1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Intrinsics.h"
43 #include "llvm/Module.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Target/TargetLowering.h"
55 STATISTIC(NumInvokes
, "Number of invokes replaced");
56 STATISTIC(NumUnwinds
, "Number of unwinds replaced");
57 STATISTIC(NumSpilled
, "Number of registers live across unwind edges");
59 static cl::opt
<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
63 class VISIBILITY_HIDDEN LowerInvoke
: public FunctionPass
{
64 // Used for both models.
68 unsigned AbortMessageLength
;
70 // Used for expensive EH support.
72 GlobalVariable
*JBListHead
;
73 Constant
*SetJmpFn
, *LongJmpFn
;
75 // We peek in TLI to grab the target's jmp_buf size and alignment
76 const TargetLowering
*TLI
;
79 static char ID
; // Pass identification, replacement for typeid
80 explicit LowerInvoke(const TargetLowering
*tli
= NULL
)
81 : FunctionPass(&ID
), TLI(tli
) { }
82 bool doInitialization(Module
&M
);
83 bool runOnFunction(Function
&F
);
85 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
86 // This is a cluster of orthogonal Transforms
87 AU
.addPreservedID(PromoteMemoryToRegisterID
);
88 AU
.addPreservedID(LowerSwitchID
);
89 AU
.addPreservedID(LowerAllocationsID
);
93 void createAbortMessage(Module
*M
);
94 void writeAbortMessage(Instruction
*IB
);
95 bool insertCheapEHSupport(Function
&F
);
96 void splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
);
97 void rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
98 AllocaInst
*InvokeNum
, SwitchInst
*CatchSwitch
);
99 bool insertExpensiveEHSupport(Function
&F
);
103 char LowerInvoke::ID
= 0;
104 static RegisterPass
<LowerInvoke
>
105 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
107 const PassInfo
*const llvm::LowerInvokePassID
= &X
;
109 // Public Interface To the LowerInvoke pass.
110 FunctionPass
*llvm::createLowerInvokePass(const TargetLowering
*TLI
) {
111 return new LowerInvoke(TLI
);
114 // doInitialization - Make sure that there is a prototype for abort in the
116 bool LowerInvoke::doInitialization(Module
&M
) {
117 const Type
*VoidPtrTy
= PointerType::getUnqual(Type::Int8Ty
);
119 if (ExpensiveEHSupport
) {
120 // Insert a type for the linked list of jump buffers.
121 unsigned JBSize
= TLI
? TLI
->getJumpBufSize() : 0;
122 JBSize
= JBSize
? JBSize
: 200;
123 const Type
*JmpBufTy
= ArrayType::get(VoidPtrTy
, JBSize
);
125 { // The type is recursive, so use a type holder.
126 std::vector
<const Type
*> Elements
;
127 Elements
.push_back(JmpBufTy
);
128 OpaqueType
*OT
= OpaqueType::get();
129 Elements
.push_back(PointerType::getUnqual(OT
));
130 PATypeHolder
JBLType(StructType::get(Elements
));
131 OT
->refineAbstractTypeTo(JBLType
.get()); // Complete the cycle.
132 JBLinkTy
= JBLType
.get();
133 M
.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy
);
136 const Type
*PtrJBList
= PointerType::getUnqual(JBLinkTy
);
138 // Now that we've done that, insert the jmpbuf list head global, unless it
140 if (!(JBListHead
= M
.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList
))) {
141 JBListHead
= new GlobalVariable(PtrJBList
, false,
142 GlobalValue::LinkOnceAnyLinkage
,
143 Constant::getNullValue(PtrJBList
),
144 "llvm.sjljeh.jblist", &M
);
147 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
148 // so it looks like Intrinsic::_setjmp
149 #if defined(_MSC_VER) && defined(setjmp)
150 #define setjmp_undefined_for_visual_studio
154 SetJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::setjmp
);
156 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
157 // let's return it to _setjmp state in case anyone ever needs it after this
158 // point under VisualStudio
159 #define setjmp _setjmp
162 LongJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::longjmp
);
165 // We need the 'write' and 'abort' functions for both models.
166 AbortFn
= M
.getOrInsertFunction("abort", Type::VoidTy
, (Type
*)0);
167 #if 0 // "write" is Unix-specific.. code is going away soon anyway.
168 WriteFn
= M
.getOrInsertFunction("write", Type::VoidTy
, Type::Int32Ty
,
169 VoidPtrTy
, Type::Int32Ty
, (Type
*)0);
176 void LowerInvoke::createAbortMessage(Module
*M
) {
177 if (ExpensiveEHSupport
) {
178 // The abort message for expensive EH support tells the user that the
179 // program 'unwound' without an 'invoke' instruction.
