Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / InlineFunction.cpp
blob4989c00ceb8143b49565ec292784f9b8b7ad55c8
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/Attributes.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/CallSite.h"
29 using namespace llvm;
31 bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
32 return InlineFunction(CallSite(CI), CG, TD);
34 bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
35 return InlineFunction(CallSite(II), CG, TD);
38 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
39 /// in the body of the inlined function into invokes and turn unwind
40 /// instructions into branches to the invoke unwind dest.
41 ///
42 /// II is the invoke instruction being inlined. FirstNewBlock is the first
43 /// block of the inlined code (the last block is the end of the function),
44 /// and InlineCodeInfo is information about the code that got inlined.
45 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
46 ClonedCodeInfo &InlinedCodeInfo,
47 CallGraph *CG) {
48 BasicBlock *InvokeDest = II->getUnwindDest();
49 std::vector<Value*> InvokeDestPHIValues;
51 // If there are PHI nodes in the unwind destination block, we need to
52 // keep track of which values came into them from this invoke, then remove
53 // the entry for this block.
54 BasicBlock *InvokeBlock = II->getParent();
55 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
56 PHINode *PN = cast<PHINode>(I);
57 // Save the value to use for this edge.
58 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
61 Function *Caller = FirstNewBlock->getParent();
63 // The inlined code is currently at the end of the function, scan from the
64 // start of the inlined code to its end, checking for stuff we need to
65 // rewrite.
66 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
67 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
68 BB != E; ++BB) {
69 if (InlinedCodeInfo.ContainsCalls) {
70 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
71 Instruction *I = BBI++;
73 // We only need to check for function calls: inlined invoke
74 // instructions require no special handling.
75 if (!isa<CallInst>(I)) continue;
76 CallInst *CI = cast<CallInst>(I);
78 // If this call cannot unwind, don't convert it to an invoke.
79 if (CI->doesNotThrow())
80 continue;
82 // Convert this function call into an invoke instruction.
83 // First, split the basic block.
84 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
86 // Next, create the new invoke instruction, inserting it at the end
87 // of the old basic block.
88 SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
89 InvokeInst *II =
90 InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
91 InvokeArgs.begin(), InvokeArgs.end(),
92 CI->getName(), BB->getTerminator());
93 II->setCallingConv(CI->getCallingConv());
94 II->setAttributes(CI->getAttributes());
96 // Make sure that anything using the call now uses the invoke!
97 CI->replaceAllUsesWith(II);
99 // Update the callgraph.
100 if (CG) {
101 // We should be able to do this:
102 // (*CG)[Caller]->replaceCallSite(CI, II);
103 // but that fails if the old call site isn't in the call graph,
104 // which, because of LLVM bug 3601, it sometimes isn't.
105 CallGraphNode *CGN = (*CG)[Caller];
106 for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
107 NI != NE; ++NI) {
108 if (NI->first == CI) {
109 NI->first = II;
110 break;
115 // Delete the unconditional branch inserted by splitBasicBlock
116 BB->getInstList().pop_back();
117 Split->getInstList().pop_front(); // Delete the original call
119 // Update any PHI nodes in the exceptional block to indicate that
120 // there is now a new entry in them.
121 unsigned i = 0;
122 for (BasicBlock::iterator I = InvokeDest->begin();
123 isa<PHINode>(I); ++I, ++i) {
124 PHINode *PN = cast<PHINode>(I);
125 PN->addIncoming(InvokeDestPHIValues[i], BB);
128 // This basic block is now complete, start scanning the next one.
129 break;
133 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
134 // An UnwindInst requires special handling when it gets inlined into an
135 // invoke site. Once this happens, we know that the unwind would cause
136 // a control transfer to the invoke exception destination, so we can
137 // transform it into a direct branch to the exception destination.
138 BranchInst::Create(InvokeDest, UI);
140 // Delete the unwind instruction!
141 UI->eraseFromParent();
143 // Update any PHI nodes in the exceptional block to indicate that
144 // there is now a new entry in them.
