1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Module.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/Verifier.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/ADT/StringExtras.h"
35 // Provide a command-line option to aggregate function arguments into a struct
36 // for functions produced by the code extractor. This is useful when converting
37 // extracted functions to pthread-based code, as only one argument (void*) can
38 // be passed in to pthread_create().
40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden
,
41 cl::desc("Aggregate arguments to code-extracted functions"));
44 class VISIBILITY_HIDDEN CodeExtractor
{
45 typedef std::vector
<Value
*> Values
;
46 std::set
<BasicBlock
*> BlocksToExtract
;
49 unsigned NumExitBlocks
;
52 CodeExtractor(DominatorTree
* dt
= 0, bool AggArgs
= false)
53 : DT(dt
), AggregateArgs(AggArgs
||AggregateArgsOpt
), NumExitBlocks(~0U) {}
55 Function
*ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
);
57 bool isEligible(const std::vector
<BasicBlock
*> &code
);
60 /// definedInRegion - Return true if the specified value is defined in the
62 bool definedInRegion(Value
*V
) const {
63 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
64 if (BlocksToExtract
.count(I
->getParent()))
69 /// definedInCaller - Return true if the specified value is defined in the
70 /// function being code extracted, but not in the region being extracted.
71 /// These values must be passed in as live-ins to the function.
72 bool definedInCaller(Value
*V
) const {
73 if (isa
<Argument
>(V
)) return true;
74 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
75 if (!BlocksToExtract
.count(I
->getParent()))
80 void severSplitPHINodes(BasicBlock
*&Header
);
81 void splitReturnBlocks();
82 void findInputsOutputs(Values
&inputs
, Values
&outputs
);
84 Function
*constructFunction(const Values
&inputs
,
85 const Values
&outputs
,
87 BasicBlock
*newRootNode
, BasicBlock
*newHeader
,
88 Function
*oldFunction
, Module
*M
);
90 void moveCodeToFunction(Function
*newFunction
);
92 void emitCallAndSwitchStatement(Function
*newFunction
,
93 BasicBlock
*newHeader
,
100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101 /// region, we need to split the entry block of the region so that the PHI node
102 /// is easier to deal with.
103 void CodeExtractor::severSplitPHINodes(BasicBlock
*&Header
) {
104 bool HasPredsFromRegion
= false;
105 unsigned NumPredsOutsideRegion
= 0;
107 if (Header
!= &Header
->getParent()->getEntryBlock()) {
108 PHINode
*PN
= dyn_cast
<PHINode
>(Header
->begin());
109 if (!PN
) return; // No PHI nodes.
111 // If the header node contains any PHI nodes, check to see if there is more
112 // than one entry from outside the region. If so, we need to sever the
113 // header block into two.
114 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
115 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
116 HasPredsFromRegion
= true;
118 ++NumPredsOutsideRegion
;
120 // If there is one (or fewer) predecessor from outside the region, we don't
121 // need to do anything special.
122 if (NumPredsOutsideRegion
<= 1) return;
125 // Otherwise, we need to split the header block into two pieces: one
126 // containing PHI nodes merging values from outside of the region, and a
127 // second that contains all of the code for the block and merges back any
128 // incoming values from inside of the region.
129 BasicBlock::iterator AfterPHIs
= Header
->getFirstNonPHI();
130 BasicBlock
*NewBB
= Header
->splitBasicBlock(AfterPHIs
,
131 Header
->getName()+".ce");
133 // We only want to code extract the second block now, and it becomes the new
134 // header of the region.
135 BasicBlock
*OldPred
= Header
;
136 BlocksToExtract
.erase(OldPred
);
137 BlocksToExtract
.insert(NewBB
);
140 // Okay, update dominator sets. The blocks that dominate the new one are the
141 // blocks that dominate TIBB plus the new block itself.
143 DT
->splitBlock(NewBB
);
145 // Okay, now we need to adjust the PHI nodes and any branches from within the
146 // region to go to the new header block instead of the old header block.
147 if (HasPredsFromRegion
) {
148 PHINode
*PN
= cast
<PHINode
>(OldPred
->begin());
149 // Loop over all of the predecessors of OldPred that are in the region,
150 // changing them to branch to NewBB instead.
