Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / LowerInvoke.cpp
blob1f6b1a2a684663fd38df2b42403736ec78347704
1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
27 // option.
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Intrinsics.h"
43 #include "llvm/Module.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include <csetjmp>
52 #include <set>
53 using namespace llvm;
55 STATISTIC(NumInvokes, "Number of invokes replaced");
56 STATISTIC(NumUnwinds, "Number of unwinds replaced");
57 STATISTIC(NumSpilled, "Number of registers live across unwind edges");
59 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
62 namespace {
63 class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
64 // Used for both models.
65 Constant *WriteFn;
66 Constant *AbortFn;
67 Value *AbortMessage;
68 unsigned AbortMessageLength;
70 // Used for expensive EH support.
71 const Type *JBLinkTy;
72 GlobalVariable *JBListHead;
73 Constant *SetJmpFn, *LongJmpFn;
75 // We peek in TLI to grab the target's jmp_buf size and alignment
76 const TargetLowering *TLI;
78 public:
79 static char ID; // Pass identification, replacement for typeid
80 explicit LowerInvoke(const TargetLowering *tli = NULL)
81 : FunctionPass(&ID), TLI(tli) { }
82 bool doInitialization(Module &M);
83 bool runOnFunction(Function &F);
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 // This is a cluster of orthogonal Transforms
87 AU.addPreservedID(PromoteMemoryToRegisterID);
88 AU.addPreservedID(LowerSwitchID);
89 AU.addPreservedID(LowerAllocationsID);
92 private:
93 void createAbortMessage(Module *M);
94 void writeAbortMessage(Instruction *IB);
95 bool insertCheapEHSupport(Function &F);
96 void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
97 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
98 AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
99 bool insertExpensiveEHSupport(Function &F);
103 char LowerInvoke::ID = 0;
104 static RegisterPass<LowerInvoke>
105 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
107 const PassInfo *const llvm::LowerInvokePassID = &X;
109 // Public Interface To the LowerInvoke pass.
110 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
111 return new LowerInvoke(TLI);
114 // doInitialization - Make sure that there is a prototype for abort in the
115 // current module.
116 bool LowerInvoke::doInitialization(Module &M) {
117 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
118 AbortMessage = 0;
119 if (ExpensiveEHSupport) {
120 // Insert a type for the linked list of jump buffers.
121 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
122 JBSize = JBSize ? JBSize : 200;
123 const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
125 { // The type is recursive, so use a type holder.
126 std::vector<const Type*> Elements;
127 Elements.push_back(JmpBufTy);
128 OpaqueType *OT = OpaqueType::get();
129 Elements.push_back(PointerType::getUnqual(OT));
130 PATypeHolder JBLType(StructType::get(Elements));
131 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle.
132 JBLinkTy = JBLType.get();
133 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
136 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
138 // Now that we've done that, insert the jmpbuf list head global, unless it
139 // already exists.
140 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
141 JBListHead = new GlobalVariable(PtrJBList, false,
142 GlobalValue::LinkOnceAnyLinkage,
143 Constant::getNullValue(PtrJBList),
144 "llvm.sjljeh.jblist", &M);
147 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
148 // so it looks like Intrinsic::_setjmp
149 #if defined(_MSC_VER) && defined(setjmp)
150 #define setjmp_undefined_for_visual_studio
151 #undef setjmp
152 #endif
154 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
156 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
157 // let's return it to _setjmp state in case anyone ever needs it after this
158 // point under VisualStudio
159 #define setjmp _setjmp
160 #endif
162 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
165 // We need the 'write' and 'abort' functions for both models.
166 AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
167 #if 0 // "write" is Unix-specific.. code is going away soon anyway.
168 WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
169 VoidPtrTy, Type::Int32Ty, (Type *)0);
170 #else
171 WriteFn = 0;
172 #endif
173 return true;
176 void LowerInvoke::createAbortMessage(Module *M) {
177 if (ExpensiveEHSupport) {
178 // The abort message for expensive EH support tells the user that the
179 // program 'unwound' without an 'invoke' instruction.
180 Constant *Msg =
181 ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
182 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
184 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
185 GlobalValue::InternalLinkage,
186 Msg, "abortmsg", M);
187 std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
188 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
189 } else {
190 // The abort message for cheap EH support tells the user that EH is not
191 // enabled.
