Merge branch 'master' into msp430
[llvm/msp430.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob2cde765560b8fb0b011696bd495f156e5dc57c77
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include <algorithm>
30 #include <functional>
31 #include <set>
32 #include <map>
33 using namespace llvm;
35 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
37 /// SafeToMergeTerminators - Return true if it is safe to merge these two
38 /// terminator instructions together.
39 ///
40 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
41 if (SI1 == SI2) return false; // Can't merge with self!
43 // It is not safe to merge these two switch instructions if they have a common
44 // successor, and if that successor has a PHI node, and if *that* PHI node has
45 // conflicting incoming values from the two switch blocks.
46 BasicBlock *SI1BB = SI1->getParent();
47 BasicBlock *SI2BB = SI2->getParent();
48 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
50 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
51 if (SI1Succs.count(*I))
52 for (BasicBlock::iterator BBI = (*I)->begin();
53 isa<PHINode>(BBI); ++BBI) {
54 PHINode *PN = cast<PHINode>(BBI);
55 if (PN->getIncomingValueForBlock(SI1BB) !=
56 PN->getIncomingValueForBlock(SI2BB))
57 return false;
60 return true;
63 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
64 /// now be entries in it from the 'NewPred' block. The values that will be
65 /// flowing into the PHI nodes will be the same as those coming in from
66 /// ExistPred, an existing predecessor of Succ.
67 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
68 BasicBlock *ExistPred) {
69 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
70 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
71 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
73 PHINode *PN;
74 for (BasicBlock::iterator I = Succ->begin();
75 (PN = dyn_cast<PHINode>(I)); ++I)
76 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
79 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
80 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
81 ///
82 /// Assumption: Succ is the single successor for BB.
83 ///
84 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
85 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
87 DOUT << "Looking to fold " << BB->getNameStart() << " into "
88 << Succ->getNameStart() << "\n";
89 // Shortcut, if there is only a single predecessor it must be BB and merging
90 // is always safe
91 if (Succ->getSinglePredecessor()) return true;
93 typedef SmallPtrSet<Instruction*, 16> InstrSet;
94 InstrSet BBPHIs;
96 // Make a list of all phi nodes in BB
97 BasicBlock::iterator BBI = BB->begin();
98 while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
100 // Make a list of the predecessors of BB
101 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
102 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
104 // Use that list to make another list of common predecessors of BB and Succ
105 BlockSet CommonPreds;
106 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
107 PI != PE; ++PI)
108 if (BBPreds.count(*PI))
109 CommonPreds.insert(*PI);
111 // Shortcut, if there are no common predecessors, merging is always safe
112 if (CommonPreds.empty())
113 return true;
115 // Look at all the phi nodes in Succ, to see if they present a conflict when
116 // merging these blocks
117 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
118 PHINode *PN = cast<PHINode>(I);
120 // If the incoming value from BB is again a PHINode in
121 // BB which has the same incoming value for *PI as PN does, we can
122 // merge the phi nodes and then the blocks can still be merged
123 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
124 if (BBPN && BBPN->getParent() == BB) {
125 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
126 PI != PE; PI++) {
127 if (BBPN->getIncomingValueForBlock(*PI)
128 != PN->getIncomingValueForBlock(*PI)) {
129 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
130 << Succ->getNameStart() << " is conflicting with "
131 << BBPN->getNameStart() << " with regard to common predecessor "
132 << (*PI)->getNameStart() << "\n";
133 return false;
136 // Remove this phinode from the list of phis in BB, since it has been
137 // handled.
138 BBPHIs.erase(BBPN);
139 } else {
140 Value* Val = PN->getIncomingValueForBlock(BB);
141 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
142 PI != PE; PI++) {
143 // See if the incoming value for the common predecessor is equal to the
144 // one for BB, in which case this phi node will not prevent the merging
145 // of the block.
146 if (Val != PN->getIncomingValueForBlock(*PI)) {
147 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
148 << Succ->getNameStart() << " is conflicting with regard to common "
149 << "predecessor " << (*PI)->getNameStart() << "\n";
150 return false;
156 // If there are any other phi nodes in BB that don't have a phi node in Succ
157 // to merge with, they must be moved to Succ completely. However, for any
158 // predecessors of Succ, branches will be added to the phi node that just
159 // point to itself. So, for any common predecessors, this must not cause
160 // conflicts.
161 for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
162 I != E; I++) {
163 PHINode *PN = cast<PHINode>(*I);
164 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
165 PI != PE; PI++)
166 if (PN->getIncomingValueForBlock(*PI) != PN) {
167 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
168 << BB->getNameStart() << " is conflicting with regard to common "
169 << "predecessor " << (*PI)->getNameStart() << "\n";
170 return false;
174 return true;
177 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
178 /// branch to Succ, and contains no instructions other than PHI nodes and the
179 /// branch. If possible, eliminate BB.
180 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
181 BasicBlock *Succ) {
182 // Check to see if merging these blocks would cause conflicts for any of the
183 // phi nodes in BB or Succ. If not, we can safely merge.
184 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
186 DOUT << "Killing Trivial BB: \n" << *BB;
188 if (isa<PHINode>(Succ->begin())) {
189 // If there is more than one pred of succ, and there are PHI nodes in
190 // the successor, then we need to add incoming edges for the PHI nodes
192 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
194 // Loop over all of the PHI nodes in the successor of BB.
195 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
196 PHINode *PN = cast<PHINode>(I);
197 Value *OldVal = PN->removeIncomingValue(BB, false);
198 assert(OldVal && "No entry in PHI for Pred BB!");
200 // If this incoming value is one of the PHI nodes in BB, the new entries
201 // in the PHI node are the entries from the old PHI.
202 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
203 PHINode *OldValPN = cast<PHINode>(OldVal);
204 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
205 // Note that, since we are merging phi nodes and BB and Succ might
206 // have common predecessors, we could end up with a phi node with
207 // identical incoming branches. This will be cleaned up later (and
208 // will trigger asserts if we try to clean it up now, without also
209 // simplifying the corresponding conditional branch).
210 PN->addIncoming(OldValPN->getIncomingValue(i),
211 OldValPN->getIncomingBlock(i));
212 } else {
213 // Add an incoming value for each of the new incoming values.
214 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
215 PN->addIncoming(OldVal, BBPreds[i]);
220 if (isa<PHINode>(&BB->front())) {
221 SmallVector<BasicBlock*, 16>
222 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
224 // Move all PHI nodes in BB to Succ if they are alive, otherwise
225 // delete them.
226 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
227 if (PN->use_empty()) {
228 // Just remove the dead phi. This happens if Succ's PHIs were the only
229 // users of the PHI nodes.
230 PN->eraseFromParent();
231 continue;
234 // The instruction is alive, so this means that BB must dominate all
235 // predecessors of Succ (Since all uses of the PN are after its
236 // definition, so in Succ or a block dominated by Succ. If a predecessor
237 // of Succ would not be dominated by BB, PN would violate the def before
238 // use SSA demand). Therefore, we can simply move the phi node to the
239 // next block.
240 Succ->getInstList().splice(Succ->begin(),
241 BB->getInstList(), BB->begin());
243 // We need to add new entries for the PHI node to account for
244 // predecessors of Succ that the PHI node does not take into
245 // account. At this point, since we know that BB dominated succ and all
246 // of its predecessors, this means that we should any newly added
247 // incoming edges should use the PHI node itself as the value for these
248 // edges, because they are loop back edges.
249 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
250 if (OldSuccPreds[i] != BB)
251 PN->addIncoming(PN, OldSuccPreds[i]);
255 // Everything that jumped to BB now goes to Succ.
256 BB->replaceAllUsesWith(Succ);
257 if (!Succ->hasName()) Succ->takeName(BB);
258 BB->eraseFromParent(); // Delete the old basic block.
259 return true;
262 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
263 /// presumably PHI nodes in it), check to see if the merge at this block is due
264 /// to an "if condition". If so, return the boolean condition that determines
265 /// which entry into BB will be taken. Also, return by references the block
266 /// that will be entered from if the condition is true, and the block that will
267 /// be entered if the condition is false.
270 static Value *GetIfCondition(BasicBlock *BB,
271 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
272 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
273 "Function can only handle blocks with 2 predecessors!");
274 BasicBlock *Pred1 = *pred_begin(BB);
275 BasicBlock *Pred2 = *++pred_begin(BB);
277 // We can only handle branches. Other control flow will be lowered to
278 // branches if possible anyway.
279 if (!isa<BranchInst>(Pred1->getTerminator()) ||
280 !isa<BranchInst>(Pred2->getTerminator()))
281 return 0;
282 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
283 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
285 // Eliminate code duplication by ensuring that Pred1Br is conditional if
286 // either are.
287 if (Pred2Br->isConditional()) {
288 // If both branches are conditional, we don't have an "if statement". In
289 // reality, we could transform this case, but since the condition will be
290 // required anyway, we stand no chance of eliminating it, so the xform is
291 // probably not profitable.
