Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / LoopSimplify.cpp
blob03d273d25d791591bcab11f608e41c81bd6cc647
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Note that the simplifycfg pass will clean up blocks which are split out but
27 // end up being unnecessary, so usage of this pass should not pessimize
28 // generated code.
30 // This pass obviously modifies the CFG, but updates loop information and
31 // dominator information.
33 //===----------------------------------------------------------------------===//
35 #define DEBUG_TYPE "loopsimplify"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Constants.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Function.h"
40 #include "llvm/Type.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/Dominators.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Support/CFG.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/ADT/SetOperations.h"
48 #include "llvm/ADT/SetVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/DepthFirstIterator.h"
51 using namespace llvm;
53 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
54 STATISTIC(NumNested , "Number of nested loops split out");
56 namespace {
57 struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
58 static char ID; // Pass identification, replacement for typeid
59 LoopSimplify() : FunctionPass(&ID) {}
61 // AA - If we have an alias analysis object to update, this is it, otherwise
62 // this is null.
63 AliasAnalysis *AA;
64 LoopInfo *LI;
65 DominatorTree *DT;
66 virtual bool runOnFunction(Function &F);
68 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69 // We need loop information to identify the loops...
70 AU.addRequired<LoopInfo>();
71 AU.addRequired<DominatorTree>();
73 AU.addPreserved<LoopInfo>();
74 AU.addPreserved<DominatorTree>();
75 AU.addPreserved<DominanceFrontier>();
76 AU.addPreserved<AliasAnalysis>();
77 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
80 /// verifyAnalysis() - Verify loop nest.
81 void verifyAnalysis() const {
82 #ifndef NDEBUG
83 LoopInfo *NLI = &getAnalysis<LoopInfo>();
84 for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
85 (*I)->verifyLoop();
86 #endif
89 private:
90 bool ProcessLoop(Loop *L);
91 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
92 void InsertPreheaderForLoop(Loop *L);
93 Loop *SeparateNestedLoop(Loop *L);
94 void InsertUniqueBackedgeBlock(Loop *L);
95 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
96 SmallVectorImpl<BasicBlock*> &SplitPreds,
97 Loop *L);
101 char LoopSimplify::ID = 0;
102 static RegisterPass<LoopSimplify>
103 X("loopsimplify", "Canonicalize natural loops", true);
105 // Publically exposed interface to pass...
106 const PassInfo *const llvm::LoopSimplifyID = &X;
107 FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
109 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
110 /// it in any convenient order) inserting preheaders...
112 bool LoopSimplify::runOnFunction(Function &F) {
113 bool Changed = false;
114 LI = &getAnalysis<LoopInfo>();
115 AA = getAnalysisIfAvailable<AliasAnalysis>();
116 DT = &getAnalysis<DominatorTree>();
118 // Check to see that no blocks (other than the header) in loops have
119 // predecessors that are not in loops. This is not valid for natural loops,
120 // but can occur if the blocks are unreachable. Since they are unreachable we
121 // can just shamelessly destroy their terminators to make them not branch into
122 // the loop!
123 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
124 // This case can only occur for unreachable blocks. Blocks that are
125 // unreachable can't be in loops, so filter those blocks out.
126 if (LI->getLoopFor(BB)) continue;
128 bool BlockUnreachable = false;
129 TerminatorInst *TI = BB->getTerminator();
131 // Check to see if any successors of this block are non-loop-header loops
132 // that are not the header.
133 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
134 // If this successor is not in a loop, BB is clearly ok.
135 Loop *L = LI->getLoopFor(TI->getSuccessor(i));
136 if (!L) continue;
138 // If the succ is the loop header, and if L is a top-level loop, then this
139 // is an entrance into a loop through the header, which is also ok.
140 if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
141 continue;
143 // Otherwise, this is an entrance into a loop from some place invalid.
144 // Either the loop structure is invalid and this is not a natural loop (in
145 // which case the compiler is buggy somewhere else) or BB is unreachable.
146 BlockUnreachable = true;
147 break;
150 // If this block is ok, check the next one.
151 if (!BlockUnreachable) continue;
153 // Otherwise, this block is dead. To clean up the CFG and to allow later
154 // loop transformations to ignore this case, we delete the edges into the
155 // loop by replacing the terminator.
157 // Remove PHI entries from the successors.
158 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
159 TI->getSuccessor(i)->removePredecessor(BB);
161 // Add a new unreachable instruction before the old terminator.
162 new UnreachableInst(TI);
164 // Delete the dead terminator.