181 ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
182 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
184 GlobalVariable
*MsgGV
= new GlobalVariable(Msg
->getType(), true,
185 GlobalValue::InternalLinkage
,
187 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty
));
188 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, &GEPIdx
[0], 2);
190 // The abort message for cheap EH support tells the user that EH is not
193 ConstantArray::get("Exception handler needed, but not enabled. Recompile"
194 " program with -enable-correct-eh-support.\n");
195 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
197 GlobalVariable
*MsgGV
= new GlobalVariable(Msg
->getType(), true,
198 GlobalValue::InternalLinkage
,
200 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty
));
201 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, &GEPIdx
[0], 2);
206 void LowerInvoke::writeAbortMessage(Instruction
*IB
) {
208 if (AbortMessage
== 0)
209 createAbortMessage(IB
->getParent()->getParent()->getParent());
211 // These are the arguments we WANT...
213 Args
[0] = ConstantInt::get(Type::Int32Ty
, 2);
214 Args
[1] = AbortMessage
;
215 Args
[2] = ConstantInt::get(Type::Int32Ty
, AbortMessageLength
);
216 (new CallInst(WriteFn
, Args
, 3, "", IB
))->setTailCall();
220 bool LowerInvoke::insertCheapEHSupport(Function
&F
) {
221 bool Changed
= false;
222 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
223 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
224 std::vector
<Value
*> CallArgs(II
->op_begin()+3, II
->op_end());
225 // Insert a normal call instruction...
226 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
227 CallArgs
.begin(), CallArgs
.end(), "",II
);
228 NewCall
->takeName(II
);
229 NewCall
->setCallingConv(II
->getCallingConv());
230 NewCall
->setAttributes(II
->getAttributes());
231 II
->replaceAllUsesWith(NewCall
);
233 // Insert an unconditional branch to the normal destination.
234 BranchInst::Create(II
->getNormalDest(), II
);
236 // Remove any PHI node entries from the exception destination.
237 II
->getUnwindDest()->removePredecessor(BB
);
239 // Remove the invoke instruction now.
240 BB
->getInstList().erase(II
);
242 ++NumInvokes
; Changed
= true;
243 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
244 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
245 writeAbortMessage(UI
);
247 // Insert a call to abort()
248 CallInst::Create(AbortFn
, "", UI
)->setTailCall();
250 // Insert a return instruction. This really should be a "barrier", as it
252 ReturnInst::Create(F
.getReturnType() == Type::VoidTy
? 0 :
253 Constant::getNullValue(F
.getReturnType()), UI
);
255 // Remove the unwind instruction now.
256 BB
->getInstList().erase(UI
);
258 ++NumUnwinds
; Changed
= true;
263 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
264 /// specified invoke instruction with a call.
265 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
266 AllocaInst
*InvokeNum
,
267 SwitchInst
*CatchSwitch
) {
268 ConstantInt
*InvokeNoC
= ConstantInt::get(Type::Int32Ty
, InvokeNo
);
270 // If the unwind edge has phi nodes, split the edge.
271 if (isa
<PHINode
>(II
->getUnwindDest()->begin())) {
272 SplitCriticalEdge(II
, 1, this);
274 // If there are any phi nodes left, they must have a single predecessor.
275 while (PHINode
*PN
= dyn_cast
<PHINode
>(II
->getUnwindDest()->begin())) {
276 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
277 PN
->eraseFromParent();
281 // Insert a store of the invoke num before the invoke and store zero into the
282 // location afterward.
283 new StoreInst(InvokeNoC
, InvokeNum
, true, II
); // volatile
285 BasicBlock::iterator NI
= II
->getNormalDest()->getFirstNonPHI();
287 new StoreInst(Constant::getNullValue(Type::Int32Ty
), InvokeNum
, false, NI
);
289 // Add a switch case to our unwind block.
290 CatchSwitch
->addCase(InvokeNoC
, II
->getUnwindDest());
292 // Insert a normal call instruction.
293 std::vector
<Value
*> CallArgs(II
->op_begin()+3, II
->op_end());
294 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
295 CallArgs
.begin(), CallArgs
.end(), "",
297 NewCall
->takeName(II
);
298 NewCall
->setCallingConv(II
->getCallingConv());
299 NewCall
->setAttributes(II
->getAttributes());
300 II
->replaceAllUsesWith(NewCall
);
302 // Replace the invoke with an uncond branch.
