1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
14 // It works best when loops have been canonicalized by the -indvars pass,
15 // allowing it to determine the trip counts of loops easily.
17 // The process of unrolling can produce extraneous basic blocks linked with
18 // unconditional branches. This will be corrected in the future.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "loop-unroll"
22 #include "llvm/Transforms/Utils/UnrollLoop.h"
23 #include "llvm/BasicBlock.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Cloning.h"
30 #include "llvm/Transforms/Utils/Local.h"
35 // TODO: Should these be here or in LoopUnroll?
36 STATISTIC(NumCompletelyUnrolled
, "Number of loops completely unrolled");
37 STATISTIC(NumUnrolled
, "Number of loops unrolled (completely or otherwise)");
39 /// RemapInstruction - Convert the instruction operands from referencing the
40 /// current values into those specified by ValueMap.
41 static inline void RemapInstruction(Instruction
*I
,
42 DenseMap
<const Value
*, Value
*> &ValueMap
) {
43 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
44 Value
*Op
= I
->getOperand(op
);
45 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(Op
);
46 if (It
!= ValueMap
.end()) Op
= It
->second
;
47 I
->setOperand(op
, Op
);
51 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
52 /// only has one predecessor, and that predecessor only has one successor.
53 /// The LoopInfo Analysis that is passed will be kept consistent.
54 /// Returns the new combined block.
55 static BasicBlock
*FoldBlockIntoPredecessor(BasicBlock
*BB
, LoopInfo
* LI
) {
56 // Merge basic blocks into their predecessor if there is only one distinct
57 // pred, and if there is only one distinct successor of the predecessor, and
58 // if there are no PHI nodes.
59 BasicBlock
*OnlyPred
= BB
->getSinglePredecessor();
60 if (!OnlyPred
) return 0;
62 if (OnlyPred
->getTerminator()->getNumSuccessors() != 1)
65 DOUT
<< "Merging: " << *BB
<< "into: " << *OnlyPred
;
67 // Resolve any PHI nodes at the start of the block. They are all
68 // guaranteed to have exactly one entry if they exist, unless there are
69 // multiple duplicate (but guaranteed to be equal) entries for the
70 // incoming edges. This occurs when there are multiple edges from
71 // OnlyPred to OnlySucc.
72 FoldSingleEntryPHINodes(BB
);
74 // Delete the unconditional branch from the predecessor...
75 OnlyPred
->getInstList().pop_back();
77 // Move all definitions in the successor to the predecessor...
78 OnlyPred
->getInstList().splice(OnlyPred
->end(), BB
->getInstList());
80 // Make all PHI nodes that referred to BB now refer to Pred as their
82 BB
->replaceAllUsesWith(OnlyPred
);
84 std::string OldName
= BB
->getName();
86 // Erase basic block from the function...
88 BB
->eraseFromParent();
90 // Inherit predecessor's name if it exists...
91 if (!OldName
.empty() && !OnlyPred
->hasName())
92 OnlyPred
->setName(OldName
);
97 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
98 /// if unrolling was succesful, or false if the loop was unmodified. Unrolling
99 /// can only fail when the loop's latch block is not terminated by a conditional
100 /// branch instruction. However, if the trip count (and multiple) are not known,
101 /// loop unrolling will mostly produce more code that is no faster.
103 /// The LoopInfo Analysis that is passed will be kept consistent.
105 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
106 /// removed from the LoopPassManager as well. LPM can also be NULL.
107 bool llvm::UnrollLoop(Loop
*L
, unsigned Count
, LoopInfo
* LI
, LPPassManager
* LPM
) {
108 assert(L
->isLCSSAForm());
110 BasicBlock
*Header
= L
->getHeader();
111 BasicBlock
*LatchBlock
= L
->getLoopLatch();
112 BranchInst
*BI
= dyn_cast
<BranchInst
>(LatchBlock
->getTerminator());
114 if (!BI
|| BI
->isUnconditional()) {
115 // The loop-rotate pass can be helpful to avoid this in many cases.
116 DOUT
<< " Can't unroll; loop not terminated by a conditional branch.\n";
121 unsigned TripCount
= L
->getSmallConstantTripCount();
122 // Find trip multiple if count is not available
123 unsigned TripMultiple
= 1;
125 TripMultiple
= L
->getSmallConstantTripMultiple();
128 DOUT
<< " Trip Count = " << TripCount
<< "\n";
129 if (TripMultiple
!= 1)
130 DOUT
<< " Trip Multiple = " << TripMultiple
<< "\n";
132 // Effectively "DCE" unrolled iterations that are beyond the tripcount
133 // and will never be executed.
134 if (TripCount
!= 0 && Count
> TripCount
)
138 assert(TripMultiple
> 0);
139 assert(TripCount
== 0 || TripCount
% TripMultiple
== 0);
141 // Are we eliminating the loop control altogether?