165 if (AA) AA->deleteValue(TI);
166 if (!TI->use_empty())
167 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
168 TI->eraseFromParent();
169 Changed |= true;
172 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
173 Changed |= ProcessLoop(*I);
175 return Changed;
178 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
179 /// all loops have preheaders.
181 bool LoopSimplify::ProcessLoop(Loop *L) {
182 bool Changed = false;
183 ReprocessLoop:
185 // Canonicalize inner loops before outer loops. Inner loop canonicalization
186 // can provide work for the outer loop to canonicalize.
187 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
188 Changed |= ProcessLoop(*I);
190 assert(L->getBlocks()[0] == L->getHeader() &&
191 "Header isn't first block in loop?");
193 // Does the loop already have a preheader? If so, don't insert one.
194 if (L->getLoopPreheader() == 0) {
195 InsertPreheaderForLoop(L);
196 NumInserted++;
197 Changed = true;
200 // Next, check to make sure that all exit nodes of the loop only have
201 // predecessors that are inside of the loop. This check guarantees that the
202 // loop preheader/header will dominate the exit blocks. If the exit block has
203 // predecessors from outside of the loop, split the edge now.
204 SmallVector<BasicBlock*, 8> ExitBlocks;
205 L->getExitBlocks(ExitBlocks);
207 SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
208 for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
209 E = ExitBlockSet.end(); I != E; ++I) {
210 BasicBlock *ExitBlock = *I;
211 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
212 PI != PE; ++PI)
213 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
214 // allowed.
215 if (!L->contains(*PI)) {
216 RewriteLoopExitBlock(L, ExitBlock);
217 NumInserted++;
218 Changed = true;
219 break;
223 // If the header has more than two predecessors at this point (from the
224 // preheader and from multiple backedges), we must adjust the loop.
225 unsigned NumBackedges = L->getNumBackEdges();
226 if (NumBackedges != 1) {
227 // If this is really a nested loop, rip it out into a child loop. Don't do
228 // this for loops with a giant number of backedges, just factor them into a
229 // common backedge instead.
230 if (NumBackedges < 8) {
231 if (Loop *NL = SeparateNestedLoop(L)) {
232 ++NumNested;
233 // This is a big restructuring change, reprocess the whole loop.
234 ProcessLoop(NL);
235 Changed = true;
236 // GCC doesn't tail recursion eliminate this.
237 goto ReprocessLoop;
241 // If we either couldn't, or didn't want to, identify nesting of the loops,
242 // insert a new block that all backedges target, then make it jump to the
243 // loop header.
244 InsertUniqueBackedgeBlock(L);
245 NumInserted++;
246 Changed = true;
249 // Scan over the PHI nodes in the loop header. Since they now have only two
250 // incoming values (the loop is canonicalized), we may have simplified the PHI
251 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
252 PHINode *PN;
253 for (BasicBlock::iterator I = L->getHeader()->begin();
254 (PN = dyn_cast<PHINode>(I++)); )
255 if (Value *V = PN->hasConstantValue()) {
256 if (AA) AA->deleteValue(PN);
257 PN->replaceAllUsesWith(V);
258 PN->eraseFromParent();
261 return Changed;
264 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
265 /// preheader, this method is called to insert one. This method has two phases:
266 /// preheader insertion and analysis updating.
268 void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
269 BasicBlock *Header = L->getHeader();
271 // Compute the set of predecessors of the loop that are not in the loop.
272 SmallVector<BasicBlock*, 8> OutsideBlocks;
273 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
274 PI != PE; ++PI)
275 if (!L->contains(*PI)) // Coming in from outside the loop?
276 OutsideBlocks.push_back(*PI); // Keep track of it...
278 // Split out the loop pre-header.
279 BasicBlock *NewBB =
280 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
281 ".preheader", this);
284 //===--------------------------------------------------------------------===//
285 // Update analysis results now that we have performed the transformation
288 // We know that we have loop information to update... update it now.
289 if (Loop *Parent = L->getParentLoop())
290 Parent->addBasicBlockToLoop(NewBB, LI->getBase());
292 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
293 // code layout too horribly.
294 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
297 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
298 /// blocks. This method is used to split exit blocks that have predecessors
299 /// outside of the loop.
300 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
301 SmallVector<BasicBlock*, 8> LoopBlocks;
302 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
303 if (L->contains(*I))
304 LoopBlocks.push_back(*I);
306 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
307 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
308 LoopBlocks.size(), ".loopexit",
309 this);
311 // Update Loop Information - we know that the new block will be in whichever
312 // loop the Exit block is in. Note that it may not be in that immediate loop,
313 // if the successor is some other loop header. In that case, we continue
314 // walking up the loop tree to find a loop that contains both the successor
315 // block and the predecessor block.