192 Constant *Msg =
193 ConstantArray::get("Exception handler needed, but not enabled. Recompile"
194 " program with -enable-correct-eh-support.\n");
195 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
197 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
198 GlobalValue::InternalLinkage,
199 Msg, "abortmsg", M);
200 std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
201 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
206 void LowerInvoke::writeAbortMessage(Instruction *IB) {
207 #if 0
208 if (AbortMessage == 0)
209 createAbortMessage(IB->getParent()->getParent()->getParent());
211 // These are the arguments we WANT...
212 Value* Args[3];
213 Args[0] = ConstantInt::get(Type::Int32Ty, 2);
214 Args[1] = AbortMessage;
215 Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
216 (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
217 #endif
220 bool LowerInvoke::insertCheapEHSupport(Function &F) {
221 bool Changed = false;
222 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
223 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
224 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
225 // Insert a normal call instruction...
226 CallInst *NewCall = CallInst::Create(II->getCalledValue(),
227 CallArgs.begin(), CallArgs.end(), "",II);
228 NewCall->takeName(II);
229 NewCall->setCallingConv(II->getCallingConv());
230 NewCall->setAttributes(II->getAttributes());
231 II->replaceAllUsesWith(NewCall);
233 // Insert an unconditional branch to the normal destination.
234 BranchInst::Create(II->getNormalDest(), II);
236 // Remove any PHI node entries from the exception destination.
237 II->getUnwindDest()->removePredecessor(BB);
239 // Remove the invoke instruction now.
240 BB->getInstList().erase(II);
242 ++NumInvokes; Changed = true;
243 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
244 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
245 writeAbortMessage(UI);
247 // Insert a call to abort()
248 CallInst::Create(AbortFn, "", UI)->setTailCall();
250 // Insert a return instruction. This really should be a "barrier", as it
251 // is unreachable.
252 ReturnInst::Create(F.getReturnType() == Type::VoidTy ? 0 :
253 Constant::getNullValue(F.getReturnType()), UI);
255 // Remove the unwind instruction now.
256 BB->getInstList().erase(UI);
258 ++NumUnwinds; Changed = true;
260 return Changed;
263 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
264 /// specified invoke instruction with a call.
265 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
266 AllocaInst *InvokeNum,
267 SwitchInst *CatchSwitch) {
268 ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
270 // If the unwind edge has phi nodes, split the edge.
271 if (isa<PHINode>(II->getUnwindDest()->begin())) {
272 SplitCriticalEdge(II, 1, this);
274 // If there are any phi nodes left, they must have a single predecessor.
275 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
276 PN->replaceAllUsesWith(PN->getIncomingValue(0));
277 PN->eraseFromParent();
281 // Insert a store of the invoke num before the invoke and store zero into the
282 // location afterward.
283 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile
285 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
286 // nonvolatile.
287 new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
289 // Add a switch case to our unwind block.
290 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
292 // Insert a normal call instruction.
293 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
294 CallInst *NewCall = CallInst::Create(II->getCalledValue(),
295 CallArgs.begin(), CallArgs.end(), "",
296 II);
297 NewCall->takeName(II);
298 NewCall->setCallingConv(II->getCallingConv());
299 NewCall->setAttributes(II->getAttributes());
300 II->replaceAllUsesWith(NewCall);
302 // Replace the invoke with an uncond branch.
303 BranchInst::Create(II->getNormalDest(), NewCall->getParent());
304 II->eraseFromParent();
307 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
308 /// we reach blocks we've already seen.
309 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
310 if (!LiveBBs.insert(BB).second) return; // already been here.
312 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
313 MarkBlocksLiveIn(*PI, LiveBBs);
316 // First thing we need to do is scan the whole function for values that are
317 // live across unwind edges. Each value that is live across an unwind edge
318 // we spill into a stack location, guaranteeing that there is nothing live
319 // across the unwind edge. This process also splits all critical edges
320 // coming out of invoke's.
321 void LowerInvoke::
322 splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
323 // First step, split all critical edges from invoke instructions.
324 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
325 InvokeInst *II = Invokes[i];
326 SplitCriticalEdge(II, 0, this);
327 SplitCriticalEdge(II, 1, this);
328 assert(!isa<PHINode>(II->getNormalDest()) &&
329 !isa<PHINode>(II->getUnwindDest()) &&
330 "critical edge splitting left single entry phi nodes?");
333 Function *F = Invokes.back()->getParent()->getParent();
335 // To avoid having to handle incoming arguments specially, we lower each arg
336 // to a copy instruction in the entry block. This ensures that the argument
337 // value itself cannot be live across the entry block.
