Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / InlineCost.cpp
blobc9eb0ea1c907cb7be304df49e16597ab2e31d8f7
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/InlineCost.h"
16 #include "llvm/Support/CallSite.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/IntrinsicInst.h"
20 using namespace llvm;
22 // CountCodeReductionForConstant - Figure out an approximation for how many
23 // instructions will be constant folded if the specified value is constant.
25 unsigned InlineCostAnalyzer::FunctionInfo::
26 CountCodeReductionForConstant(Value *V) {
27 unsigned Reduction = 0;
28 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
29 if (isa<BranchInst>(*UI))
30 Reduction += 40; // Eliminating a conditional branch is a big win
31 else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
32 // Eliminating a switch is a big win, proportional to the number of edges
33 // deleted.
34 Reduction += (SI->getNumSuccessors()-1) * 40;
35 else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
36 // Turning an indirect call into a direct call is a BIG win
37 Reduction += CI->getCalledValue() == V ? 500 : 0;
38 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
39 // Turning an indirect call into a direct call is a BIG win
40 Reduction += II->getCalledValue() == V ? 500 : 0;
41 } else {
42 // Figure out if this instruction will be removed due to simple constant
43 // propagation.
44 Instruction &Inst = cast<Instruction>(**UI);
45 bool AllOperandsConstant = true;
46 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
47 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
48 AllOperandsConstant = false;
49 break;
52 if (AllOperandsConstant) {
53 // We will get to remove this instruction...
54 Reduction += 7;
56 // And any other instructions that use it which become constants
57 // themselves.
58 Reduction += CountCodeReductionForConstant(&Inst);
62 return Reduction;
65 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
66 // the function will be if it is inlined into a context where an argument
67 // becomes an alloca.
69 unsigned InlineCostAnalyzer::FunctionInfo::
70 CountCodeReductionForAlloca(Value *V) {
71 if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
72 unsigned Reduction = 0;
73 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
74 Instruction *I = cast<Instruction>(*UI);
75 if (isa<LoadInst>(I) || isa<StoreInst>(I))
76 Reduction += 10;
77 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
78 // If the GEP has variable indices, we won't be able to do much with it.
79 if (!GEP->hasAllConstantIndices())
80 Reduction += CountCodeReductionForAlloca(GEP)+15;
81 } else {
82 // If there is some other strange instruction, we're not going to be able
83 // to do much if we inline this.
84 return 0;
88 return Reduction;
91 /// analyzeFunction - Fill in the current structure with information gleaned
92 /// from the specified function.
93 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
94 unsigned NumInsts = 0, NumBlocks = 0, NumVectorInsts = 0;
96 // Look at the size of the callee. Each basic block counts as 20 units, and
97 // each instruction counts as 5.
98 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
99 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
100 II != E; ++II) {
101 if (isa<PHINode>(II)) continue; // PHI nodes don't count.
103 // Special handling for calls.
104 if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
105 if (isa<DbgInfoIntrinsic>(II))
106 continue; // Debug intrinsics don't count as size.
108 CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
110 // If this function contains a call to setjmp or _setjmp, never inline
111 // it. This is a hack because we depend on the user marking their local
112 // variables as volatile if they are live across a setjmp call, and they
113 // probably won't do this in callers.
114 if (Function *F = CS.getCalledFunction())
115 if (F->isDeclaration() &&
116 (F->isName("setjmp") || F->isName("_setjmp"))) {
117 NeverInline = true;
118 return;
121 // Calls often compile into many machine instructions. Bump up their
122 // cost to reflect this.
123 if (!isa<IntrinsicInst>(II))
124 NumInsts += 5;
127 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
128 if (!AI->isStaticAlloca())
129 this->usesDynamicAlloca = true;
132 if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
133 ++NumVectorInsts;
135 // Noop casts, including ptr <-> int, don't count.
136 if (const CastInst *CI = dyn_cast<CastInst>(II)) {
137 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
138 isa<PtrToIntInst>(CI))
139 continue;
140 } else if (const GetElementPtrInst *GEPI =
141 dyn_cast<GetElementPtrInst>(II)) {
142 // If a GEP has all constant indices, it will probably be folded with
143 // a load/store.
144 if (GEPI->hasAllConstantIndices())
145 continue;
148 ++NumInsts;
151 ++NumBlocks;
154 this->NumBlocks = NumBlocks;
155 this->NumInsts = NumInsts;
156 this->NumVectorInsts = NumVectorInsts;
158 // Check out all of the arguments to the function, figuring out how much
159 // code can be eliminated if one of the arguments is a constant.
160 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
161 ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
162 CountCodeReductionForAlloca(I)));
167 // getInlineCost - The heuristic used to determine if we should inline the
168 // function call or not.
