1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
35 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
37 /// SafeToMergeTerminators - Return true if it is safe to merge these two
38 /// terminator instructions together.
40 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
41 if (SI1
== SI2
) return false; // Can't merge with self!
43 // It is not safe to merge these two switch instructions if they have a common
44 // successor, and if that successor has a PHI node, and if *that* PHI node has
45 // conflicting incoming values from the two switch blocks.
46 BasicBlock
*SI1BB
= SI1
->getParent();
47 BasicBlock
*SI2BB
= SI2
->getParent();
48 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
50 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
51 if (SI1Succs
.count(*I
))
52 for (BasicBlock::iterator BBI
= (*I
)->begin();
53 isa
<PHINode
>(BBI
); ++BBI
) {
54 PHINode
*PN
= cast
<PHINode
>(BBI
);
55 if (PN
->getIncomingValueForBlock(SI1BB
) !=
56 PN
->getIncomingValueForBlock(SI2BB
))
63 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
64 /// now be entries in it from the 'NewPred' block. The values that will be
65 /// flowing into the PHI nodes will be the same as those coming in from
66 /// ExistPred, an existing predecessor of Succ.
67 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
68 BasicBlock
*ExistPred
) {
69 assert(std::find(succ_begin(ExistPred
), succ_end(ExistPred
), Succ
) !=
70 succ_end(ExistPred
) && "ExistPred is not a predecessor of Succ!");
71 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
74 for (BasicBlock::iterator I
= Succ
->begin();
75 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
76 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
79 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
80 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
82 /// Assumption: Succ is the single successor for BB.
84 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
85 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
87 DOUT
<< "Looking to fold " << BB
->getNameStart() << " into "
88 << Succ
->getNameStart() << "\n";
89 // Shortcut, if there is only a single predecessor it must be BB and merging
91 if (Succ
->getSinglePredecessor()) return true;
93 typedef SmallPtrSet
<Instruction
*, 16> InstrSet
;
96 // Make a list of all phi nodes in BB
97 BasicBlock::iterator BBI
= BB
->begin();
98 while (isa
<PHINode
>(*BBI
)) BBPHIs
.insert(BBI
++);
100 // Make a list of the predecessors of BB
101 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
102 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
104 // Use that list to make another list of common predecessors of BB and Succ
105 BlockSet CommonPreds
;
106 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
108 if (BBPreds
.count(*PI
))
109 CommonPreds
.insert(*PI
);
111 // Shortcut, if there are no common predecessors, merging is always safe
112 if (CommonPreds
.empty())
115 // Look at all the phi nodes in Succ, to see if they present a conflict when
116 // merging these blocks
117 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
118 PHINode
*PN
= cast
<PHINode
>(I
);
120 // If the incoming value from BB is again a PHINode in
121 // BB which has the same incoming value for *PI as PN does, we can
122 // merge the phi nodes and then the blocks can still be merged
123 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
124 if (BBPN
&& BBPN
->getParent() == BB
) {
125 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
127 if (BBPN
->getIncomingValueForBlock(*PI
)
128 != PN
->getIncomingValueForBlock(*PI
)) {
129 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
130 << Succ
->getNameStart() << " is conflicting with "
131 << BBPN
->getNameStart() << " with regard to common predecessor "
132 << (*PI
)->getNameStart() << "\n";
136 // Remove this phinode from the list of phis in BB, since it has been
140 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
141 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
143 // See if the incoming value for the common predecessor is equal to the
144 // one for BB, in which case this phi node will not prevent the merging
146 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
147 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
148 << Succ
->getNameStart() << " is conflicting with regard to common "
149 << "predecessor " << (*PI
)->getNameStart() << "\n";
156 // If there are any other phi nodes in BB that don't have a phi node in Succ
157 // to merge with, they must be moved to Succ completely. However, for any
158 // predecessors of Succ, branches will be added to the phi node that just
159 // point to itself. So, for any common predecessors, this must not cause
161 for (InstrSet::iterator I
= BBPHIs
.begin(), E
= BBPHIs
.end();
163 PHINode
*PN
= cast
<PHINode
>(*I
);
164 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
166 if (PN
->getIncomingValueForBlock(*PI
) != PN
) {
167 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
168 << BB
->getNameStart() << " is conflicting with regard to common "
169 << "predecessor " << (*PI
)->getNameStart() << "\n";
177 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
178 /// branch to Succ, and contains no instructions other than PHI nodes and the
179 /// branch. If possible, eliminate BB.
180 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
182 // Check to see if merging these blocks would cause conflicts for any of the
183 // phi nodes in BB or Succ. If not, we can safely merge.
184 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
186 DOUT
<< "Killing Trivial BB: \n" << *BB
;
188 if (isa
<PHINode
>(Succ
->begin())) {
189 // If there is more than one pred of succ, and there are PHI nodes in
190 // the successor, then we need to add incoming edges for the PHI nodes
192 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
194 // Loop over all of the PHI nodes in the successor of BB.
195 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
196 PHINode
*PN
= cast
<PHINode
>(I
);
197 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
198 assert(OldVal
&& "No entry in PHI for Pred BB!");
200 // If this incoming value is one of the PHI nodes in BB, the new entries
201 // in the PHI node are the entries from the old PHI.
202 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
203 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
204 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
205 // Note that, since we are merging phi nodes and BB and Succ might
206 // have common predecessors, we could end up with a phi node with
207 // identical incoming branches. This will be cleaned up later (and
208 // will trigger asserts if we try to clean it up now, without also
209 // simplifying the corresponding conditional branch).
210 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
211 OldValPN
->getIncomingBlock(i
));
213 // Add an incoming value for each of the new incoming values.
214 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
215 PN
->addIncoming(OldVal
, BBPreds
[i
]);
220 if (isa
<PHINode
>(&BB
->front())) {
221 SmallVector
<BasicBlock
*, 16>
222 OldSuccPreds(pred_begin(Succ
), pred_end(Succ
));
224 // Move all PHI nodes in BB to Succ if they are alive, otherwise
226 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
227 if (PN
->use_empty()) {
228 // Just remove the dead phi. This happens if Succ's PHIs were the only
229 // users of the PHI nodes.
230 PN
->eraseFromParent();
234 // The instruction is alive, so this means that BB must dominate all
235 // predecessors of Succ (Since all uses of the PN are after its
236 // definition, so in Succ or a block dominated by Succ. If a predecessor
237 // of Succ would not be dominated by BB, PN would violate the def before
238 // use SSA demand). Therefore, we can simply move the phi node to the
240 Succ
->getInstList().splice(Succ
->begin(),
241 BB
->getInstList(), BB
->begin());
243 // We need to add new entries for the PHI node to account for
244 // predecessors of Succ that the PHI node does not take into
245 // account. At this point, since we know that BB dominated succ and all
246 // of its predecessors, this means that we should any newly added
247 // incoming edges should use the PHI node itself as the value for these
248 // edges, because they are loop back edges.
249 for (unsigned i
= 0, e
= OldSuccPreds
.size(); i
!= e
; ++i
)
250 if (OldSuccPreds
[i
] != BB
)
251 PN
->addIncoming(PN
, OldSuccPreds
[i
]);
255 // Everything that jumped to BB now goes to Succ.
256 BB
->replaceAllUsesWith(Succ
);
257 if (!Succ
->hasName()) Succ
->takeName(BB
);
258 BB
->eraseFromParent(); // Delete the old basic block.
262 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
263 /// presumably PHI nodes in it), check to see if the merge at this block is due
264 /// to an "if condition". If so, return the boolean condition that determines
265 /// which entry into BB will be taken. Also, return by references the block
266 /// that will be entered from if the condition is true, and the block that will
267 /// be entered if the condition is false.
270 static Value
*GetIfCondition(BasicBlock
*BB
,
271 BasicBlock
*&IfTrue
, BasicBlock
*&IfFalse
) {
272 assert(std::distance(pred_begin(BB
), pred_end(BB
)) == 2 &&
273 "Function can only handle blocks with 2 predecessors!");
274 BasicBlock
*Pred1
= *pred_begin(BB
);
275 BasicBlock
*Pred2
= *++pred_begin(BB
);
277 // We can only handle branches. Other control flow will be lowered to
278 // branches if possible anyway.