151 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
152 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
153 TerminatorInst
*TI
= PN
->getIncomingBlock(i
)->getTerminator();
154 TI
->replaceUsesOfWith(OldPred
, NewBB
);
157 // Okay, everthing within the region is now branching to the right block, we
158 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
159 for (AfterPHIs
= OldPred
->begin(); isa
<PHINode
>(AfterPHIs
); ++AfterPHIs
) {
160 PHINode
*PN
= cast
<PHINode
>(AfterPHIs
);
161 // Create a new PHI node in the new region, which has an incoming value
162 // from OldPred of PN.
163 PHINode
*NewPN
= PHINode::Create(PN
->getType(), PN
->getName()+".ce",
165 NewPN
->addIncoming(PN
, OldPred
);
167 // Loop over all of the incoming value in PN, moving them to NewPN if they
168 // are from the extracted region.
169 for (unsigned i
= 0; i
!= PN
->getNumIncomingValues(); ++i
) {
170 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
171 NewPN
->addIncoming(PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
));
172 PN
->removeIncomingValue(i
);
180 void CodeExtractor::splitReturnBlocks() {
181 for (std::set
<BasicBlock
*>::iterator I
= BlocksToExtract
.begin(),
182 E
= BlocksToExtract
.end(); I
!= E
; ++I
)
183 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>((*I
)->getTerminator()))
184 (*I
)->splitBasicBlock(RI
, (*I
)->getName()+".ret");
187 // findInputsOutputs - Find inputs to, outputs from the code region.
189 void CodeExtractor::findInputsOutputs(Values
&inputs
, Values
&outputs
) {
190 std::set
<BasicBlock
*> ExitBlocks
;
191 for (std::set
<BasicBlock
*>::const_iterator ci
= BlocksToExtract
.begin(),
192 ce
= BlocksToExtract
.end(); ci
!= ce
; ++ci
) {
193 BasicBlock
*BB
= *ci
;
195 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
196 // If a used value is defined outside the region, it's an input. If an
197 // instruction is used outside the region, it's an output.
198 for (User::op_iterator O
= I
->op_begin(), E
= I
->op_end(); O
!= E
; ++O
)
199 if (definedInCaller(*O
))
200 inputs
.push_back(*O
);
202 // Consider uses of this instruction (outputs).
203 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
205 if (!definedInRegion(*UI
)) {
206 outputs
.push_back(I
);
211 // Keep track of the exit blocks from the region.
212 TerminatorInst
*TI
= BB
->getTerminator();
213 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
214 if (!BlocksToExtract
.count(TI
->getSuccessor(i
)))
215 ExitBlocks
.insert(TI
->getSuccessor(i
));
216 } // for: basic blocks
218 NumExitBlocks
= ExitBlocks
.size();
220 // Eliminate duplicates.
221 std::sort(inputs
.begin(), inputs
.end());
222 inputs
.erase(std::unique(inputs
.begin(), inputs
.end()), inputs
.end());
223 std::sort(outputs
.begin(), outputs
.end());
224 outputs
.erase(std::unique(outputs
.begin(), outputs
.end()), outputs
.end());
227 /// constructFunction - make a function based on inputs and outputs, as follows:
228 /// f(in0, ..., inN, out0, ..., outN)
230 Function
*CodeExtractor::constructFunction(const Values
&inputs
,
231 const Values
&outputs
,
233 BasicBlock
*newRootNode
,
234 BasicBlock
*newHeader
,
235 Function
*oldFunction
,
237 DOUT
<< "inputs: " << inputs
.size() << "\n";
238 DOUT
<< "outputs: " << outputs
.size() << "\n";
240 // This function returns unsigned, outputs will go back by reference.
241 switch (NumExitBlocks
) {
243 case 1: RetTy
= Type::VoidTy
; break;
244 case 2: RetTy
= Type::Int1Ty
; break;
245 default: RetTy
= Type::Int16Ty
; break;
248 std::vector
<const Type
*> paramTy
;
250 // Add the types of the input values to the function's argument list
251 for (Values::const_iterator i
= inputs
.begin(),
252 e
= inputs
.end(); i
!= e
; ++i
) {
253 const Value
*value
= *i
;
254 DOUT
<< "value used in func: " << *value
<< "\n";
255 paramTy
.push_back(value
->getType());
258 // Add the types of the output values to the function's argument list.