145 unsigned i = 0;
146 for (BasicBlock::iterator I = InvokeDest->begin();
147 isa<PHINode>(I); ++I, ++i) {
148 PHINode *PN = cast<PHINode>(I);
149 PN->addIncoming(InvokeDestPHIValues[i], BB);
155 // Now that everything is happy, we have one final detail. The PHI nodes in
156 // the exception destination block still have entries due to the original
157 // invoke instruction. Eliminate these entries (which might even delete the
158 // PHI node) now.
159 InvokeDest->removePredecessor(II->getParent());
162 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
163 /// into the caller, update the specified callgraph to reflect the changes we
164 /// made. Note that it's possible that not all code was copied over, so only
165 /// some edges of the callgraph may remain.
166 static void UpdateCallGraphAfterInlining(CallSite CS,
167 Function::iterator FirstNewBlock,
168 DenseMap<const Value*, Value*> &ValueMap,
169 CallGraph &CG) {
170 const Function *Caller = CS.getInstruction()->getParent()->getParent();
171 const Function *Callee = CS.getCalledFunction();
172 CallGraphNode *CalleeNode = CG[Callee];
173 CallGraphNode *CallerNode = CG[Caller];
175 // Since we inlined some uninlined call sites in the callee into the caller,
176 // add edges from the caller to all of the callees of the callee.
177 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
179 // Consider the case where CalleeNode == CallerNode.
180 CallGraphNode::CalledFunctionsVector CallCache;
181 if (CalleeNode == CallerNode) {
182 CallCache.assign(I, E);
183 I = CallCache.begin();
184 E = CallCache.end();
187 for (; I != E; ++I) {
188 const Instruction *OrigCall = I->first.getInstruction();
190 DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
191 // Only copy the edge if the call was inlined!
192 if (VMI != ValueMap.end() && VMI->second) {
193 // If the call was inlined, but then constant folded, there is no edge to
194 // add. Check for this case.
195 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
196 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
199 // Update the call graph by deleting the edge from Callee to Caller. We must
200 // do this after the loop above in case Caller and Callee are the same.
201 CallerNode->removeCallEdgeFor(CS);
204 /// findFnRegionEndMarker - This is a utility routine that is used by
205 /// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
206 /// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
207 static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
209 GlobalVariable *FnStart = NULL;
210 const DbgRegionEndInst *FnEnd = NULL;
211 for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
212 for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
213 ++BI) {
214 if (FnStart == NULL) {
215 if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
216 DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
217 assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
218 if (SP.describes(F))
219 FnStart = SP.getGV();
221 } else {
222 if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
223 if (REI->getContext() == FnStart)
224 FnEnd = REI;
227 return FnEnd;
230 // InlineFunction - This function inlines the called function into the basic
231 // block of the caller. This returns false if it is not possible to inline this
232 // call. The program is still in a well defined state if this occurs though.
234 // Note that this only does one level of inlining. For example, if the
235 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
236 // exists in the instruction stream. Similiarly this will inline a recursive
237 // function by one level.
239 bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
240 Instruction *TheCall = CS.getInstruction();
241 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
242 "Instruction not in function!");
244 const Function *CalledFunc = CS.getCalledFunction();
245 if (CalledFunc == 0 || // Can't inline external function or indirect
246 CalledFunc->isDeclaration() || // call, or call to a vararg function!
247 CalledFunc->getFunctionType()->isVarArg()) return false;
250 // If the call to the callee is not a tail call, we must clear the 'tail'
251 // flags on any calls that we inline.
252 bool MustClearTailCallFlags =
253 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
255 // If the call to the callee cannot throw, set the 'nounwind' flag on any
256 // calls that we inline.
257 bool MarkNoUnwind = CS.doesNotThrow();
259 BasicBlock *OrigBB = TheCall->getParent();
260 Function *Caller = OrigBB->getParent();
262 // GC poses two hazards to inlining, which only occur when the callee has GC:
263 // 1. If the caller has no GC, then the callee's GC must be propagated to the
264 // caller.
265 // 2. If the caller has a differing GC, it is invalid to inline.