279 if (!isa
<BranchInst
>(Pred1
->getTerminator()) ||
280 !isa
<BranchInst
>(Pred2
->getTerminator()))
282 BranchInst
*Pred1Br
= cast
<BranchInst
>(Pred1
->getTerminator());
283 BranchInst
*Pred2Br
= cast
<BranchInst
>(Pred2
->getTerminator());
285 // Eliminate code duplication by ensuring that Pred1Br is conditional if
287 if (Pred2Br
->isConditional()) {
288 // If both branches are conditional, we don't have an "if statement". In
289 // reality, we could transform this case, but since the condition will be
290 // required anyway, we stand no chance of eliminating it, so the xform is
291 // probably not profitable.
292 if (Pred1Br
->isConditional())
295 std::swap(Pred1
, Pred2
);
296 std::swap(Pred1Br
, Pred2Br
);
299 if (Pred1Br
->isConditional()) {
300 // If we found a conditional branch predecessor, make sure that it branches
301 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
302 if (Pred1Br
->getSuccessor(0) == BB
&&
303 Pred1Br
->getSuccessor(1) == Pred2
) {
306 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
307 Pred1Br
->getSuccessor(1) == BB
) {
311 // We know that one arm of the conditional goes to BB, so the other must
312 // go somewhere unrelated, and this must not be an "if statement".
316 // The only thing we have to watch out for here is to make sure that Pred2
317 // doesn't have incoming edges from other blocks. If it does, the condition
318 // doesn't dominate BB.
319 if (++pred_begin(Pred2
) != pred_end(Pred2
))
322 return Pred1Br
->getCondition();
325 // Ok, if we got here, both predecessors end with an unconditional branch to
326 // BB. Don't panic! If both blocks only have a single (identical)
327 // predecessor, and THAT is a conditional branch, then we're all ok!
328 if (pred_begin(Pred1
) == pred_end(Pred1
) ||
329 ++pred_begin(Pred1
) != pred_end(Pred1
) ||
330 pred_begin(Pred2
) == pred_end(Pred2
) ||
331 ++pred_begin(Pred2
) != pred_end(Pred2
) ||
332 *pred_begin(Pred1
) != *pred_begin(Pred2
))
335 // Otherwise, if this is a conditional branch, then we can use it!
336 BasicBlock
*CommonPred
= *pred_begin(Pred1
);
337 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator())) {
338 assert(BI
->isConditional() && "Two successors but not conditional?");
339 if (BI
->getSuccessor(0) == Pred1
) {
346 return BI
->getCondition();
351 /// DominatesMergePoint - If we have a merge point of an "if condition" as
352 /// accepted above, return true if the specified value dominates the block. We
353 /// don't handle the true generality of domination here, just a special case
354 /// which works well enough for us.
356 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357 /// see if V (which must be an instruction) is cheap to compute and is
358 /// non-trapping. If both are true, the instruction is inserted into the set
359 /// and true is returned.
360 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
361 std::set
<Instruction
*> *AggressiveInsts
) {
362 Instruction
*I
= dyn_cast
<Instruction
>(V
);
364 // Non-instructions all dominate instructions, but not all constantexprs
365 // can be executed unconditionally.
366 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
371 BasicBlock
*PBB
= I
->getParent();
373 // We don't want to allow weird loops that might have the "if condition" in
374 // the bottom of this block.
375 if (PBB
== BB
) return false;
377 // If this instruction is defined in a block that contains an unconditional
378 // branch to BB, then it must be in the 'conditional' part of the "if
380 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator()))
381 if (BI
->isUnconditional() && BI
->getSuccessor(0) == BB
) {
382 if (!AggressiveInsts
) return false;
383 // Okay, it looks like the instruction IS in the "condition". Check to
384 // see if its a cheap instruction to unconditionally compute, and if it
385 // only uses stuff defined outside of the condition. If so, hoist it out.
386 switch (I
->getOpcode()) {
387 default: return false; // Cannot hoist this out safely.
388 case Instruction::Load
: {
389 // We can hoist loads that are non-volatile and obviously cannot trap.
390 if (cast
<LoadInst
>(I
)->isVolatile())
392 // FIXME: A computation of a constant can trap!
393 if (!isa
<AllocaInst
>(I
->getOperand(0)) &&
394 !isa
<Constant
>(I
->getOperand(0)))
396 // External weak globals may have address 0, so we can't load them.
397 Value
*V2
= I
->getOperand(0)->getUnderlyingObject();
399 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V2
);
400 if (GV
&& GV
->hasExternalWeakLinkage())
403 // Finally, we have to check to make sure there are no instructions
404 // before the load in its basic block, as we are going to hoist the loop
405 // out to its predecessor.
406 BasicBlock::iterator IP
= PBB
->begin();
407 while (isa
<DbgInfoIntrinsic
>(IP
))
409 if (IP
!= BasicBlock::iterator(I
))
413 case Instruction::Add
:
414 case Instruction::Sub
:
415 case Instruction::And
:
416 case Instruction::Or
:
417 case Instruction::Xor
:
418 case Instruction::Shl
:
419 case Instruction::LShr
:
420 case Instruction::AShr
:
421 case Instruction::ICmp
:
422 case Instruction::FCmp
:
423 if (I
->getOperand(0)->getType()->isFPOrFPVector())
424 return false; // FP arithmetic might trap.
425 break; // These are all cheap and non-trapping instructions.
428 // Okay, we can only really hoist these out if their operands are not
429 // defined in the conditional region.
430 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
431 if (!DominatesMergePoint(*i
, BB
, 0))
433 // Okay, it's safe to do this! Remember this instruction.
434 AggressiveInsts
->insert(I
);
440 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
441 /// icmp_eq instructions that compare a value against a constant, return the
442 /// value being compared, and stick the constant into the Values vector.
443 static Value
*GatherConstantSetEQs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
444 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
445 if (Inst
->getOpcode() == Instruction::ICmp
&&
446 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_EQ
) {
447 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
449 return Inst
->getOperand(0);
450 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
452 return Inst
->getOperand(1);
454 } else if (Inst
->getOpcode() == Instruction::Or
) {
455 if (Value
*LHS
= GatherConstantSetEQs(Inst
->getOperand(0), Values
))
456 if (Value
*RHS
= GatherConstantSetEQs(Inst
->getOperand(1), Values
))
464 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
465 /// setne instructions that compare a value against a constant, return the value
466 /// being compared, and stick the constant into the Values vector.
467 static Value
*GatherConstantSetNEs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
468 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
469 if (Inst
->getOpcode() == Instruction::ICmp
&&
470 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_NE
) {
471 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
473 return Inst
->getOperand(0);
474 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
476 return Inst
->getOperand(1);
478 } else if (Inst
->getOpcode() == Instruction::And
) {
479 if (Value
*LHS
= GatherConstantSetNEs(Inst
->getOperand(0), Values
))
480 if (Value
*RHS
= GatherConstantSetNEs(Inst
->getOperand(1), Values
))
488 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
489 /// bunch of comparisons of one value against constants, return the value and
490 /// the constants being compared.
491 static bool GatherValueComparisons(Instruction
*Cond
, Value
*&CompVal
,
492 std::vector
<ConstantInt
*> &Values
) {
493 if (Cond
->getOpcode() == Instruction::Or
) {
494 CompVal
= GatherConstantSetEQs(Cond
, Values
);
496 // Return true to indicate that the condition is true if the CompVal is
497 // equal to one of the constants.
499 } else if (Cond
->getOpcode() == Instruction::And
) {
500 CompVal
= GatherConstantSetNEs(Cond
, Values
);
502 // Return false to indicate that the condition is false if the CompVal is
503 // equal to one of the constants.
509 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
510 Instruction
* Cond
= 0;
511 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
512 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
513 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
514 if (BI
->isConditional())
515 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
518 TI
->eraseFromParent();
519 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
522 /// isValueEqualityComparison - Return true if the specified terminator checks
523 /// to see if a value is equal to constant integer value.
524 static Value
*isValueEqualityComparison(TerminatorInst
*TI
) {
525 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
526 // Do not permit merging of large switch instructions into their
527 // predecessors unless there is only one predecessor.
528 if (SI
->getNumSuccessors() * std::distance(pred_begin(SI
->getParent()),
529 pred_end(SI
->getParent())) > 128)
532 return SI
->getCondition();
534 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
535 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
536 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
537 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
538 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
539 isa
<ConstantInt
>(ICI
->getOperand(1)))
540 return ICI
->getOperand(0);
544 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
545 /// decode all of the 'cases' that it represents and return the 'default' block.