303 BranchInst::Create(II
->getNormalDest(), NewCall
->getParent());
304 II
->eraseFromParent();
307 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
308 /// we reach blocks we've already seen.
309 static void MarkBlocksLiveIn(BasicBlock
*BB
, std::set
<BasicBlock
*> &LiveBBs
) {
310 if (!LiveBBs
.insert(BB
).second
) return; // already been here.
312 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
313 MarkBlocksLiveIn(*PI
, LiveBBs
);
316 // First thing we need to do is scan the whole function for values that are
317 // live across unwind edges. Each value that is live across an unwind edge
318 // we spill into a stack location, guaranteeing that there is nothing live
319 // across the unwind edge. This process also splits all critical edges
320 // coming out of invoke's.
322 splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
) {
323 // First step, split all critical edges from invoke instructions.
324 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
325 InvokeInst
*II
= Invokes
[i
];
326 SplitCriticalEdge(II
, 0, this);
327 SplitCriticalEdge(II
, 1, this);
328 assert(!isa
<PHINode
>(II
->getNormalDest()) &&
329 !isa
<PHINode
>(II
->getUnwindDest()) &&
330 "critical edge splitting left single entry phi nodes?");
333 Function
*F
= Invokes
.back()->getParent()->getParent();
335 // To avoid having to handle incoming arguments specially, we lower each arg
336 // to a copy instruction in the entry block. This ensures that the argument
337 // value itself cannot be live across the entry block.
338 BasicBlock::iterator AfterAllocaInsertPt
= F
->begin()->begin();
339 while (isa
<AllocaInst
>(AfterAllocaInsertPt
) &&
340 isa
<ConstantInt
>(cast
<AllocaInst
>(AfterAllocaInsertPt
)->getArraySize()))
341 ++AfterAllocaInsertPt
;
342 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
344 // This is always a no-op cast because we're casting AI to AI->getType() so
345 // src and destination types are identical. BitCast is the only possibility.
346 CastInst
*NC
= new BitCastInst(
347 AI
, AI
->getType(), AI
->getName()+".tmp", AfterAllocaInsertPt
);
348 AI
->replaceAllUsesWith(NC
);
349 // Normally its is forbidden to replace a CastInst's operand because it
350 // could cause the opcode to reflect an illegal conversion. However, we're
351 // replacing it here with the same value it was constructed with to simply
353 NC
->setOperand(0, AI
);
356 // Finally, scan the code looking for instructions with bad live ranges.
357 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
358 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
359 // Ignore obvious cases we don't have to handle. In particular, most
360 // instructions either have no uses or only have a single use inside the
361 // current block. Ignore them quickly.
362 Instruction
*Inst
= II
;
363 if (Inst
->use_empty()) continue;
364 if (Inst
->hasOneUse() &&
365 cast
<Instruction
>(Inst
->use_back())->getParent() == BB
&&
366 !isa
<PHINode
>(Inst
->use_back())) continue;
368 // If this is an alloca in the entry block, it's not a real register
370 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
371 if (isa
<ConstantInt
>(AI
->getArraySize()) && BB
== F
->begin())
374 // Avoid iterator invalidation by copying users to a temporary vector.
375 std::vector
<Instruction
*> Users
;
376 for (Value::use_iterator UI
= Inst
->use_begin(), E
= Inst
->use_end();
378 Instruction
*User
= cast
<Instruction
>(*UI
);
379 if (User
->getParent() != BB
|| isa
<PHINode
>(User
))
380 Users
.push_back(User
);
383 // Scan all of the uses and see if the live range is live across an unwind
384 // edge. If we find a use live across an invoke edge, create an alloca
385 // and spill the value.
386 std::set
<InvokeInst
*> InvokesWithStoreInserted
;
388 // Find all of the blocks that this value is live in.
389 std::set
<BasicBlock
*> LiveBBs
;
390 LiveBBs
.insert(Inst
->getParent());
391 while (!Users
.empty()) {
392 Instruction
*U
= Users
.back();
395 if (!isa
<PHINode
>(U
)) {
396 MarkBlocksLiveIn(U
->getParent(), LiveBBs
);
398 // Uses for a PHI node occur in their predecessor block.
399 PHINode
*PN
= cast
<PHINode
>(U
);
400 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
401 if (PN
->getIncomingValue(i
) == Inst
)
402 MarkBlocksLiveIn(PN
->getIncomingBlock(i
), LiveBBs
);
406 // Now that we know all of the blocks that this thing is live in, see if
407 // it includes any of the unwind locations.
