1 //===-- Local.cpp - Functions to perform local transformations ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform various local transformations to the
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Support/MathExtras.h"
30 //===----------------------------------------------------------------------===//
31 // Local constant propagation.
34 // ConstantFoldTerminator - If a terminator instruction is predicated on a
35 // constant value, convert it into an unconditional branch to the constant
38 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
) {
39 TerminatorInst
*T
= BB
->getTerminator();
41 // Branch - See if we are conditional jumping on constant
42 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
43 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
44 BasicBlock
*Dest1
= BI
->getSuccessor(0);
45 BasicBlock
*Dest2
= BI
->getSuccessor(1);
47 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
48 // Are we branching on constant?
49 // YES. Change to unconditional branch...
50 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
51 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
53 //cerr << "Function: " << T->getParent()->getParent()
54 // << "\nRemoving branch from " << T->getParent()
55 // << "\n\nTo: " << OldDest << endl;
57 // Let the basic block know that we are letting go of it. Based on this,
58 // it will adjust it's PHI nodes.
59 assert(BI
->getParent() && "Terminator not inserted in block!");
60 OldDest
->removePredecessor(BI
->getParent());
62 // Set the unconditional destination, and change the insn to be an
63 // unconditional branch.
64 BI
->setUnconditionalDest(Destination
);
66 } else if (Dest2
== Dest1
) { // Conditional branch to same location?
67 // This branch matches something like this:
68 // br bool %cond, label %Dest, label %Dest
69 // and changes it into: br label %Dest
71 // Let the basic block know that we are letting go of one copy of it.
72 assert(BI
->getParent() && "Terminator not inserted in block!");
73 Dest1
->removePredecessor(BI
->getParent());
75 // Change a conditional branch to unconditional.
76 BI
->setUnconditionalDest(Dest1
);
79 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(T
)) {
80 // If we are switching on a constant, we can convert the switch into a
81 // single branch instruction!
82 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
83 BasicBlock
*TheOnlyDest
= SI
->getSuccessor(0); // The default dest
84 BasicBlock
*DefaultDest
= TheOnlyDest
;
85 assert(TheOnlyDest
== SI
->getDefaultDest() &&
86 "Default destination is not successor #0?");
88 // Figure out which case it goes to...
89 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
90 // Found case matching a constant operand?
91 if (SI
->getSuccessorValue(i
) == CI
) {
92 TheOnlyDest
= SI
->getSuccessor(i
);
96 // Check to see if this branch is going to the same place as the default
97 // dest. If so, eliminate it as an explicit compare.
98 if (SI
->getSuccessor(i
) == DefaultDest
) {
99 // Remove this entry...
100 DefaultDest
->removePredecessor(SI
->getParent());
102 --i
; --e
; // Don't skip an entry...
106 // Otherwise, check to see if the switch only branches to one destination.
107 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
109 if (SI
->getSuccessor(i
) != TheOnlyDest
) TheOnlyDest
= 0;
112 if (CI
&& !TheOnlyDest
) {
113 // Branching on a constant, but not any of the cases, go to the default
115 TheOnlyDest
= SI
->getDefaultDest();
118 // If we found a single destination that we can fold the switch into, do so
121 // Insert the new branch..
122 BranchInst::Create(TheOnlyDest
, SI
);
123 BasicBlock
*BB
= SI
->getParent();
125 // Remove entries from PHI nodes which we no longer branch to...
126 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
127 // Found case matching a constant operand?
128 BasicBlock
*Succ
= SI
->getSuccessor(i
);
129 if (Succ
== TheOnlyDest
)
130 TheOnlyDest
= 0; // Don't modify the first branch to TheOnlyDest
132 Succ
->removePredecessor(BB
);
135 // Delete the old switch...
136 BB
->getInstList().erase(SI
);
138 } else if (SI
->getNumSuccessors() == 2) {
139 // Otherwise, we can fold this switch into a conditional branch
140 // instruction if it has only one non-default destination.
141 Value
*Cond
= new ICmpInst(ICmpInst::ICMP_EQ
, SI
->getCondition(),
142 SI
->getSuccessorValue(1), "cond", SI
);
143 // Insert the new branch...
144 BranchInst::Create(SI
->getSuccessor(1), SI
->getSuccessor(0), Cond
, SI
);
146 // Delete the old switch...
147 SI
->eraseFromParent();
155 //===----------------------------------------------------------------------===//
156 // Local dead code elimination...
159 /// isInstructionTriviallyDead - Return true if the result produced by the
160 /// instruction is not used, and the instruction has no side effects.
162 bool llvm::isInstructionTriviallyDead(Instruction
*I
) {
163 if (!I
->use_empty() || isa
<TerminatorInst
>(I
)) return false;
165 // We don't want debug info removed by anything this general.
166 if (isa
<DbgInfoIntrinsic
>(I
)) return false;
168 if (!I
->mayHaveSideEffects()) return true;
170 // Special case intrinsics that "may have side effects" but can be deleted
172 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
173 // Safe to delete llvm.stacksave if dead.