259 for (Values::const_iterator I
= outputs
.begin(), E
= outputs
.end();
261 DOUT
<< "instr used in func: " << **I
<< "\n";
263 paramTy
.push_back((*I
)->getType());
265 paramTy
.push_back(PointerType::getUnqual((*I
)->getType()));
268 DOUT
<< "Function type: " << *RetTy
<< " f(";
269 for (std::vector
<const Type
*>::iterator i
= paramTy
.begin(),
270 e
= paramTy
.end(); i
!= e
; ++i
)
274 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
275 PointerType
*StructPtr
= PointerType::getUnqual(StructType::get(paramTy
));
277 paramTy
.push_back(StructPtr
);
279 const FunctionType
*funcType
= FunctionType::get(RetTy
, paramTy
, false);
281 // Create the new function
282 Function
*newFunction
= Function::Create(funcType
,
283 GlobalValue::InternalLinkage
,
284 oldFunction
->getName() + "_" +
285 header
->getName(), M
);
286 // If the old function is no-throw, so is the new one.
287 if (oldFunction
->doesNotThrow())
288 newFunction
->setDoesNotThrow(true);
290 newFunction
->getBasicBlockList().push_back(newRootNode
);
292 // Create an iterator to name all of the arguments we inserted.
293 Function::arg_iterator AI
= newFunction
->arg_begin();
295 // Rewrite all users of the inputs in the extracted region to use the
296 // arguments (or appropriate addressing into struct) instead.
297 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
301 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
302 Idx
[1] = ConstantInt::get(Type::Int32Ty
, i
);
303 std::string GEPname
= "gep_" + inputs
[i
]->getName();
304 TerminatorInst
*TI
= newFunction
->begin()->getTerminator();
305 GetElementPtrInst
*GEP
= GetElementPtrInst::Create(AI
, Idx
, Idx
+2,
307 RewriteVal
= new LoadInst(GEP
, "load" + GEPname
, TI
);
311 std::vector
<User
*> Users(inputs
[i
]->use_begin(), inputs
[i
]->use_end());
312 for (std::vector
<User
*>::iterator use
= Users
.begin(), useE
= Users
.end();
314 if (Instruction
* inst
= dyn_cast
<Instruction
>(*use
))
315 if (BlocksToExtract
.count(inst
->getParent()))
316 inst
->replaceUsesOfWith(inputs
[i
], RewriteVal
);
319 // Set names for input and output arguments.
320 if (!AggregateArgs
) {
321 AI
= newFunction
->arg_begin();
322 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
, ++AI
)
323 AI
->setName(inputs
[i
]->getName());
324 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
, ++AI
)
325 AI
->setName(outputs
[i
]->getName()+".out");
328 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
329 // within the new function. This must be done before we lose track of which
330 // blocks were originally in the code region.
331 std::vector
<User
*> Users(header
->use_begin(), header
->use_end());
332 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
333 // The BasicBlock which contains the branch is not in the region
334 // modify the branch target to a new block
335 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(Users
[i
]))
336 if (!BlocksToExtract
.count(TI
->getParent()) &&
337 TI
->getParent()->getParent() == oldFunction
)
338 TI
->replaceUsesOfWith(header
, newHeader
);
343 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
344 /// the call instruction, splitting any PHI nodes in the header block as
347 emitCallAndSwitchStatement(Function
*newFunction
, BasicBlock
*codeReplacer
,
348 Values
&inputs
, Values
&outputs
) {
349 // Emit a call to the new function, passing in: *pointer to struct (if
350 // aggregating parameters), or plan inputs and allocated memory for outputs
351 std::vector
<Value
*> params
, StructValues
, ReloadOutputs
;
353 // Add inputs as params, or to be filled into the struct
354 for (Values::iterator i
= inputs
.begin(), e
= inputs
.end(); i
!= e
; ++i
)
356 StructValues
.push_back(*i
);
358 params
.push_back(*i
);
360 // Create allocas for the outputs
361 for (Values::iterator i
= outputs
.begin(), e
= outputs
.end(); i
!= e
; ++i
) {
363 StructValues
.push_back(*i
);
366 new AllocaInst((*i
)->getType(), 0, (*i
)->getName()+".loc",
367 codeReplacer
->getParent()->begin()->begin());
368 ReloadOutputs
.push_back(alloca
);
369 params
.push_back(alloca
);
373 AllocaInst
*Struct
= 0;
374 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
375 std::vector
<const Type
*> ArgTypes
;
376 for (Values::iterator v
= StructValues
.begin(),
377 ve
= StructValues
.end(); v
!= ve
; ++v
)
378 ArgTypes
.push_back((*v
)->getType());
380 // Allocate a struct at the beginning of this function
381 Type
*StructArgTy
= StructType::get(ArgTypes
);
383 new AllocaInst(StructArgTy
, 0, "structArg",