547 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
548 std::vector
<std::pair
<ConstantInt
*,
549 BasicBlock
*> > &Cases
) {
550 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
551 Cases
.reserve(SI
->getNumCases());
552 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
553 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
554 return SI
->getDefaultDest();
557 BranchInst
*BI
= cast
<BranchInst
>(TI
);
558 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
559 Cases
.push_back(std::make_pair(cast
<ConstantInt
>(ICI
->getOperand(1)),
560 BI
->getSuccessor(ICI
->getPredicate() ==
561 ICmpInst::ICMP_NE
)));
562 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
566 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
567 /// in the list that match the specified block.
568 static void EliminateBlockCases(BasicBlock
*BB
,
569 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
570 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
571 if (Cases
[i
].second
== BB
) {
572 Cases
.erase(Cases
.begin()+i
);
577 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
580 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
581 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
582 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
584 // Make V1 be smaller than V2.
585 if (V1
->size() > V2
->size())
588 if (V1
->size() == 0) return false;
589 if (V1
->size() == 1) {
591 ConstantInt
*TheVal
= (*V1
)[0].first
;
592 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
593 if (TheVal
== (*V2
)[i
].first
)
597 // Otherwise, just sort both lists and compare element by element.
598 std::sort(V1
->begin(), V1
->end());
599 std::sort(V2
->begin(), V2
->end());
600 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
601 while (i1
!= e1
&& i2
!= e2
) {
602 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
604 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
612 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
613 /// terminator instruction and its block is known to only have a single
614 /// predecessor block, check to see if that predecessor is also a value
615 /// comparison with the same value, and if that comparison determines the
616 /// outcome of this comparison. If so, simplify TI. This does a very limited
617 /// form of jump threading.
618 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
620 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
621 if (!PredVal
) return false; // Not a value comparison in predecessor.
623 Value
*ThisVal
= isValueEqualityComparison(TI
);
624 assert(ThisVal
&& "This isn't a value comparison!!");
625 if (ThisVal
!= PredVal
) return false; // Different predicates.
627 // Find out information about when control will move from Pred to TI's block.
628 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
629 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
631 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
633 // Find information about how control leaves this block.
634 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
635 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
636 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
638 // If TI's block is the default block from Pred's comparison, potentially
639 // simplify TI based on this knowledge.
640 if (PredDef
== TI
->getParent()) {
641 // If we are here, we know that the value is none of those cases listed in
642 // PredCases. If there are any cases in ThisCases that are in PredCases, we
644 if (ValuesOverlap(PredCases
, ThisCases
)) {
645 if (isa
<BranchInst
>(TI
)) {
646 // Okay, one of the successors of this condbr is dead. Convert it to a
648 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
649 // Insert the new branch.
650 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
652 // Remove PHI node entries for the dead edge.
653 ThisCases
[0].second
->removePredecessor(TI
->getParent());
655 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
656 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
658 EraseTerminatorInstAndDCECond(TI
);
662 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
663 // Okay, TI has cases that are statically dead, prune them away.
664 SmallPtrSet
<Constant
*, 16> DeadCases
;
665 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
666 DeadCases
.insert(PredCases
[i
].first
);
668 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
669 << "Through successor TI: " << *TI
;
671 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
672 if (DeadCases
.count(SI
->getCaseValue(i
))) {
673 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
677 DOUT
<< "Leaving: " << *TI
<< "\n";
683 // Otherwise, TI's block must correspond to some matched value. Find out
684 // which value (or set of values) this is.
685 ConstantInt
*TIV
= 0;
686 BasicBlock
*TIBB
= TI
->getParent();
687 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
688 if (PredCases
[i
].second
== TIBB
) {
690 TIV
= PredCases
[i
].first
;
692 return false; // Cannot handle multiple values coming to this block.
694 assert(TIV
&& "No edge from pred to succ?");
696 // Okay, we found the one constant that our value can be if we get into TI's
697 // BB. Find out which successor will unconditionally be branched to.
698 BasicBlock
*TheRealDest
= 0;
699 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
700 if (ThisCases
[i
].first
== TIV
) {
701 TheRealDest
= ThisCases
[i
].second
;
705 // If not handled by any explicit cases, it is handled by the default case.
706 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
708 // Remove PHI node entries for dead edges.
709 BasicBlock
*CheckEdge
= TheRealDest
;
710 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
711 if (*SI
!= CheckEdge
)
712 (*SI
)->removePredecessor(TIBB
);
716 // Insert the new branch.
717 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
719 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
720 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
722 EraseTerminatorInstAndDCECond(TI
);
729 /// ConstantIntOrdering - This class implements a stable ordering of constant
730 /// integers that does not depend on their address. This is important for
731 /// applications that sort ConstantInt's to ensure uniqueness.
732 struct ConstantIntOrdering
{
733 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
734 return LHS
->getValue().ult(RHS
->getValue());
739 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
740 /// equality comparison instruction (either a switch or a branch on "X == c").
741 /// See if any of the predecessors of the terminator block are value comparisons
742 /// on the same value. If so, and if safe to do so, fold them together.
743 static bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
744 BasicBlock
*BB
= TI
->getParent();
745 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
746 assert(CV
&& "Not a comparison?");
747 bool Changed
= false;
749 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
750 while (!Preds
.empty()) {
751 BasicBlock
*Pred
= Preds
.pop_back_val();
753 // See if the predecessor is a comparison with the same value.
754 TerminatorInst
*PTI
= Pred
->getTerminator();
755 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
757 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
758 // Figure out which 'cases' to copy from SI to PSI.
759 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
760 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
762 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
763 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
765 // Based on whether the default edge from PTI goes to BB or not, fill in
766 // PredCases and PredDefault with the new switch cases we would like to
768 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
770 if (PredDefault
== BB
) {
771 // If this is the default destination from PTI, only the edges in TI
772 // that don't occur in PTI, or that branch to BB will be activated.
773 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
774 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
775 if (PredCases
[i
].second
!= BB
)
776 PTIHandled
.insert(PredCases
[i
].first
);
778 // The default destination is BB, we don't need explicit targets.
779 std::swap(PredCases
[i
], PredCases
.back());
780 PredCases
.pop_back();
784 // Reconstruct the new switch statement we will be building.
785 if (PredDefault
!= BBDefault
) {
786 PredDefault
->removePredecessor(Pred
);
787 PredDefault
= BBDefault
;
788 NewSuccessors
.push_back(BBDefault
);
790 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
791 if (!PTIHandled
.count(BBCases
[i
].first
) &&
792 BBCases
[i
].second
!= BBDefault
) {
793 PredCases
.push_back(BBCases
[i
]);
794 NewSuccessors
.push_back(BBCases
[i
].second
);
798 // If this is not the default destination from PSI, only the edges
799 // in SI that occur in PSI with a destination of BB will be
801 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
802 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
803 if (PredCases
[i
].second
== BB
) {
804 PTIHandled
.insert(PredCases
[i
].first
);
805 std::swap(PredCases
[i
], PredCases
.back());
806 PredCases
.pop_back();
810 // Okay, now we know which constants were sent to BB from the
811 // predecessor. Figure out where they will all go now.
812 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
813 if (PTIHandled
.count(BBCases
[i
].first
)) {
814 // If this is one we are capable of getting...
815 PredCases
.push_back(BBCases
[i
]);
816 NewSuccessors
.push_back(BBCases
[i
].second
);
817 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
820 // If there are any constants vectored to BB that TI doesn't handle,
821 // they must go to the default destination of TI.
822 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
824 E
= PTIHandled
.end(); I
!= E
; ++I
) {
825 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
826 NewSuccessors
.push_back(BBDefault
);
830 // Okay, at this point, we know which new successor Pred will get. Make
831 // sure we update the number of entries in the PHI nodes for these
833 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
834 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
836 // Now that the successors are updated, create the new Switch instruction.
837 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
838 PredCases
.size(), PTI
);
839 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
840 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
842 EraseTerminatorInstAndDCECond(PTI
);
844 // Okay, last check. If BB is still a successor of PSI, then we must
845 // have an infinite loop case. If so, add an infinitely looping block
846 // to handle the case to preserve the behavior of the code.