266 if (CalledFunc->hasGC()) {
267 if (!Caller->hasGC())
268 Caller->setGC(CalledFunc->getGC());
269 else if (CalledFunc->getGC() != Caller->getGC())
270 return false;
273 // Get an iterator to the last basic block in the function, which will have
274 // the new function inlined after it.
276 Function::iterator LastBlock = &Caller->back();
278 // Make sure to capture all of the return instructions from the cloned
279 // function.
280 std::vector<ReturnInst*> Returns;
281 ClonedCodeInfo InlinedFunctionInfo;
282 Function::iterator FirstNewBlock;
284 { // Scope to destroy ValueMap after cloning.
285 DenseMap<const Value*, Value*> ValueMap;
287 assert(CalledFunc->arg_size() == CS.arg_size() &&
288 "No varargs calls can be inlined!");
290 // Calculate the vector of arguments to pass into the function cloner, which
291 // matches up the formal to the actual argument values.
292 CallSite::arg_iterator AI = CS.arg_begin();
293 unsigned ArgNo = 0;
294 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
295 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
296 Value *ActualArg = *AI;
298 // When byval arguments actually inlined, we need to make the copy implied
299 // by them explicit. However, we don't do this if the callee is readonly
300 // or readnone, because the copy would be unneeded: the callee doesn't
301 // modify the struct.
302 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
303 !CalledFunc->onlyReadsMemory()) {
304 const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
305 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
307 // Create the alloca. If we have TargetData, use nice alignment.
308 unsigned Align = 1;
309 if (TD) Align = TD->getPrefTypeAlignment(AggTy);
310 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
311 Caller->begin()->begin());
312 // Emit a memcpy.
313 const Type *Tys[] = { Type::Int64Ty };
314 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
315 Intrinsic::memcpy,
316 Tys, 1);
317 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
318 Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
320 Value *Size;
321 if (TD == 0)
322 Size = ConstantExpr::getSizeOf(AggTy);
323 else
324 Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
326 // Always generate a memcpy of alignment 1 here because we don't know
327 // the alignment of the src pointer. Other optimizations can infer
328 // better alignment.
329 Value *CallArgs[] = {
330 DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
332 CallInst *TheMemCpy =
333 CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
335 // If we have a call graph, update it.
336 if (CG) {
337 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
338 CallGraphNode *CallerNode = (*CG)[Caller];
339 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
342 // Uses of the argument in the function should use our new alloca
343 // instead.
344 ActualArg = NewAlloca;
347 ValueMap[I] = ActualArg;
350 // Adjust llvm.dbg.region.end. If the CalledFunc has region end
351 // marker then clone that marker after next stop point at the
352 // call site. The function body cloner does not clone original
353 // region end marker from the CalledFunc. This will ensure that
354 // inlined function's scope ends at the right place.
355 const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
356 if (DREI) {
357 for (BasicBlock::iterator BI = TheCall,
358 BE = TheCall->getParent()->end(); BI != BE; ++BI) {
359 if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
360 if (DbgRegionEndInst *NewDREI =
361 dyn_cast<DbgRegionEndInst>(DREI->clone()))
362 NewDREI->insertAfter(DSPI);
363 break;
368 // We want the inliner to prune the code as it copies. We would LOVE to
369 // have no dead or constant instructions leftover after inlining occurs
370 // (which can happen, e.g., because an argument was constant), but we'll be
371 // happy with whatever the cloner can do.
372 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
373 &InlinedFunctionInfo, TD);
375 // Remember the first block that is newly cloned over.
376 FirstNewBlock = LastBlock; ++FirstNewBlock;
378 // Update the callgraph if requested.
379 if (CG)
380 UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
383 // If there are any alloca instructions in the block that used to be the entry
384 // block for the callee, move them to the entry block of the caller. First
385 // calculate which instruction they should be inserted before. We insert the
386 // instructions at the end of the current alloca list.
389 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
390 for (BasicBlock::iterator I = FirstNewBlock->begin(),
391 E = FirstNewBlock->end(); I != E; )
392 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
393 // If the alloca is now dead, remove it. This often occurs due to code
394 // specialization.