170 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
171 SmallPtrSet<const Function *, 16> &NeverInline) {
172 Instruction *TheCall = CS.getInstruction();
173 Function *Callee = CS.getCalledFunction();
174 Function *Caller = TheCall->getParent()->getParent();
176 // Don't inline functions which can be redefined at link-time to mean
177 // something else.
178 if (Callee->mayBeOverridden() ||
179 // Don't inline functions marked noinline.
180 Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
181 return llvm::InlineCost::getNever();
183 // InlineCost - This value measures how good of an inline candidate this call
184 // site is to inline. A lower inline cost make is more likely for the call to
185 // be inlined. This value may go negative.
187 int InlineCost = 0;
189 // If there is only one call of the function, and it has internal linkage,
190 // make it almost guaranteed to be inlined.
192 if (Callee->hasLocalLinkage() && Callee->hasOneUse())
193 InlineCost -= 15000;
195 // If this function uses the coldcc calling convention, prefer not to inline
196 // it.
197 if (Callee->getCallingConv() == CallingConv::Cold)
198 InlineCost += 2000;
200 // If the instruction after the call, or if the normal destination of the
201 // invoke is an unreachable instruction, the function is noreturn. As such,
202 // there is little point in inlining this.
203 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
204 if (isa<UnreachableInst>(II->getNormalDest()->begin()))
205 InlineCost += 10000;
206 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
207 InlineCost += 10000;
209 // Get information about the callee...
210 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
212 // If we haven't calculated this information yet, do so now.
213 if (CalleeFI.NumBlocks == 0)
214 CalleeFI.analyzeFunction(Callee);
216 // If we should never inline this, return a huge cost.
217 if (CalleeFI.NeverInline)
218 return InlineCost::getNever();
220 // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
221 // could move this up and avoid computing the FunctionInfo for
222 // things we are going to just return always inline for. This
223 // requires handling setjmp somewhere else, however.
224 if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
225 return InlineCost::getAlways();
227 if (CalleeFI.usesDynamicAlloca) {
228 // Get infomation about the caller...
229 FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
231 // If we haven't calculated this information yet, do so now.
232 if (CallerFI.NumBlocks == 0)
233 CallerFI.analyzeFunction(Caller);
235 // Don't inline a callee with dynamic alloca into a caller without them.
236 // Functions containing dynamic alloca's are inefficient in various ways;
237 // don't create more inefficiency.
238 if (!CallerFI.usesDynamicAlloca)
239 return InlineCost::getNever();
242 // Add to the inline quality for properties that make the call valuable to
243 // inline. This includes factors that indicate that the result of inlining
244 // the function will be optimizable. Currently this just looks at arguments
245 // passed into the function.
247 unsigned ArgNo = 0;
248 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
249 I != E; ++I, ++ArgNo) {
250 // Each argument passed in has a cost at both the caller and the callee
251 // sides. This favors functions that take many arguments over functions
252 // that take few arguments.
253 InlineCost -= 20;
255 // If this is a function being passed in, it is very likely that we will be
256 // able to turn an indirect function call into a direct function call.
257 if (isa<Function>(I))
258 InlineCost -= 100;
260 // If an alloca is passed in, inlining this function is likely to allow
261 // significant future optimization possibilities (like scalar promotion, and
262 // scalarization), so encourage the inlining of the function.
264 else if (isa<AllocaInst>(I)) {
265 if (ArgNo < CalleeFI.ArgumentWeights.size())
266 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
268 // If this is a constant being passed into the function, use the argument
269 // weights calculated for the callee to determine how much will be folded
270 // away with this information.
271 } else if (isa<Constant>(I)) {
272 if (ArgNo < CalleeFI.ArgumentWeights.size())
273 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
277 // Now that we have considered all of the factors that make the call site more
278 // likely to be inlined, look at factors that make us not want to inline it.
280 // Don't inline into something too big, which would make it bigger.
282 InlineCost += Caller->size()/15;
284 // Look at the size of the callee. Each instruction counts as 5.
285 InlineCost += CalleeFI.NumInsts*5;
287 return llvm::InlineCost::get(InlineCost);
290 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
291 // higher threshold to determine if the function call should be inlined.
292 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
293 Function *Callee = CS.getCalledFunction();
295 // Get information about the callee...
296 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
298 // If we haven't calculated this information yet, do so now.
299 if (CalleeFI.NumBlocks == 0)
300 CalleeFI.analyzeFunction(Callee);
302 float Factor = 1.0f;
303 // Single BB functions are often written to be inlined.
304 if (CalleeFI.NumBlocks == 1)
305 Factor += 0.5f;
307 // Be more aggressive if the function contains a good chunk (if it mades up
308 // at least 10% of the instructions) of vector instructions.
309 if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/2)
310 Factor += 2.0f;
311 else if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10)
312 Factor += 1.5f;
313 return Factor;