338 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
339 while (isa<AllocaInst>(AfterAllocaInsertPt) &&
340 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
341 ++AfterAllocaInsertPt;
342 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
343 AI != E; ++AI) {
344 // This is always a no-op cast because we're casting AI to AI->getType() so
345 // src and destination types are identical. BitCast is the only possibility.
346 CastInst *NC = new BitCastInst(
347 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
348 AI->replaceAllUsesWith(NC);
349 // Normally its is forbidden to replace a CastInst's operand because it
350 // could cause the opcode to reflect an illegal conversion. However, we're
351 // replacing it here with the same value it was constructed with to simply
352 // make NC its user.
353 NC->setOperand(0, AI);
356 // Finally, scan the code looking for instructions with bad live ranges.
357 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
358 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
359 // Ignore obvious cases we don't have to handle. In particular, most
360 // instructions either have no uses or only have a single use inside the
361 // current block. Ignore them quickly.
362 Instruction *Inst = II;
363 if (Inst->use_empty()) continue;
364 if (Inst->hasOneUse() &&
365 cast<Instruction>(Inst->use_back())->getParent() == BB &&
366 !isa<PHINode>(Inst->use_back())) continue;
368 // If this is an alloca in the entry block, it's not a real register
369 // value.
370 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
371 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
372 continue;
374 // Avoid iterator invalidation by copying users to a temporary vector.
375 std::vector<Instruction*> Users;
376 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
377 UI != E; ++UI) {
378 Instruction *User = cast<Instruction>(*UI);
379 if (User->getParent() != BB || isa<PHINode>(User))
380 Users.push_back(User);
383 // Scan all of the uses and see if the live range is live across an unwind
384 // edge. If we find a use live across an invoke edge, create an alloca
385 // and spill the value.
386 std::set<InvokeInst*> InvokesWithStoreInserted;
388 // Find all of the blocks that this value is live in.
389 std::set<BasicBlock*> LiveBBs;
390 LiveBBs.insert(Inst->getParent());
391 while (!Users.empty()) {
392 Instruction *U = Users.back();
393 Users.pop_back();
395 if (!isa<PHINode>(U)) {
396 MarkBlocksLiveIn(U->getParent(), LiveBBs);
397 } else {
398 // Uses for a PHI node occur in their predecessor block.
399 PHINode *PN = cast<PHINode>(U);
400 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
401 if (PN->getIncomingValue(i) == Inst)
402 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
406 // Now that we know all of the blocks that this thing is live in, see if
407 // it includes any of the unwind locations.
408 bool NeedsSpill = false;
409 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
410 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
411 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
412 NeedsSpill = true;
416 // If we decided we need a spill, do it.
417 if (NeedsSpill) {
418 ++NumSpilled;
419 DemoteRegToStack(*Inst, true);
424 bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
425 std::vector<ReturnInst*> Returns;
426 std::vector<UnwindInst*> Unwinds;
427 std::vector<InvokeInst*> Invokes;
429 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
430 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
431 // Remember all return instructions in case we insert an invoke into this
432 // function.
433 Returns.push_back(RI);
434 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
435 Invokes.push_back(II);
436 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
437 Unwinds.push_back(UI);
440 if (Unwinds.empty() && Invokes.empty()) return false;
442 NumInvokes += Invokes.size();
443 NumUnwinds += Unwinds.size();
445 // TODO: This is not an optimal way to do this. In particular, this always
446 // inserts setjmp calls into the entries of functions with invoke instructions
447 // even though there are possibly paths through the function that do not
448 // execute any invokes. In particular, for functions with early exits, e.g.
449 // the 'addMove' method in hexxagon, it would be nice to not have to do the
450 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
451 // would not be too hard to do.
453 // If we have an invoke instruction, insert a setjmp that dominates all
454 // invokes. After the setjmp, use a cond branch that goes to the original
455 // code path on zero, and to a designated 'catch' block of nonzero.
456 Value *OldJmpBufPtr = 0;
457 if (!Invokes.empty()) {
458 // First thing we need to do is scan the whole function for values that are
459 // live across unwind edges. Each value that is live across an unwind edge
460 // we spill into a stack location, guaranteeing that there is nothing live
461 // across the unwind edge. This process also splits all critical edges
462 // coming out of invoke's.
463 splitLiveRangesLiveAcrossInvokes(Invokes);
465 BasicBlock *EntryBB = F.begin();
467 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
468 // that needs to be restored on all exits from the function. This is an
469 // alloca because the value needs to be live across invokes.