292 if (Pred1Br->isConditional())
293 return 0;
295 std::swap(Pred1, Pred2);
296 std::swap(Pred1Br, Pred2Br);
299 if (Pred1Br->isConditional()) {
300 // If we found a conditional branch predecessor, make sure that it branches
301 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
302 if (Pred1Br->getSuccessor(0) == BB &&
303 Pred1Br->getSuccessor(1) == Pred2) {
304 IfTrue = Pred1;
305 IfFalse = Pred2;
306 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
307 Pred1Br->getSuccessor(1) == BB) {
308 IfTrue = Pred2;
309 IfFalse = Pred1;
310 } else {
311 // We know that one arm of the conditional goes to BB, so the other must
312 // go somewhere unrelated, and this must not be an "if statement".
313 return 0;
316 // The only thing we have to watch out for here is to make sure that Pred2
317 // doesn't have incoming edges from other blocks. If it does, the condition
318 // doesn't dominate BB.
319 if (++pred_begin(Pred2) != pred_end(Pred2))
320 return 0;
322 return Pred1Br->getCondition();
325 // Ok, if we got here, both predecessors end with an unconditional branch to
326 // BB. Don't panic! If both blocks only have a single (identical)
327 // predecessor, and THAT is a conditional branch, then we're all ok!
328 if (pred_begin(Pred1) == pred_end(Pred1) ||
329 ++pred_begin(Pred1) != pred_end(Pred1) ||
330 pred_begin(Pred2) == pred_end(Pred2) ||
331 ++pred_begin(Pred2) != pred_end(Pred2) ||
332 *pred_begin(Pred1) != *pred_begin(Pred2))
333 return 0;
335 // Otherwise, if this is a conditional branch, then we can use it!
336 BasicBlock *CommonPred = *pred_begin(Pred1);
337 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
338 assert(BI->isConditional() && "Two successors but not conditional?");
339 if (BI->getSuccessor(0) == Pred1) {
340 IfTrue = Pred1;
341 IfFalse = Pred2;
342 } else {
343 IfTrue = Pred2;
344 IfFalse = Pred1;
346 return BI->getCondition();
348 return 0;
351 /// DominatesMergePoint - If we have a merge point of an "if condition" as
352 /// accepted above, return true if the specified value dominates the block. We
353 /// don't handle the true generality of domination here, just a special case
354 /// which works well enough for us.
356 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357 /// see if V (which must be an instruction) is cheap to compute and is
358 /// non-trapping. If both are true, the instruction is inserted into the set
359 /// and true is returned.
360 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
361 std::set<Instruction*> *AggressiveInsts) {
362 Instruction *I = dyn_cast<Instruction>(V);
363 if (!I) {
364 // Non-instructions all dominate instructions, but not all constantexprs
365 // can be executed unconditionally.
366 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
367 if (C->canTrap())
368 return false;
369 return true;
371 BasicBlock *PBB = I->getParent();
373 // We don't want to allow weird loops that might have the "if condition" in
374 // the bottom of this block.
375 if (PBB == BB) return false;
377 // If this instruction is defined in a block that contains an unconditional
378 // branch to BB, then it must be in the 'conditional' part of the "if
379 // statement".
380 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
381 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
382 if (!AggressiveInsts) return false;
383 // Okay, it looks like the instruction IS in the "condition". Check to
384 // see if its a cheap instruction to unconditionally compute, and if it
385 // only uses stuff defined outside of the condition. If so, hoist it out.
386 switch (I->getOpcode()) {
387 default: return false; // Cannot hoist this out safely.
388 case Instruction::Load: {
389 // We can hoist loads that are non-volatile and obviously cannot trap.
390 if (cast<LoadInst>(I)->isVolatile())
391 return false;
392 // FIXME: A computation of a constant can trap!
393 if (!isa<AllocaInst>(I->getOperand(0)) &&
394 !isa<Constant>(I->getOperand(0)))
395 return false;
396 // External weak globals may have address 0, so we can't load them.
397 Value *V2 = I->getOperand(0)->getUnderlyingObject();
398 if (V2) {
399 GlobalVariable* GV = dyn_cast<GlobalVariable>(V2);
400 if (GV && GV->hasExternalWeakLinkage())
401 return false;
403 // Finally, we have to check to make sure there are no instructions
404 // before the load in its basic block, as we are going to hoist the loop
405 // out to its predecessor.
406 BasicBlock::iterator IP = PBB->begin();
407 while (isa<DbgInfoIntrinsic>(IP))
408 IP++;
409 if (IP != BasicBlock::iterator(I))
410 return false;
411 break;
413 case Instruction::Add:
414 case Instruction::Sub:
415 case Instruction::And:
416 case Instruction::Or:
417 case Instruction::Xor:
418 case Instruction::Shl:
419 case Instruction::LShr:
420 case Instruction::AShr:
421 case Instruction::ICmp:
422 case Instruction::FCmp:
423 if (I->getOperand(0)->getType()->isFPOrFPVector())
424 return false; // FP arithmetic might trap.
425 break; // These are all cheap and non-trapping instructions.
428 // Okay, we can only really hoist these out if their operands are not
429 // defined in the conditional region.
430 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
431 if (!DominatesMergePoint(*i, BB, 0))
432 return false;
433 // Okay, it's safe to do this! Remember this instruction.
434 AggressiveInsts->insert(I);
437 return true;
440 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
441 /// icmp_eq instructions that compare a value against a constant, return the
442 /// value being compared, and stick the constant into the Values vector.
443 static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
444 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
445 if (Inst->getOpcode() == Instruction::ICmp &&
446 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
447 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
448 Values.push_back(C);
449 return Inst->getOperand(0);
450 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
451 Values.push_back(C);
452 return Inst->getOperand(1);
454 } else if (Inst->getOpcode() == Instruction::Or) {
455 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
456 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
457 if (LHS == RHS)
458 return LHS;
461 return 0;
464 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
465 /// setne instructions that compare a value against a constant, return the value
466 /// being compared, and stick the constant into the Values vector.
467 static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
468 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
469 if (Inst->getOpcode() == Instruction::ICmp &&
470 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
471 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
472 Values.push_back(C);
473 return Inst->getOperand(0);
474 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
475 Values.push_back(C);
476 return Inst->getOperand(1);
478 } else if (Inst->getOpcode() == Instruction::And) {
479 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
480 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
481 if (LHS == RHS)
482 return LHS;
485 return 0;
488 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
489 /// bunch of comparisons of one value against constants, return the value and
490 /// the constants being compared.
491 static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
492 std::vector<ConstantInt*> &Values) {
493 if (Cond->getOpcode() == Instruction::Or) {
494 CompVal = GatherConstantSetEQs(Cond, Values);
496 // Return true to indicate that the condition is true if the CompVal is
497 // equal to one of the constants.
498 return true;
499 } else if (Cond->getOpcode() == Instruction::And) {
500 CompVal = GatherConstantSetNEs(Cond, Values);
502 // Return false to indicate that the condition is false if the CompVal is
503 // equal to one of the constants.
504 return false;
506 return false;
509 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
510 Instruction* Cond = 0;
511 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
512 Cond = dyn_cast<Instruction>(SI->getCondition());
513 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
514 if (BI->isConditional())
515 Cond = dyn_cast<Instruction>(BI->getCondition());
518 TI->eraseFromParent();
519 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
522 /// isValueEqualityComparison - Return true if the specified terminator checks
523 /// to see if a value is equal to constant integer value.
524 static Value *isValueEqualityComparison(TerminatorInst *TI) {
525 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
526 // Do not permit merging of large switch instructions into their
527 // predecessors unless there is only one predecessor.
528 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
529 pred_end(SI->getParent())) > 128)
530 return 0;
532 return SI->getCondition();
534 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
535 if (BI->isConditional() && BI->getCondition()->hasOneUse())
536 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
537 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
538 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
539 isa<ConstantInt>(ICI->getOperand(1)))
540 return ICI->getOperand(0);
541 return 0;
544 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
545 /// decode all of the 'cases' that it represents and return the 'default' block.
546 static BasicBlock *
547 GetValueEqualityComparisonCases(TerminatorInst *TI,
548 std::vector<std::pair<ConstantInt*,
549 BasicBlock*> > &Cases) {
550 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
551 Cases.reserve(SI->getNumCases());
552 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
553 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
554 return SI->getDefaultDest();
557 BranchInst *BI = cast<BranchInst>(TI);
558 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
559 Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
560 BI->getSuccessor(ICI->getPredicate() ==
561 ICmpInst::ICMP_NE)));
562 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
566 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
567 /// in the list that match the specified block.
568 static void EliminateBlockCases(BasicBlock *BB,
569 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
570 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
571 if (Cases[i].second == BB) {
572 Cases.erase(Cases.begin()+i);
573 --i; --e;
577 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
578 /// well.
579 static bool
580 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
581 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
582 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
584 // Make V1 be smaller than V2.
