Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / Local.cpp
blob94483b816e3b524279d39c8787fe7cd4da7ca04a
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Support/MathExtras.h"
28 using namespace llvm;
30 //===----------------------------------------------------------------------===//
31 // Local constant propagation.
34 // ConstantFoldTerminator - If a terminator instruction is predicated on a
35 // constant value, convert it into an unconditional branch to the constant
36 // destination.
38 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
39 TerminatorInst *T = BB->getTerminator();
41 // Branch - See if we are conditional jumping on constant
42 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
43 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
44 BasicBlock *Dest1 = BI->getSuccessor(0);
45 BasicBlock *Dest2 = BI->getSuccessor(1);
47 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
48 // Are we branching on constant?
49 // YES. Change to unconditional branch...
50 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
51 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
53 //cerr << "Function: " << T->getParent()->getParent()
54 // << "\nRemoving branch from " << T->getParent()
55 // << "\n\nTo: " << OldDest << endl;
57 // Let the basic block know that we are letting go of it. Based on this,
58 // it will adjust it's PHI nodes.
59 assert(BI->getParent() && "Terminator not inserted in block!");
60 OldDest->removePredecessor(BI->getParent());
62 // Set the unconditional destination, and change the insn to be an
63 // unconditional branch.
64 BI->setUnconditionalDest(Destination);
65 return true;
66 } else if (Dest2 == Dest1) { // Conditional branch to same location?
67 // This branch matches something like this:
68 // br bool %cond, label %Dest, label %Dest
69 // and changes it into: br label %Dest
71 // Let the basic block know that we are letting go of one copy of it.
72 assert(BI->getParent() && "Terminator not inserted in block!");
73 Dest1->removePredecessor(BI->getParent());
75 // Change a conditional branch to unconditional.
76 BI->setUnconditionalDest(Dest1);
77 return true;
79 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
80 // If we are switching on a constant, we can convert the switch into a
81 // single branch instruction!
82 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
83 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
84 BasicBlock *DefaultDest = TheOnlyDest;
85 assert(TheOnlyDest == SI->getDefaultDest() &&
86 "Default destination is not successor #0?");
88 // Figure out which case it goes to...
89 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
90 // Found case matching a constant operand?
91 if (SI->getSuccessorValue(i) == CI) {
92 TheOnlyDest = SI->getSuccessor(i);
93 break;
96 // Check to see if this branch is going to the same place as the default
97 // dest. If so, eliminate it as an explicit compare.
98 if (SI->getSuccessor(i) == DefaultDest) {
99 // Remove this entry...
100 DefaultDest->removePredecessor(SI->getParent());
101 SI->removeCase(i);
102 --i; --e; // Don't skip an entry...
103 continue;
106 // Otherwise, check to see if the switch only branches to one destination.
107 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
108 // destinations.
109 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
112 if (CI && !TheOnlyDest) {
113 // Branching on a constant, but not any of the cases, go to the default
114 // successor.
115 TheOnlyDest = SI->getDefaultDest();
118 // If we found a single destination that we can fold the switch into, do so
119 // now.
120 if (TheOnlyDest) {
121 // Insert the new branch..
122 BranchInst::Create(TheOnlyDest, SI);
123 BasicBlock *BB = SI->getParent();
125 // Remove entries from PHI nodes which we no longer branch to...
126 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
127 // Found case matching a constant operand?
128 BasicBlock *Succ = SI->getSuccessor(i);
129 if (Succ == TheOnlyDest)
130 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
131 else
132 Succ->removePredecessor(BB);
135 // Delete the old switch...
136 BB->getInstList().erase(SI);
137 return true;
138 } else if (SI->getNumSuccessors() == 2) {
139 // Otherwise, we can fold this switch into a conditional branch
140 // instruction if it has only one non-default destination.
141 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
142 SI->getSuccessorValue(1), "cond", SI);
143 // Insert the new branch...
144 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
146 // Delete the old switch...
147 SI->eraseFromParent();
148 return true;
151 return false;
155 //===----------------------------------------------------------------------===//
156 // Local dead code elimination...
159 /// isInstructionTriviallyDead - Return true if the result produced by the
160 /// instruction is not used, and the instruction has no side effects.
162 bool llvm::isInstructionTriviallyDead(Instruction *I) {
163 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
165 // We don't want debug info removed by anything this general.
166 if (isa<DbgInfoIntrinsic>(I)) return false;
168 if (!I->mayHaveSideEffects()) return true;
170 // Special case intrinsics that "may have side effects" but can be deleted
171 // when dead.
172 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
173 // Safe to delete llvm.stacksave if dead.
174 if (II->getIntrinsicID() == Intrinsic::stacksave)
175 return true;
176 return false;
179 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
180 /// trivially dead instruction, delete it. If that makes any of its operands
181 /// trivially dead, delete them too, recursively.