395 if (AI->use_empty()) {
396 AI->eraseFromParent();
397 continue;
400 if (isa<Constant>(AI->getArraySize())) {
401 // Scan for the block of allocas that we can move over, and move them
402 // all at once.
403 while (isa<AllocaInst>(I) &&
404 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
405 ++I;
407 // Transfer all of the allocas over in a block. Using splice means
408 // that the instructions aren't removed from the symbol table, then
409 // reinserted.
410 Caller->getEntryBlock().getInstList().splice(
411 InsertPoint,
412 FirstNewBlock->getInstList(),
413 AI, I);
418 // If the inlined code contained dynamic alloca instructions, wrap the inlined
419 // code with llvm.stacksave/llvm.stackrestore intrinsics.
420 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
421 Module *M = Caller->getParent();
422 // Get the two intrinsics we care about.
423 Constant *StackSave, *StackRestore;
424 StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
425 StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
427 // If we are preserving the callgraph, add edges to the stacksave/restore
428 // functions for the calls we insert.
429 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
430 if (CG) {
431 // We know that StackSave/StackRestore are Function*'s, because they are
432 // intrinsics which must have the right types.
433 StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
434 StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
435 CallerNode = (*CG)[Caller];
438 // Insert the llvm.stacksave.
439 CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
440 FirstNewBlock->begin());
441 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
443 // Insert a call to llvm.stackrestore before any return instructions in the
444 // inlined function.
445 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
446 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
447 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
450 // Count the number of StackRestore calls we insert.
451 unsigned NumStackRestores = Returns.size();
453 // If we are inlining an invoke instruction, insert restores before each
454 // unwind. These unwinds will be rewritten into branches later.
455 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
456 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
457 BB != E; ++BB)
458 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
459 CallInst::Create(StackRestore, SavedPtr, "", UI);
460 ++NumStackRestores;
465 // If we are inlining tail call instruction through a call site that isn't
466 // marked 'tail', we must remove the tail marker for any calls in the inlined
467 // code. Also, calls inlined through a 'nounwind' call site should be marked
468 // 'nounwind'.
469 if (InlinedFunctionInfo.ContainsCalls &&
470 (MustClearTailCallFlags || MarkNoUnwind)) {
471 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
472 BB != E; ++BB)
473 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
474 if (CallInst *CI = dyn_cast<CallInst>(I)) {
475 if (MustClearTailCallFlags)
476 CI->setTailCall(false);
477 if (MarkNoUnwind)
478 CI->setDoesNotThrow();
482 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
483 // instructions are unreachable.
484 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
485 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
486 BB != E; ++BB) {
487 TerminatorInst *Term = BB->getTerminator();
488 if (isa<UnwindInst>(Term)) {
489 new UnreachableInst(Term);
490 BB->getInstList().erase(Term);
494 // If we are inlining for an invoke instruction, we must make sure to rewrite
495 // any inlined 'unwind' instructions into branches to the invoke exception
496 // destination, and call instructions into invoke instructions.
497 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
498 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
500 // If we cloned in _exactly one_ basic block, and if that block ends in a
501 // return instruction, we splice the body of the inlined callee directly into
502 // the calling basic block.
503 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
504 // Move all of the instructions right before the call.
505 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
506 FirstNewBlock->begin(), FirstNewBlock->end());
507 // Remove the cloned basic block.
508 Caller->getBasicBlockList().pop_back();
510 // If the call site was an invoke instruction, add a branch to the normal
511 // destination.
512 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
513 BranchInst::Create(II->getNormalDest(), TheCall);
515 // If the return instruction returned a value, replace uses of the call with
516 // uses of the returned value.
517 if (!TheCall->use_empty()) {
518 ReturnInst *R = Returns[0];
519 if (TheCall == R->getReturnValue())
520 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
521 else
522 TheCall->replaceAllUsesWith(R->getReturnValue());
524 // Since we are now done with the Call/Invoke, we can delete it.