847 BasicBlock
*InfLoopBlock
= 0;
848 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
849 if (NewSI
->getSuccessor(i
) == BB
) {
850 if (InfLoopBlock
== 0) {
851 // Insert it at the end of the function, because it's either code,
852 // or it won't matter if it's hot. :)
853 InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
854 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
856 NewSI
->setSuccessor(i
, InfLoopBlock
);
865 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
866 /// BB2, hoist any common code in the two blocks up into the branch block. The
867 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
868 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
869 // This does very trivial matching, with limited scanning, to find identical
870 // instructions in the two blocks. In particular, we don't want to get into
871 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
872 // such, we currently just scan for obviously identical instructions in an
874 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
875 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
877 BasicBlock::iterator BB1_Itr
= BB1
->begin();
878 BasicBlock::iterator BB2_Itr
= BB2
->begin();
880 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
881 while (isa
<DbgInfoIntrinsic
>(I1
))
883 while (isa
<DbgInfoIntrinsic
>(I2
))
885 if (I1
->getOpcode() != I2
->getOpcode() || isa
<PHINode
>(I1
) ||
886 isa
<InvokeInst
>(I1
) || !I1
->isIdenticalTo(I2
))
889 // If we get here, we can hoist at least one instruction.
890 BasicBlock
*BIParent
= BI
->getParent();
893 // If we are hoisting the terminator instruction, don't move one (making a
894 // broken BB), instead clone it, and remove BI.
895 if (isa
<TerminatorInst
>(I1
))
896 goto HoistTerminator
;
898 // For a normal instruction, we just move one to right before the branch,
899 // then replace all uses of the other with the first. Finally, we remove
900 // the now redundant second instruction.
901 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
902 if (!I2
->use_empty())
903 I2
->replaceAllUsesWith(I1
);
904 BB2
->getInstList().erase(I2
);
907 while (isa
<DbgInfoIntrinsic
>(I1
))
910 while (isa
<DbgInfoIntrinsic
>(I2
))
912 } while (I1
->getOpcode() == I2
->getOpcode() && I1
->isIdenticalTo(I2
));
917 // Okay, it is safe to hoist the terminator.
918 Instruction
*NT
= I1
->clone();
919 BIParent
->getInstList().insert(BI
, NT
);
920 if (NT
->getType() != Type::VoidTy
) {
921 I1
->replaceAllUsesWith(NT
);
922 I2
->replaceAllUsesWith(NT
);
926 // Hoisting one of the terminators from our successor is a great thing.
927 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
929 // nodes, so we insert select instruction to compute the final result.
930 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
931 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
933 for (BasicBlock::iterator BBI
= SI
->begin();
934 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
935 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
936 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
938 // These values do not agree. Insert a select instruction before NT
939 // that determines the right value.
940 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
942 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
943 BB1V
->getName()+"."+BB2V
->getName(), NT
);
944 // Make the PHI node use the select for all incoming values for BB1/BB2
945 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
946 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
947 PN
->setIncomingValue(i
, SI
);
952 // Update any PHI nodes in our new successors.
953 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
954 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
956 EraseTerminatorInstAndDCECond(BI
);
960 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962 /// (for now, restricted to a single instruction that's side effect free) from
963 /// the BB1 into the branch block to speculatively execute it.
964 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
965 // Only speculatively execution a single instruction (not counting the
966 // terminator) for now.
967 Instruction
*HInst
= NULL
;
968 Instruction
*Term
= BB1
->getTerminator();
969 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
971 Instruction
*I
= BBI
;
973 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
974 if (I
== Term
) break;
984 // Be conservative for now. FP select instruction can often be expensive.
985 Value
*BrCond
= BI
->getCondition();
986 if (isa
<Instruction
>(BrCond
) &&
987 cast
<Instruction
>(BrCond
)->getOpcode() == Instruction::FCmp
)
990 // If BB1 is actually on the false edge of the conditional branch, remember
991 // to swap the select operands later.
993 if (BB1
!= BI
->getSuccessor(0)) {
994 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1001 // br i1 %t1, label %BB1, label %BB2
1010 // %t3 = select i1 %t1, %t2, %t3
1011 switch (HInst
->getOpcode()) {
1012 default: return false; // Not safe / profitable to hoist.
1013 case Instruction::Add
:
1014 case Instruction::Sub
:
1015 // FP arithmetic might trap. Not worth doing for vector ops.
1016 if (HInst
->getType()->isFloatingPoint()
1017 || isa
<VectorType
>(HInst
->getType()))
1020 case Instruction::And
:
1021 case Instruction::Or
:
1022 case Instruction::Xor
:
1023 case Instruction::Shl
:
1024 case Instruction::LShr
:
1025 case Instruction::AShr
:
1026 // Don't mess with vector operations.
1027 if (isa
<VectorType
>(HInst
->getType()))
1029 break; // These are all cheap and non-trapping instructions.
1032 // If the instruction is obviously dead, don't try to predicate it.
1033 if (HInst
->use_empty()) {
1034 HInst
->eraseFromParent();
1038 // Can we speculatively execute the instruction? And what is the value
1039 // if the condition is false? Consider the phi uses, if the incoming value
1040 // from the "if" block are all the same V, then V is the value of the
1041 // select if the condition is false.
1042 BasicBlock
*BIParent
= BI
->getParent();
1043 SmallVector
<PHINode
*, 4> PHIUses
;
1044 Value
*FalseV
= NULL
;
1046 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1047 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1049 // Ignore any user that is not a PHI node in BB2. These can only occur in
1050 // unreachable blocks, because they would not be dominated by the instr.
1051 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
1052 if (!PN
|| PN
->getParent() != BB2
)
1054 PHIUses
.push_back(PN
);
1056 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1059 else if (FalseV
!= PHIV
)
1060 return false; // Inconsistent value when condition is false.
1063 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1065 // Do not hoist the instruction if any of its operands are defined but not
1066 // used in this BB. The transformation will prevent the operand from
1067 // being sunk into the use block.
1068 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1070 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1071 if (OpI
&& OpI
->getParent() == BIParent
&&
1072 !OpI
->isUsedInBasicBlock(BIParent
))
1076 // If we get here, we can hoist the instruction. Try to place it
1077 // before the icmp instruction preceding the conditional branch.
1078 BasicBlock::iterator InsertPos
= BI
;
1079 if (InsertPos
!= BIParent
->begin())
1081 // Skip debug info between condition and branch.
1082 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1084 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1085 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1086 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1087 BB1I
!= BB1E
; ++BB1I
)
1088 BB1Insns
.insert(BB1I
);
1089 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1091 Instruction
*Use
= cast
<Instruction
>(*UI
);
1092 if (BB1Insns
.count(Use
)) {
1093 // If BrCond uses the instruction that place it just before
1094 // branch instruction.
1101 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1103 // Create a select whose true value is the speculatively executed value and
1104 // false value is the previously determined FalseV.
1107 SI
= SelectInst::Create(BrCond
, FalseV
, HInst
,
1108 FalseV
->getName() + "." + HInst
->getName(), BI
);
1110 SI
= SelectInst::Create(BrCond
, HInst
, FalseV
,
1111 HInst
->getName() + "." + FalseV
->getName(), BI
);
1113 // Make the PHI node use the select for all incoming values for "then" and
1115 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1116 PHINode
*PN
= PHIUses
[i
];
1117 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1118 if (PN
->getIncomingBlock(j
) == BB1
||
1119 PN
->getIncomingBlock(j
) == BIParent
)
1120 PN
->setIncomingValue(j
, SI
);
1127 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1128 /// across this block.
1129 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1130 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1133 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1134 if (isa
<DbgInfoIntrinsic
>(BBI
))
1136 if (Size
> 10) return false; // Don't clone large BB's.
1139 // We can only support instructions that do not define values that are
1140 // live outside of the current basic block.
1141 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1143 Instruction
*U
= cast
<Instruction
>(*UI
);
1144 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1147 // Looks ok, continue checking.
1153 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1154 /// that is defined in the same block as the branch and if any PHI entries are
1155 /// constants, thread edges corresponding to that entry to be branches to their
1156 /// ultimate destination.
1157 static bool FoldCondBranchOnPHI(BranchInst
*BI
) {
1158 BasicBlock
*BB
= BI
->getParent();
1159 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1160 // NOTE: we currently cannot transform this case if the PHI node is used
1161 // outside of the block.
1162 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1165 // Degenerate case of a single entry PHI.
1166 if (PN
->getNumIncomingValues() == 1) {
1167 FoldSingleEntryPHINodes(PN
->getParent());
1171 // Now we know that this block has multiple preds and two succs.