470 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
471 AllocaInst *JmpBuf =
472 new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
474 std::vector<Value*> Idx;
475 Idx.push_back(Constant::getNullValue(Type::Int32Ty));
476 Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
477 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
478 "OldBuf", EntryBB->getTerminator());
480 // Copy the JBListHead to the alloca.
481 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
482 EntryBB->getTerminator());
483 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
485 // Add the new jumpbuf to the list.
486 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
488 // Create the catch block. The catch block is basically a big switch
489 // statement that goes to all of the invoke catch blocks.
490 BasicBlock *CatchBB = BasicBlock::Create("setjmp.catch", &F);
492 // Create an alloca which keeps track of which invoke is currently
493 // executing. For normal calls it contains zero.
494 AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
495 EntryBB->begin());
496 new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
497 EntryBB->getTerminator());
499 // Insert a load in the Catch block, and a switch on its value. By default,
500 // we go to a block that just does an unwind (which is the correct action
501 // for a standard call).
502 BasicBlock *UnwindBB = BasicBlock::Create("unwindbb", &F);
503 Unwinds.push_back(new UnwindInst(UnwindBB));
505 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
506 SwitchInst *CatchSwitch =
507 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
509 // Now that things are set up, insert the setjmp call itself.
511 // Split the entry block to insert the conditional branch for the setjmp.
512 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
513 "setjmp.cont");
515 Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
516 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
517 "TheJmpBuf",
518 EntryBB->getTerminator());
519 JmpBufPtr = new BitCastInst(JmpBufPtr, PointerType::getUnqual(Type::Int8Ty),
520 "tmp", EntryBB->getTerminator());
521 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
522 EntryBB->getTerminator());
524 // Compare the return value to zero.
525 Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
526 Constant::getNullValue(SJRet->getType()),
527 "notunwind", EntryBB->getTerminator());
528 // Nuke the uncond branch.
529 EntryBB->getTerminator()->eraseFromParent();
531 // Put in a new condbranch in its place.
532 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
534 // At this point, we are all set up, rewrite each invoke instruction.
535 for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
536 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
539 // We know that there is at least one unwind.
541 // Create three new blocks, the block to load the jmpbuf ptr and compare
542 // against null, the block to do the longjmp, and the error block for if it
543 // is null. Add them at the end of the function because they are not hot.
544 BasicBlock *UnwindHandler = BasicBlock::Create("dounwind", &F);
545 BasicBlock *UnwindBlock = BasicBlock::Create("unwind", &F);
546 BasicBlock *TermBlock = BasicBlock::Create("unwinderror", &F);
548 // If this function contains an invoke, restore the old jumpbuf ptr.
549 Value *BufPtr;
550 if (OldJmpBufPtr) {
551 // Before the return, insert a copy from the saved value to the new value.
552 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
553 new StoreInst(BufPtr, JBListHead, UnwindHandler);
554 } else {
555 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
558 // Load the JBList, if it's null, then there was no catch!
559 Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
560 Constant::getNullValue(BufPtr->getType()),
561 "notnull", UnwindHandler);
562 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
564 // Create the block to do the longjmp.
565 // Get a pointer to the jmpbuf and longjmp.
566 std::vector<Value*> Idx;
567 Idx.push_back(Constant::getNullValue(Type::Int32Ty));
568 Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
569 Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
570 UnwindBlock);
571 Idx[0] = new BitCastInst(Idx[0], PointerType::getUnqual(Type::Int8Ty),
572 "tmp", UnwindBlock);
573 Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
574 CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
575 new UnreachableInst(UnwindBlock);
577 // Set up the term block ("throw without a catch").
578 new UnreachableInst(TermBlock);
580 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
581 writeAbortMessage(TermBlock->getTerminator());
583 // Insert a call to abort()
584 CallInst::Create(AbortFn, "",
585 TermBlock->getTerminator())->setTailCall();
588 // Replace all unwinds with a branch to the unwind handler.
589 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
590 BranchInst::Create(UnwindHandler, Unwinds[i]);
591 Unwinds[i]->eraseFromParent();
594 // Finally, for any returns from this function, if this function contains an
595 // invoke, restore the old jmpbuf pointer to its input value.
596 if (OldJmpBufPtr) {
597 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
598 ReturnInst *R = Returns[i];
600 // Before the return, insert a copy from the saved value to the new value.
601 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
602 new StoreInst(OldBuf, JBListHead, true, R);
606 return true;
609 bool LowerInvoke::runOnFunction(Function &F) {
610 if (ExpensiveEHSupport)
611 return insertExpensiveEHSupport(F);
612 else
613 return insertCheapEHSupport(F);