384 codeReplacer
->getParent()->begin()->begin());
385 params
.push_back(Struct
);
387 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
389 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
390 Idx
[1] = ConstantInt::get(Type::Int32Ty
, i
);
391 GetElementPtrInst
*GEP
=
392 GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
393 "gep_" + StructValues
[i
]->getName());
394 codeReplacer
->getInstList().push_back(GEP
);
395 StoreInst
*SI
= new StoreInst(StructValues
[i
], GEP
);
396 codeReplacer
->getInstList().push_back(SI
);
400 // Emit the call to the function
401 CallInst
*call
= CallInst::Create(newFunction
, params
.begin(), params
.end(),
402 NumExitBlocks
> 1 ? "targetBlock" : "");
403 codeReplacer
->getInstList().push_back(call
);
405 Function::arg_iterator OutputArgBegin
= newFunction
->arg_begin();
406 unsigned FirstOut
= inputs
.size();
408 std::advance(OutputArgBegin
, inputs
.size());
410 // Reload the outputs passed in by reference
411 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
) {
415 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
416 Idx
[1] = ConstantInt::get(Type::Int32Ty
, FirstOut
+ i
);
417 GetElementPtrInst
*GEP
418 = GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
419 "gep_reload_" + outputs
[i
]->getName());
420 codeReplacer
->getInstList().push_back(GEP
);
423 Output
= ReloadOutputs
[i
];
425 LoadInst
*load
= new LoadInst(Output
, outputs
[i
]->getName()+".reload");
426 codeReplacer
->getInstList().push_back(load
);
427 std::vector
<User
*> Users(outputs
[i
]->use_begin(), outputs
[i
]->use_end());
428 for (unsigned u
= 0, e
= Users
.size(); u
!= e
; ++u
) {
429 Instruction
*inst
= cast
<Instruction
>(Users
[u
]);
430 if (!BlocksToExtract
.count(inst
->getParent()))
431 inst
->replaceUsesOfWith(outputs
[i
], load
);
435 // Now we can emit a switch statement using the call as a value.
436 SwitchInst
*TheSwitch
=
437 SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty
),
438 codeReplacer
, 0, codeReplacer
);
440 // Since there may be multiple exits from the original region, make the new
441 // function return an unsigned, switch on that number. This loop iterates
442 // over all of the blocks in the extracted region, updating any terminator
443 // instructions in the to-be-extracted region that branch to blocks that are
444 // not in the region to be extracted.
445 std::map
<BasicBlock
*, BasicBlock
*> ExitBlockMap
;
447 unsigned switchVal
= 0;
448 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
449 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
450 TerminatorInst
*TI
= (*i
)->getTerminator();
451 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
452 if (!BlocksToExtract
.count(TI
->getSuccessor(i
))) {
453 BasicBlock
*OldTarget
= TI
->getSuccessor(i
);
454 // add a new basic block which returns the appropriate value
455 BasicBlock
*&NewTarget
= ExitBlockMap
[OldTarget
];
457 // If we don't already have an exit stub for this non-extracted
458 // destination, create one now!
459 NewTarget
= BasicBlock::Create(OldTarget
->getName() + ".exitStub",
461 unsigned SuccNum
= switchVal
++;
464 switch (NumExitBlocks
) {
466 case 1: break; // No value needed.
467 case 2: // Conditional branch, return a bool
468 brVal
= ConstantInt::get(Type::Int1Ty
, !SuccNum
);
471 brVal
= ConstantInt::get(Type::Int16Ty
, SuccNum
);
475 ReturnInst
*NTRet
= ReturnInst::Create(brVal
, NewTarget
);
477 // Update the switch instruction.
478 TheSwitch
->addCase(ConstantInt::get(Type::Int16Ty
, SuccNum
),
481 // Restore values just before we exit
482 Function::arg_iterator OAI
= OutputArgBegin
;
483 for (unsigned out
= 0, e
= outputs
.size(); out
!= e
; ++out
) {
484 // For an invoke, the normal destination is the only one that is
485 // dominated by the result of the invocation
486 BasicBlock
*DefBlock
= cast
<Instruction
>(outputs
[out
])->getParent();
488 bool DominatesDef
= true;
490 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(outputs
[out
])) {
491 DefBlock
= Invoke
->getNormalDest();
493 // Make sure we are looking at the original successor block, not
494 // at a newly inserted exit block, which won't be in the dominator
496 for (std::map
<BasicBlock
*, BasicBlock
*>::iterator I
=
497 ExitBlockMap
.begin(), E
= ExitBlockMap
.end(); I
!= E
; ++I
)
498 if (DefBlock
== I
->second
) {
503 // In the extract block case, if the block we are extracting ends
504 // with an invoke instruction, make sure that we don't emit a
505 // store of the invoke value for the unwind block.
