *llvm::createBreakCriticalEdgesPass() {
60 return new BreakCriticalEdges();
63 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
64 // edges as they are found.
66 bool BreakCriticalEdges::runOnFunction(Function &F) {
67 bool Changed = false;
68 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
69 TerminatorInst *TI = I->getTerminator();
70 if (TI->getNumSuccessors() > 1)
71 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
72 if (SplitCriticalEdge(TI, i, this)) {
73 ++NumBroken;
74 Changed = true;
78 return Changed;
81 //===----------------------------------------------------------------------===//
82 // Implementation of the external critical edge manipulation functions
83 //===----------------------------------------------------------------------===//
85 // isCriticalEdge - Return true if the specified edge is a critical edge.
86 // Critical edges are edges from a block with multiple successors to a block
87 // with multiple predecessors.
89 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
90 bool AllowIdenticalEdges) {
91 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
92 if (TI->getNumSuccessors() == 1) return false;
94 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
95 pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
97 // If there is more than one predecessor, this is a critical edge...
98 assert(I != E && "No preds, but we have an edge to the block?");
99 const BasicBlock *FirstPred = *I;
100 ++I; // Skip one edge due to the incoming arc from TI.
101 if (!AllowIdenticalEdges)
102 return I != E;
104 // If AllowIdenticalEdges is true, then we allow this edge to be considered
105 // non-critical iff all preds come from TI's block.
106 while (I != E) {
107 if (*I != FirstPred)
108 return true;
109 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
110 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
111 E = pred_end(*I);
112 ++I;
114 return false;
117 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
118 /// split the critical edge. This will update DominatorTree and
119 /// DominatorFrontier information if it is available, thus calling this pass
120 /// will not invalidate any of them. This returns true if the edge was split,
121 /// false otherwise. This ensures that all edges to that dest go to one block
122 /// instead of each going to a different block.
124 bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
125 bool MergeIdenticalEdges) {
126 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
127 BasicBlock *TIBB = TI->getParent();
128 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
130 // Create a new basic block, linking it into the CFG.
131 BasicBlock *NewBB = BasicBlock::Create(TIBB->getName() + "." +
132 DestBB->getName() + "_crit_edge");
133 // Create our unconditional branch...
134 BranchInst::Create(DestBB, NewBB);
136 // Branch to the new block, breaking the edge.
137 TI->setSuccessor(SuccNum, NewBB);
139 // Insert the block into the function... right after the block TI lives in.
140 Function &F = *TIBB->getParent();
141 Function::iterator FBBI = TIBB;
142 F.getBasicBlockList().insert(++FBBI, NewBB);
144 // If there are any PHI nodes in DestBB, we need to update them so that they
145 // merge incoming values from NewBB instead of from TIBB.
147 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
148 PHINode *PN = cast<PHINode>(I);
149 // We no longer enter through TIBB, now we come in through NewBB. Revector
150 // exactly one entry in the PHI node that used to come from TIBB to come
151 // from NewBB.
152 int BBIdx = PN->getBasicBlockIndex(TIBB);
153 PN->setIncomingBlock(BBIdx, NewBB);
156 // If there are any other edges from TIBB to DestBB, update those to go
157 // through the split block, making those edges non-critical as well (and
158 // reducing the number of phi entries in the DestBB if relevant).
159 if (MergeIdenticalEdges) {
160 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
161 if (TI->getSuccessor(i) != DestBB) continue;
163 // Remove an entry for TIBB from DestBB phi nodes.
164 DestBB->removePredecessor(TIBB);
166 // We found another edge to DestBB, go to NewBB instead.
167 TI->setSuccessor(i, NewBB);
173 // If we don't have a pass object, we can't update anything...
174 if (P == 0) return true;
176 // Now update analysis information. Since the only predecessor of NewBB is
177 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
178 // anything, as there are other successors of DestBB. However, if all other
179 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
180 // loop header) then NewBB dominates DestBB.
181 SmallVector<BasicBlock*, 8> OtherPreds;
183 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
184 if (*I != NewBB)
185 OtherPreds.push_back(*I);
187 bool NewBBDominatesDestBB = true;
189 // Should we update DominatorTree information?
190 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
191 DomTreeNode *TINode = DT->getNode(TIBB);
193 // The new block is not the immediate dominator for any other nodes, but
194 // TINode is the immediate dominator for the new node.
196 if (TINode) { // Don't break unreachable code!
197 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
198 DomTreeNode *DestBBNode = 0;
200 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
201 if (!OtherPreds.empty()) {
202 DestBBNode = DT->getNode(DestBB);
203 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
204 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
205 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
206 OtherPreds.pop_back();
208 OtherPreds.clear();
211 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
212 // doesn't dominate anything.
213 if (NewBBDominatesDestBB) {
214 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
215 DT->changeImmediateDominator(DestBBNode, NewBBNode);
220 // Should we update DominanceFrontier information?
221 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) {
222 // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
223 if (!OtherPreds.empty()) {
224 // FIXME: IMPLEMENT THIS!
225 assert(0 && "Requiring domfrontiers but not idom/domtree/domset."
226 " not implemented yet!");
229 // Since the new block is dominated by its only predecessor TIBB,
230 // it cannot be in any block's dominance frontier. If NewBB dominates
231 // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
232 // just {DestBB}.
233 DominanceFrontier::DomSetType NewDFSet;
234 if (NewBBDominatesDestBB) {
235 DominanceFrontier::iterator I = DF->find(DestBB);
236 if (I != DF->end()) {
237 DF->addBasicBlock(NewBB, I->second);
239 if (I->second.count(DestBB)) {
240 // However NewBB's frontier does not include DestBB.
241 DominanceFrontier::iterator NF = DF->find(NewBB);
242 DF->removeFromFrontier(NF, DestBB);
245 else
246 DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
247 } else {
248 DominanceFrontier::DomSetType NewDFSet;
249 NewDFSet.insert(DestBB);
250 DF->addBasicBlock(NewBB, NewDFSet);
254 // Update LoopInfo if it is around.
255 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) {
256 // If one or the other blocks were not in a loop, the new block is not
257 // either, and thus LI doesn't need to be updated.
258 if (Loop *TIL = LI->getLoopFor(TIBB))
259 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
260 if (TIL == DestLoop) {
261 // Both in the same loop, the NewBB joins loop.
262 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
263 } else if (TIL->contains(DestLoop->getHeader())) {
264 // Edge from an outer loop to an inner loop. Add to the outer loop.
265 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
266 } else if (DestLoop->contains(TIL->getHeader())) {
267 // Edge from an inner loop to an outer loop. Add to the outer loop.
268 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
269 } else {
270 // Edge from two loops with no containment relation. Because these
271 // are natural loops, we know that the destination block must be the
272 // header of its loop (adding a branch into a loop elsewhere would
273 // create an irreducible loop).
274 assert(DestLoop->getHeader() == DestBB &&
275 "Should not create irreducible loops!");
276 if (Loop *P = DestLoop->getParentLoop())
277 P->addBasicBlockToLoop(NewBB, LI->getBase());
281 return true;