1172 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1174 // Okay, this is a simple enough basic block. See if any phi values are
1176 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1178 if ((CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))) &&
1179 CB
->getType() == Type::Int1Ty
) {
1180 // Okay, we now know that all edges from PredBB should be revectored to
1181 // branch to RealDest.
1182 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1183 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1185 if (RealDest
== BB
) continue; // Skip self loops.
1187 // The dest block might have PHI nodes, other predecessors and other
1188 // difficult cases. Instead of being smart about this, just insert a new
1189 // block that jumps to the destination block, effectively splitting
1190 // the edge we are about to create.
1191 BasicBlock
*EdgeBB
= BasicBlock::Create(RealDest
->getName()+".critedge",
1192 RealDest
->getParent(), RealDest
);
1193 BranchInst::Create(RealDest
, EdgeBB
);
1195 for (BasicBlock::iterator BBI
= RealDest
->begin();
1196 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
1197 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1198 PN
->addIncoming(V
, EdgeBB
);
1201 // BB may have instructions that are being threaded over. Clone these
1202 // instructions into EdgeBB. We know that there will be no uses of the
1203 // cloned instructions outside of EdgeBB.
1204 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1205 std::map
<Value
*, Value
*> TranslateMap
; // Track translated values.
1206 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1207 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1208 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1210 // Clone the instruction.
1211 Instruction
*N
= BBI
->clone();
1212 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1214 // Update operands due to translation.
1215 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1217 std::map
<Value
*, Value
*>::iterator PI
=
1218 TranslateMap
.find(*i
);
1219 if (PI
!= TranslateMap
.end())
1223 // Check for trivial simplification.
1224 if (Constant
*C
= ConstantFoldInstruction(N
)) {
1225 TranslateMap
[BBI
] = C
;
1226 delete N
; // Constant folded away, don't need actual inst
1228 // Insert the new instruction into its new home.
1229 EdgeBB
->getInstList().insert(InsertPt
, N
);
1230 if (!BBI
->use_empty())
1231 TranslateMap
[BBI
] = N
;
1236 // Loop over all of the edges from PredBB to BB, changing them to branch
1237 // to EdgeBB instead.
1238 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1239 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1240 if (PredBBTI
->getSuccessor(i
) == BB
) {
1241 BB
->removePredecessor(PredBB
);
1242 PredBBTI
->setSuccessor(i
, EdgeBB
);
1245 // Recurse, simplifying any other constants.
1246 return FoldCondBranchOnPHI(BI
) | true;
1253 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1254 /// PHI node, see if we can eliminate it.
1255 static bool FoldTwoEntryPHINode(PHINode
*PN
) {
1256 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1257 // statement", which has a very simple dominance structure. Basically, we
1258 // are trying to find the condition that is being branched on, which
1259 // subsequently causes this merge to happen. We really want control
1260 // dependence information for this check, but simplifycfg can't keep it up
1261 // to date, and this catches most of the cases we care about anyway.
1263 BasicBlock
*BB
= PN
->getParent();
1264 BasicBlock
*IfTrue
, *IfFalse
;
1265 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1266 if (!IfCond
) return false;
1268 // Okay, we found that we can merge this two-entry phi node into a select.
1269 // Doing so would require us to fold *all* two entry phi nodes in this block.
1270 // At some point this becomes non-profitable (particularly if the target
1271 // doesn't support cmov's). Only do this transformation if there are two or
1272 // fewer PHI nodes in this block.
1273 unsigned NumPhis
= 0;
1274 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1278 DOUT
<< "FOUND IF CONDITION! " << *IfCond
<< " T: "
1279 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n";
1281 // Loop over the PHI's seeing if we can promote them all to select
1282 // instructions. While we are at it, keep track of the instructions
1283 // that need to be moved to the dominating block.
1284 std::set
<Instruction
*> AggressiveInsts
;
1286 BasicBlock::iterator AfterPHIIt
= BB
->begin();
1287 while (isa
<PHINode
>(AfterPHIIt
)) {
1288 PHINode
*PN
= cast
<PHINode
>(AfterPHIIt
++);
1289 if (PN
->getIncomingValue(0) == PN
->getIncomingValue(1)) {
1290 if (PN
->getIncomingValue(0) != PN
)
1291 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1293 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1294 } else if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
,
1295 &AggressiveInsts
) ||
1296 !DominatesMergePoint(PN
->getIncomingValue(1), BB
,
1297 &AggressiveInsts
)) {
1302 // If we all PHI nodes are promotable, check to make sure that all
1303 // instructions in the predecessor blocks can be promoted as well. If
1304 // not, we won't be able to get rid of the control flow, so it's not
1305 // worth promoting to select instructions.
1306 BasicBlock
*DomBlock
= 0, *IfBlock1
= 0, *IfBlock2
= 0;
1307 PN
= cast
<PHINode
>(BB
->begin());
1308 BasicBlock
*Pred
= PN
->getIncomingBlock(0);
1309 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1311 DomBlock
= *pred_begin(Pred
);
1312 for (BasicBlock::iterator I
= Pred
->begin();
1313 !isa
<TerminatorInst
>(I
); ++I
)
1314 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1315 // This is not an aggressive instruction that we can promote.
1316 // Because of this, we won't be able to get rid of the control
1317 // flow, so the xform is not worth it.
1322 Pred
= PN
->getIncomingBlock(1);
1323 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1325 DomBlock
= *pred_begin(Pred
);
1326 for (BasicBlock::iterator I
= Pred
->begin();
1327 !isa
<TerminatorInst
>(I
); ++I
)
1328 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1329 // This is not an aggressive instruction that we can promote.
1330 // Because of this, we won't be able to get rid of the control
1331 // flow, so the xform is not worth it.
1336 // If we can still promote the PHI nodes after this gauntlet of tests,
1337 // do all of the PHI's now.
1339 // Move all 'aggressive' instructions, which are defined in the
1340 // conditional parts of the if's up to the dominating block.
1342 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1343 IfBlock1
->getInstList(),
1345 IfBlock1
->getTerminator());
1348 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1349 IfBlock2
->getInstList(),
1351 IfBlock2
->getTerminator());
1354 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1355 // Change the PHI node into a select instruction.
1357 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1359 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1361 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", AfterPHIIt
);
1362 PN
->replaceAllUsesWith(NV
);
1365 BB
->getInstList().erase(PN
);
1370 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1371 /// instruction ignoring Phi nodes and dbg intrinsics.
1372 static bool isTerminatorFirstRelevantInsn(BasicBlock
*BB
, Instruction
*Term
) {
1373 BasicBlock::iterator BBI
= Term
;
1374 while (BBI
!= BB
->begin()) {
1376 if (!isa
<DbgInfoIntrinsic
>(BBI
))
1380 if (isa
<PHINode
>(BBI
) || &*BBI
== Term
|| isa
<DbgInfoIntrinsic
>(BBI
))
1385 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1386 /// to two returning blocks, try to merge them together into one return,
1387 /// introducing a select if the return values disagree.
1388 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1389 assert(BI
->isConditional() && "Must be a conditional branch");
1390 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1391 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1392 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1393 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1395 // Check to ensure both blocks are empty (just a return) or optionally empty
1396 // with PHI nodes. If there are other instructions, merging would cause extra
1397 // computation on one path or the other.
1398 if (!isTerminatorFirstRelevantInsn(TrueSucc
, TrueRet
))
1400 if (!isTerminatorFirstRelevantInsn(FalseSucc
, FalseRet
))
1403 // Okay, we found a branch that is going to two return nodes. If
1404 // there is no return value for this function, just change the
1405 // branch into a return.
1406 if (FalseRet
->getNumOperands() == 0) {
1407 TrueSucc
->removePredecessor(BI
->getParent());
1408 FalseSucc
->removePredecessor(BI
->getParent());
1409 ReturnInst::Create(0, BI
);
1410 EraseTerminatorInstAndDCECond(BI
);
1414 // Otherwise, figure out what the true and false return values are
1415 // so we can insert a new select instruction.
1416 Value
*TrueValue
= TrueRet
->getReturnValue();
1417 Value
*FalseValue
= FalseRet
->getReturnValue();
1419 // Unwrap any PHI nodes in the return blocks.