506 if (!DT
&& DefBlock
!= OldTarget
)
507 DominatesDef
= false;
511 DominatesDef
= DT
->dominates(DefBlock
, OldTarget
);
516 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
517 Idx
[1] = ConstantInt::get(Type::Int32Ty
,FirstOut
+out
);
518 GetElementPtrInst
*GEP
=
519 GetElementPtrInst::Create(OAI
, Idx
, Idx
+ 2,
520 "gep_" + outputs
[out
]->getName(),
522 new StoreInst(outputs
[out
], GEP
, NTRet
);
524 new StoreInst(outputs
[out
], OAI
, NTRet
);
527 // Advance output iterator even if we don't emit a store
528 if (!AggregateArgs
) ++OAI
;
532 // rewrite the original branch instruction with this new target
533 TI
->setSuccessor(i
, NewTarget
);
537 // Now that we've done the deed, simplify the switch instruction.
538 const Type
*OldFnRetTy
= TheSwitch
->getParent()->getParent()->getReturnType();
539 switch (NumExitBlocks
) {
541 // There are no successors (the block containing the switch itself), which
542 // means that previously this was the last part of the function, and hence
543 // this should be rewritten as a `ret'
545 // Check if the function should return a value
546 if (OldFnRetTy
== Type::VoidTy
) {
547 ReturnInst::Create(0, TheSwitch
); // Return void
548 } else if (OldFnRetTy
== TheSwitch
->getCondition()->getType()) {
549 // return what we have
550 ReturnInst::Create(TheSwitch
->getCondition(), TheSwitch
);
552 // Otherwise we must have code extracted an unwind or something, just
553 // return whatever we want.
554 ReturnInst::Create(Constant::getNullValue(OldFnRetTy
), TheSwitch
);
557 TheSwitch
->eraseFromParent();
560 // Only a single destination, change the switch into an unconditional
562 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
);
563 TheSwitch
->eraseFromParent();
566 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
->getSuccessor(2),
568 TheSwitch
->eraseFromParent();
571 // Otherwise, make the default destination of the switch instruction be one
572 // of the other successors.
573 TheSwitch
->setOperand(0, call
);
574 TheSwitch
->setSuccessor(0, TheSwitch
->getSuccessor(NumExitBlocks
));
575 TheSwitch
->removeCase(NumExitBlocks
); // Remove redundant case
580 void CodeExtractor::moveCodeToFunction(Function
*newFunction
) {
581 Function
*oldFunc
= (*BlocksToExtract
.begin())->getParent();
582 Function::BasicBlockListType
&oldBlocks
= oldFunc
->getBasicBlockList();
583 Function::BasicBlockListType
&newBlocks
= newFunction
->getBasicBlockList();
585 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
586 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
587 // Delete the basic block from the old function, and the list of blocks
588 oldBlocks
.remove(*i
);
590 // Insert this basic block into the new function
591 newBlocks
.push_back(*i
);
595 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
596 /// new function. Returns pointer to the new function.
600 /// find inputs and outputs for the region
602 /// for inputs: add to function as args, map input instr* to arg#
603 /// for outputs: add allocas for scalars,
604 /// add to func as args, map output instr* to arg#
606 /// rewrite func to use argument #s instead of instr*
608 /// for each scalar output in the function: at every exit, store intermediate
609 /// computed result back into memory.
611 Function
*CodeExtractor::
612 ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
) {
613 if (!isEligible(code
))
616 // 1) Find inputs, outputs
617 // 2) Construct new function
618 // * Add allocas for defs, pass as args by reference
619 // * Pass in uses as args
620 // 3) Move code region, add call instr to func
622 BlocksToExtract
.insert(code
.begin(), code
.end());
624 Values inputs
, outputs
;
626 // Assumption: this is a single-entry code region, and the header is the first
627 // block in the region.