142 bool CompletelyUnroll
= Count
== TripCount
;
144 // If we know the trip count, we know the multiple...
145 unsigned BreakoutTrip
= 0;
146 if (TripCount
!= 0) {
147 BreakoutTrip
= TripCount
% Count
;
150 // Figure out what multiple to use.
151 BreakoutTrip
= TripMultiple
=
152 (unsigned)GreatestCommonDivisor64(Count
, TripMultiple
);
155 if (CompletelyUnroll
) {
156 DOUT
<< "COMPLETELY UNROLLING loop %" << Header
->getName()
157 << " with trip count " << TripCount
<< "!\n";
159 DOUT
<< "UNROLLING loop %" << Header
->getName()
161 if (TripMultiple
== 0 || BreakoutTrip
!= TripMultiple
) {
162 DOUT
<< " with a breakout at trip " << BreakoutTrip
;
163 } else if (TripMultiple
!= 1) {
164 DOUT
<< " with " << TripMultiple
<< " trips per branch";
169 std::vector
<BasicBlock
*> LoopBlocks
= L
->getBlocks();
171 bool ContinueOnTrue
= L
->contains(BI
->getSuccessor(0));
172 BasicBlock
*LoopExit
= BI
->getSuccessor(ContinueOnTrue
);
174 // For the first iteration of the loop, we should use the precloned values for
175 // PHI nodes. Insert associations now.
176 typedef DenseMap
<const Value
*, Value
*> ValueMapTy
;
177 ValueMapTy LastValueMap
;
178 std::vector
<PHINode
*> OrigPHINode
;
179 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
180 PHINode
*PN
= cast
<PHINode
>(I
);
181 OrigPHINode
.push_back(PN
);
183 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
)))
184 if (L
->contains(I
->getParent()))
188 std::vector
<BasicBlock
*> Headers
;
189 std::vector
<BasicBlock
*> Latches
;
190 Headers
.push_back(Header
);
191 Latches
.push_back(LatchBlock
);
193 for (unsigned It
= 1; It
!= Count
; ++It
) {
194 char SuffixBuffer
[100];
195 sprintf(SuffixBuffer
, ".%d", It
);
197 std::vector
<BasicBlock
*> NewBlocks
;
199 for (std::vector
<BasicBlock
*>::iterator BB
= LoopBlocks
.begin(),
200 E
= LoopBlocks
.end(); BB
!= E
; ++BB
) {
202 BasicBlock
*New
= CloneBasicBlock(*BB
, ValueMap
, SuffixBuffer
);
203 Header
->getParent()->getBasicBlockList().push_back(New
);
205 // Loop over all of the PHI nodes in the block, changing them to use the
206 // incoming values from the previous block.
208 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
209 PHINode
*NewPHI
= cast
<PHINode
>(ValueMap
[OrigPHINode
[i
]]);
210 Value
*InVal
= NewPHI
->getIncomingValueForBlock(LatchBlock
);
211 if (Instruction
*InValI
= dyn_cast
<Instruction
>(InVal
))
212 if (It
> 1 && L
->contains(InValI
->getParent()))
213 InVal
= LastValueMap
[InValI
];
214 ValueMap
[OrigPHINode
[i
]] = InVal
;
215 New
->getInstList().erase(NewPHI
);
218 // Update our running map of newest clones
219 LastValueMap
[*BB
] = New
;
220 for (ValueMapTy::iterator VI
= ValueMap
.begin(), VE
= ValueMap
.end();
222 LastValueMap
[VI
->first
] = VI
->second
;
224 L
->addBasicBlockToLoop(New
, LI
->getBase());
226 // Add phi entries for newly created values to all exit blocks except
227 // the successor of the latch block. The successor of the exit block will
228 // be updated specially after unrolling all the way.
229 if (*BB
!= LatchBlock
)
230 for (Value::use_iterator UI
= (*BB
)->use_begin(), UE
= (*BB
)->use_end();
232 Instruction
*UseInst
= cast
<Instruction
>(*UI
);
234 if (isa
<PHINode
>(UseInst
) && !L
->contains(UseInst
->getParent())) {
235 PHINode
*phi
= cast
<PHINode
>(UseInst
);
236 Value
*Incoming
= phi
->getIncomingValueForBlock(*BB
);
237 phi
->addIncoming(Incoming
, New
);
241 // Keep track of new headers and latches as we create them, so that
242 // we can insert the proper branches later.