174 if (II
->getIntrinsicID() == Intrinsic::stacksave
)
179 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
180 /// trivially dead instruction, delete it. If that makes any of its operands
181 /// trivially dead, delete them too, recursively.
182 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value
*V
) {
183 Instruction
*I
= dyn_cast
<Instruction
>(V
);
184 if (!I
|| !I
->use_empty() || !isInstructionTriviallyDead(I
))
187 SmallVector
<Instruction
*, 16> DeadInsts
;
188 DeadInsts
.push_back(I
);
190 while (!DeadInsts
.empty()) {
191 I
= DeadInsts
.pop_back_val();
193 // Null out all of the instruction's operands to see if any operand becomes
195 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
196 Value
*OpV
= I
->getOperand(i
);
199 if (!OpV
->use_empty()) continue;
201 // If the operand is an instruction that became dead as we nulled out the
202 // operand, and if it is 'trivially' dead, delete it in a future loop
204 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
205 if (isInstructionTriviallyDead(OpI
))
206 DeadInsts
.push_back(OpI
);
209 I
->eraseFromParent();
213 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
214 /// dead PHI node, due to being a def-use chain of single-use nodes that
215 /// either forms a cycle or is terminated by a trivially dead instruction,
216 /// delete it. If that makes any of its operands trivially dead, delete them
217 /// too, recursively.
219 llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
) {
221 // We can remove a PHI if it is on a cycle in the def-use graph
222 // where each node in the cycle has degree one, i.e. only one use,
223 // and is an instruction with no side effects.
224 if (!PN
->hasOneUse())
227 SmallPtrSet
<PHINode
*, 4> PHIs
;
229 for (Instruction
*J
= cast
<Instruction
>(*PN
->use_begin());
230 J
->hasOneUse() && !J
->mayHaveSideEffects();
231 J
= cast
<Instruction
>(*J
->use_begin()))
232 // If we find a PHI more than once, we're on a cycle that
233 // won't prove fruitful.
234 if (PHINode
*JP
= dyn_cast
<PHINode
>(J
))
235 if (!PHIs
.insert(cast
<PHINode
>(JP
))) {
236 // Break the cycle and delete the PHI and its operands.
237 JP
->replaceAllUsesWith(UndefValue::get(JP
->getType()));
238 RecursivelyDeleteTriviallyDeadInstructions(JP
);
243 //===----------------------------------------------------------------------===//
244 // Control Flow Graph Restructuring...
247 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
248 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
249 /// between them, moving the instructions in the predecessor into DestBB and
250 /// deleting the predecessor block.
252 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
) {
253 // If BB has single-entry PHI nodes, fold them.
254 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
255 Value
*NewVal
= PN
->getIncomingValue(0);
256 // Replace self referencing PHI with undef, it must be dead.
257 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
258 PN
->replaceAllUsesWith(NewVal
);
259 PN
->eraseFromParent();
262 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
263 assert(PredBB
&& "Block doesn't have a single predecessor!");
265 // Splice all the instructions from PredBB to DestBB.
266 PredBB
->getTerminator()->eraseFromParent();
267 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
269 // Anything that branched to PredBB now branches to DestBB.
270 PredBB
->replaceAllUsesWith(DestBB
);
273 PredBB
->eraseFromParent();
276 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
277 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
278 /// with the DbgInfoIntrinsic that use the instruction I.
279 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction
*I
,
280 SmallVectorImpl
<DbgInfoIntrinsic
*> *DbgInUses
) {
284 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end(); UI
!= UE
;
286 if (DbgInfoIntrinsic
*DI
= dyn_cast
<DbgInfoIntrinsic
>(*UI
)) {
288 DbgInUses
->push_back(DI
);
298 /// UserIsDebugInfo - Return true if U is a constant expr used by
299 /// llvm.dbg.variable or llvm.dbg.global_variable
300 bool llvm::UserIsDebugInfo(User
*U
) {
301 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
);
303 if (!CE
|| CE
->getNumUses() != 1)
306 Constant
*Init
= dyn_cast
<Constant
>(CE
->use_back());
307 if (!Init
|| Init
->getNumUses() != 1)
310 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Init
->use_back());
311 if (!GV
|| !GV
->hasInitializer() || GV
->getInitializer() != Init
)
316 return true; // User is llvm.dbg.variable
318 DIGlobalVariable
DGV(GV
);
320 return true; // User is llvm.dbg.global_variable
325 /// RemoveDbgInfoUser - Remove an User which is representing debug info.
326 void llvm::RemoveDbgInfoUser(User
*U
) {
327 assert (UserIsDebugInfo(U
) && "Unexpected User!");
328 ConstantExpr
*CE
= cast
<ConstantExpr
>(U
);
329 while (!CE
->use_empty()) {
330 Constant
*C
= cast
<Constant
>(CE
->use_back());
331 while (!C
->use_empty()) {
332 GlobalVariable
*GV
= cast
<GlobalVariable
>(C
->use_back());
333 GV
->eraseFromParent();
335 C
->destroyConstant();
337 CE
->destroyConstant();