408 bool NeedsSpill
= false;
409 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
410 BasicBlock
*UnwindBlock
= Invokes
[i
]->getUnwindDest();
411 if (UnwindBlock
!= BB
&& LiveBBs
.count(UnwindBlock
)) {
416 // If we decided we need a spill, do it.
419 DemoteRegToStack(*Inst
, true);
424 bool LowerInvoke::insertExpensiveEHSupport(Function
&F
) {
425 std::vector
<ReturnInst
*> Returns
;
426 std::vector
<UnwindInst
*> Unwinds
;
427 std::vector
<InvokeInst
*> Invokes
;
429 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
430 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
431 // Remember all return instructions in case we insert an invoke into this
433 Returns
.push_back(RI
);
434 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
435 Invokes
.push_back(II
);
436 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
437 Unwinds
.push_back(UI
);
440 if (Unwinds
.empty() && Invokes
.empty()) return false;
442 NumInvokes
+= Invokes
.size();
443 NumUnwinds
+= Unwinds
.size();
445 // TODO: This is not an optimal way to do this. In particular, this always
446 // inserts setjmp calls into the entries of functions with invoke instructions
447 // even though there are possibly paths through the function that do not
448 // execute any invokes. In particular, for functions with early exits, e.g.
449 // the 'addMove' method in hexxagon, it would be nice to not have to do the
450 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
451 // would not be too hard to do.
453 // If we have an invoke instruction, insert a setjmp that dominates all
454 // invokes. After the setjmp, use a cond branch that goes to the original
455 // code path on zero, and to a designated 'catch' block of nonzero.
456 Value
*OldJmpBufPtr
= 0;
457 if (!Invokes
.empty()) {
458 // First thing we need to do is scan the whole function for values that are
459 // live across unwind edges. Each value that is live across an unwind edge
460 // we spill into a stack location, guaranteeing that there is nothing live
461 // across the unwind edge. This process also splits all critical edges
462 // coming out of invoke's.
463 splitLiveRangesLiveAcrossInvokes(Invokes
);
465 BasicBlock
*EntryBB
= F
.begin();
467 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
468 // that needs to be restored on all exits from the function. This is an
469 // alloca because the value needs to be live across invokes.
470 unsigned Align
= TLI
? TLI
->getJumpBufAlignment() : 0;
472 new AllocaInst(JBLinkTy
, 0, Align
, "jblink", F
.begin()->begin());
474 std::vector
<Value
*> Idx
;
475 Idx
.push_back(Constant::getNullValue(Type::Int32Ty
));
476 Idx
.push_back(ConstantInt::get(Type::Int32Ty
, 1));
477 OldJmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, Idx
.begin(), Idx
.end(),
478 "OldBuf", EntryBB
->getTerminator());
480 // Copy the JBListHead to the alloca.
481 Value
*OldBuf
= new LoadInst(JBListHead
, "oldjmpbufptr", true,
482 EntryBB
->getTerminator());
483 new StoreInst(OldBuf
, OldJmpBufPtr
, true, EntryBB
->getTerminator());
485 // Add the new jumpbuf to the list.
486 new StoreInst(JmpBuf
, JBListHead
, true, EntryBB
->getTerminator());
488 // Create the catch block. The catch block is basically a big switch
489 // statement that goes to all of the invoke catch blocks.
490 BasicBlock
*CatchBB
= BasicBlock::Create("setjmp.catch", &F
);
492 // Create an alloca which keeps track of which invoke is currently
493 // executing. For normal calls it contains zero.
494 AllocaInst
*InvokeNum
= new AllocaInst(Type::Int32Ty
, 0, "invokenum",
496 new StoreInst(ConstantInt::get(Type::Int32Ty
, 0), InvokeNum
, true,
497 EntryBB
->getTerminator());
499 // Insert a load in the Catch block, and a switch on its value. By default,
500 // we go to a block that just does an unwind (which is the correct action
501 // for a standard call).
502 BasicBlock
*UnwindBB
= BasicBlock::Create("unwindbb", &F
);
503 Unwinds
.push_back(new UnwindInst(UnwindBB
));
505 Value
*CatchLoad
= new LoadInst(InvokeNum
, "invoke.num", true, CatchBB
);
506 SwitchInst
*CatchSwitch
=
507 SwitchInst::Create(CatchLoad
, UnwindBB
, Invokes
.size(), CatchBB
);
509 // Now that things are set up, insert the setjmp call itself.
511 // Split the entry block to insert the conditional branch for the setjmp.