1420 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1421 if (TVPN
->getParent() == TrueSucc
)
1422 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1423 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1424 if (FVPN
->getParent() == FalseSucc
)
1425 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1427 // In order for this transformation to be safe, we must be able to
1428 // unconditionally execute both operands to the return. This is
1429 // normally the case, but we could have a potentially-trapping
1430 // constant expression that prevents this transformation from being
1432 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1435 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1439 // Okay, we collected all the mapped values and checked them for sanity, and
1440 // defined to really do this transformation. First, update the CFG.
1441 TrueSucc
->removePredecessor(BI
->getParent());
1442 FalseSucc
->removePredecessor(BI
->getParent());
1444 // Insert select instructions where needed.
1445 Value
*BrCond
= BI
->getCondition();
1447 // Insert a select if the results differ.
1448 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1449 } else if (isa
<UndefValue
>(TrueValue
)) {
1450 TrueValue
= FalseValue
;
1452 TrueValue
= SelectInst::Create(BrCond
, TrueValue
,
1453 FalseValue
, "retval", BI
);
1457 Value
*RI
= !TrueValue
?
1458 ReturnInst::Create(BI
) :
1459 ReturnInst::Create(TrueValue
, BI
);
1461 DOUT
<< "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1462 << "\n " << *BI
<< "NewRet = " << *RI
1463 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
;
1465 EraseTerminatorInstAndDCECond(BI
);
1470 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1471 /// and if a predecessor branches to us and one of our successors, fold the
1472 /// setcc into the predecessor and use logical operations to pick the right
1474 static bool FoldBranchToCommonDest(BranchInst
*BI
) {
1475 BasicBlock
*BB
= BI
->getParent();
1476 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1477 if (Cond
== 0) return false;
1480 // Only allow this if the condition is a simple instruction that can be
1481 // executed unconditionally. It must be in the same block as the branch, and
1482 // must be at the front of the block.
1483 BasicBlock::iterator FrontIt
= BB
->front();
1484 // Ignore dbg intrinsics.
1485 while(isa
<DbgInfoIntrinsic
>(FrontIt
))
1487 if ((!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1488 Cond
->getParent() != BB
|| &*FrontIt
!= Cond
|| !Cond
->hasOneUse()) {
1492 // Make sure the instruction after the condition is the cond branch.
1493 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1494 // Ingore dbg intrinsics.
1495 while(isa
<DbgInfoIntrinsic
>(CondIt
))
1497 if (&*CondIt
!= BI
) {
1498 assert (!isa
<DbgInfoIntrinsic
>(CondIt
) && "Hey do not forget debug info!");
1502 // Cond is known to be a compare or binary operator. Check to make sure that
1503 // neither operand is a potentially-trapping constant expression.
1504 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1507 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1512 // Finally, don't infinitely unroll conditional loops.
1513 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1514 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1515 if (TrueDest
== BB
|| FalseDest
== BB
)
1518 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1519 BasicBlock
*PredBlock
= *PI
;
1520 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1522 // Check that we have two conditional branches. If there is a PHI node in
1523 // the common successor, verify that the same value flows in from both
1525 if (PBI
== 0 || PBI
->isUnconditional() ||
1526 !SafeToMergeTerminators(BI
, PBI
))
1529 Instruction::BinaryOps Opc
;
1530 bool InvertPredCond
= false;
1532 if (PBI
->getSuccessor(0) == TrueDest
)
1533 Opc
= Instruction::Or
;
1534 else if (PBI
->getSuccessor(1) == FalseDest
)
1535 Opc
= Instruction::And
;
1536 else if (PBI
->getSuccessor(0) == FalseDest
)
1537 Opc
= Instruction::And
, InvertPredCond
= true;
1538 else if (PBI
->getSuccessor(1) == TrueDest
)
1539 Opc
= Instruction::Or
, InvertPredCond
= true;
1543 DOUT
<< "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
;
1545 // If we need to invert the condition in the pred block to match, do so now.
1546 if (InvertPredCond
) {
1548 BinaryOperator::CreateNot(PBI
->getCondition(),
1549 PBI
->getCondition()->getName()+".not", PBI
);
1550 PBI
->setCondition(NewCond
);
1551 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1552 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1553 PBI
->setSuccessor(0, OldFalse
);
1554 PBI
->setSuccessor(1, OldTrue
);
1557 // Clone Cond into the predecessor basic block, and or/and the
1558 // two conditions together.
1559 Instruction
*New
= Cond
->clone();
1560 PredBlock
->getInstList().insert(PBI
, New
);
1561 New
->takeName(Cond
);
1562 Cond
->setName(New
->getName()+".old");
1564 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1565 New
, "or.cond", PBI
);
1566 PBI
->setCondition(NewCond
);
1567 if (PBI
->getSuccessor(0) == BB
) {
1568 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1569 PBI
->setSuccessor(0, TrueDest
);
1571 if (PBI
->getSuccessor(1) == BB
) {
1572 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1573 PBI
->setSuccessor(1, FalseDest
);
1580 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1581 /// predecessor of another block, this function tries to simplify it. We know
1582 /// that PBI and BI are both conditional branches, and BI is in one of the
1583 /// successor blocks of PBI - PBI branches to BI.
1584 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1585 assert(PBI
->isConditional() && BI
->isConditional());
1586 BasicBlock
*BB
= BI
->getParent();
1588 // If this block ends with a branch instruction, and if there is a
1589 // predecessor that ends on a branch of the same condition, make
1590 // this conditional branch redundant.
1591 if (PBI
->getCondition() == BI
->getCondition() &&
1592 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1593 // Okay, the outcome of this conditional branch is statically
1594 // knowable. If this block had a single pred, handle specially.
1595 if (BB
->getSinglePredecessor()) {
1596 // Turn this into a branch on constant.
1597 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1598 BI
->setCondition(ConstantInt::get(Type::Int1Ty
, CondIsTrue
));
1599 return true; // Nuke the branch on constant.
1602 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1603 // in the constant and simplify the block result. Subsequent passes of
1604 // simplifycfg will thread the block.
1605 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1606 PHINode
*NewPN
= PHINode::Create(Type::Int1Ty
,
1607 BI
->getCondition()->getName() + ".pr",
1609 // Okay, we're going to insert the PHI node. Since PBI is not the only
1610 // predecessor, compute the PHI'd conditional value for all of the preds.
1611 // Any predecessor where the condition is not computable we keep symbolic.
1612 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1613 if ((PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator())) &&
1614 PBI
!= BI
&& PBI
->isConditional() &&
1615 PBI
->getCondition() == BI
->getCondition() &&
1616 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1617 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1618 NewPN
->addIncoming(ConstantInt::get(Type::Int1Ty
,
1621 NewPN
->addIncoming(BI
->getCondition(), *PI
);
1624 BI
->setCondition(NewPN
);
1629 // If this is a conditional branch in an empty block, and if any
1630 // predecessors is a conditional branch to one of our destinations,
1631 // fold the conditions into logical ops and one cond br.
1632 BasicBlock::iterator BBI
= BB
->begin();
1633 // Ignore dbg intrinsics.
1634 while (isa
<DbgInfoIntrinsic
>(BBI
))
1640 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1645 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1647 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1648 PBIOp
= 0, BIOp
= 1;
1649 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1650 PBIOp
= 1, BIOp
= 0;
1651 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1656 // Check to make sure that the other destination of this branch
1657 // isn't BB itself. If so, this is an infinite loop that will
1658 // keep getting unwound.
1659 if (PBI
->getSuccessor(PBIOp
) == BB
)
1662 // Do not perform this transformation if it would require
1663 // insertion of a large number of select instructions. For targets
1664 // without predication/cmovs, this is a big pessimization.
1665 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1667 unsigned NumPhis
= 0;
1668 for (BasicBlock::iterator II
= CommonDest
->begin();
1669 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1670 if (NumPhis
> 2) // Disable this xform.
1673 // Finally, if everything is ok, fold the branches to logical ops.
1674 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1676 DOUT
<< "FOLDING BRs:" << *PBI
->getParent()
1677 << "AND: " << *BI
->getParent();
1680 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1681 // branch in it, where one edge (OtherDest) goes back to itself but the other
1682 // exits. We don't *know* that the program avoids the infinite loop
1683 // (even though that seems likely). If we do this xform naively, we'll end up
1684 // recursively unpeeling the loop. Since we know that (after the xform is
1685 // done) that the block *is* infinite if reached, we just make it an obviously
1686 // infinite loop with no cond branch.