316 Loop *SuccLoop = LI->getLoopFor(Exit);
317 while (SuccLoop && !SuccLoop->contains(L->getHeader()))
318 SuccLoop = SuccLoop->getParentLoop();
319 if (SuccLoop)
320 SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase());
322 return NewBB;
325 /// AddBlockAndPredsToSet - Add the specified block, and all of its
326 /// predecessors, to the specified set, if it's not already in there. Stop
327 /// predecessor traversal when we reach StopBlock.
328 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
329 std::set<BasicBlock*> &Blocks) {
330 std::vector<BasicBlock *> WorkList;
331 WorkList.push_back(InputBB);
332 do {
333 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
334 if (Blocks.insert(BB).second && BB != StopBlock)
335 // If BB is not already processed and it is not a stop block then
336 // insert its predecessor in the work list
337 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
338 BasicBlock *WBB = *I;
339 WorkList.push_back(WBB);
341 } while(!WorkList.empty());
344 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
345 /// PHI node that tells us how to partition the loops.
346 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
347 AliasAnalysis *AA) {
348 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
349 PHINode *PN = cast<PHINode>(I);
350 ++I;
351 if (Value *V = PN->hasConstantValue())
352 if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) {
353 // This is a degenerate PHI already, don't modify it!
354 PN->replaceAllUsesWith(V);
355 if (AA) AA->deleteValue(PN);
356 PN->eraseFromParent();
357 continue;
360 // Scan this PHI node looking for a use of the PHI node by itself.
361 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
362 if (PN->getIncomingValue(i) == PN &&
363 L->contains(PN->getIncomingBlock(i)))
364 // We found something tasty to remove.
365 return PN;
367 return 0;
370 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
371 // right after some 'outside block' block. This prevents the preheader from
372 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
373 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
374 SmallVectorImpl<BasicBlock*> &SplitPreds,
375 Loop *L) {
376 // Check to see if NewBB is already well placed.
377 Function::iterator BBI = NewBB; --BBI;
378 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
379 if (&*BBI == SplitPreds[i])
380 return;
383 // If it isn't already after an outside block, move it after one. This is
384 // always good as it makes the uncond branch from the outside block into a
385 // fall-through.
387 // Figure out *which* outside block to put this after. Prefer an outside
388 // block that neighbors a BB actually in the loop.
389 BasicBlock *FoundBB = 0;
390 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
391 Function::iterator BBI = SplitPreds[i];
392 if (++BBI != NewBB->getParent()->end() &&
393 L->contains(BBI)) {
394 FoundBB = SplitPreds[i];
395 break;
399 // If our heuristic for a *good* bb to place this after doesn't find
400 // anything, just pick something. It's likely better than leaving it within
401 // the loop.
402 if (!FoundBB)
403 FoundBB = SplitPreds[0];
404 NewBB->moveAfter(FoundBB);
408 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
409 /// them out into a nested loop. This is important for code that looks like
410 /// this:
412 /// Loop:
413 /// ...
414 /// br cond, Loop, Next
415 /// ...
416 /// br cond2, Loop, Out
418 /// To identify this common case, we look at the PHI nodes in the header of the
419 /// loop. PHI nodes with unchanging values on one backedge correspond to values
420 /// that change in the "outer" loop, but not in the "inner" loop.
422 /// If we are able to separate out a loop, return the new outer loop that was
423 /// created.
425 Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
426 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
427 if (PN == 0) return 0; // No known way to partition.
429 // Pull out all predecessors that have varying values in the loop. This
430 // handles the case when a PHI node has multiple instances of itself as
431 // arguments.
432 SmallVector<BasicBlock*, 8> OuterLoopPreds;
433 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
434 if (PN->getIncomingValue(i) != PN ||
435 !L->contains(PN->getIncomingBlock(i)))
436 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
438 BasicBlock *Header = L->getHeader();
439 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
440 OuterLoopPreds.size(),
441 ".outer", this);
443 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
444 // code layout too horribly.
445 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
447 // Create the new outer loop.
448 Loop *NewOuter = new Loop();
450 // Change the parent loop to use the outer loop as its child now.
451 if (Loop *Parent = L->getParentLoop())
452 Parent->replaceChildLoopWith(L, NewOuter);
453 else
454 LI->changeTopLevelLoop(L, NewOuter);
456 // This block is going to be our new header block: add it to this loop and all
457 // parent loops.
458 NewOuter->addBasicBlockToLoop(NewBB, LI->getBase());
460 // L is now a subloop of our outer loop.