244 Headers
.push_back(New
);
245 if (*BB
== LatchBlock
) {
246 Latches
.push_back(New
);
248 // Also, clear out the new latch's back edge so that it doesn't look
249 // like a new loop, so that it's amenable to being merged with adjacent
251 TerminatorInst
*Term
= New
->getTerminator();
252 assert(L
->contains(Term
->getSuccessor(!ContinueOnTrue
)));
253 assert(Term
->getSuccessor(ContinueOnTrue
) == LoopExit
);
254 Term
->setSuccessor(!ContinueOnTrue
, NULL
);
257 NewBlocks
.push_back(New
);
260 // Remap all instructions in the most recent iteration
261 for (unsigned i
= 0; i
< NewBlocks
.size(); ++i
)
262 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
263 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
264 RemapInstruction(I
, LastValueMap
);
267 // The latch block exits the loop. If there are any PHI nodes in the
268 // successor blocks, update them to use the appropriate values computed as the
269 // last iteration of the loop.
271 SmallPtrSet
<PHINode
*, 8> Users
;
272 for (Value::use_iterator UI
= LatchBlock
->use_begin(),
273 UE
= LatchBlock
->use_end(); UI
!= UE
; ++UI
)
274 if (PHINode
*phi
= dyn_cast
<PHINode
>(*UI
))
277 BasicBlock
*LastIterationBB
= cast
<BasicBlock
>(LastValueMap
[LatchBlock
]);
278 for (SmallPtrSet
<PHINode
*,8>::iterator SI
= Users
.begin(), SE
= Users
.end();
281 Value
*InVal
= PN
->removeIncomingValue(LatchBlock
, false);
282 // If this value was defined in the loop, take the value defined by the
283 // last iteration of the loop.
284 if (Instruction
*InValI
= dyn_cast
<Instruction
>(InVal
)) {
285 if (L
->contains(InValI
->getParent()))
286 InVal
= LastValueMap
[InVal
];
288 PN
->addIncoming(InVal
, LastIterationBB
);
292 // Now, if we're doing complete unrolling, loop over the PHI nodes in the
293 // original block, setting them to their incoming values.
294 if (CompletelyUnroll
) {
295 BasicBlock
*Preheader
= L
->getLoopPreheader();
296 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
297 PHINode
*PN
= OrigPHINode
[i
];
298 PN
->replaceAllUsesWith(PN
->getIncomingValueForBlock(Preheader
));
299 Header
->getInstList().erase(PN
);
303 // Now that all the basic blocks for the unrolled iterations are in place,
304 // set up the branches to connect them.
305 for (unsigned i
= 0, e
= Latches
.size(); i
!= e
; ++i
) {
306 // The original branch was replicated in each unrolled iteration.
307 BranchInst
*Term
= cast
<BranchInst
>(Latches
[i
]->getTerminator());
309 // The branch destination.
310 unsigned j
= (i
+ 1) % e
;
311 BasicBlock
*Dest
= Headers
[j
];
312 bool NeedConditional
= true;
314 // For a complete unroll, make the last iteration end with a branch
315 // to the exit block.
316 if (CompletelyUnroll
&& j
== 0) {
318 NeedConditional
= false;
321 // If we know the trip count or a multiple of it, we can safely use an
322 // unconditional branch for some iterations.
323 if (j
!= BreakoutTrip
&& (TripMultiple
== 0 || j
% TripMultiple
!= 0)) {
324 NeedConditional
= false;
327 if (NeedConditional
) {
328 // Update the conditional branch's successor for the following
330 Term
->setSuccessor(!ContinueOnTrue
, Dest
);
332 Term
->setUnconditionalDest(Dest
);
333 // Merge adjacent basic blocks, if possible.
334 if (BasicBlock
*Fold
= FoldBlockIntoPredecessor(Dest
, LI
)) {
335 std::replace(Latches
.begin(), Latches
.end(), Dest
, Fold
);
336 std::replace(Headers
.begin(), Headers
.end(), Dest
, Fold
);
341 // At this point, the code is well formed. We now do a quick sweep over the
342 // inserted code, doing constant propagation and dead code elimination as we
344 const std::vector
<BasicBlock
*> &NewLoopBlocks
= L
->getBlocks();
345 for (std::vector
<BasicBlock
*>::const_iterator BB
= NewLoopBlocks
.begin(),
346 BBE
= NewLoopBlocks
.end(); BB
!= BBE
; ++BB
)
347 for (BasicBlock::iterator I
= (*BB
)->begin(), E
= (*BB
)->end(); I
!= E
; ) {
348 Instruction
*Inst
= I
++;
350 if (isInstructionTriviallyDead(Inst
))
351 (*BB
)->getInstList().erase(Inst
);
352 else if (Constant
*C
= ConstantFoldInstruction(Inst
)) {
353 Inst
->replaceAllUsesWith(C
);
354 (*BB
)->getInstList().erase(Inst
);
358 NumCompletelyUnrolled
+= CompletelyUnroll
;
360 // Remove the loop from the LoopPassManager if it's completely removed.
361 if (CompletelyUnroll
&& LPM
!= NULL
)
362 LPM
->deleteLoopFromQueue(L
);
364 // If we didn't completely unroll the loop, it should still be in LCSSA form.
365 if (!CompletelyUnroll
)
366 assert(L
->isLCSSAForm());