1687 if (OtherDest
== BB
) {
1688 // Insert it at the end of the function, because it's either code,
1689 // or it won't matter if it's hot. :)
1690 BasicBlock
*InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
1691 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1692 OtherDest
= InfLoopBlock
;
1695 DOUT
<< *PBI
->getParent()->getParent();
1697 // BI may have other predecessors. Because of this, we leave
1698 // it alone, but modify PBI.
1700 // Make sure we get to CommonDest on True&True directions.
1701 Value
*PBICond
= PBI
->getCondition();
1703 PBICond
= BinaryOperator::CreateNot(PBICond
,
1704 PBICond
->getName()+".not",
1706 Value
*BICond
= BI
->getCondition();
1708 BICond
= BinaryOperator::CreateNot(BICond
,
1709 BICond
->getName()+".not",
1711 // Merge the conditions.
1712 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1714 // Modify PBI to branch on the new condition to the new dests.
1715 PBI
->setCondition(Cond
);
1716 PBI
->setSuccessor(0, CommonDest
);
1717 PBI
->setSuccessor(1, OtherDest
);
1719 // OtherDest may have phi nodes. If so, add an entry from PBI's
1720 // block that are identical to the entries for BI's block.
1722 for (BasicBlock::iterator II
= OtherDest
->begin();
1723 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1724 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1725 PN
->addIncoming(V
, PBI
->getParent());
1728 // We know that the CommonDest already had an edge from PBI to
1729 // it. If it has PHIs though, the PHIs may have different
1730 // entries for BB and PBI's BB. If so, insert a select to make
1732 for (BasicBlock::iterator II
= CommonDest
->begin();
1733 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1734 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1735 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1736 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1738 // Insert a select in PBI to pick the right value.
1739 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1740 PBIV
->getName()+".mux", PBI
);
1741 PN
->setIncomingValue(PBBIdx
, NV
);
1745 DOUT
<< "INTO: " << *PBI
->getParent();
1747 DOUT
<< *PBI
->getParent()->getParent();
1749 // This basic block is probably dead. We know it has at least
1750 // one fewer predecessor.
1755 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1756 /// example, it adjusts branches to branches to eliminate the extra hop, it
1757 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1758 /// of the CFG. It returns true if a modification was made.
1760 /// WARNING: The entry node of a function may not be simplified.
1762 bool llvm::SimplifyCFG(BasicBlock
*BB
) {
1763 bool Changed
= false;
1764 Function
*M
= BB
->getParent();
1766 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
1767 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
1768 assert(&BB
->getParent()->getEntryBlock() != BB
&&
1769 "Can't Simplify entry block!");
1771 // Remove basic blocks that have no predecessors... or that just have themself
1772 // as a predecessor. These are unreachable.
1773 if (pred_begin(BB
) == pred_end(BB
) || BB
->getSinglePredecessor() == BB
) {
1774 DOUT
<< "Removing BB: \n" << *BB
;
1775 DeleteDeadBlock(BB
);
1779 // Check to see if we can constant propagate this terminator instruction
1781 Changed
|= ConstantFoldTerminator(BB
);
1783 // If there is a trivial two-entry PHI node in this basic block, and we can
1784 // eliminate it, do so now.
1785 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
1786 if (PN
->getNumIncomingValues() == 2)
1787 Changed
|= FoldTwoEntryPHINode(PN
);
1789 // If this is a returning block with only PHI nodes in it, fold the return
1790 // instruction into any unconditional branch predecessors.
1792 // If any predecessor is a conditional branch that just selects among
1793 // different return values, fold the replace the branch/return with a select
1795 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
1796 if (isTerminatorFirstRelevantInsn(BB
, BB
->getTerminator())) {
1797 // Find predecessors that end with branches.
1798 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
1799 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
1800 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1801 TerminatorInst
*PTI
= (*PI
)->getTerminator();
1802 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
1803 if (BI
->isUnconditional())
1804 UncondBranchPreds
.push_back(*PI
);
1806 CondBranchPreds
.push_back(BI
);
1810 // If we found some, do the transformation!
1811 if (!UncondBranchPreds
.empty()) {
1812 while (!UncondBranchPreds
.empty()) {
1813 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
1814 DOUT
<< "FOLDING: " << *BB
1815 << "INTO UNCOND BRANCH PRED: " << *Pred
;
1816 Instruction
*UncondBranch
= Pred
->getTerminator();
1817 // Clone the return and add it to the end of the predecessor.
1818 Instruction
*NewRet
= RI
->clone();
1819 Pred
->getInstList().push_back(NewRet
);
1821 BasicBlock::iterator BBI
= RI
;
1822 if (BBI
!= BB
->begin()) {
1823 // Move region end info into the predecessor.
1824 if (DbgRegionEndInst
*DREI
= dyn_cast
<DbgRegionEndInst
>(--BBI
))
1825 DREI
->moveBefore(NewRet
);
1828 // If the return instruction returns a value, and if the value was a
1829 // PHI node in "BB", propagate the right value into the return.
1830 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
1832 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
1833 if (PN
->getParent() == BB
)
1834 *i
= PN
->getIncomingValueForBlock(Pred
);
1836 // Update any PHI nodes in the returning block to realize that we no
1837 // longer branch to them.
1838 BB
->removePredecessor(Pred
);
1839 Pred
->getInstList().erase(UncondBranch
);
1842 // If we eliminated all predecessors of the block, delete the block now.
1843 if (pred_begin(BB
) == pred_end(BB
))
1844 // We know there are no successors, so just nuke the block.
1845 M
->getBasicBlockList().erase(BB
);
1850 // Check out all of the conditional branches going to this return
1851 // instruction. If any of them just select between returns, change the
1852 // branch itself into a select/return pair.
1853 while (!CondBranchPreds
.empty()) {
1854 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
1856 // Check to see if the non-BB successor is also a return block.
1857 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
1858 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
1859 SimplifyCondBranchToTwoReturns(BI
))
1863 } else if (isa
<UnwindInst
>(BB
->begin())) {
1864 // Check to see if the first instruction in this block is just an unwind.
1865 // If so, replace any invoke instructions which use this as an exception
1866 // destination with call instructions, and any unconditional branch
1867 // predecessor with an unwind.
1869 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1870 while (!Preds
.empty()) {
1871 BasicBlock
*Pred
= Preds
.back();
1872 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator())) {
1873 if (BI
->isUnconditional()) {
1874 Pred
->getInstList().pop_back(); // nuke uncond branch
1875 new UnwindInst(Pred
); // Use unwind.
1878 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator()))
1879 if (II
->getUnwindDest() == BB
) {
1880 // Insert a new branch instruction before the invoke, because this
1881 // is now a fall through...
1882 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
1883 Pred
->getInstList().remove(II
); // Take out of symbol table
1885 // Insert the call now...
1886 SmallVector
<Value
*,8> Args(II
->op_begin()+3, II
->op_end());
1887 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
1888 Args
.begin(), Args
.end(),
1890 CI
->setCallingConv(II
->getCallingConv());
1891 CI
->setAttributes(II
->getAttributes());
1892 // If the invoke produced a value, the Call now does instead
1893 II
->replaceAllUsesWith(CI
);
1901 // If this block is now dead, remove it.
1902 if (pred_begin(BB
) == pred_end(BB
)) {
1903 // We know there are no successors, so just nuke the block.
1904 M
->getBasicBlockList().erase(BB
);
1908 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1909 if (isValueEqualityComparison(SI
)) {
1910 // If we only have one predecessor, and if it is a branch on this value,
1911 // see if that predecessor totally determines the outcome of this switch.
1912 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1913 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
1914 return SimplifyCFG(BB
) || 1;
1916 // If the block only contains the switch, see if we can fold the block
1917 // away into any preds.
1918 BasicBlock::iterator BBI
= BB
->begin();
1919 // Ignore dbg intrinsics.
1920 while (isa
<DbgInfoIntrinsic
>(BBI
))
1923 if (FoldValueComparisonIntoPredecessors(SI
))
1924 return SimplifyCFG(BB
) || 1;
1926 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1927 if (BI
->isUnconditional()) {
1928 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
1930 BasicBlock
*Succ
= BI
->getSuccessor(0);
1931 // Ignore dbg intrinsics.
1932 while (isa
<DbgInfoIntrinsic
>(BBI
))
1934 if (BBI
->isTerminator() && // Terminator is the only non-phi instruction!
1935 Succ
!= BB
) // Don't hurt infinite loops!