585 if (V1->size() > V2->size())
586 std::swap(V1, V2);
588 if (V1->size() == 0) return false;
589 if (V1->size() == 1) {
590 // Just scan V2.
591 ConstantInt *TheVal = (*V1)[0].first;
592 for (unsigned i = 0, e = V2->size(); i != e; ++i)
593 if (TheVal == (*V2)[i].first)
594 return true;
597 // Otherwise, just sort both lists and compare element by element.
598 std::sort(V1->begin(), V1->end());
599 std::sort(V2->begin(), V2->end());
600 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
601 while (i1 != e1 && i2 != e2) {
602 if ((*V1)[i1].first == (*V2)[i2].first)
603 return true;
604 if ((*V1)[i1].first < (*V2)[i2].first)
605 ++i1;
606 else
607 ++i2;
609 return false;
612 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
613 /// terminator instruction and its block is known to only have a single
614 /// predecessor block, check to see if that predecessor is also a value
615 /// comparison with the same value, and if that comparison determines the
616 /// outcome of this comparison. If so, simplify TI. This does a very limited
617 /// form of jump threading.
618 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
619 BasicBlock *Pred) {
620 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
621 if (!PredVal) return false; // Not a value comparison in predecessor.
623 Value *ThisVal = isValueEqualityComparison(TI);
624 assert(ThisVal && "This isn't a value comparison!!");
625 if (ThisVal != PredVal) return false; // Different predicates.
627 // Find out information about when control will move from Pred to TI's block.
628 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
629 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
630 PredCases);
631 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
633 // Find information about how control leaves this block.
634 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
635 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
636 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
638 // If TI's block is the default block from Pred's comparison, potentially
639 // simplify TI based on this knowledge.
640 if (PredDef == TI->getParent()) {
641 // If we are here, we know that the value is none of those cases listed in
642 // PredCases. If there are any cases in ThisCases that are in PredCases, we
643 // can simplify TI.
644 if (ValuesOverlap(PredCases, ThisCases)) {
645 if (isa<BranchInst>(TI)) {
646 // Okay, one of the successors of this condbr is dead. Convert it to a
647 // uncond br.
648 assert(ThisCases.size() == 1 && "Branch can only have one case!");
649 // Insert the new branch.
650 Instruction *NI = BranchInst::Create(ThisDef, TI);
652 // Remove PHI node entries for the dead edge.
653 ThisCases[0].second->removePredecessor(TI->getParent());
655 DOUT << "Threading pred instr: " << *Pred->getTerminator()
656 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
658 EraseTerminatorInstAndDCECond(TI);
659 return true;
661 } else {
662 SwitchInst *SI = cast<SwitchInst>(TI);
663 // Okay, TI has cases that are statically dead, prune them away.
664 SmallPtrSet<Constant*, 16> DeadCases;
665 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
666 DeadCases.insert(PredCases[i].first);
668 DOUT << "Threading pred instr: " << *Pred->getTerminator()
669 << "Through successor TI: " << *TI;
671 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
672 if (DeadCases.count(SI->getCaseValue(i))) {
673 SI->getSuccessor(i)->removePredecessor(TI->getParent());
674 SI->removeCase(i);
677 DOUT << "Leaving: " << *TI << "\n";
678 return true;
682 } else {
683 // Otherwise, TI's block must correspond to some matched value. Find out
684 // which value (or set of values) this is.
685 ConstantInt *TIV = 0;
686 BasicBlock *TIBB = TI->getParent();
687 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
688 if (PredCases[i].second == TIBB) {
689 if (TIV == 0)
690 TIV = PredCases[i].first;
691 else
692 return false; // Cannot handle multiple values coming to this block.
694 assert(TIV && "No edge from pred to succ?");
696 // Okay, we found the one constant that our value can be if we get into TI's
697 // BB. Find out which successor will unconditionally be branched to.
698 BasicBlock *TheRealDest = 0;
699 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
700 if (ThisCases[i].first == TIV) {
701 TheRealDest = ThisCases[i].second;
702 break;
705 // If not handled by any explicit cases, it is handled by the default case.
706 if (TheRealDest == 0) TheRealDest = ThisDef;
708 // Remove PHI node entries for dead edges.
709 BasicBlock *CheckEdge = TheRealDest;
710 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
711 if (*SI != CheckEdge)
712 (*SI)->removePredecessor(TIBB);
713 else
714 CheckEdge = 0;
716 // Insert the new branch.
717 Instruction *NI = BranchInst::Create(TheRealDest, TI);
719 DOUT << "Threading pred instr: " << *Pred->getTerminator()
720 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
722 EraseTerminatorInstAndDCECond(TI);
723 return true;
725 return false;
728 namespace {
729 /// ConstantIntOrdering - This class implements a stable ordering of constant
730 /// integers that does not depend on their address. This is important for
731 /// applications that sort ConstantInt's to ensure uniqueness.
732 struct ConstantIntOrdering {
733 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
734 return LHS->getValue().ult(RHS->getValue());
739 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
740 /// equality comparison instruction (either a switch or a branch on "X == c").
741 /// See if any of the predecessors of the terminator block are value comparisons
742 /// on the same value. If so, and if safe to do so, fold them together.
743 static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
744 BasicBlock *BB = TI->getParent();
745 Value *CV = isValueEqualityComparison(TI); // CondVal
746 assert(CV && "Not a comparison?");
747 bool Changed = false;
749 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
750 while (!Preds.empty()) {
751 BasicBlock *Pred = Preds.pop_back_val();
753 // See if the predecessor is a comparison with the same value.
754 TerminatorInst *PTI = Pred->getTerminator();
755 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
757 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
758 // Figure out which 'cases' to copy from SI to PSI.
759 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
760 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
762 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
763 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
765 // Based on whether the default edge from PTI goes to BB or not, fill in
766 // PredCases and PredDefault with the new switch cases we would like to
767 // build.
768 SmallVector<BasicBlock*, 8> NewSuccessors;
770 if (PredDefault == BB) {
771 // If this is the default destination from PTI, only the edges in TI
772 // that don't occur in PTI, or that branch to BB will be activated.
773 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
774 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
775 if (PredCases[i].second != BB)
776 PTIHandled.insert(PredCases[i].first);
777 else {
778 // The default destination is BB, we don't need explicit targets.
779 std::swap(PredCases[i], PredCases.back());
780 PredCases.pop_back();
781 --i; --e;
784 // Reconstruct the new switch statement we will be building.
785 if (PredDefault != BBDefault) {
786 PredDefault->removePredecessor(Pred);
787 PredDefault = BBDefault;
788 NewSuccessors.push_back(BBDefault);
790 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
791 if (!PTIHandled.count(BBCases[i].first) &&
792 BBCases[i].second != BBDefault) {
793 PredCases.push_back(BBCases[i]);
794 NewSuccessors.push_back(BBCases[i].second);
797 } else {
798 // If this is not the default destination from PSI, only the edges
799 // in SI that occur in PSI with a destination of BB will be
800 // activated.
801 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
802 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
803 if (PredCases[i].second == BB) {
804 PTIHandled.insert(PredCases[i].first);
805 std::swap(PredCases[i], PredCases.back());
806 PredCases.pop_back();
807 --i; --e;
810 // Okay, now we know which constants were sent to BB from the
811 // predecessor. Figure out where they will all go now.
812 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
813 if (PTIHandled.count(BBCases[i].first)) {
814 // If this is one we are capable of getting...
815 PredCases.push_back(BBCases[i]);
816 NewSuccessors.push_back(BBCases[i].second);
817 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
820 // If there are any constants vectored to BB that TI doesn't handle,
821 // they must go to the default destination of TI.
822 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
823 PTIHandled.begin(),
824 E = PTIHandled.end(); I != E; ++I) {
825 PredCases.push_back(std::make_pair(*I, BBDefault));
826 NewSuccessors.push_back(BBDefault);
830 // Okay, at this point, we know which new successor Pred will get. Make
831 // sure we update the number of entries in the PHI nodes for these
832 // successors.
833 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
834 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
836 // Now that the successors are updated, create the new Switch instruction.
837 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
838 PredCases.size(), PTI);
839 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
840 NewSI->addCase(PredCases[i].first, PredCases[i].second);
842 EraseTerminatorInstAndDCECond(PTI);
844 // Okay, last check. If BB is still a successor of PSI, then we must
845 // have an infinite loop case. If so, add an infinitely looping block
846 // to handle the case to preserve the behavior of the code.
847 BasicBlock *InfLoopBlock = 0;
848 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
849 if (NewSI->getSuccessor(i) == BB) {
850 if (InfLoopBlock == 0) {
851 // Insert it at the end of the function, because it's either code,
852 // or it won't matter if it's hot. :)
853 InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
854 BranchInst::Create(InfLoopBlock, InfLoopBlock);
856 NewSI->setSuccessor(i, InfLoopBlock);
859 Changed = true;
862 return Changed;
865 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
866 /// BB2, hoist any common code in the two blocks up into the branch block. The
867 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
868 static bool HoistThenElseCodeToIf(BranchInst *BI) {
869 // This does very trivial matching, with limited scanning, to find identical
870 // instructions in the two blocks. In particular, we don't want to get into
871 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
872 // such, we currently just scan for obviously identical instructions in an
873 // identical order.