182 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
183 Instruction *I = dyn_cast<Instruction>(V);
184 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
185 return;
187 SmallVector<Instruction*, 16> DeadInsts;
188 DeadInsts.push_back(I);
190 while (!DeadInsts.empty()) {
191 I = DeadInsts.pop_back_val();
193 // Null out all of the instruction's operands to see if any operand becomes
194 // dead as we go.
195 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
196 Value *OpV = I->getOperand(i);
197 I->setOperand(i, 0);
199 if (!OpV->use_empty()) continue;
201 // If the operand is an instruction that became dead as we nulled out the
202 // operand, and if it is 'trivially' dead, delete it in a future loop
203 // iteration.
204 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
205 if (isInstructionTriviallyDead(OpI))
206 DeadInsts.push_back(OpI);
209 I->eraseFromParent();
213 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
214 /// dead PHI node, due to being a def-use chain of single-use nodes that
215 /// either forms a cycle or is terminated by a trivially dead instruction,
216 /// delete it. If that makes any of its operands trivially dead, delete them
217 /// too, recursively.
218 void
219 llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
221 // We can remove a PHI if it is on a cycle in the def-use graph
222 // where each node in the cycle has degree one, i.e. only one use,
223 // and is an instruction with no side effects.
224 if (!PN->hasOneUse())
225 return;
227 SmallPtrSet<PHINode *, 4> PHIs;
228 PHIs.insert(PN);
229 for (Instruction *J = cast<Instruction>(*PN->use_begin());
230 J->hasOneUse() && !J->mayHaveSideEffects();
231 J = cast<Instruction>(*J->use_begin()))
232 // If we find a PHI more than once, we're on a cycle that
233 // won't prove fruitful.
234 if (PHINode *JP = dyn_cast<PHINode>(J))
235 if (!PHIs.insert(cast<PHINode>(JP))) {
236 // Break the cycle and delete the PHI and its operands.
237 JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
238 RecursivelyDeleteTriviallyDeadInstructions(JP);
239 break;
243 //===----------------------------------------------------------------------===//
244 // Control Flow Graph Restructuring...
247 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
248 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
249 /// between them, moving the instructions in the predecessor into DestBB and
250 /// deleting the predecessor block.
252 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
253 // If BB has single-entry PHI nodes, fold them.
254 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
255 Value *NewVal = PN->getIncomingValue(0);
256 // Replace self referencing PHI with undef, it must be dead.
257 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
258 PN->replaceAllUsesWith(NewVal);
259 PN->eraseFromParent();
262 BasicBlock *PredBB = DestBB->getSinglePredecessor();
263 assert(PredBB && "Block doesn't have a single predecessor!");
265 // Splice all the instructions from PredBB to DestBB.
266 PredBB->getTerminator()->eraseFromParent();
267 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
269 // Anything that branched to PredBB now branches to DestBB.
270 PredBB->replaceAllUsesWith(DestBB);
272 // Nuke BB.
273 PredBB->eraseFromParent();
276 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
277 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
278 /// with the DbgInfoIntrinsic that use the instruction I.
279 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
280 SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
281 if (DbgInUses)
282 DbgInUses->clear();
284 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
285 ++UI) {
286 if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
287 if (DbgInUses)
288 DbgInUses->push_back(DI);
289 } else {
290 if (DbgInUses)
291 DbgInUses->clear();
292 return false;
295 return true;
298 /// UserIsDebugInfo - Return true if U is a constant expr used by
299 /// llvm.dbg.variable or llvm.dbg.global_variable
300 bool llvm::UserIsDebugInfo(User *U) {
301 ConstantExpr *CE = dyn_cast<ConstantExpr>(U);
303 if (!CE || CE->getNumUses() != 1)
304 return false;
306 Constant *Init = dyn_cast<Constant>(CE->use_back());
307 if (!Init || Init->getNumUses() != 1)
308 return false;
310 GlobalVariable *GV = dyn_cast<GlobalVariable>(Init->use_back());
311 if (!GV || !GV->hasInitializer() || GV->getInitializer() != Init)
312 return false;
314 DIVariable DV(GV);
315 if (!DV.isNull())
316 return true; // User is llvm.dbg.variable
318 DIGlobalVariable DGV(GV);
319 if (!DGV.isNull())
320 return true; // User is llvm.dbg.global_variable
322 return false;
325 /// RemoveDbgInfoUser - Remove an User which is representing debug info.
326 void llvm::RemoveDbgInfoUser(User *U) {
327 assert (UserIsDebugInfo(U) && "Unexpected User!");
328 ConstantExpr *CE = cast<ConstantExpr>(U);
329 while (!CE->use_empty()) {
330 Constant *C = cast<Constant>(CE->use_back());
331 while (!C->use_empty()) {
332 GlobalVariable *GV = cast<GlobalVariable>(C->use_back());
333 GV->eraseFromParent();
335 C->destroyConstant();
337 CE->destroyConstant();