1936 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
, Succ
))
1939 } else { // Conditional branch
1940 if (isValueEqualityComparison(BI
)) {
1941 // If we only have one predecessor, and if it is a branch on this value,
1942 // see if that predecessor totally determines the outcome of this
1944 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1945 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
1946 return SimplifyCFG(BB
) || 1;
1948 // This block must be empty, except for the setcond inst, if it exists.
1949 // Ignore dbg intrinsics.
1950 BasicBlock::iterator I
= BB
->begin();
1951 // Ignore dbg intrinsics.
1952 while (isa
<DbgInfoIntrinsic
>(I
))
1955 if (FoldValueComparisonIntoPredecessors(BI
))
1956 return SimplifyCFG(BB
) | true;
1957 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
1959 // Ignore dbg intrinsics.
1960 while (isa
<DbgInfoIntrinsic
>(I
))
1963 if (FoldValueComparisonIntoPredecessors(BI
))
1964 return SimplifyCFG(BB
) | true;
1969 // If this is a branch on a phi node in the current block, thread control
1970 // through this block if any PHI node entries are constants.
1971 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
1972 if (PN
->getParent() == BI
->getParent())
1973 if (FoldCondBranchOnPHI(BI
))
1974 return SimplifyCFG(BB
) | true;
1976 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1977 // branches to us and one of our successors, fold the setcc into the
1978 // predecessor and use logical operations to pick the right destination.
1979 if (FoldBranchToCommonDest(BI
))
1980 return SimplifyCFG(BB
) | 1;
1983 // Scan predecessor blocks for conditional branches.
1984 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1985 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
1986 if (PBI
!= BI
&& PBI
->isConditional())
1987 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
1988 return SimplifyCFG(BB
) | true;
1990 } else if (isa
<UnreachableInst
>(BB
->getTerminator())) {
1991 // If there are any instructions immediately before the unreachable that can
1992 // be removed, do so.
1993 Instruction
*Unreachable
= BB
->getTerminator();
1994 while (Unreachable
!= BB
->begin()) {
1995 BasicBlock::iterator BBI
= Unreachable
;
1997 // Do not delete instructions that can have side effects, like calls
1998 // (which may never return) and volatile loads and stores.
1999 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
2001 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
2002 if (SI
->isVolatile())
2005 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2006 if (LI
->isVolatile())
2009 // Delete this instruction
2010 BB
->getInstList().erase(BBI
);
2014 // If the unreachable instruction is the first in the block, take a gander
2015 // at all of the predecessors of this instruction, and simplify them.
2016 if (&BB
->front() == Unreachable
) {
2017 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2018 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2019 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2021 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2022 if (BI
->isUnconditional()) {
2023 if (BI
->getSuccessor(0) == BB
) {
2024 new UnreachableInst(TI
);
2025 TI
->eraseFromParent();
2029 if (BI
->getSuccessor(0) == BB
) {
2030 BranchInst::Create(BI
->getSuccessor(1), BI
);
2031 EraseTerminatorInstAndDCECond(BI
);
2032 } else if (BI
->getSuccessor(1) == BB
) {
2033 BranchInst::Create(BI
->getSuccessor(0), BI
);
2034 EraseTerminatorInstAndDCECond(BI
);
2038 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2039 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2040 if (SI
->getSuccessor(i
) == BB
) {
2041 BB
->removePredecessor(SI
->getParent());
2046 // If the default value is unreachable, figure out the most popular
2047 // destination and make it the default.
2048 if (SI
->getSuccessor(0) == BB
) {
2049 std::map
<BasicBlock
*, unsigned> Popularity
;
2050 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2051 Popularity
[SI
->getSuccessor(i
)]++;
2053 // Find the most popular block.
2054 unsigned MaxPop
= 0;
2055 BasicBlock
*MaxBlock
= 0;
2056 for (std::map
<BasicBlock
*, unsigned>::iterator
2057 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2058 if (I
->second
> MaxPop
) {
2060 MaxBlock
= I
->first
;
2064 // Make this the new default, allowing us to delete any explicit
2066 SI
->setSuccessor(0, MaxBlock
);
2069 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2071 if (isa
<PHINode
>(MaxBlock
->begin()))
2072 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2073 MaxBlock
->removePredecessor(SI
->getParent());
2075 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2076 if (SI
->getSuccessor(i
) == MaxBlock
) {
2082 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2083 if (II
->getUnwindDest() == BB
) {
2084 // Convert the invoke to a call instruction. This would be a good
2085 // place to note that the call does not throw though.
2086 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2087 II
->removeFromParent(); // Take out of symbol table
2089 // Insert the call now...
2090 SmallVector
<Value
*, 8> Args(II
->op_begin()+3, II
->op_end());
2091 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2092 Args
.begin(), Args
.end(),
2094 CI
->setCallingConv(II
->getCallingConv());
2095 CI
->setAttributes(II
->getAttributes());
2096 // If the invoke produced a value, the Call does now instead.
2097 II
->replaceAllUsesWith(CI
);
2104 // If this block is now dead, remove it.
2105 if (pred_begin(BB
) == pred_end(BB
)) {
2106 // We know there are no successors, so just nuke the block.
2107 M
->getBasicBlockList().erase(BB
);
2113 // Merge basic blocks into their predecessor if there is only one distinct
2114 // pred, and if there is only one distinct successor of the predecessor, and
2115 // if there are no PHI nodes.
2117 if (MergeBlockIntoPredecessor(BB
))
2120 // Otherwise, if this block only has a single predecessor, and if that block
2121 // is a conditional branch, see if we can hoist any code from this block up
2122 // into our predecessor.
2123 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
2124 BasicBlock
*OnlyPred
= *PI
++;
2125 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
2126 if (*PI
!= OnlyPred
) {
2127 OnlyPred
= 0; // There are multiple different predecessors...
2132 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(OnlyPred
->getTerminator()))
2133 if (BI
->isConditional()) {
2134 // Get the other block.
2135 BasicBlock
*OtherBB
= BI
->getSuccessor(BI
->getSuccessor(0) == BB
);
2136 PI
= pred_begin(OtherBB
);
2139 if (PI
== pred_end(OtherBB
)) {
2140 // We have a conditional branch to two blocks that are only reachable
2141 // from the condbr. We know that the condbr dominates the two blocks,
2142 // so see if there is any identical code in the "then" and "else"
2143 // blocks. If so, we can hoist it up to the branching block.
2144 Changed
|= HoistThenElseCodeToIf(BI
);
2146 BasicBlock
* OnlySucc
= NULL
;
2147 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
2151 else if (*SI
!= OnlySucc
) {
2152 OnlySucc
= 0; // There are multiple distinct successors!
2157 if (OnlySucc
== OtherBB
) {
2158 // If BB's only successor is the other successor of the predecessor,
2159 // i.e. a triangle, see if we can hoist any code from this block up
2160 // to the "if" block.
2161 Changed
|= SpeculativelyExecuteBB(BI
, BB
);
2166 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2167 if (BranchInst
*BI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2168 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2169 if (BI
->isConditional() && isa
<Instruction
>(BI
->getCondition())) {
2170 Instruction
*Cond
= cast
<Instruction
>(BI
->getCondition());
2171 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2172 // 'setne's and'ed together, collect them.
2174 std::vector
<ConstantInt
*> Values
;
2175 bool TrueWhenEqual
= GatherValueComparisons(Cond
, CompVal
, Values
);
2176 if (CompVal
&& CompVal
->getType()->isInteger()) {
2177 // There might be duplicate constants in the list, which the switch
2178 // instruction can't handle, remove them now.
2179 std::sort(Values
.begin(), Values
.end(), ConstantIntOrdering());
2180 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2182 // Figure out which block is which destination.
2183 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2184 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2185 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2187 // Create the new switch instruction now.
2188 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
,
2191 // Add all of the 'cases' to the switch instruction.
2192 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2193 New
->addCase(Values
[i
], EdgeBB
);
2195 // We added edges from PI to the EdgeBB. As such, if there were any
2196 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2197 // the number of edges added.
2198 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2199 isa
<PHINode
>(BBI
); ++BBI
) {
2200 PHINode
*PN
= cast
<PHINode
>(BBI
);
2201 Value
*InVal
= PN
->getIncomingValueForBlock(*PI
);
2202 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2203 PN
->addIncoming(InVal
, *PI
);
2206 // Erase the old branch instruction.
2207 EraseTerminatorInstAndDCECond(BI
);