874 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
875 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
877 BasicBlock::iterator BB1_Itr = BB1->begin();
878 BasicBlock::iterator BB2_Itr = BB2->begin();
880 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
881 while (isa<DbgInfoIntrinsic>(I1))
882 I1 = BB1_Itr++;
883 while (isa<DbgInfoIntrinsic>(I2))
884 I2 = BB2_Itr++;
885 if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
886 isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
887 return false;
889 // If we get here, we can hoist at least one instruction.
890 BasicBlock *BIParent = BI->getParent();
892 do {
893 // If we are hoisting the terminator instruction, don't move one (making a
894 // broken BB), instead clone it, and remove BI.
895 if (isa<TerminatorInst>(I1))
896 goto HoistTerminator;
898 // For a normal instruction, we just move one to right before the branch,
899 // then replace all uses of the other with the first. Finally, we remove
900 // the now redundant second instruction.
901 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
902 if (!I2->use_empty())
903 I2->replaceAllUsesWith(I1);
904 BB2->getInstList().erase(I2);
906 I1 = BB1_Itr++;
907 while (isa<DbgInfoIntrinsic>(I1))
908 I1 = BB1_Itr++;
909 I2 = BB2_Itr++;
910 while (isa<DbgInfoIntrinsic>(I2))
911 I2 = BB2_Itr++;
912 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
914 return true;
916 HoistTerminator:
917 // Okay, it is safe to hoist the terminator.
918 Instruction *NT = I1->clone();
919 BIParent->getInstList().insert(BI, NT);
920 if (NT->getType() != Type::VoidTy) {
921 I1->replaceAllUsesWith(NT);
922 I2->replaceAllUsesWith(NT);
923 NT->takeName(I1);
926 // Hoisting one of the terminators from our successor is a great thing.
927 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
929 // nodes, so we insert select instruction to compute the final result.
930 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
931 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
932 PHINode *PN;
933 for (BasicBlock::iterator BBI = SI->begin();
934 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
935 Value *BB1V = PN->getIncomingValueForBlock(BB1);
936 Value *BB2V = PN->getIncomingValueForBlock(BB2);
937 if (BB1V != BB2V) {
938 // These values do not agree. Insert a select instruction before NT
939 // that determines the right value.
940 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
941 if (SI == 0)
942 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
943 BB1V->getName()+"."+BB2V->getName(), NT);
944 // Make the PHI node use the select for all incoming values for BB1/BB2
945 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
946 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
947 PN->setIncomingValue(i, SI);
952 // Update any PHI nodes in our new successors.
953 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
954 AddPredecessorToBlock(*SI, BIParent, BB1);
956 EraseTerminatorInstAndDCECond(BI);
957 return true;
960 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962 /// (for now, restricted to a single instruction that's side effect free) from
963 /// the BB1 into the branch block to speculatively execute it.
964 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
965 // Only speculatively execution a single instruction (not counting the
966 // terminator) for now.
967 Instruction *HInst = NULL;
968 Instruction *Term = BB1->getTerminator();
969 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
970 BBI != BBE; ++BBI) {
971 Instruction *I = BBI;
972 // Skip debug info.
973 if (isa<DbgInfoIntrinsic>(I)) continue;
974 if (I == Term) break;
976 if (!HInst)
977 HInst = I;
978 else
979 return false;
981 if (!HInst)
982 return false;
984 // Be conservative for now. FP select instruction can often be expensive.
985 Value *BrCond = BI->getCondition();
986 if (isa<Instruction>(BrCond) &&
987 cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
988 return false;
990 // If BB1 is actually on the false edge of the conditional branch, remember
991 // to swap the select operands later.
992 bool Invert = false;
993 if (BB1 != BI->getSuccessor(0)) {
994 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
995 Invert = true;
998 // Turn
999 // BB:
1000 // %t1 = icmp
1001 // br i1 %t1, label %BB1, label %BB2
1002 // BB1:
1003 // %t3 = add %t2, c
1004 // br label BB2
1005 // BB2:
1006 // =>
1007 // BB:
1008 // %t1 = icmp
1009 // %t4 = add %t2, c
1010 // %t3 = select i1 %t1, %t2, %t3
1011 switch (HInst->getOpcode()) {
1012 default: return false; // Not safe / profitable to hoist.
1013 case Instruction::Add:
1014 case Instruction::Sub:
1015 // FP arithmetic might trap. Not worth doing for vector ops.
1016 if (HInst->getType()->isFloatingPoint()
1017 || isa<VectorType>(HInst->getType()))
1018 return false;
1019 break;
1020 case Instruction::And:
1021 case Instruction::Or:
1022 case Instruction::Xor:
1023 case Instruction::Shl:
1024 case Instruction::LShr:
1025 case Instruction::AShr:
1026 // Don't mess with vector operations.
1027 if (isa<VectorType>(HInst->getType()))
1028 return false;
1029 break; // These are all cheap and non-trapping instructions.
1032 // If the instruction is obviously dead, don't try to predicate it.
1033 if (HInst->use_empty()) {
1034 HInst->eraseFromParent();
1035 return true;
1038 // Can we speculatively execute the instruction? And what is the value
1039 // if the condition is false? Consider the phi uses, if the incoming value
1040 // from the "if" block are all the same V, then V is the value of the
1041 // select if the condition is false.
1042 BasicBlock *BIParent = BI->getParent();
1043 SmallVector<PHINode*, 4> PHIUses;
1044 Value *FalseV = NULL;
1046 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1047 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1048 UI != E; ++UI) {
1049 // Ignore any user that is not a PHI node in BB2. These can only occur in
1050 // unreachable blocks, because they would not be dominated by the instr.
1051 PHINode *PN = dyn_cast<PHINode>(UI);
1052 if (!PN || PN->getParent() != BB2)
1053 return false;
1054 PHIUses.push_back(PN);
1056 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1057 if (!FalseV)
1058 FalseV = PHIV;
1059 else if (FalseV != PHIV)
1060 return false; // Inconsistent value when condition is false.
1063 assert(FalseV && "Must have at least one user, and it must be a PHI");
1065 // Do not hoist the instruction if any of its operands are defined but not
1066 // used in this BB. The transformation will prevent the operand from
1067 // being sunk into the use block.
1068 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1069 i != e; ++i) {
1070 Instruction *OpI = dyn_cast<Instruction>(*i);
1071 if (OpI && OpI->getParent() == BIParent &&
1072 !OpI->isUsedInBasicBlock(BIParent))
1073 return false;
1076 // If we get here, we can hoist the instruction. Try to place it
1077 // before the icmp instruction preceding the conditional branch.
1078 BasicBlock::iterator InsertPos = BI;
1079 if (InsertPos != BIParent->begin())
1080 --InsertPos;
1081 // Skip debug info between condition and branch.
1082 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1083 --InsertPos;
1084 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1085 SmallPtrSet<Instruction *, 4> BB1Insns;
1086 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1087 BB1I != BB1E; ++BB1I)
1088 BB1Insns.insert(BB1I);
1089 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1090 UI != UE; ++UI) {
1091 Instruction *Use = cast<Instruction>(*UI);
1092 if (BB1Insns.count(Use)) {
1093 // If BrCond uses the instruction that place it just before
1094 // branch instruction.
1095 InsertPos = BI;
1096 break;
1099 } else
1100 InsertPos = BI;
1101 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1103 // Create a select whose true value is the speculatively executed value and
1104 // false value is the previously determined FalseV.
1105 SelectInst *SI;
1106 if (Invert)
1107 SI = SelectInst::Create(BrCond, FalseV, HInst,
1108 FalseV->getName() + "." + HInst->getName(), BI);
1109 else
1110 SI = SelectInst::Create(BrCond, HInst, FalseV,
1111 HInst->getName() + "." + FalseV->getName(), BI);
1113 // Make the PHI node use the select for all incoming values for "then" and
1114 // "if" blocks.
1115 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1116 PHINode *PN = PHIUses[i];
1117 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1118 if (PN->getIncomingBlock(j) == BB1 ||
1119 PN->getIncomingBlock(j) == BIParent)
1120 PN->setIncomingValue(j, SI);
1123 ++NumSpeculations;
1124 return true;
1127 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1128 /// across this block.
1129 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1130 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1131 unsigned Size = 0;
1133 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1134 if (isa<DbgInfoIntrinsic>(BBI))
1135 continue;
1136 if (Size > 10) return false; // Don't clone large BB's.
1137 ++Size;
1139 // We can only support instructions that do not define values that are
1140 // live outside of the current basic block.
