1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements inline cost analysis.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/InlineCost.h"
16 #include "llvm/Support/CallSite.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/IntrinsicInst.h"
22 // CountCodeReductionForConstant - Figure out an approximation for how many
23 // instructions will be constant folded if the specified value is constant.
25 unsigned InlineCostAnalyzer::FunctionInfo::
26 CountCodeReductionForConstant(Value
*V
) {
27 unsigned Reduction
= 0;
28 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
29 if (isa
<BranchInst
>(*UI
))
30 Reduction
+= 40; // Eliminating a conditional branch is a big win
31 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(*UI
))
32 // Eliminating a switch is a big win, proportional to the number of edges
34 Reduction
+= (SI
->getNumSuccessors()-1) * 40;
35 else if (CallInst
*CI
= dyn_cast
<CallInst
>(*UI
)) {
36 // Turning an indirect call into a direct call is a BIG win
37 Reduction
+= CI
->getCalledValue() == V
? 500 : 0;
38 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(*UI
)) {
39 // Turning an indirect call into a direct call is a BIG win
40 Reduction
+= II
->getCalledValue() == V
? 500 : 0;
42 // Figure out if this instruction will be removed due to simple constant
44 Instruction
&Inst
= cast
<Instruction
>(**UI
);
45 bool AllOperandsConstant
= true;
46 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
)
47 if (!isa
<Constant
>(Inst
.getOperand(i
)) && Inst
.getOperand(i
) != V
) {
48 AllOperandsConstant
= false;
52 if (AllOperandsConstant
) {
53 // We will get to remove this instruction...
56 // And any other instructions that use it which become constants
58 Reduction
+= CountCodeReductionForConstant(&Inst
);
65 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
66 // the function will be if it is inlined into a context where an argument
69 unsigned InlineCostAnalyzer::FunctionInfo::
70 CountCodeReductionForAlloca(Value
*V
) {
71 if (!isa
<PointerType
>(V
->getType())) return 0; // Not a pointer
72 unsigned Reduction
= 0;
73 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
74 Instruction
*I
= cast
<Instruction
>(*UI
);
75 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
77 else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
78 // If the GEP has variable indices, we won't be able to do much with it.
79 if (!GEP
->hasAllConstantIndices())
80 Reduction
+= CountCodeReductionForAlloca(GEP
)+15;
82 // If there is some other strange instruction, we're not going to be able
83 // to do much if we inline this.
91 /// analyzeFunction - Fill in the current structure with information gleaned
92 /// from the specified function.
93 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function
*F
) {
94 unsigned NumInsts
= 0, NumBlocks
= 0, NumVectorInsts
= 0;
96 // Look at the size of the callee. Each basic block counts as 20 units, and
97 // each instruction counts as 5.
98 for (Function::const_iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
) {
99 for (BasicBlock::const_iterator II
= BB
->begin(), E
= BB
->end();
101 if (isa
<PHINode
>(II
)) continue; // PHI nodes don't count.
103 // Special handling for calls.
104 if (isa
<CallInst
>(II
) || isa
<InvokeInst
>(II
)) {
105 if (isa
<DbgInfoIntrinsic
>(II
))
106 continue; // Debug intrinsics don't count as size.
108 CallSite CS
= CallSite::get(const_cast<Instruction
*>(&*II
));
110 // If this function contains a call to setjmp or _setjmp, never inline
111 // it. This is a hack because we depend on the user marking their local
112 // variables as volatile if they are live across a setjmp call, and they
113 // probably won't do this in callers.
114 if (Function
*F
= CS
.getCalledFunction())
115 if (F
->isDeclaration() &&
116 (F
->isName("setjmp") || F
->isName("_setjmp"))) {
121 // Calls often compile into many machine instructions. Bump up their
122 // cost to reflect this.
123 if (!isa
<IntrinsicInst
>(II
))
127 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(II
)) {
128 if (!AI
->isStaticAlloca())
129 this->usesDynamicAlloca
= true;
132 if (isa
<ExtractElementInst
>(II
) || isa
<VectorType
>(II
->getType()))
135 // Noop casts, including ptr <-> int, don't count.
136 if (const CastInst
*CI
= dyn_cast
<CastInst
>(II
)) {
137 if (CI
->isLosslessCast() || isa
<IntToPtrInst
>(CI
) ||
138 isa
<PtrToIntInst
>(CI
))
140 } else if (const GetElementPtrInst
*GEPI
=
141 dyn_cast
<GetElementPtrInst
>(II
)) {
142 // If a GEP has all constant indices, it will probably be folded with
144 if (GEPI
->hasAllConstantIndices())
154 this->NumBlocks
= NumBlocks
;
155 this->NumInsts
= NumInsts
;
156 this->NumVectorInsts
= NumVectorInsts
;
158 // Check out all of the arguments to the function, figuring out how much
159 // code can be eliminated if one of the arguments is a constant.
160 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
; ++I
)
161 ArgumentWeights
.push_back(ArgInfo(CountCodeReductionForConstant(I
),
162 CountCodeReductionForAlloca(I
)));
167 // getInlineCost - The heuristic used to determine if we should inline the
168 // function call or not.