512 BasicBlock
*ContBlock
= EntryBB
->splitBasicBlock(EntryBB
->getTerminator(),
515 Idx
[1] = ConstantInt::get(Type::Int32Ty
, 0);
516 Value
*JmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, Idx
.begin(), Idx
.end(),
518 EntryBB
->getTerminator());
519 JmpBufPtr
= new BitCastInst(JmpBufPtr
, PointerType::getUnqual(Type::Int8Ty
),
520 "tmp", EntryBB
->getTerminator());
521 Value
*SJRet
= CallInst::Create(SetJmpFn
, JmpBufPtr
, "sjret",
522 EntryBB
->getTerminator());
524 // Compare the return value to zero.
525 Value
*IsNormal
= new ICmpInst(ICmpInst::ICMP_EQ
, SJRet
,
526 Constant::getNullValue(SJRet
->getType()),
527 "notunwind", EntryBB
->getTerminator());
528 // Nuke the uncond branch.
529 EntryBB
->getTerminator()->eraseFromParent();
531 // Put in a new condbranch in its place.
532 BranchInst::Create(ContBlock
, CatchBB
, IsNormal
, EntryBB
);
534 // At this point, we are all set up, rewrite each invoke instruction.
535 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
)
536 rewriteExpensiveInvoke(Invokes
[i
], i
+1, InvokeNum
, CatchSwitch
);
539 // We know that there is at least one unwind.
541 // Create three new blocks, the block to load the jmpbuf ptr and compare
542 // against null, the block to do the longjmp, and the error block for if it
543 // is null. Add them at the end of the function because they are not hot.
544 BasicBlock
*UnwindHandler
= BasicBlock::Create("dounwind", &F
);
545 BasicBlock
*UnwindBlock
= BasicBlock::Create("unwind", &F
);
546 BasicBlock
*TermBlock
= BasicBlock::Create("unwinderror", &F
);
548 // If this function contains an invoke, restore the old jumpbuf ptr.
551 // Before the return, insert a copy from the saved value to the new value.
552 BufPtr
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", UnwindHandler
);
553 new StoreInst(BufPtr
, JBListHead
, UnwindHandler
);
555 BufPtr
= new LoadInst(JBListHead
, "ehlist", UnwindHandler
);
558 // Load the JBList, if it's null, then there was no catch!
559 Value
*NotNull
= new ICmpInst(ICmpInst::ICMP_NE
, BufPtr
,
560 Constant::getNullValue(BufPtr
->getType()),
561 "notnull", UnwindHandler
);
562 BranchInst::Create(UnwindBlock
, TermBlock
, NotNull
, UnwindHandler
);
564 // Create the block to do the longjmp.
565 // Get a pointer to the jmpbuf and longjmp.
566 std::vector
<Value
*> Idx
;
567 Idx
.push_back(Constant::getNullValue(Type::Int32Ty
));
568 Idx
.push_back(ConstantInt::get(Type::Int32Ty
, 0));
569 Idx
[0] = GetElementPtrInst::Create(BufPtr
, Idx
.begin(), Idx
.end(), "JmpBuf",
571 Idx
[0] = new BitCastInst(Idx
[0], PointerType::getUnqual(Type::Int8Ty
),
573 Idx
[1] = ConstantInt::get(Type::Int32Ty
, 1);
574 CallInst::Create(LongJmpFn
, Idx
.begin(), Idx
.end(), "", UnwindBlock
);
575 new UnreachableInst(UnwindBlock
);
577 // Set up the term block ("throw without a catch").
578 new UnreachableInst(TermBlock
);
580 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
581 writeAbortMessage(TermBlock
->getTerminator());
583 // Insert a call to abort()
584 CallInst::Create(AbortFn
, "",
585 TermBlock
->getTerminator())->setTailCall();
588 // Replace all unwinds with a branch to the unwind handler.
589 for (unsigned i
= 0, e
= Unwinds
.size(); i
!= e
; ++i
) {
590 BranchInst::Create(UnwindHandler
, Unwinds
[i
]);
591 Unwinds
[i
]->eraseFromParent();
594 // Finally, for any returns from this function, if this function contains an
595 // invoke, restore the old jmpbuf pointer to its input value.
597 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
598 ReturnInst
*R
= Returns
[i
];
600 // Before the return, insert a copy from the saved value to the new value.
601 Value
*OldBuf
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", true, R
);
602 new StoreInst(OldBuf
, JBListHead
, true, R
);
609 bool LowerInvoke::runOnFunction(Function
&F
) {
610 if (ExpensiveEHSupport
)
611 return insertExpensiveEHSupport(F
);
613 return insertCheapEHSupport(F
);