1141 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1142 UI != E; ++UI) {
1143 Instruction *U = cast<Instruction>(*UI);
1144 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1147 // Looks ok, continue checking.
1150 return true;
1153 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1154 /// that is defined in the same block as the branch and if any PHI entries are
1155 /// constants, thread edges corresponding to that entry to be branches to their
1156 /// ultimate destination.
1157 static bool FoldCondBranchOnPHI(BranchInst *BI) {
1158 BasicBlock *BB = BI->getParent();
1159 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1160 // NOTE: we currently cannot transform this case if the PHI node is used
1161 // outside of the block.
1162 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1163 return false;
1165 // Degenerate case of a single entry PHI.
1166 if (PN->getNumIncomingValues() == 1) {
1167 FoldSingleEntryPHINodes(PN->getParent());
1168 return true;
1171 // Now we know that this block has multiple preds and two succs.
1172 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1174 // Okay, this is a simple enough basic block. See if any phi values are
1175 // constants.
1176 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1177 ConstantInt *CB;
1178 if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1179 CB->getType() == Type::Int1Ty) {
1180 // Okay, we now know that all edges from PredBB should be revectored to
1181 // branch to RealDest.
1182 BasicBlock *PredBB = PN->getIncomingBlock(i);
1183 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1185 if (RealDest == BB) continue; // Skip self loops.
1187 // The dest block might have PHI nodes, other predecessors and other
1188 // difficult cases. Instead of being smart about this, just insert a new
1189 // block that jumps to the destination block, effectively splitting
1190 // the edge we are about to create.
1191 BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1192 RealDest->getParent(), RealDest);
1193 BranchInst::Create(RealDest, EdgeBB);
1194 PHINode *PN;
1195 for (BasicBlock::iterator BBI = RealDest->begin();
1196 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1197 Value *V = PN->getIncomingValueForBlock(BB);
1198 PN->addIncoming(V, EdgeBB);
1201 // BB may have instructions that are being threaded over. Clone these
1202 // instructions into EdgeBB. We know that there will be no uses of the
1203 // cloned instructions outside of EdgeBB.
1204 BasicBlock::iterator InsertPt = EdgeBB->begin();
1205 std::map<Value*, Value*> TranslateMap; // Track translated values.
1206 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1207 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1208 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1209 } else {
1210 // Clone the instruction.
1211 Instruction *N = BBI->clone();
1212 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1214 // Update operands due to translation.
1215 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1216 i != e; ++i) {
1217 std::map<Value*, Value*>::iterator PI =
1218 TranslateMap.find(*i);
1219 if (PI != TranslateMap.end())
1220 *i = PI->second;
1223 // Check for trivial simplification.
1224 if (Constant *C = ConstantFoldInstruction(N)) {
1225 TranslateMap[BBI] = C;
1226 delete N; // Constant folded away, don't need actual inst
1227 } else {
1228 // Insert the new instruction into its new home.
1229 EdgeBB->getInstList().insert(InsertPt, N);
1230 if (!BBI->use_empty())
1231 TranslateMap[BBI] = N;
1236 // Loop over all of the edges from PredBB to BB, changing them to branch
1237 // to EdgeBB instead.
1238 TerminatorInst *PredBBTI = PredBB->getTerminator();
1239 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1240 if (PredBBTI->getSuccessor(i) == BB) {
1241 BB->removePredecessor(PredBB);
1242 PredBBTI->setSuccessor(i, EdgeBB);
1245 // Recurse, simplifying any other constants.
1246 return FoldCondBranchOnPHI(BI) | true;
1250 return false;
1253 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1254 /// PHI node, see if we can eliminate it.
1255 static bool FoldTwoEntryPHINode(PHINode *PN) {
1256 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1257 // statement", which has a very simple dominance structure. Basically, we
1258 // are trying to find the condition that is being branched on, which
1259 // subsequently causes this merge to happen. We really want control
1260 // dependence information for this check, but simplifycfg can't keep it up
1261 // to date, and this catches most of the cases we care about anyway.
1263 BasicBlock *BB = PN->getParent();
1264 BasicBlock *IfTrue, *IfFalse;
1265 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1266 if (!IfCond) return false;
1268 // Okay, we found that we can merge this two-entry phi node into a select.
1269 // Doing so would require us to fold *all* two entry phi nodes in this block.
1270 // At some point this becomes non-profitable (particularly if the target
1271 // doesn't support cmov's). Only do this transformation if there are two or
1272 // fewer PHI nodes in this block.
1273 unsigned NumPhis = 0;
1274 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1275 if (NumPhis > 2)
1276 return false;
1278 DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
1279 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
1281 // Loop over the PHI's seeing if we can promote them all to select
1282 // instructions. While we are at it, keep track of the instructions
1283 // that need to be moved to the dominating block.
1284 std::set<Instruction*> AggressiveInsts;
1286 BasicBlock::iterator AfterPHIIt = BB->begin();
1287 while (isa<PHINode>(AfterPHIIt)) {
1288 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1289 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1290 if (PN->getIncomingValue(0) != PN)
1291 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1292 else
1293 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1294 } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1295 &AggressiveInsts) ||
1296 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1297 &AggressiveInsts)) {
1298 return false;
1302 // If we all PHI nodes are promotable, check to make sure that all
1303 // instructions in the predecessor blocks can be promoted as well. If
1304 // not, we won't be able to get rid of the control flow, so it's not
1305 // worth promoting to select instructions.
1306 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1307 PN = cast<PHINode>(BB->begin());
1308 BasicBlock *Pred = PN->getIncomingBlock(0);
1309 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1310 IfBlock1 = Pred;
1311 DomBlock = *pred_begin(Pred);
1312 for (BasicBlock::iterator I = Pred->begin();
1313 !isa<TerminatorInst>(I); ++I)
1314 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1315 // This is not an aggressive instruction that we can promote.
1316 // Because of this, we won't be able to get rid of the control
1317 // flow, so the xform is not worth it.
1318 return false;
1322 Pred = PN->getIncomingBlock(1);
1323 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1324 IfBlock2 = Pred;
1325 DomBlock = *pred_begin(Pred);
1326 for (BasicBlock::iterator I = Pred->begin();
1327 !isa<TerminatorInst>(I); ++I)
1328 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1329 // This is not an aggressive instruction that we can promote.
1330 // Because of this, we won't be able to get rid of the control
1331 // flow, so the xform is not worth it.
1332 return false;
1336 // If we can still promote the PHI nodes after this gauntlet of tests,
1337 // do all of the PHI's now.
1339 // Move all 'aggressive' instructions, which are defined in the
1340 // conditional parts of the if's up to the dominating block.
1341 if (IfBlock1) {
1342 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1343 IfBlock1->getInstList(),
1344 IfBlock1->begin(),
1345 IfBlock1->getTerminator());
1347 if (IfBlock2) {
1348 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1349 IfBlock2->getInstList(),
1350 IfBlock2->begin(),
1351 IfBlock2->getTerminator());
1354 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1355 // Change the PHI node into a select instruction.
1356 Value *TrueVal =
1357 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1358 Value *FalseVal =
1359 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1361 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1362 PN->replaceAllUsesWith(NV);
1363 NV->takeName(PN);
1365 BB->getInstList().erase(PN);
1367 return true;
1370 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1371 /// instruction ignoring Phi nodes and dbg intrinsics.
1372 static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
1373 BasicBlock::iterator BBI = Term;
1374 while (BBI != BB->begin()) {
1375 --BBI;
1376 if (!isa<DbgInfoIntrinsic>(BBI))
1377 break;
1380 if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
1381 return true;
1382 return false;
1385 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1386 /// to two returning blocks, try to merge them together into one return,
1387 /// introducing a select if the return values disagree.
1388 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1389 assert(BI->isConditional() && "Must be a conditional branch");
1390 BasicBlock *TrueSucc = BI->getSuccessor(0);
1391 BasicBlock *FalseSucc = BI->getSuccessor(1);
1392 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1393 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1395 // Check to ensure both blocks are empty (just a return) or optionally empty
1396 // with PHI nodes. If there are other instructions, merging would cause extra
1397 // computation on one path or the other.
1398 if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
1399 return false;
1400 if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
1401 return false;
1403 // Okay, we found a branch that is going to two return nodes. If
1404 // there is no return value for this function, just change the
1405 // branch into a return.
1406 if (FalseRet->getNumOperands() == 0) {
1407 TrueSucc->removePredecessor(BI->getParent());
1408 FalseSucc->removePredecessor(BI->getParent());
1409 ReturnInst::Create(0, BI);
1410 EraseTerminatorInstAndDCECond(BI);
1411 return true;
1414 // Otherwise, figure out what the true and false return values are
1415 // so we can insert a new select instruction.
1416 Value *TrueValue = TrueRet->getReturnValue();
1417 Value *FalseValue = FalseRet->getReturnValue();
1419 // Unwrap any PHI nodes in the return blocks.