461 NewOuter->addChildLoop(L);
463 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
464 I != E; ++I)
465 NewOuter->addBlockEntry(*I);
467 // Determine which blocks should stay in L and which should be moved out to
468 // the Outer loop now.
469 std::set<BasicBlock*> BlocksInL;
470 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
471 if (DT->dominates(Header, *PI))
472 AddBlockAndPredsToSet(*PI, Header, BlocksInL);
475 // Scan all of the loop children of L, moving them to OuterLoop if they are
476 // not part of the inner loop.
477 const std::vector<Loop*> &SubLoops = L->getSubLoops();
478 for (size_t I = 0; I != SubLoops.size(); )
479 if (BlocksInL.count(SubLoops[I]->getHeader()))
480 ++I; // Loop remains in L
481 else
482 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
484 // Now that we know which blocks are in L and which need to be moved to
485 // OuterLoop, move any blocks that need it.
486 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
487 BasicBlock *BB = L->getBlocks()[i];
488 if (!BlocksInL.count(BB)) {
489 // Move this block to the parent, updating the exit blocks sets
490 L->removeBlockFromLoop(BB);
491 if ((*LI)[BB] == L)
492 LI->changeLoopFor(BB, NewOuter);
493 --i;
497 return NewOuter;
502 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
503 /// has more than one backedge in it. If this occurs, revector all of these
504 /// backedges to target a new basic block and have that block branch to the loop
505 /// header. This ensures that loops have exactly one backedge.
507 void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
508 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
510 // Get information about the loop
511 BasicBlock *Preheader = L->getLoopPreheader();
512 BasicBlock *Header = L->getHeader();
513 Function *F = Header->getParent();
515 // Figure out which basic blocks contain back-edges to the loop header.
516 std::vector<BasicBlock*> BackedgeBlocks;
517 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
518 if (*I != Preheader) BackedgeBlocks.push_back(*I);
520 // Create and insert the new backedge block...
521 BasicBlock *BEBlock = BasicBlock::Create(Header->getName()+".backedge", F);
522 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
524 // Move the new backedge block to right after the last backedge block.
525 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
526 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
528 // Now that the block has been inserted into the function, create PHI nodes in
529 // the backedge block which correspond to any PHI nodes in the header block.
530 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
531 PHINode *PN = cast<PHINode>(I);
532 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
533 BETerminator);
534 NewPN->reserveOperandSpace(BackedgeBlocks.size());
535 if (AA) AA->copyValue(PN, NewPN);
537 // Loop over the PHI node, moving all entries except the one for the
538 // preheader over to the new PHI node.
539 unsigned PreheaderIdx = ~0U;
540 bool HasUniqueIncomingValue = true;
541 Value *UniqueValue = 0;
542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543 BasicBlock *IBB = PN->getIncomingBlock(i);
544 Value *IV = PN->getIncomingValue(i);
545 if (IBB == Preheader) {
546 PreheaderIdx = i;
547 } else {
548 NewPN->addIncoming(IV, IBB);
549 if (HasUniqueIncomingValue) {
550 if (UniqueValue == 0)
551 UniqueValue = IV;
552 else if (UniqueValue != IV)
553 HasUniqueIncomingValue = false;
558 // Delete all of the incoming values from the old PN except the preheader's
559 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
560 if (PreheaderIdx != 0) {
561 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
562 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
564 // Nuke all entries except the zero'th.
565 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
566 PN->removeIncomingValue(e-i, false);
568 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
569 PN->addIncoming(NewPN, BEBlock);
571 // As an optimization, if all incoming values in the new PhiNode (which is a
572 // subset of the incoming values of the old PHI node) have the same value,
573 // eliminate the PHI Node.
574 if (HasUniqueIncomingValue) {
575 NewPN->replaceAllUsesWith(UniqueValue);
576 if (AA) AA->deleteValue(NewPN);
577 BEBlock->getInstList().erase(NewPN);
581 // Now that all of the PHI nodes have been inserted and adjusted, modify the
582 // backedge blocks to just to the BEBlock instead of the header.
583 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
584 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
585 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
586 if (TI->getSuccessor(Op) == Header)
587 TI->setSuccessor(Op, BEBlock);
590 //===--- Update all analyses which we must preserve now -----------------===//
592 // Update Loop Information - we know that this block is now in the current
593 // loop and all parent loops.
594 L->addBasicBlockToLoop(BEBlock, LI->getBase());
596 // Update dominator information
597 DT->splitBlock(BEBlock);
598 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
599 DF->splitBlock(BEBlock);