525 TheCall->eraseFromParent();
527 // Since we are now done with the return instruction, delete it also.
528 Returns[0]->eraseFromParent();
530 // We are now done with the inlining.
531 return true;
534 // Otherwise, we have the normal case, of more than one block to inline or
535 // multiple return sites.
537 // We want to clone the entire callee function into the hole between the
538 // "starter" and "ender" blocks. How we accomplish this depends on whether
539 // this is an invoke instruction or a call instruction.
540 BasicBlock *AfterCallBB;
541 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
543 // Add an unconditional branch to make this look like the CallInst case...
544 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
546 // Split the basic block. This guarantees that no PHI nodes will have to be
547 // updated due to new incoming edges, and make the invoke case more
548 // symmetric to the call case.
549 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
550 CalledFunc->getName()+".exit");
552 } else { // It's a call
553 // If this is a call instruction, we need to split the basic block that
554 // the call lives in.
556 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
557 CalledFunc->getName()+".exit");
560 // Change the branch that used to go to AfterCallBB to branch to the first
561 // basic block of the inlined function.
563 TerminatorInst *Br = OrigBB->getTerminator();
564 assert(Br && Br->getOpcode() == Instruction::Br &&
565 "splitBasicBlock broken!");
566 Br->setOperand(0, FirstNewBlock);
569 // Now that the function is correct, make it a little bit nicer. In
570 // particular, move the basic blocks inserted from the end of the function
571 // into the space made by splitting the source basic block.
572 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
573 FirstNewBlock, Caller->end());
575 // Handle all of the return instructions that we just cloned in, and eliminate
576 // any users of the original call/invoke instruction.
577 const Type *RTy = CalledFunc->getReturnType();
579 if (Returns.size() > 1) {
580 // The PHI node should go at the front of the new basic block to merge all
581 // possible incoming values.
582 PHINode *PHI = 0;
583 if (!TheCall->use_empty()) {
584 PHI = PHINode::Create(RTy, TheCall->getName(),
585 AfterCallBB->begin());
586 // Anything that used the result of the function call should now use the
587 // PHI node as their operand.
588 TheCall->replaceAllUsesWith(PHI);
591 // Loop over all of the return instructions adding entries to the PHI node
592 // as appropriate.
593 if (PHI) {
594 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
595 ReturnInst *RI = Returns[i];
596 assert(RI->getReturnValue()->getType() == PHI->getType() &&
597 "Ret value not consistent in function!");
598 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
602 // Add a branch to the merge points and remove return instructions.
603 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
604 ReturnInst *RI = Returns[i];
605 BranchInst::Create(AfterCallBB, RI);
606 RI->eraseFromParent();
608 } else if (!Returns.empty()) {
609 // Otherwise, if there is exactly one return value, just replace anything
610 // using the return value of the call with the computed value.
611 if (!TheCall->use_empty()) {
612 if (TheCall == Returns[0]->getReturnValue())
613 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
614 else
615 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
618 // Splice the code from the return block into the block that it will return
619 // to, which contains the code that was after the call.
620 BasicBlock *ReturnBB = Returns[0]->getParent();
621 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
622 ReturnBB->getInstList());
624 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
625 ReturnBB->replaceAllUsesWith(AfterCallBB);
627 // Delete the return instruction now and empty ReturnBB now.
628 Returns[0]->eraseFromParent();
629 ReturnBB->eraseFromParent();
630 } else if (!TheCall->use_empty()) {
631 // No returns, but something is using the return value of the call. Just
632 // nuke the result.
633 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
636 // Since we are now done with the Call/Invoke, we can delete it.
637 TheCall->eraseFromParent();
639 // We should always be able to fold the entry block of the function into the
640 // single predecessor of the block...
641 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
642 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
644 // Splice the code entry block into calling block, right before the
645 // unconditional branch.
646 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
647 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
649 // Remove the unconditional branch.
650 OrigBB->getInstList().erase(Br);
652 // Now we can remove the CalleeEntry block, which is now empty.
653 Caller->getBasicBlockList().erase(CalleeEntry);
655 return true;