1420 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1421 if (TVPN->getParent() == TrueSucc)
1422 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1423 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1424 if (FVPN->getParent() == FalseSucc)
1425 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1427 // In order for this transformation to be safe, we must be able to
1428 // unconditionally execute both operands to the return. This is
1429 // normally the case, but we could have a potentially-trapping
1430 // constant expression that prevents this transformation from being
1431 // safe.
1432 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1433 if (TCV->canTrap())
1434 return false;
1435 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1436 if (FCV->canTrap())
1437 return false;
1439 // Okay, we collected all the mapped values and checked them for sanity, and
1440 // defined to really do this transformation. First, update the CFG.
1441 TrueSucc->removePredecessor(BI->getParent());
1442 FalseSucc->removePredecessor(BI->getParent());
1444 // Insert select instructions where needed.
1445 Value *BrCond = BI->getCondition();
1446 if (TrueValue) {
1447 // Insert a select if the results differ.
1448 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1449 } else if (isa<UndefValue>(TrueValue)) {
1450 TrueValue = FalseValue;
1451 } else {
1452 TrueValue = SelectInst::Create(BrCond, TrueValue,
1453 FalseValue, "retval", BI);
1457 Value *RI = !TrueValue ?
1458 ReturnInst::Create(BI) :
1459 ReturnInst::Create(TrueValue, BI);
1461 DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1462 << "\n " << *BI << "NewRet = " << *RI
1463 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1465 EraseTerminatorInstAndDCECond(BI);
1467 return true;
1470 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1471 /// and if a predecessor branches to us and one of our successors, fold the
1472 /// setcc into the predecessor and use logical operations to pick the right
1473 /// destination.
1474 static bool FoldBranchToCommonDest(BranchInst *BI) {
1475 BasicBlock *BB = BI->getParent();
1476 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1477 if (Cond == 0) return false;
1480 // Only allow this if the condition is a simple instruction that can be
1481 // executed unconditionally. It must be in the same block as the branch, and
1482 // must be at the front of the block.
1483 BasicBlock::iterator FrontIt = BB->front();
1484 // Ignore dbg intrinsics.
1485 while(isa<DbgInfoIntrinsic>(FrontIt))
1486 ++FrontIt;
1487 if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1488 Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
1489 return false;
1492 // Make sure the instruction after the condition is the cond branch.
1493 BasicBlock::iterator CondIt = Cond; ++CondIt;
1494 // Ingore dbg intrinsics.
1495 while(isa<DbgInfoIntrinsic>(CondIt))
1496 ++CondIt;
1497 if (&*CondIt != BI) {
1498 assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1499 return false;
1502 // Cond is known to be a compare or binary operator. Check to make sure that
1503 // neither operand is a potentially-trapping constant expression.
1504 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1505 if (CE->canTrap())
1506 return false;
1507 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1508 if (CE->canTrap())
1509 return false;
1512 // Finally, don't infinitely unroll conditional loops.
1513 BasicBlock *TrueDest = BI->getSuccessor(0);
1514 BasicBlock *FalseDest = BI->getSuccessor(1);
1515 if (TrueDest == BB || FalseDest == BB)
1516 return false;
1518 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1519 BasicBlock *PredBlock = *PI;
1520 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1522 // Check that we have two conditional branches. If there is a PHI node in
1523 // the common successor, verify that the same value flows in from both
1524 // blocks.
1525 if (PBI == 0 || PBI->isUnconditional() ||
1526 !SafeToMergeTerminators(BI, PBI))
1527 continue;
1529 Instruction::BinaryOps Opc;
1530 bool InvertPredCond = false;
1532 if (PBI->getSuccessor(0) == TrueDest)
1533 Opc = Instruction::Or;
1534 else if (PBI->getSuccessor(1) == FalseDest)
1535 Opc = Instruction::And;
1536 else if (PBI->getSuccessor(0) == FalseDest)
1537 Opc = Instruction::And, InvertPredCond = true;
1538 else if (PBI->getSuccessor(1) == TrueDest)
1539 Opc = Instruction::Or, InvertPredCond = true;
1540 else
1541 continue;
1543 DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
1545 // If we need to invert the condition in the pred block to match, do so now.
1546 if (InvertPredCond) {
1547 Value *NewCond =
1548 BinaryOperator::CreateNot(PBI->getCondition(),
1549 PBI->getCondition()->getName()+".not", PBI);
1550 PBI->setCondition(NewCond);
1551 BasicBlock *OldTrue = PBI->getSuccessor(0);
1552 BasicBlock *OldFalse = PBI->getSuccessor(1);
1553 PBI->setSuccessor(0, OldFalse);
1554 PBI->setSuccessor(1, OldTrue);
1557 // Clone Cond into the predecessor basic block, and or/and the
1558 // two conditions together.
1559 Instruction *New = Cond->clone();
1560 PredBlock->getInstList().insert(PBI, New);
1561 New->takeName(Cond);
1562 Cond->setName(New->getName()+".old");
1564 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1565 New, "or.cond", PBI);
1566 PBI->setCondition(NewCond);
1567 if (PBI->getSuccessor(0) == BB) {
1568 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1569 PBI->setSuccessor(0, TrueDest);
1571 if (PBI->getSuccessor(1) == BB) {
1572 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1573 PBI->setSuccessor(1, FalseDest);
1575 return true;
1577 return false;
1580 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1581 /// predecessor of another block, this function tries to simplify it. We know
1582 /// that PBI and BI are both conditional branches, and BI is in one of the
1583 /// successor blocks of PBI - PBI branches to BI.
1584 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1585 assert(PBI->isConditional() && BI->isConditional());
1586 BasicBlock *BB = BI->getParent();
1588 // If this block ends with a branch instruction, and if there is a
1589 // predecessor that ends on a branch of the same condition, make
1590 // this conditional branch redundant.
1591 if (PBI->getCondition() == BI->getCondition() &&
1592 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1593 // Okay, the outcome of this conditional branch is statically
1594 // knowable. If this block had a single pred, handle specially.
1595 if (BB->getSinglePredecessor()) {
1596 // Turn this into a branch on constant.
1597 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1598 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1599 return true; // Nuke the branch on constant.
1602 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1603 // in the constant and simplify the block result. Subsequent passes of
1604 // simplifycfg will thread the block.
1605 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1606 PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1607 BI->getCondition()->getName() + ".pr",
1608 BB->begin());
1609 // Okay, we're going to insert the PHI node. Since PBI is not the only
1610 // predecessor, compute the PHI'd conditional value for all of the preds.
1611 // Any predecessor where the condition is not computable we keep symbolic.
1612 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1613 if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1614 PBI != BI && PBI->isConditional() &&
1615 PBI->getCondition() == BI->getCondition() &&
1616 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1617 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1618 NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1619 CondIsTrue), *PI);
1620 } else {
1621 NewPN->addIncoming(BI->getCondition(), *PI);
1624 BI->setCondition(NewPN);
1625 return true;
1629 // If this is a conditional branch in an empty block, and if any
1630 // predecessors is a conditional branch to one of our destinations,
1631 // fold the conditions into logical ops and one cond br.
1632 BasicBlock::iterator BBI = BB->begin();
1633 // Ignore dbg intrinsics.
1634 while (isa<DbgInfoIntrinsic>(BBI))
1635 ++BBI;
1636 if (&*BBI != BI)
1637 return false;
1640 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1641 if (CE->canTrap())
1642 return false;
1644 int PBIOp, BIOp;
1645 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1646 PBIOp = BIOp = 0;
1647 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1648 PBIOp = 0, BIOp = 1;
1649 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1650 PBIOp = 1, BIOp = 0;
1651 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1652 PBIOp = BIOp = 1;
1653 else
1654 return false;
1656 // Check to make sure that the other destination of this branch
1657 // isn't BB itself. If so, this is an infinite loop that will
1658 // keep getting unwound.
1659 if (PBI->getSuccessor(PBIOp) == BB)
1660 return false;
1662 // Do not perform this transformation if it would require
1663 // insertion of a large number of select instructions. For targets
1664 // without predication/cmovs, this is a big pessimization.
1665 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1667 unsigned NumPhis = 0;
1668 for (BasicBlock::iterator II = CommonDest->begin();
1669 isa<PHINode>(II); ++II, ++NumPhis)
1670 if (NumPhis > 2) // Disable this xform.
1671 return false;
1673 // Finally, if everything is ok, fold the branches to logical ops.
1674 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1676 DOUT << "FOLDING BRs:" << *PBI->getParent()
1677 << "AND: " << *BI->getParent();
1680 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1681 // branch in it, where one edge (OtherDest) goes back to itself but the other
1682 // exits. We don't *know* that the program avoids the infinite loop
1683 // (even though that seems likely). If we do this xform naively, we'll end up
1684 // recursively unpeeling the loop. Since we know that (after the xform is
1685 // done) that the block *is* infinite if reached, we just make it an obviously
1686 // infinite loop with no cond branch.