170 InlineCost
InlineCostAnalyzer::getInlineCost(CallSite CS
,
171 SmallPtrSet
<const Function
*, 16> &NeverInline
) {
172 Instruction
*TheCall
= CS
.getInstruction();
173 Function
*Callee
= CS
.getCalledFunction();
174 Function
*Caller
= TheCall
->getParent()->getParent();
176 // Don't inline functions which can be redefined at link-time to mean
178 if (Callee
->mayBeOverridden() ||
179 // Don't inline functions marked noinline.
180 Callee
->hasFnAttr(Attribute::NoInline
) || NeverInline
.count(Callee
))
181 return llvm::InlineCost::getNever();
183 // InlineCost - This value measures how good of an inline candidate this call
184 // site is to inline. A lower inline cost make is more likely for the call to
185 // be inlined. This value may go negative.
189 // If there is only one call of the function, and it has internal linkage,
190 // make it almost guaranteed to be inlined.
192 if (Callee
->hasLocalLinkage() && Callee
->hasOneUse())
195 // If this function uses the coldcc calling convention, prefer not to inline
197 if (Callee
->getCallingConv() == CallingConv::Cold
)
200 // If the instruction after the call, or if the normal destination of the
201 // invoke is an unreachable instruction, the function is noreturn. As such,
202 // there is little point in inlining this.
203 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
)) {
204 if (isa
<UnreachableInst
>(II
->getNormalDest()->begin()))
206 } else if (isa
<UnreachableInst
>(++BasicBlock::iterator(TheCall
)))
209 // Get information about the callee...
210 FunctionInfo
&CalleeFI
= CachedFunctionInfo
[Callee
];
212 // If we haven't calculated this information yet, do so now.
213 if (CalleeFI
.NumBlocks
== 0)
214 CalleeFI
.analyzeFunction(Callee
);
216 // If we should never inline this, return a huge cost.
217 if (CalleeFI
.NeverInline
)
218 return InlineCost::getNever();
220 // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
221 // could move this up and avoid computing the FunctionInfo for
222 // things we are going to just return always inline for. This
223 // requires handling setjmp somewhere else, however.
224 if (!Callee
->isDeclaration() && Callee
->hasFnAttr(Attribute::AlwaysInline
))
225 return InlineCost::getAlways();
227 if (CalleeFI
.usesDynamicAlloca
) {
228 // Get infomation about the caller...
229 FunctionInfo
&CallerFI
= CachedFunctionInfo
[Caller
];
231 // If we haven't calculated this information yet, do so now.
232 if (CallerFI
.NumBlocks
== 0)
233 CallerFI
.analyzeFunction(Caller
);
235 // Don't inline a callee with dynamic alloca into a caller without them.
236 // Functions containing dynamic alloca's are inefficient in various ways;
237 // don't create more inefficiency.
238 if (!CallerFI
.usesDynamicAlloca
)
239 return InlineCost::getNever();
242 // Add to the inline quality for properties that make the call valuable to
243 // inline. This includes factors that indicate that the result of inlining
244 // the function will be optimizable. Currently this just looks at arguments
245 // passed into the function.
248 for (CallSite::arg_iterator I
= CS
.arg_begin(), E
= CS
.arg_end();
249 I
!= E
; ++I
, ++ArgNo
) {
250 // Each argument passed in has a cost at both the caller and the callee
251 // sides. This favors functions that take many arguments over functions
252 // that take few arguments.
255 // If this is a function being passed in, it is very likely that we will be
256 // able to turn an indirect function call into a direct function call.
257 if (isa
<Function
>(I
))
260 // If an alloca is passed in, inlining this function is likely to allow
261 // significant future optimization possibilities (like scalar promotion, and
262 // scalarization), so encourage the inlining of the function.
264 else if (isa
<AllocaInst
>(I
)) {
265 if (ArgNo
< CalleeFI
.ArgumentWeights
.size())
266 InlineCost
-= CalleeFI
.ArgumentWeights
[ArgNo
].AllocaWeight
;
268 // If this is a constant being passed into the function, use the argument
269 // weights calculated for the callee to determine how much will be folded
270 // away with this information.
271 } else if (isa
<Constant
>(I
)) {
272 if (ArgNo
< CalleeFI
.ArgumentWeights
.size())
273 InlineCost
-= CalleeFI
.ArgumentWeights
[ArgNo
].ConstantWeight
;
277 // Now that we have considered all of the factors that make the call site more
278 // likely to be inlined, look at factors that make us not want to inline it.
280 // Don't inline into something too big, which would make it bigger.
282 InlineCost
+= Caller
->size()/15;
284 // Look at the size of the callee. Each instruction counts as 5.
285 InlineCost
+= CalleeFI
.NumInsts
*5;
287 return llvm::InlineCost::get(InlineCost
);
290 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
291 // higher threshold to determine if the function call should be inlined.
292 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS
) {
293 Function
*Callee
= CS
.getCalledFunction();
295 // Get information about the callee...
296 FunctionInfo
&CalleeFI
= CachedFunctionInfo
[Callee
];
298 // If we haven't calculated this information yet, do so now.
299 if (CalleeFI
.NumBlocks
== 0)
300 CalleeFI
.analyzeFunction(Callee
);
303 // Single BB functions are often written to be inlined.
304 if (CalleeFI
.NumBlocks
== 1)
307 // Be more aggressive if the function contains a good chunk (if it mades up
308 // at least 10% of the instructions) of vector instructions.
309 if (CalleeFI
.NumVectorInsts
> CalleeFI
.NumInsts
/2)
311 else if (CalleeFI
.NumVectorInsts
> CalleeFI
.NumInsts
/10)