628 BasicBlock
*header
= code
[0];
630 for (unsigned i
= 1, e
= code
.size(); i
!= e
; ++i
)
631 for (pred_iterator PI
= pred_begin(code
[i
]), E
= pred_end(code
[i
]);
633 assert(BlocksToExtract
.count(*PI
) &&
634 "No blocks in this region may have entries from outside the region"
635 " except for the first block!");
637 // If we have to split PHI nodes or the entry block, do so now.
638 severSplitPHINodes(header
);
640 // If we have any return instructions in the region, split those blocks so
641 // that the return is not in the region.
644 Function
*oldFunction
= header
->getParent();
646 // This takes place of the original loop
647 BasicBlock
*codeReplacer
= BasicBlock::Create("codeRepl", oldFunction
,
650 // The new function needs a root node because other nodes can branch to the
651 // head of the region, but the entry node of a function cannot have preds.
652 BasicBlock
*newFuncRoot
= BasicBlock::Create("newFuncRoot");
653 newFuncRoot
->getInstList().push_back(BranchInst::Create(header
));
655 // Find inputs to, outputs from the code region.
656 findInputsOutputs(inputs
, outputs
);
658 // Construct new function based on inputs/outputs & add allocas for all defs.
659 Function
*newFunction
= constructFunction(inputs
, outputs
, header
,
661 codeReplacer
, oldFunction
,
662 oldFunction
->getParent());
664 emitCallAndSwitchStatement(newFunction
, codeReplacer
, inputs
, outputs
);
666 moveCodeToFunction(newFunction
);
668 // Loop over all of the PHI nodes in the header block, and change any
669 // references to the old incoming edge to be the new incoming edge.
670 for (BasicBlock::iterator I
= header
->begin(); isa
<PHINode
>(I
); ++I
) {
671 PHINode
*PN
= cast
<PHINode
>(I
);
672 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
673 if (!BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
674 PN
->setIncomingBlock(i
, newFuncRoot
);
677 // Look at all successors of the codeReplacer block. If any of these blocks
678 // had PHI nodes in them, we need to update the "from" block to be the code
679 // replacer, not the original block in the extracted region.
680 std::vector
<BasicBlock
*> Succs(succ_begin(codeReplacer
),
681 succ_end(codeReplacer
));
682 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
683 for (BasicBlock::iterator I
= Succs
[i
]->begin(); isa
<PHINode
>(I
); ++I
) {
684 PHINode
*PN
= cast
<PHINode
>(I
);
685 std::set
<BasicBlock
*> ProcessedPreds
;
686 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
687 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
688 if (ProcessedPreds
.insert(PN
->getIncomingBlock(i
)).second
)
689 PN
->setIncomingBlock(i
, codeReplacer
);
691 // There were multiple entries in the PHI for this block, now there
692 // is only one, so remove the duplicated entries.
693 PN
->removeIncomingValue(i
, false);
699 //cerr << "NEW FUNCTION: " << *newFunction;
700 // verifyFunction(*newFunction);
702 // cerr << "OLD FUNCTION: " << *oldFunction;
703 // verifyFunction(*oldFunction);
705 DEBUG(if (verifyFunction(*newFunction
)) abort());
709 bool CodeExtractor::isEligible(const std::vector
<BasicBlock
*> &code
) {
710 // Deny code region if it contains allocas or vastarts.
711 for (std::vector
<BasicBlock
*>::const_iterator BB
= code
.begin(), e
=code
.end();
713 for (BasicBlock::const_iterator I
= (*BB
)->begin(), Ie
= (*BB
)->end();
715 if (isa
<AllocaInst
>(*I
))
717 else if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
718 if (const Function
*F
= CI
->getCalledFunction())
719 if (F
->getIntrinsicID() == Intrinsic::vastart
)
725 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
728 Function
* llvm::ExtractCodeRegion(DominatorTree
&DT
,
729 const std::vector
<BasicBlock
*> &code
,
730 bool AggregateArgs
) {
731 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(code
);
734 /// ExtractBasicBlock - slurp a natural loop into a brand new function
736 Function
* llvm::ExtractLoop(DominatorTree
&DT
, Loop
*L
, bool AggregateArgs
) {
737 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(L
->getBlocks());
740 /// ExtractBasicBlock - slurp a basic block into a brand new function
742 Function
* llvm::ExtractBasicBlock(BasicBlock
*BB
, bool AggregateArgs
) {
743 std::vector
<BasicBlock
*> Blocks
;
744 Blocks
.push_back(BB
);
745 return CodeExtractor(0, AggregateArgs
).ExtractCodeRegion(Blocks
);