1687 if (OtherDest == BB) {
1688 // Insert it at the end of the function, because it's either code,
1689 // or it won't matter if it's hot. :)
1690 BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1691 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1692 OtherDest = InfLoopBlock;
1695 DOUT << *PBI->getParent()->getParent();
1697 // BI may have other predecessors. Because of this, we leave
1698 // it alone, but modify PBI.
1700 // Make sure we get to CommonDest on True&True directions.
1701 Value *PBICond = PBI->getCondition();
1702 if (PBIOp)
1703 PBICond = BinaryOperator::CreateNot(PBICond,
1704 PBICond->getName()+".not",
1705 PBI);
1706 Value *BICond = BI->getCondition();
1707 if (BIOp)
1708 BICond = BinaryOperator::CreateNot(BICond,
1709 BICond->getName()+".not",
1710 PBI);
1711 // Merge the conditions.
1712 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1714 // Modify PBI to branch on the new condition to the new dests.
1715 PBI->setCondition(Cond);
1716 PBI->setSuccessor(0, CommonDest);
1717 PBI->setSuccessor(1, OtherDest);
1719 // OtherDest may have phi nodes. If so, add an entry from PBI's
1720 // block that are identical to the entries for BI's block.
1721 PHINode *PN;
1722 for (BasicBlock::iterator II = OtherDest->begin();
1723 (PN = dyn_cast<PHINode>(II)); ++II) {
1724 Value *V = PN->getIncomingValueForBlock(BB);
1725 PN->addIncoming(V, PBI->getParent());
1728 // We know that the CommonDest already had an edge from PBI to
1729 // it. If it has PHIs though, the PHIs may have different
1730 // entries for BB and PBI's BB. If so, insert a select to make
1731 // them agree.
1732 for (BasicBlock::iterator II = CommonDest->begin();
1733 (PN = dyn_cast<PHINode>(II)); ++II) {
1734 Value *BIV = PN->getIncomingValueForBlock(BB);
1735 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1736 Value *PBIV = PN->getIncomingValue(PBBIdx);
1737 if (BIV != PBIV) {
1738 // Insert a select in PBI to pick the right value.
1739 Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1740 PBIV->getName()+".mux", PBI);
1741 PN->setIncomingValue(PBBIdx, NV);
1745 DOUT << "INTO: " << *PBI->getParent();
1747 DOUT << *PBI->getParent()->getParent();
1749 // This basic block is probably dead. We know it has at least
1750 // one fewer predecessor.
1751 return true;
1755 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1756 /// example, it adjusts branches to branches to eliminate the extra hop, it
1757 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1758 /// of the CFG. It returns true if a modification was made.
1760 /// WARNING: The entry node of a function may not be simplified.
1762 bool llvm::SimplifyCFG(BasicBlock *BB) {
1763 bool Changed = false;
1764 Function *M = BB->getParent();
1766 assert(BB && BB->getParent() && "Block not embedded in function!");
1767 assert(BB->getTerminator() && "Degenerate basic block encountered!");
1768 assert(&BB->getParent()->getEntryBlock() != BB &&
1769 "Can't Simplify entry block!");
1771 // Remove basic blocks that have no predecessors... or that just have themself
1772 // as a predecessor. These are unreachable.
1773 if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
1774 DOUT << "Removing BB: \n" << *BB;
1775 DeleteDeadBlock(BB);
1776 return true;
1779 // Check to see if we can constant propagate this terminator instruction
1780 // away...
1781 Changed |= ConstantFoldTerminator(BB);
1783 // If there is a trivial two-entry PHI node in this basic block, and we can
1784 // eliminate it, do so now.
1785 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1786 if (PN->getNumIncomingValues() == 2)
1787 Changed |= FoldTwoEntryPHINode(PN);
1789 // If this is a returning block with only PHI nodes in it, fold the return
1790 // instruction into any unconditional branch predecessors.
1792 // If any predecessor is a conditional branch that just selects among
1793 // different return values, fold the replace the branch/return with a select
1794 // and return.
1795 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1796 if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
1797 // Find predecessors that end with branches.
1798 SmallVector<BasicBlock*, 8> UncondBranchPreds;
1799 SmallVector<BranchInst*, 8> CondBranchPreds;
1800 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1801 TerminatorInst *PTI = (*PI)->getTerminator();
1802 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1803 if (BI->isUnconditional())
1804 UncondBranchPreds.push_back(*PI);
1805 else
1806 CondBranchPreds.push_back(BI);
1810 // If we found some, do the transformation!
1811 if (!UncondBranchPreds.empty()) {
1812 while (!UncondBranchPreds.empty()) {
1813 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
1814 DOUT << "FOLDING: " << *BB
1815 << "INTO UNCOND BRANCH PRED: " << *Pred;
1816 Instruction *UncondBranch = Pred->getTerminator();
1817 // Clone the return and add it to the end of the predecessor.
1818 Instruction *NewRet = RI->clone();
1819 Pred->getInstList().push_back(NewRet);
1821 BasicBlock::iterator BBI = RI;
1822 if (BBI != BB->begin()) {
1823 // Move region end info into the predecessor.
1824 if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
1825 DREI->moveBefore(NewRet);
1828 // If the return instruction returns a value, and if the value was a
1829 // PHI node in "BB", propagate the right value into the return.
1830 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1831 i != e; ++i)
1832 if (PHINode *PN = dyn_cast<PHINode>(*i))
1833 if (PN->getParent() == BB)
1834 *i = PN->getIncomingValueForBlock(Pred);
1836 // Update any PHI nodes in the returning block to realize that we no
1837 // longer branch to them.
1838 BB->removePredecessor(Pred);
1839 Pred->getInstList().erase(UncondBranch);
1842 // If we eliminated all predecessors of the block, delete the block now.
1843 if (pred_begin(BB) == pred_end(BB))
1844 // We know there are no successors, so just nuke the block.
1845 M->getBasicBlockList().erase(BB);
1847 return true;
1850 // Check out all of the conditional branches going to this return
1851 // instruction. If any of them just select between returns, change the
1852 // branch itself into a select/return pair.
1853 while (!CondBranchPreds.empty()) {
1854 BranchInst *BI = CondBranchPreds.pop_back_val();
1856 // Check to see if the non-BB successor is also a return block.
1857 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1858 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1859 SimplifyCondBranchToTwoReturns(BI))
1860 return true;
1863 } else if (isa<UnwindInst>(BB->begin())) {
1864 // Check to see if the first instruction in this block is just an unwind.
1865 // If so, replace any invoke instructions which use this as an exception
1866 // destination with call instructions, and any unconditional branch
1867 // predecessor with an unwind.
1869 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1870 while (!Preds.empty()) {
1871 BasicBlock *Pred = Preds.back();
1872 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1873 if (BI->isUnconditional()) {
1874 Pred->getInstList().pop_back(); // nuke uncond branch
1875 new UnwindInst(Pred); // Use unwind.
1876 Changed = true;
1878 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1879 if (II->getUnwindDest() == BB) {
1880 // Insert a new branch instruction before the invoke, because this
1881 // is now a fall through...
1882 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1883 Pred->getInstList().remove(II); // Take out of symbol table
1885 // Insert the call now...
1886 SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1887 CallInst *CI = CallInst::Create(II->getCalledValue(),
1888 Args.begin(), Args.end(),
1889 II->getName(), BI);
1890 CI->setCallingConv(II->getCallingConv());
1891 CI->setAttributes(II->getAttributes());
1892 // If the invoke produced a value, the Call now does instead
1893 II->replaceAllUsesWith(CI);
1894 delete II;
1895 Changed = true;
1898 Preds.pop_back();
1901 // If this block is now dead, remove it.
1902 if (pred_begin(BB) == pred_end(BB)) {
1903 // We know there are no successors, so just nuke the block.
1904 M->getBasicBlockList().erase(BB);
1905 return true;
1908 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1909 if (isValueEqualityComparison(SI)) {
1910 // If we only have one predecessor, and if it is a branch on this value,
1911 // see if that predecessor totally determines the outcome of this switch.
1912 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1913 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1914 return SimplifyCFG(BB) || 1;
1916 // If the block only contains the switch, see if we can fold the block
1917 // away into any preds.
1918 BasicBlock::iterator BBI = BB->begin();
1919 // Ignore dbg intrinsics.
1920 while (isa<DbgInfoIntrinsic>(BBI))
1921 ++BBI;
1922 if (SI == &*BBI)
1923 if (FoldValueComparisonIntoPredecessors(SI))
1924 return SimplifyCFG(BB) || 1;
1926 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1927 if (BI->isUnconditional()) {
1928 BasicBlock::iterator BBI = BB->getFirstNonPHI();
1930 BasicBlock *Succ = BI->getSuccessor(0);
1931 // Ignore dbg intrinsics.
1932 while (isa<DbgInfoIntrinsic>(BBI))
1933 ++BBI;
1934 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
1935 Succ != BB) // Don't hurt infinite loops!
1936 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1937 return true;
1939 } else { // Conditional branch
1940 if (isValueEqualityComparison(BI)) {
1941 // If we only have one predecessor, and if it is a branch on this value,
1942 // see if that predecessor totally determines the outcome of this
1943 // switch.
1944 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1945 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1946 return SimplifyCFG(BB) || 1;
1948 // This block must be empty, except for the setcond inst, if it exists.
1949 // Ignore dbg intrinsics.
1950 BasicBlock::iterator I = BB->begin();
1951 // Ignore dbg intrinsics.
1952 while (isa<DbgInfoIntrinsic>(I))
1953 ++I;
1954 if (&*I == BI) {
1955 if (FoldValueComparisonIntoPredecessors(BI))
1956 return SimplifyCFG(BB) | true;
1957 } else if (&*I == cast<Instruction>(BI->getCondition())){
1958 ++I;
1959 // Ignore dbg intrinsics.
1960 while (isa<DbgInfoIntrinsic>(I))
1961 ++I;
1962 if(&*I == BI) {
1963 if (FoldValueComparisonIntoPredecessors(BI))
1964 return SimplifyCFG(BB) | true;
1969 // If this is a branch on a phi node in the current block, thread control
1970 // through this block if any PHI node entries are constants.
1971 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1972 if (PN->getParent() == BI->getParent())
1973 if (FoldCondBranchOnPHI(BI))
1974 return SimplifyCFG(BB) | true;
1976 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1977 // branches to us and one of our successors, fold the setcc into the
1978 // predecessor and use logical operations to pick the right destination.
1979 if (FoldBranchToCommonDest(BI))
1980 return SimplifyCFG(BB) | 1;
1983 // Scan predecessor blocks for conditional branches.
1984 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1985 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1986 if (PBI != BI && PBI->isConditional())
1987 if (SimplifyCondBranchToCondBranch(PBI, BI))
1988 return SimplifyCFG(BB) | true;
1990 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1991 // If there are any instructions immediately before the unreachable that can
1992 // be removed, do so.
1993 Instruction *Unreachable = BB->getTerminator();
1994 while (Unreachable != BB->begin()) {
1995 BasicBlock::iterator BBI = Unreachable;
1996 --BBI;
1997 // Do not delete instructions that can have side effects, like calls
1998 // (which may never return) and volatile loads and stores.
1999 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2001 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2002 if (SI->isVolatile())
2003 break;
2005 if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2006 if (LI->isVolatile())
2007 break;
2009 // Delete this instruction
2010 BB->getInstList().erase(BBI);
2011 Changed = true;
2014 // If the unreachable instruction is the first in the block, take a gander
2015 // at all of the predecessors of this instruction, and simplify them.
2016 if (&BB->front() == Unreachable) {
2017 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2018 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2019 TerminatorInst *TI = Preds[i]->getTerminator();
2021 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2022 if (BI->isUnconditional()) {
2023 if (BI->getSuccessor(0) == BB) {
2024 new UnreachableInst(TI);
2025 TI->eraseFromParent();
2026 Changed = true;
2028 } else {
2029 if (BI->getSuccessor(0) == BB) {
2030 BranchInst::Create(BI->getSuccessor(1), BI);
2031 EraseTerminatorInstAndDCECond(BI);
2032 } else if (BI->getSuccessor(1) == BB) {
2033 BranchInst::Create(BI->getSuccessor(0), BI);
2034 EraseTerminatorInstAndDCECond(BI);
2035 Changed = true;
2038 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2039 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2040 if (SI->getSuccessor(i) == BB) {
2041 BB->removePredecessor(SI->getParent());
2042 SI->removeCase(i);
2043 --i; --e;
2044 Changed = true;
2046 // If the default value is unreachable, figure out the most popular
2047 // destination and make it the default.
2048 if (SI->getSuccessor(0) == BB) {
2049 std::map<BasicBlock*, unsigned> Popularity;
2050 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2051 Popularity[SI->getSuccessor(i)]++;
2053 // Find the most popular block.
2054 unsigned MaxPop = 0;
2055 BasicBlock *MaxBlock = 0;
2056 for (std::map<BasicBlock*, unsigned>::iterator
2057 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2058 if (I->second > MaxPop) {
2059 MaxPop = I->second;
2060 MaxBlock = I->first;
2063 if (MaxBlock) {
2064 // Make this the new default, allowing us to delete any explicit
2065 // edges to it.
2066 SI->setSuccessor(0, MaxBlock);
2067 Changed = true;
2069 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2070 // it.
2071 if (isa<PHINode>(MaxBlock->begin()))
2072 for (unsigned i = 0; i != MaxPop-1; ++i)
2073 MaxBlock->removePredecessor(SI->getParent());
2075 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2076 if (SI->getSuccessor(i) == MaxBlock) {
2077 SI->removeCase(i);
2078 --i; --e;
2082 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2083 if (II->getUnwindDest() == BB) {
2084 // Convert the invoke to a call instruction. This would be a good
2085 // place to note that the call does not throw though.
2086 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2087 II->removeFromParent(); // Take out of symbol table
2089 // Insert the call now...
2090 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2091 CallInst *CI = CallInst::Create(II->getCalledValue(),
2092 Args.begin(), Args.end(),
2093 II->getName(), BI);
2094 CI->setCallingConv(II->getCallingConv());
2095 CI->setAttributes(II->getAttributes());
2096 // If the invoke produced a value, the Call does now instead.
2097 II->replaceAllUsesWith(CI);
2098 delete II;
2099 Changed = true;
2104 // If this block is now dead, remove it.
2105 if (pred_begin(BB) == pred_end(BB)) {
2106 // We know there are no successors, so just nuke the block.
2107 M->getBasicBlockList().erase(BB);
2108 return true;
2113 // Merge basic blocks into their predecessor if there is only one distinct
2114 // pred, and if there is only one distinct successor of the predecessor, and
2115 // if there are no PHI nodes.
2117 if (MergeBlockIntoPredecessor(BB))
2118 return true;
2120 // Otherwise, if this block only has a single predecessor, and if that block
2121 // is a conditional branch, see if we can hoist any code from this block up
2122 // into our predecessor.
2123 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2124 BasicBlock *OnlyPred = *PI++;
2125 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
2126 if (*PI != OnlyPred) {
2127 OnlyPred = 0; // There are multiple different predecessors...
2128 break;
2131 if (OnlyPred)
2132 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2133 if (BI->isConditional()) {
2134 // Get the other block.
2135 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2136 PI = pred_begin(OtherBB);
2137 ++PI;
2139 if (PI == pred_end(OtherBB)) {
2140 // We have a conditional branch to two blocks that are only reachable
2141 // from the condbr. We know that the condbr dominates the two blocks,
2142 // so see if there is any identical code in the "then" and "else"
2143 // blocks. If so, we can hoist it up to the branching block.
2144 Changed |= HoistThenElseCodeToIf(BI);
2145 } else {
2146 BasicBlock* OnlySucc = NULL;
2147 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2148 SI != SE; ++SI) {
2149 if (!OnlySucc)
2150 OnlySucc = *SI;
2151 else if (*SI != OnlySucc) {
2152 OnlySucc = 0; // There are multiple distinct successors!
2153 break;
2157 if (OnlySucc == OtherBB) {
2158 // If BB's only successor is the other successor of the predecessor,
2159 // i.e. a triangle, see if we can hoist any code from this block up
2160 // to the "if" block.
2161 Changed |= SpeculativelyExecuteBB(BI, BB);
2166 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2167 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2168 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2169 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2170 Instruction *Cond = cast<Instruction>(BI->getCondition());
2171 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2172 // 'setne's and'ed together, collect them.
2173 Value *CompVal = 0;
2174 std::vector<ConstantInt*> Values;
2175 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2176 if (CompVal && CompVal->getType()->isInteger()) {
2177 // There might be duplicate constants in the list, which the switch
2178 // instruction can't handle, remove them now.
2179 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2180 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2182 // Figure out which block is which destination.
2183 BasicBlock *DefaultBB = BI->getSuccessor(1);
2184 BasicBlock *EdgeBB = BI->getSuccessor(0);
2185 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2187 // Create the new switch instruction now.
2188 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2189 Values.size(), BI);
2191 // Add all of the 'cases' to the switch instruction.
2192 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2193 New->addCase(Values[i], EdgeBB);
2195 // We added edges from PI to the EdgeBB. As such, if there were any
2196 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2197 // the number of edges added.
2198 for (BasicBlock::iterator BBI = EdgeBB->begin();
2199 isa<PHINode>(BBI); ++BBI) {
2200 PHINode *PN = cast<PHINode>(BBI);
2201 Value *InVal = PN->getIncomingValueForBlock(*PI);
2202 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2203 PN->addIncoming(InVal, *PI);
2206 // Erase the old branch instruction.
2207 EraseTerminatorInstAndDCECond(BI);
2208 return true;
2212 return Changed;